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Translator’s Introduction

Topology before Poincaré

Without much exaggeration, it can be said that only one important topological
concept came to light before Poincaré. This was the Euler characteristic of
surfaces, whose name stems from the paper of Euler (1752) on what we now call
the Euler polyhedron formula. When writing in English, one usually expresses
the formula as

V − E + F = 2,

where

V = number of vertices,
E = number of edges,
F = number of faces,

of a convex polyhedron or, more generally, of a subdivided surface homeomor-
phic to the two-dimensional sphere S2. In Poincaré (for example, in §16 of his
Analysis situs paper) one finds the French version

S −A + F = 2,

where S stands sommets and A for arêtes.
The formula is usually proved by showing that the quantity V−E+F remains

invariant under all possible changes from one subdivision to another. It follows
that V − E + F is an invariant of any surface, not necessarily homeomorphic
to S2. This invariant is now called the Euler characteristic. Thus S2 has Euler
characteristic 2, whereas the torus has Euler characteristic 0.

Between the 1820s and 1880s, several different lines of research were found
to converge to the Euler characteristic.

1. The classification of polyhedra, following Euler (and even before him,
Descartes). Here the terms “edges” and “faces” have their traditional
meaning in Euclidean geometry.

2. The classification of surfaces of constant curvature, where the “edges” are
now geodesic segments. Here one finds that surfaces of positive Euler char-
acteristic have positive curvature, those of zero Euler characteristic have

1



2 Translator’s Introduction

zero curvature, and those of negative Euler characteristic have negative
curvature.

3. More generally, the average curvature of a smooth surface is positive for
positive Euler characteristic, zero for zero Euler characteristic, and nega-
tive for negative Euler characteristic. This follows from the Gauss-Bonnet
theorem of Gauss (1827) and Bonnet (1848).

4. The study of algebraic curves, revolutionized by Riemann (1851) when
he modelled each complex algebraic curve by a surface—its “Riemann
surface.” Under this interpretation, a number that Abel (1841) called the
genus of an algebraic curve turns out to depend on the Euler characteristic
of its Riemann surface. In fact, genus g is related to Euler characteristic
χ by

χ = 2− 2g.

Moreover, the genus g has a simple geometric interpretation as the number
of “holes” in the surface. Thus S2 has genus 0 and the torus has genus 1.

5. The topological classification of surfaces, by Möbius (1863). Möbius stud-
ied closed surfaces in R3 by slicing them into simple pieces by parallel
planes. He found by this method that every such surface is homeomor-
phic to a standard surface with g holes. Thus closed surfaces in R3—that
is, all orientable surfaces—are classified by their genus, and hence by their
Euler characteristic. (Despite his discovery of the non-orientable surface
that bears his name, Möbius did not classify non-orientable surfaces. This
was done by Dyck (1888).)

6. The study of “pits, peaks, and passes” on surfaces in R3 by Cayley (1859)
and Maxwell (1870). A family of parallel planes in R3 intersects a surface
S in curves we may view as curves of “constant height” (contour lines)
on S. If the planes are taken to be in general position, and the surface is
smooth, then S has only finitely many “pits, peaks, and passes” relative
to the height function. It turns out that

number of peaks− number of passes + number of pits

is precisely the Euler characteristic of S.

All of these ideas admit generalizations to higher dimensions, but the only
substantial step towards topology in arbitrary dimensions before Poincaré was
that of Betti (1871). Betti was inspired by Riemann’s concept of connectivity of
surfaces to define connectivity numbers, now known as Betti numbers P1, P2, . . .,
in all dimensions. The connectivity number of a surface S may be defined as
the maximum number of disjoint closed curves that can be drawn on S without
separating it. This number P1 is equal to the genus of S, hence it is just the
Euler characteristic in disguise.



Poincaré before topology 3

For a three-dimensional manifold M one can also consider the maximum
number P2 of disjoint closed surfaces in M that fail to separate M as the “two-
dimensional connectivity number” of M . The idea of separation fails to explain
the “one-dimensional connectivity” of M , however, since no finite set of curves
can separate M . Instead, one takes the maximum number of curves that can
lie in M without forming the boundary of a surface in M . (For a surface M ,
this maximum is the same as Riemann’s connectivity number.) Betti defined
Pm similarly, in a manifold M of arbitrary dimension, as the maximum number
of m-dimensional pieces of M that do not form the boundary of a connected
(m + 1)-dimensional piece of M . Thus Betti brought the concept of boundary
into topology in order to generalize Riemann’s concept of connectivity.

This was Poincaré’s starting point, but he went much further, as we will see.

Poincaré before topology

In the introduction to his first major topology paper, the Analysis situs, Poincaré
(1895) announced his goal of creating of creating an n-dimensional geometry.
As he memorably put it:

. . . geometry is the art of reasoning well from badly drawn figures;
however, these figures, if they are not to deceive us, must satisfy
certain conditions; the proportions may be grossly altered, but the
relative positions of the different parts must not be upset.

Because “positions must not be upset,” Poincaré sought what Leibniz called
Analysis situs, a geometry of position, or what we now call topology. He cited
as precedents the work of Riemann and Betti, and his own experience with
differential equations, celestial mechanics, and discontinuous groups. Of these,
I believe the most influential was the last, which stems from his work (and the
related work of Klein) on fuchsian functions in early 1880s.

Poincaré’s major papers on fuchsian functions may be found translated into
English in Poincaré (1985). The ideas relevant to topology may be summarized
as follows.

One considers a group Γ of translations of the plane which is fixed-point-free
(that is, non-identity group elements move every point) and discontinuous (that
is, there is a non-zero lower bound to the distance that each point is moved by
the non-identity elements). A special case is where the plane is C and Γ is
generated by two Euclidean translations in different directions. Generally the
“plane” is the hyperbolic plane H2, which may be modeled by either the upper
half plane of C or the open unit disk {z : |z| < 1}.

In either case, Γ has a fundamental domain D which is a polygon, and
the plane is filled without overlapping by its translates γD for γ ∈ Γ. In the
special case where the plane is C the fundamental domain can be taken to be
a parallelogram, the translations of which in the two directions fill C. In the
hyperbolic case D is a polygon with 4g sides for some g ≥ 2, and Γ is generated
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by 2g elements, each of which translates D to a polygon with just one side in
common with D.

It follows that the quotient C/Γ in the special case is a torus (obtained
by identifying opposite sides of the fundamental parallelogram), while in the
hyperbolic case the quotient H2/Γ is a surface of genus g ≥ 2, obtained by
identifying sides of the fundamental 4g-gon in certain pairs.1

Each pair of identified sides come together on the quotient surface as a closed
curve. For example, the identified sides of a fundamental parallelogram become
two closed curves a and b on the torus C/Γ, as shown in Figure 1. The curve a

b

b

a a → → a
b

Figure 1: Constructing a torus from a fundamental parallelogram.

corresponds to the translation of C with direction and length of the sides marked
a of the parallelogram, and curve b similarly corresponds to the translation with
direction and length of the sides marked b. Thus one is led to think of a “group
of curves” on the torus, isomorphic to the group of translations of C generated
by the translations a and b.

This group is what Poincaré later called the fundamental group, and we can
see why he viewed it as a group of “substitutions”—in this case, translations
of C—rather than as a group of (homotopy classes of) closed curves with fixed
origin on the torus, as we now do. Indeed, Poincaré in the 1880s much preferred
to work with fundamental polygons in the plane, and it was Klein (1882) who
realized that insight could be gained by looking at the quotient surface instead.
In particular, Klein used the Möbius classification of surfaces into canonical
forms to find canonical defining relations for fuchsian groups.

Here is how we find the defining relation in the case of the torus (in which
case one relation suffices). Clearly, if we perform the translations a, b, a−1, b−1 of
C in succession, where a−1 and b−1 denote the inverses of a and b respectively,
the whole plane arrives back at its starting position. We write this relation
symbolically as

aba−1b−1 = 1,

where 1 denotes the identity translation. On the torus surface, aba−1b−1 denotes
a closed curve that bounds a parallelogram (reversing the process shown in
Figure 1), and hence this curve is contractible to a point. This is the topological

1The connection with fuchsian functions, often mentioned by Poincaré but not very relevant
to topology, is that there are functions f that are periodic with respect to substitutions from
the group Γ: that is, f(γ(z)) = f(z) for all γ ∈ Γ. In the special case of the torus these
functions are the famous elliptic functions.
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interpretation of the relation

aba−1b−1 = 1.

With either interpretation it is quite easy to show that all relations between
a and b follow from the single relation aba−1b−1 = 1. This is why we call
aba−1b−1 = 1 the defining relation of the torus group.

In a similar way, we find the defining relation of any surface group by cutting
the surface along closed curves so as to produce a polygon. Equating the se-
quence of edges in the boundary of this polygon to 1 then gives a valid relation,
and again it is not hard to show that the relation thus obtained is a defining
relation. The curves most commonly used for the surface Sg of genus g are
called a1, b1, a2, b2, . . . , ag, bg, and cutting Sg along them produces a polygon
with boundary

a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g .

Consequently, the group of Sg may be generated by elements a1, b1, . . . , ag, bg

and it has defining relation

a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g = 1.

Figure 2 shows the curves a1, b1, a2, b2 on the surface S2, and the resulting
polygon.

b2

b1

a1

a2

−→ a2

b1

a1

b1

a1

b2

a2

b2

Figure 2: Genus 2 surface and its fundamental polygon

The Analysis situs paper

Poincaré set the agenda for his 1895 Analysis situs paper with a short announce-
ment, Poincaré (1892), a translation of which is also included in this volume.
In it he raises the question whether the Betti numbers suffice to determine the
topological type of a manifold, and introduces the fundamental group to further
illuminate this question. He gives a family of three-dimensional manifolds, ob-
tained as quotients of R3 by certain groups with a cube as fundamental region,
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and shows that certain of these manifolds have the same Betti numbers but
different fundamental groups. It follows, assuming that the fundamental group
is a topological invariant, that the Betti numbers do not suffice to distinguish
three-dimensional manifolds.

In Analysis situs, Poincaré develops these ideas in several directions.

1. He attempts to provide a new foundation for the Betti numbers in a rudi-
mentary homology theory, which introduces the idea of computing with
topological objects (in particular, adding, subtracting, testing for linear
independence). As Scholz (1980), p. 300, puts it:

The first phase of algebraic topology, inaugurated by Poincaré,
is characterized by the fact that its algebraic relations and op-
erations always deal with topological objects (submanifolds).

2. Using his homology theory, he discovers a duality theorem for the Betti
numbers of an n-dimensional manifold:

Pm = Pn−m for m = 1, 2, . . . , n− 1.

In words: “ the Betti numbers equidistant from the ends are equal.” He
later called this the fundamental theorem for Betti numbers (p. 125).

3. He generalizes the Euler polyhedron formula to arbitrary dimensions and
situates it in his homology theory.

4. He constructs several three-dimensional manifolds by identifying faces of
polyhedra, observing that this leads natural presentations of their funda-
mental groups by generators and relations.

5. Recognizing that the fundamental group first becomes important for three-
dimensional manifolds, Poincaré asks whether it suffices to distinguish
between them. He is not able to answer this question.

Analysis situs is rightly regarded as the origin of algebraic topology, because
of Poincaré’s construction of homology theory and the fundamental group. The
fundamental group is the more striking of the two, because it is a blatantly
abstract structure and generally non-commutative, yet surprising easy to grasp
via generators and relations. Homology theory reveals an algebraic structure
behind the bare Betti numbers and Euler characteristics of Poincaré’s predeces-
sors, but it is not easy to say what this structure really is. Indeed, Poincaré
did not realize that the Betti numbers are only part of the story, and he had to
write Supplements 1 and 2 to Analysis situs before the so-called torsion coeffi-
cients came to light. And it was only in 1925 that Emmy Noether discovered
the homology groups, which we now view as the proper home of the Betti and
torsion numbers. She announced this discovery in Noether (1926).2

2To be fair to Poincaré, he came close to discovering the first homology group H1 as
the abelianisation of the fundamental group π1 in Analysis situs §13. There he considered
the homologies obtained by allowing the generators of π1 to commute, and observed that
“knowledge of these homologies immediately yields the Betti number P1.”
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Thus, along with great breakthroughs, there is also confusion in Analysis
situs. The confusion extends to the very subject matter of algebraic topology,
the manifolds (or “varieties” as Poincaré calls them). His definitions suggest
that he is generally thinking of differentiable manifolds, but most of his three-
dimensional examples are defined combinatorially, by identifying faces of poly-
hedra, without checking their differentiability. His definition of Betti numbers
needs revision, as he discovers in Supplements 1 and 2, and imprecise arguments
are frequently used.

Another source of confusion concerns “simply-connected manifolds,” and it
ultimately led to the famous Poincaré conjecture in Supplement 5. In Analysis
situs, §14, he defines a manifold to be simply connected if its fundamental group
is trivial. It follows easily that a sphere of any dimension is simply-connected,
but Poincaré sometimes forgets that the converse is not obvious. On occasion, he
assumes that any simply-connected manifold is homeomorphic to a sphere (for
example, on p. 141), and on other occasions he even assumes (wrongly) that a
region with trivial homology is simply-connected (for example, on p. 59). These
errors have been flagged by footnotes, some by the original editors of Volume
VI of Poincaré’s Œuvres, René Garnier and Jean Leray (the actual author of
these footnotes is not identified), and some by myself.

Actually, it is not surprising that Poincaré made mistakes, given the novelty
and subtle nature of the subject, and his style of work. Darboux (1952), p. lvi,
describes Poincaré’s working method as follows:

Whenever asked to resolve a difficulty, his response came with the
speed of an arrow. When he wrote a memoir, he drafted it all in
one go, with only a few erasures, and did not return to what he had
written.

It is perhaps wise to read Poincaré’s memoirs in the same style: try to take in
their general sweep without lingering too long over gaps and errors.

The five supplements

In 1899 Poincaré wrote Complément a l’analysis situs in response to the criti-
cism of Heegaard (1898). Heegaard had become interested in three-dimensional
manifolds, and he found an example where Poincaré’s definition of Betti num-
bers comes into conflict with his duality theorem. To save the theorem, Poincaré
revised his homology theory in the Complément, moving towards a more combi-
natorial theory in which manifolds are assumed to have a polyhedral structure,
and computing Betti numbers from the incidence matrices of this structure. He
also arrived at a clearer explanation of the duality theorem in terms of the dual
(“reciprocal”) subdivision of a polyhedron, in which cells of dimension m in
the original polyhedron correspond to cells of dimension n−m in its dual. He
concluded the Complement with a (rather unconvincing) attempt to prove that
every differentiable manifold has a polyhedral subdivision. This theorem was
first proved rigorously by Cairns (1934).
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Poincaré may have thought that the Complément would complete his Anal-
ysis situs paper, but four more “complements” were to follow, as further gaps
and loose ends came to light. For this reason, I have chosen to use the word
“supplement” rather than “complement” (as Poincaré himself did on occasion).

In the second supplement, Poincaré dug more deeply into the problems of his
original homology theory, uncovering the existence of torsion, and expanding his
technique for computing Betti numbers to one that also computes torsion coef-
ficients. He motivated his choice of the word “torsion” by showing that torsion
occurs only in manifolds, such as the Möbius band, that are non-orientable and
hence “twisted onto themselves” in some way (p. 168). When Emmy Noether
built the Betti numbers and torsion numbers into the homology groups in 1926,
the word “torsion” took up residence in algebra, much to the mystification of
group theory students who were not informed of its origin in topology.

Having now attained some mastery of homology theory, Poincaré was em-
boldened to conjecture (p. 169) that: the three-dimensional sphere is the only
closed three-dimensional manifold with trivial Betti and torsion numbers. This
was his first (and incorrect) version of the Poincaré conjecture.

The third and fourth supplements hark back to the first major application
of Betti numbers to classical mathematics, the work of Picard (1889) on the
connectivity of algebraic surfaces. An algebraic surface (or “algebraic function
of two variables” as Picard called it) is taken to have complex values of the
variables, hence it has four real dimensions. By a mixture of analytic and
topological arguments, Picard succeeded in finding the first Betti number P1

of algebraic surfaces, but he had less success in finding P2. Invoking his new
homology theory, Poincaré pushed on to P2 in his fourth supplement (as far he
needed to go, since P3 = P1, by Poincaré duality). Like Picard, Poincaré also
appealed to results from analysis, in his case referring to his work on fuchsian
functions and non-euclidean geometry from the early 1880s. An exposition of
Poincaré’s argument (in German) may be found in Scholz (1980), pp. 365–371.

The return to non-euclidean geometry paid off unexpectedly in the fifth
supplement, with an interesting geometric algorithm (p. 245) to decide whether
a curve on a surface is homotopic to a simple curve. Poincaré’s result is that,
in the case of genus greater than 1 where the surface can be given a non-
euclidean metric, a homotopy class contains a simple curve if and only the
geodesic representative is simple. Informally speaking, one can decide whether
a curve κ is homotopic to simple curve by “stretching κ tight” on the surface
and observing whether the stretched form of κ is simple. It seems likely that
Poincaré’s application of non-euclidean geometry to surface topology inspired
the later work of Dehn and Nielsen between 1910 and the 1940s, and the work
of Thurston in the 1970s.

In the fifth supplement, the result on simple curves is just part of a rather
meandering investigation of curves on surfaces, and their role in the construction
of three-dimensional manifolds (“Heegaard diagrams”). In the final pages of the
paper this investigation leads to a spectacular discovery: the Poincaré homology
sphere. By pasting together two handlebodies of genus 2, H1 and H2 say, so
that certain carefully chosen curves on H1 become identified with canonical disk-
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spanning curves on H2, Poincaré obtains a three-dimensional manifold V whose
fundamental group π1(V ) he can write down in terms of generators and relations.
To the reader’s astonishment, the presentation of π1(V ) implies relations that
hold in the icosahedral group, so π1(V ) is non-trivial. On the other hand,
by allowing the generators of π1(V ) to commute one finds (in our language)
that H1(V ) = 0, so that V is a closed three-dimensional manifold with trivial
homology but non-trivial fundamental group (hence V is not simply-connected.)

The Poincaré homology sphere therefore refutes the conjecture made at the
end of the second supplement, and it prompts the revised Poincaré conjecture
(now known to be correct): the three-sphere is the only closed three-dimensional
manifold with trivial fundamental group.

Poincaré prudently concludes the fifth supplement by remarking that inves-
tigation of the revised conjecture “would carry us too far away.”

The Poincaré conjecture

In the Analysis situs and its five supplements, Poincaré opened up a vast new
area of mathematics. It is not surprising that he left it incompletely explored.
Among the most important gaps in his coverage were:

1. The topological invariance of dimension, first proved by Brouwer (1911).

2. The topological invariance of the Betti and torsion numbers, first proved
by Alexander (1915).

3. The existence of non-homeomorphic three-dimensional manifolds with the
same fundamental group, first proved by Alexander (1919).

4. The existence of a polyhedral structure on every differentiable manifold,
first proved by Cairns (1934).

5. The existence of topological manifolds without a polyhedral structure, first
proved by Kirby and Siebenmann around 1970, and published in Kirby
and Siebenmann (1977).

But the deepest of the unsolved problems left by Poincaré was one he first
thought was trivial—the Poincaré conjecture.

In the beginning, there was no conjecture, because Poincaré thought it obvi-
ous that a simply-connected closed manifold was homeomorphic to a sphere. In
the second supplement he came up with a sharper claim that was less obvious,
hence in his view worth conjecturing: a closed manifold with trivial homol-
ogy is homeomorphic to a sphere. But on occasions thereafter he forgot that
there is a difference between trivial homology and trivial fundamental group.
Finally, the discovery of Poincaré homology sphere in Supplement 5 opened his
eyes to the real problem, and the Poincaré conjecture as we know it today was
born: a closed 3-manifold with trivial fundamental group is homeomorphic to
the 3-sphere.
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The existence of homology spheres shows that three dimensions are more
complicated than two, but just how much more complicated they are was not
immediately clear. Further results on three-dimensional manifolds came with
glacial slowness, and they often revealed new complications. Dehn (1910) found
infinitely many homology spheres and Whitehead (1935) found an open three-
dimensional manifold that is simply-connected but not homeomorphic to R3.

In the 1950s and 1960s there was at last some good news about three-
dimensional manifolds; for example, they all have a polyhedral structure (Moise
(1952)). The news did not include a proof of the Poincaré conjecture, however.
Instead, progress on the conjecture came in higher dimensions, with a proof by
Smale (1961) of the analogous conjecture for the n-dimensional sphere Sn for
n ≥ 5. Unfortunately, while three dimensions are harder than two, five are eas-
ier than three in some respects. So Smale’s proof did not throw much light on
the classical Poincaré conjecture, or on the analogous conjecture for S4 either.

The analogue of the Poincaré conjecture for four-dimensional manifolds was
finally proved by Freedman (1982). Freedman’s proof was a tour de force that si-
multaneously solved several longstanding problems about four-dimensional man-
ifolds. That his approach worked at all was a surprise to many of his colleagues,
and finding a similar approach to the classical Poincaré conjecture seemed out
of the question.

Indeed, an entirely new approach to the Poincaré conjecture had already
been taking shape in the hands of William Thurston in the late 1970s. Thurston,
like Poincaré and Dehn, was interested in geometric realizations of manifolds,
exemplified by the surfaces of constant curvature that realize all the topological
forms of closed surfaces. He conjectured that all 3-manifolds may be realized
in a similar, though more complicated, way. Instead of the three 2-dimensional
geometries of constant curvature, one has eight “homogeneous” 3-dimensional
geometries. (The eight geometries were discovered by Bianchi (1898), and re-
discovered by Thurston.) And instead of a single geometry for each 3-manifold
M one has a “decomposition” of M into finitely pieces, each carrying one of the
eight geometries.

Thurston’s geometrisation conjecture states that each closed connected 3-
manifold is homeomorphic to one with such a decomposition. The Poincaré
conjecture follows from a special case of the geometrisation conjecture for man-
ifolds of positive curvature. For more details on the evolution of the Poincaré
conjecture up to this point, see Milnor (2003).

Thurston was able to prove many cases of his geometrisation conjecture, but
geometrisation seemed to run out of steam in the early 1980s. This was not
entirely disappointing to some topologists, who still hoped for a proof of the
Poincaré conjecture by purely topological methods. However, more geometry
was to come, not less, and differential geometry at that. It was not enough to
consider manifolds with “homogeneous” geometry; one had to consider mani-
folds with arbitrary smooth geometry, and to let the geometry “flow” towards
homogeneity.

The idea of “flowing towards homogeneity” was initiated by Hamilton (1982),
using what is called the Ricci curvature flow. Hamilton was able to show that the



Comments on terminology and notation 11

Ricci curvature flow works in many cases, but he was stymied by the formation
of singularities in the general case. The difficulties were brilliantly overcome by
Grigory Perelman in 2003. Perelman published his proof only in outline, in three
papers posted on the internet in 2002 and 2003, but experts later found that
these papers contained all the ideas necessary to construct a complete proof of
the geometrisation conjecture. Perelman himself, apparently sure that he would
be vindicated, published nothing further and seems to have gone into seclusion.

For a very thorough and detailed account of Perelman’s proof of the Poincaré
conjecture, see Morgan and Tian (2007).

Comments on terminology and notation

Poincaré’s topology papers pose an unusual problem for the translator, inasmuch
as they contain numerous errors, both large and small, and misleading notation.
My policy (which is probably not entirely consistent) has been to make only
small changes where they help the modern reader—such as correcting obvious
typographical errors—but to leave serious errors untouched except for footnotes
pointing them out.

The most serious errors must be retained because they were a key stimulus to
the development of Poincaré’s thought in topology. As mentioned above, some
of the five supplements exist only because of mistakes in the Analysis situs
paper. It is more debatable whether one should retain annoying notation, such
as the + sign Poincaré uses to denote the (generally noncommutative) group
operation in the fundamental group, or the ≡ sign and the word “congruence”
he uses for the (asymmetric) boundary relation. I have opted to retain these,
partly to assist readers who wish to compare the translation with the original
papers, and also because they may be a clue to what Poincaré was thinking
when he first applied algebra to topology.

I have also retained the word “conjugate” that Poincaré uses for the paired
sides of a polyhedron, or the paired sides of a polygon, that are to be identified to
form a manifold. One can replace “conjugate” by “identified” in many cases, but
sometimes “paired” is better, so I thought it safest not to meddle. Fortunately,
Poincaré does not use the word “conjugate” in the group-theoretic sense, even
though the concept of conjugacy in group theory briefly arises.

On the other hand, I consistently use the word “manifold” where Poincaré
uses “variety,” and I call manifolds “orientable” where he calls them “two-sided”
and “non-orientable” where he calls them “one-sided.” The word “variety”
always suggests algebraic geometry today, whereas Poincaré is really thinking
about the topology of manifolds (even though many of them are in fact algebraic
varieties), so “manifold” is the right word for the modern reader. The words
“two-sided” and “one-sided” are less misleading than “variety,” but Poincaré
also uses them in a second sense, to describe separating and non-separating
curves on a surface, which have “two sides” and “one side” respectively. Calling
manifolds “orientable” and “non-orientable” therefore removes a possible source
of confusion.
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ON ANALYSIS SITUS

Comptes rendus de l’Académie des Sciences 115 (1892), pp. 633-636.

One knows what is meant by the connectivity of a surface, and the important
role this notion plays in the general theory of functions, despite being borrowed
from an entirely different branch of mathematics, namely the geometry of situ-
ation or Analysis situs.

It is because researches of this kind can have applications outside geometry
that it is of interest to pursue them to spaces of more than three dimensions.
Riemann understood this well; and he wished to extend his beautiful discovery
and apply it to the Analysis situs of general spaces, but unfortunately he left
the subject in a very incomplete state. Betti, in volume IV, series 2 of Annali
di Matematica, recovered and completed Riemann’s results. He considered a
surface (manifold of dimension n) in the space of n + 1 dimensions, and defined
n− 1 numbers

p1, p2, . . . , pn−1

that he called he called the orders of connection of the surface.
Persons who recoil from geometry of more than three dimensions may believe

this result to be useless and view it as a futile game, if they have not been
informed of their error by the use made of Betti numbers by our colleague M.
Picard in pure analysis and ordinary geometry.

Meanwhile, the field is by no means exhausted. One may ask whether the
Betti numbers suffice to determine a closed surface from the viewpoint of Anal-
ysis situs. That is, given two surfaces with the same Betti numbers, we ask
whether it is possible to pass from one to the other by a continuous deforma-
tion. This is true in the space of three dimensions, and we may be inclined to
believe that it is again true in any space. The contrary is true.

In order to explain, I want to approach the question from a new viewpoint.
Let x1, x2, . . . , xn+1 be the coordinates of a point on the surface. These n + 1
quantities are connected by the equation of the surface. Now let

F1, F2, . . . , Fp

be any p functions of the n + 1 coordinates x (which I always suppose to be
connected by the equation of the surface, and which I suppose to take only real
values).

I do not assume that the functions F are uniform, but I suppose that if the
point (x1, x2, . . . , xn+1) describes an infinitely small contour on the surface then
each of the functions F returns to its initial value. This being so, we suppose
that our point now describes a finite closed contour on the surface. It may then
happen that the p functions do not return to their initial values, but instead
become

F ′1, F ′2, . . . , F ′p.
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In other words, they undergo the substitution

(F1, F2, . . . , Fp;F ′1, F
′
2, . . . , F

′
P ).

All the substitutions corresponding to the different closed contours that we
can trace on the surface form a group which is discontinuous (at least as far as
its form is concerned).

This group evidently depends on the choice of functions F . We suppose first
that these functions are the most one can imagine, other than being subject to
the condition imposed above, and let G be the corresponding group. If G′ is the
group corresponding to another choice of functions, then G′ will be isomorphic
to G—holoedrically in general but meriedrically in special cases.1

The group G can then serve to define the form of the surface and it is called
the group of the surface.2 It is clear that if two surfaces can each be transformed
to the other by a continuous transformation, then their groups are isomorphic.
The converse, though less evident, is again true for closed surfaces, so that what
defines a closed surface, from the viewpoint of Analysis situs, is its group.3

This leads us to pose the following question: do two surfaces with the same
Betti numbers always have the same group?

To resolve this question we make use of a simple mode of representation
in ordinary space when we want to define a surface in four-dimensional space.
We consider a properly discontinuous group G in ordinary space. The space is
thereby decomposed into infinitely many fundamental domains, each the trans-
form of some other by one of the transformations in the group. I suppose that
the fundamental domain does not extend to infinity and that each [non-identity]
substitution in the group has no fixed point.

Let
X1, X2, X3, X4

be four functions of the coordinates x, y, z of ordinary space that are invariant
under substitutions in the group G. If we consider X1, X2, X3, X4 as the coordi-
nates of a point in four-dimensional space, this point describes a closed surface
whose group is isomorphic to G, and holoedrically so if the functions X are the
most general possible among those that are invariant under G.

We consider, in particular, the group generated by the three substitutions

(x, y, z;x + 1, y, z),
(x, y, z;x, y + 1, z),

(x, y, z;αx + βy, γx + δy, z + 1),

1Here Poincaré is using the 19th-century terminology, where a “holoedric isomorphism” is
what we call an isomorphism, and a “meriedric isomorphism” is a homomorphism. (Transla-
tor’s note.)

2Later called the fundamental group by Poincaré in §12 of his Analysis situs paper. (Trans-
lator’s note.)

3This is true for surfaces in the traditional, two-dimensional, sense, but not for manifolds of
three dimensions. Near the end of §14 of Analysis situs, Poincaré raised the question whether
two manifolds with the same group are necessarily homeomorphic. (Translator’s note.)
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where α, β, γ, δ are integers such that αδ − βγ = 1. I call this the group
(α, β, γ, δ) for short.

It has a cube as fundamental domain.4

We first observe that the two groups (α, β, γ, δ) and (α′, β′, γ′, δ′) cannot be
isomorphic unless the two transformations

(x, y;αx + βy, γx + δy), (x, y; α′x + β′y, γ′x + δ′y)

are transforms5 of each other by a linear transformation with integer coefficients.
This does not happen in general.
We now seek to determine the Betti numbers for the surface with group

(α, β, γ, δ). We see that one of the orders of connectivity is always quadruple
and the other is

double in the general case;
triple if α + δ = 2 :
quadruple if α = δ = 1, β = γ = 0.

It follows that the Betti numbers can be the same for two surfaces without
their groups being isomorphic and, consequently, without it being possible to
pass from one surface to the other by a continuous deformation.

This remark throws some light on the theory of ordinary algebraic surfaces
and makes less strange the discovery of M. Picard, according to which the
surfaces have no one-dimensional cycle if they are the most general of their
degree.

4Moreover, we see that the vertical sides of the cube are mapped onto each other by
unit translations in the x- and y-directions, so that each horizontal cross-section of the cube
becomes a torus. The top and bottom faces of the cube are also mapped onto each other (by
the more complicated third generator of G), so that the manifold obtained is what we would
now call a torus bundle over the circle. (Translator’s note.)

5What we would now call conjugates. (Translator’s note.)
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ANALYSIS SITUS
Journal de l’École Polytechnique 1 (1895), pp. 1-121.

Introduction

Nobody doubts nowadays that the geometry of n dimensions is a real object.
Figures in hyperspace are as susceptible to precise definition as those in ordinary
space, and even if we cannot represent them, we can still conceive of them
and study them. So if the mechanics of more than three dimensions is to be
condemned as lacking in object, the same cannot be said of hypergeometry.

Geometry, in fact, has a unique raison d’être as the immediate description
of the structures which underlie our senses; it is above all the analytic study of
a group; consequently there is nothing to prevent us proceeding to study other
groups which are analogous but more general.

But why, it may be said, not preserve the analytic language and replace
the language of geometry, as this will have the advantage that the senses can
no longer intervene. It is that the new language is more concise; it is the
analogy with ordinary geometry which can create fruitful associations of ideas
and suggest useful generalizations.

Perhaps these reasons are not sufficient in themselves? It is not enough, in
fact, for a science to be legitimate; its utility must be incontestable. So many
objects demand our attention that only the most important have the right to
be considered.

Also, there are parts of hypergeometry which do not have a place of great
interest: for example, researches on the curvature of hypersurfaces in the space
of n dimensions. We are certain in advance of obtaining the same results as in
ordinary geometry, and we need not undertake a long voyage to view a spectacle
like the one we encounter at home.

But there are problems where the analytic language is entirely unsuitable.
We know how useful geometric figures are in the theory of imaginary func-

tions and integrals evaluated between imaginary limits, and how much we desire
their assistance when we want to study, for example, functions of two complex
variables.

If we try to account for the nature of this assistance, figures first of all make
up for the infirmity of our intellect by calling on the aid of our senses; but
not only this. It is worthy repeating that geometry is the art of reasoning well
from badly drawn figures; however, these figures, if they are not to deceive us,
must satisfy certain conditions; the proportions may be grossly altered, but the
relative positions of the different parts must not be upset.

The use of figures is, above all, then, for the purpose of making known
certain relations between the objects that we study, and these relations are
those which occupy the branch of geometry that we have called Analysis situs,
and which describes the relative situation of points and lines on surfaces, without
consideration of their magnitude.
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The fact that relations of the same nature hold between the objects of hyper-
surface, so that there is then an Analysis situs of more than three dimensions,
is due, as we have shown, to Riemann and Betti.

This science enables us to know the nature of these relations, although this
knowledge is less intuitive, since it lacks a counterpart in our senses. Indeed, in
certain cases it renders us the service that we ordinarily demand of geometrical
figures.

I shall confine myself to three examples.
The classification of algebraic curves into types rests, after Riemann, on the

classification of real closed surfaces from the point of view of Analysis situs. An
immediate induction shows us that the classification of algebraic surfaces and
the theory of their birational transformations are intimately connected with the
classification of real closed hypersurfaces in the space of five dimensions from
the point of view of Analysis situs. M. Picard, in a memoir honoured by the
Académie des Sciences, has already insisted on this point.

Then again, in a series of memoirs in Liouville’s journal, entitled: Sur les
courbes définies par les équations différentielles I have employed the ordinary
analysis situs of three dimensions in the study of differential equations. The
same researches have been pursued by M. Walther Dyck. We can easily see that
generalized Analysis situs will permit us to treat higher order equations in the
same way, in particular, the equations of celestial mechanics.

M. Jordan?? has determined analytically the groups of finite order contained
in the linear group of n variables. Before that, M. Klein had resolved the same
problem for the linear group of two variables, by a geometric method of rare
elegance. Could not the method of M. Klein be extended to the group of n
variables, or any continuous group? I have not been able to succeed so far,
but I have thought a great deal about the question and it seems to me that the
solution must depend on a problem of Analysis situs and that the generalization
of celebrated Euler polyhedron theorem must play a rôle.

I do not think then that I have engaged in useless work in writing the present
memoir; I regret only that it is too long, but when I try to restrict myself I fall
into obscurity; I prefer to be considered a little loquacious.
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§1. First definition of manifold

Let x1, x2, . . . , xn be n variables, which can be regarded as the coordinates of a
point in n-dimensional space.

For the time being I assume that these n variables are always real.
Any sequence of n variables will be called a point. We consider the following

system consisting of p equations and q inequalities.

(1)





F1(x1, x2, . . . , xn) = 0
F2(x1, x2, . . . , xn) = 0
. . .
Fp(x1, x2, . . . , xn) = 0
ϕ1(x1, x2, . . . , xn) > 0
ϕ2(x1, x2, . . . , xn) > 0
. . .
ϕq(x1, x2, . . . , xn) > 0

I assume that the functions F and ϕ are uniform and continuous and that
they have continuous derivatives; in addition I assume that if we form the matrix
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∂F1
∂x1

∂F1
∂x2

. . . ∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

. . . ∂Fn

∂xn

. . . . . . . . . . . .

∂Fp

∂x1

∂Fp

∂x2
. . .

∂Fp

∂xn

and form the determinants obtained by taking any p columns, then these deter-
minants are never all zero simultaneously.

I shall say that the set of points which satisfies the conditions (1) constitutes
a manifold of n − p dimensions. If in particular p = 0, so that there are no
equations, I have an n-dimensional manifold which is nothing but a portion of
the n-dimensional space; ordinarily I shall describe this manifold as a domain.

Two cases can occur. Let α1, α2, . . . , αn;β1, β2, . . . , βn be two points satis-
fying the conditions (1). Then either it is possible to vary x1, x2, . . . , xn in a
continuous manner from α1, α2, . . . , αn to β1, β2, . . . , βn without violating the
conditions (1), for any values α1, α2, . . . , αn and β1, β2, . . . , βn which satisfy
these conditions, or else this is not always possible.

In the first case we say that the manifold defined by the conditions (1) is
connected.

In what follows I shall generally consider connected manifolds, and, to the
extent that non-connected manifolds concern us, I confine myself to observing
that they can always be decomposed into a finite or infinite number of connected
manifolds.

Consider for example the manifold

x2
2 + x4

1 − 4x2
1 + 1 = 0.

Here n = 2 and the point x1, x2 is a point of the plane; our manifold is then
none other than a 4th degree curve; however, since that curve is composed of
two closed branches, our manifold is not connected.

But we can decompose it into two others, namely

x2
2 + x4

1 − 4x2
1 + 1 = 0 x1 > 0

and
x2

2 + x4
1 − 4x2

1 + 1 = 0 x1 < 0

and each of these, being a single closed branch of the curve, is connected.
I shall say that a manifold is finite if all its points satisfy the condition

x2
1 + x2

2 + · · ·+ x2
n < K2

where K is a given constant.
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We now consider the system of relations

(2)





Fα = 0 (α = 1, 2, . . . , p)
ϕβ = 0

ϕγ > 0 (γ
>
< β)

consisting of p + 1 equations and q − 1 inequalities.
It can happen that there is no point satisfying the conditions (2), or there

may be, in which case such points constitute a manifold of less than n − p
dimensions.

The set of points which satisfy one of the q systems of relations

(3)





Fα = 0, ϕ1 = 0, ϕγ > 0 (γ
>
< 1)

Fα = 0, ϕ2 = 0, ϕγ > 0 (γ
>
< 2)

. . . . . . . . . . . .

Fα = 0, ϕq = 0, ϕγ > 0 (γ
>
< q)

is called the boundary of the manifold defined by the conditions (1). However,
we shall sometimes take another point of view and only consider those which
have n− p− 1 dimensions as true boundaries.

It may happen that there is no manifold of n− p− 1 dimensions satisfying
any of the q systems (3). In that case, the manifold defined by the conditions
(1) will be called unbounded. In the contrary case it will be called bounded.

If a manifold is simultaneously finite, connected and bounded, it will be
called closed.

To abbreviate our language a little we shall give the name (hyper)surfaces
to manifolds of n − 1 dimensions, except for the case n = 2, in which case we
give them the name curves.

§2. Homeomorphism

Consider a substitution which changes x1, x2, . . . , xn into x′1, x
′
2, . . . , x

′
n, subject

only to the following conditions.
We have

(4) x′i = ϕi(x1, x2, . . . , xn) (i = 1, 2, . . . , n).

In a certain domain the functions ϕi are uniform, finite and continuous; they
have continuous derivatives and their Jacobian is non-zero.

If we solve the equations (4) for x1, x2, . . . , xn we get

xk = ϕ′k(x′1, x
′
2, . . . , x

′
n) (k = 1, 2, . . . , n)
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and the functions ϕ′k satisfy the same conditions as the functions ϕi.
It is clear that the set of substitutions which satisfy these conditions consti-

tutes a group, and this group is one of the most general that we can imagine.
The science whose object is the study of this group and its analogues receives
the name Analysis situs.

It is clear that a substitution of the group transforms a manifold of m di-
mensions into a manifold of m dimensions, and that the new manifold will be
connected, or finite, or unbounded according as this is the case for the original
manifold (and conversely).

Consider two manifolds V and V ′ of the same number of dimensions defined
by the respective conditions

(1)
{

Fα = 0 (α = 1, 2, . . . , p)
ϕβ > 0 (β = 1, 2, . . . , q)

and

(1′)
{

F ′α = 0 (α = 1, 2, . . . , p)
ϕ′β > 0 (β = 1, 2, . . . , q)

Suppose that we can make a point x1, x2, . . . , xn of the manifold V correspond
to a point x′1, x

′
2, . . . , x

′
n of the manifold V ′, in such a way that we have

(5) x′k = ψk(x1, x2, . . . , xn) (k = 1, 2, . . . , n).

I consider the domain D defined by the inequalities

Fα > −ε, Fα < ε, ϕβ > 0.

The manifold V is evidently contained entirely in the domain D.
I assume that in the domain D the functions ψk are finite, continuous and

uniform, that they have continuous derivatives and that their Jacobian is non-
zero.

Solving the equations (5) we find

(6) xk = ψ′k(x′1, x
′
2, . . . , x

′
n) (k = 1, 2, . . . , n).

I consider the domain D′ defined by the inequalities

F ′α > −ε, F ′α < ε, ϕ′β > 0,

and I assume that in the domain D′ the functions ψ′k are finite, continuous
and uniform, that they have continuous derivatives and that their Jacobian is
non-zero.

It follows from these hypotheses that each point of V corresponds to exactly
one point of V ′, and conversely; to every manifold W contained in V there
corresponds a manifold W ′, of the same number of dimensions, contained in V ′;
if W is connected, finite or unbounded the same is true of W ′ and conversely.
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If all these conditions are satisfied we say that the two manifolds V and V ′

are equivalent from the point of view of Analysis situs, or simply homeomorphic,
that is to say, of the same form.

I may also say that two more complicated figures, composed of any number
of manifolds, are homeomorphic when one passes into the other by a transfor-
mation of the form (5).

Thus two polygons with the same number of sides are homeomorphic, two
polyhedra with the same arrangement of faces and the same number of sides on
each face are homeomorphic, etc..

§3. Second definition of manifold

One can define manifolds in an entirely different manner. Consider n equations

(8)





x1 = θ1(y1, y2, . . . , ym)
x2 = θ2(y1, y2, . . . , ym)
. . . . . . . . . . . . . . . . . . . . .
xn = θn(y1, y2, . . . , ym)

It is clear that these equations (if the y are regarded as independent variables)
represent a manifold of m dimensions.

We again have a manifold of m dimensions if we adjoin to the equations (8)
a certain number of inequalities of the form

ψ(y1, y2, . . . , ym) > 0

which limit the field of variation of the variables y.
I assume that the functions θ are finite and continuous; but I shall make a

further hypothesis which does lessen generality in an essential fashion (moreover,
this could have been done likewise with my first definition of manifold).

I shall suppose, namely, that the functions θ are analytic. If, in fact, the
functions θ are finite and continuous, we can find functions θ′ which are analytic
and differ from the θ by as little as we wish.

I assume, in addition, that the Jacobians of the m functions θ with respect
to the y are never simultaneously zero.

We obtain a manifold no different from the first by replacing the y in the
equations (8) by any m analytic functions of the m variables z1, z2, . . . , zm.

The power of this new definition would be limited if it were not for the fact
that we could augment by the procedure of analytic continuation.

We consider two manifolds V and V ′ defined by equations analogous to (8).
For example, let the equations

(8) xi = θi(y1, y2, . . . , ym)
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define V and let the equations

(8′) xi = θ′i(y1, y2, . . . , ym)

define V ′.
It can happen that the two manifolds have a common part V ′′ also of m

dimensions.
In that case, in the interior of V ′′, the y will be analytic functions of the y′

and conversely.
We then say that the two manifolds V and V ′ are analytic continuations of

each other.
In this way we can form a chain of manifolds

V1, V2, . . . , Vn

such that each is an analytic continuation of its predecessor, and there is a
common part between any two consecutive manifolds of the chain. I shall call
this a connected chain.

It can also happen that the chain is closed, i.e. that Vn is the same as V1.
We can then have a network of manifolds, that is to say, a set of manifolds

in which each is the continuation of certain others and we can pass from any
one to any one by analytic continuation; I shall call this a connected network.

We could then consider the set of all manifolds of the same chain or the same
network as forming a unique manifold.

This is a broader definition than the first one.
There are, in fact, manifolds (and we shall see examples later) which can

be decomposed into a certain number of partial manifolds forming a connected
chain or network and such that each of them can be defined by equations of the
form (8) (manifolds which, consequently, are covered by our second definition),
which nevertheless cannot be defined by relations of the form (1) and hence are
not covered by our first definition.

On the other hand, each manifold which satisfies the first definition also
satisfies the second.

In fact, by a well-known theorem, if y1, y2, . . . , yn are defined by n relations
of the form

(α)





y1 = F1(x1, x2, . . . , xn)
y2 = F2(x1, x2, . . . , xn)
. . . . . . . . . . . . . . . . . . . . .
yn = Fn(x1, x2, . . . , xn)

and if, in a certain domain, the F are holomorphic functions of the x, with
non-zero Jacobian, then we can solve the equations for the

(β) xi = θi(y1, y2, . . . , yn)

where the θi are holomorphic functions of the y.
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Now consider a manifold V satisfying our first definition, i.e. defined by
relations

(1) Fα = 0, ϕβ > 0.

Referring to the equations (α), we take for F1, F2, . . . , Fp the first members of
the p equations (1). As regards the other functions

Fp+1, Fp+2, . . . , Fn

– we take any n− p holomorphic functions of the x. I subject them to only one
condition.

Let x0
1, x

0
2, . . . , x

0
n be any point M0 of the manifold V . I arrange the Jacobian

of the n functions F in such a way that it does not vanish for

xi = x0
i .

This is evidently possible, since I assumed that the Jacobians of the p func-
tions

F1, F2, . . . , Fp

with respect to any p of the variables x do not simultaneously vanish.
I can also assume that Fp+1, Fp+2, . . . , Fn vanish at the point M0, i.e. for

xi = x0
i .

Then, by the theorem cited above, we can solve the equations (α) and we
find that the xi’s are expressible in series of powers of

y1, y2, . . . , yn,

convergent when these quantities satisfy certain inequalities.
Then let

(β) xi = θi

be these equations and let

λk(y1, y2, . . . , yn) > 0

be the conditions the y must satisfy to guarantee convergence of the series.
If we now make

y1 = y2 = · · · = yp = 0,

the initial p equations (α) are the same as the p equations (1); and the functions
θi, not dependent on more than n− p = m variables, are of the form (8).

Then the set of relations

xi = θi, ϕβ > 0, λk > 0
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represents a manifold v defined in the second manner which is the same as the
part of V defined by

Fα = 0, ϕβ > 0, λk > 0.

The point M0, which is an arbitrary point of V , is part of v. We can then
construct, around any point of V , a manifold analogous to v.

The simplest case is where the convergence conditions λk > 0 are conse-
quences of the inequalities ϕβ > 0. Then v is the same as V , and to define it
we can be content with the equations (8) and the inequalities

(9) ψβ > 0.

We remark in passing that the Jacobians of m of the functions θ with respect
to the y are not simultaneously zero.

If the conditions λβ > 0 are not consequences of the inequalities ϕβ > 0, we
decompose the manifold V into partial manifolds; thus for example when ψ is
any function of x1, x2, . . . , xn the manifold V can evidently be decomposed into
two partial manifolds

Fα = 0, ϕβ > 0, ψ > 0

and
Fα = 0, ϕβ > 0, ψ < 0.

Given that we can always decompose V into partial manifolds, or better,
construct a number of partial manifolds on V which overlap each other to an
arbitrarily small extent, we find for each of them a system of auxiliary variables
which permit that partial manifold to be represented by equations and inequal-
ities of the form (8) and(9) satisfying all the conditions enunciated above. Each
point M0 of V belongs to one of these partial manifolds and the set of these
manifolds forms a connected net. Thus the first definition is restored to the
second.

Nevertheless, it remains to remark that it can happen that two different
systems of values of y1, y2, . . . , yn correspond to the same system of values of
the functions θ1, θ2, . . . , θn and hence to the same point of the manifold V .

In that case it is convenient to adjoin to the inequalities (9) the further
inequalities

(10) ψγ > 0

chosen so that different systems of values of the variables y which correspond
to the same point of V always satisfy one and only one of the inequalities (9)
and (10).

Take for example a torus, with equation

(x2
1 + x2

2 + x2
3 + R2 − r2)2 − 4R2(x2

1 + x2
2) = 0

We set

x1 = (R + r cos y1) cos y2

x2 = (R + r cos y1) sin y2

x3 = r sin y1
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and we see that the same point of the torus corresponds to an infinity of systems
of values of the y, comprised by the formulae

y1 + 2K1π, y2 + 2K2π

where the K are integers.
But if we constrain the y by the conditions

0 ≤ y1 < 2π, 0 ≤ y2 < 2π

we shall have only one system of values y corresponding to each point of the
torus.

§4. Oppositely oriented manifolds

With each definition there is reason to make a distinction, the importance
of which will be realized later.

Suppose firstly that we have a manifold V defined in the first manner, i.e.
by relations

Fα = 0, ϕβ > 0.

We take account of the order in which the equations Fα = 0 are arranged; if
two of the equations are permuted it will be convenient to say that the system of
relations represents, not the manifold V , but the oppositely oriented manifold.

We can now replace the equations

Fα = 0 (α = 1, 2, . . . , p)

by the following:

Φ1 = A11F1 + A12F2 + · · ·+ A1pFp = 0

Φ2 = A21F1 + A22F2 + · · ·+ A2pFp = 0

. . . . . . . . . . . . . . . . . . . . .

Φp = Ap1F1 + Ap2F2 + · · ·+ AppFp = 0

where the Aik are any functions of the x.
If the determinant ∆ of the coefficients Aik does not vanish in the domain

considered, the equations Φα = 0 will be equivalent to the equations Fα = 0
and consequently, if we adjoin to them a certain number of inequalities they will
again represent the manifold V or the oppositely oriented manifold.

We shall agree to say that if ∆ (which always has the same sign, since I
have assumed it does not vanish) is positive then these equations represent
the manifold V , and if ∆ is negative, they represent the oppositely oriented
manifold.
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If we imagine replacing the y by m analytic functions of m new variables
z1, z2, . . . , zm, so that we have

xi = θ′i(z1, z2, . . . , zm)

then the new equations again represent V or the oppositely oriented manifold.
We have to assume that the Jacobian ∆ of the y with respect to the z never

vanishes, so that a system of values of y corresponds to only a single system of
values of z. It then will always have the same sign.

We shall agree to say that if ∆ is positive the new equations again represent
V , and if it is negative they represent the oppositely oriented manifold.

We now see what happens when we pass from one definition to the other.
Let a manifold V be defined by

F1 = F2 = · · · = Fp = 0

and certain inequalities.
We adjoin to these p equations the following:

y1 = Fp+1, y2 = Fp+2, . . . , yn−p = Fn

where Fp+1, y2 = Fp+2, . . . , yn−p = Fn are any n− p functions of the x.
We have seen that if the Jacobian ∆ of the n functions F1, F2, . . . , Fn does

not vanish we can solve the n equations for the x and thus find n equations

xi = θi(y1, y2, . . . , yn−p)

which represent a manifold of n − p dimensions. But we can ask whether this
represents V or the oppositely oriented manifold.

We agree to say that it represents V if ∆ is positive, and the oppositely
oriented manifold if ∆ is negative.

Consider the manifold of n− p dimensions

Fα = 0, . . . , ϕβ > 0

which I call V . We have seen that the manifold

Fα = 0, ϕγ = 0, ϕβ > 0 (β 6= γ)

of n− p− 1 dimensions, which I call v, forms part of the boundary of V .
However, it is important to arrange the equations which define v in the

following order

F1 = 0, F2 = 0, . . . , Fp = 0, ϕγ = 0

since if two of them are permuted, we have agreed to say that these equations
no longer represent the boundary of V , or a part of it, but a manifold oppositely
oriented to that boundary.
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§5. Homologies

Consider a manifold V of p dimensions; now let W be a manifold of q dimensions
(q ≤ p) which is a part of V . We suppose that the boundary of W is composed
of λ manifolds of q − 1 dimensions

v1, v2, . . . , vλ.

We express this fact by the notation

v1 + v2 + · · ·+ vλ ∼ 0

More generally, the notation

k1v1 + k2v2 ∼ k3v3 + k4v4

where the k are integers and the v are manifolds of q−1 dimensions will denote
that there exists a manifold W of q dimensions forming part of V , the boundary
of which is composed of k1 manifolds similar to v1, k2 manifolds similar to v2,
k3 manifolds similar to v3 but oppositely oriented, and k4 manifolds similar to
v4 but oppositely oriented.

Relations of this form will be called homologies.
Homologies can be combined like ordinary equations. Thus we employ the

following notation; assuming we have

k1v1 + k2v2 + · · ·+ kpvp ∼ w1 + w2 + · · ·+ wp

and that the manifolds w1, w2, . . . , wp form part of the boundary of V ; we shall
occasionally write

k1v1 + k2v2 + kpvp ∼ ε.

§6. Betti numbers

We say that the manifolds

v1, v2, . . . , vλ

which have the same number of dimensions and form part of V are linearly
independent if they are not connected by any homology with integral coefficients.

If there exist Pm − 1 closed manifolds of m dimensions which are linearly
independent and form part of V , but not more than Pm − 1, then we shall say
that the connectivity of V with respect to manifolds of m dimensions is equal
to Pm.
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Thus for a manifold V of m dimensions there are m − 1 numbers which I
call

P1, P2, . . . , Pm−1

and which are the connectivities of V with respect to manifolds of

1, 2, . . . , m− 1

dimensions.
I shall call this the sequence of Betti numbers in what follows.
The definitions may be clarified by an example:
Let D be a domain forming part of ordinary space and bounded by n closed

surfaces
S1, S2, . . . , Sn

which do not intersect.
This domain is a manifold of three dimensions. It then admits two Betti

numbers, P1 and P2.
This manifold is defined by the inequalities

ϕ1 > 0, ϕ2 > 0, . . . , ϕn > 0

if the equations to the n surfaces S are

ϕ1 = 0, ϕ2 = 0, . . . , ϕn = 0.

Since the surfaces do not intersect, there are no values x1, x2, x3 which si-
multaneously satisfy two of these equations

ϕi = 0, ϕk = 0.

Since the surfaces S1, S2, . . . , Sn are two-dimensional, they each have only a
single Betti number, which will be the Riemann connectivity; let

2Q1 + 1, 2Q2 + 1, . . . , 2Qn + 1

be the connectivities (which are odd, because the surfaces are closed) of the n
surfaces

S1, S2, . . . , Sn.

Then we have
P2 = n, P1 = Q1 + Q2 + · · ·+ Qn + 1.

Thus, for the region inside a sphere

P2 = 1, P1 = 1

for the region inside two spheres

P2 = 2, P1 = 1

for the region inside a torus

P2 = 1, P1 = 2

for the region inside two tori

P2 = 2, P1 = 2.
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§7. The use of integrals

Consider a manifold V which we may represent by the equations and in-
equalities (8), (9) and (10) in such a way that all the conditions enunciated
above are satisfied.

We know then what we mean by an m-tuple multiple integral
∫

Fdy1dy2 . . . dym

over the manifold V ; F of course denotes a given function of the y. Integration
can be effected with respect to the m variables successively, and the limits of
integration are defined by the inequalities (9) and (10).

That being given, I am going to define the following integral

(11)
∫ ∑

Xα1α2...αmdxα1dxα2 . . . dxαm .

The differentials dxα1 , dxα2 , . . . , dxαm are any m of the n differentials dx1, dx2,
. . . , dxn. The functions Xα1α2...αm are given functions of x1, x2, . . . , xn having
all possible combinations of the indices

α1, α2, . . . , αm,

that is to say, all combinations of n letters m at a time. We make the convention
that the function X is zero if two of the indices are equal, and changes sign when
two of the indices are permuted.

That being given, the integral (11) by definition will equal the integral of
order m ∫ ∑

Xα1α2...αm

∂(xα1 , xα2 , . . . , xαm)
∂(y1, y2, . . . , ym)

dy1dy2 . . . dym.

Now if the manifold V is not susceptible to representation by relations of
the form (8), (9) and (10) satisfying all the conditions previously enunciated, we
decompose the manifold V into partial manifolds small enough to be susceptible
to that mode of representation, and the integral (11), understood to be over the
total manifold V will, by definition, be the sum of the integrals (11), understood
to be over the various partial manifolds.

This definition may nevertheless still be ambiguous.
In fact, if we permute two of the letters y1 and y2 the integral changes sign;

it is important then to order these letters and make a permutation of two of
these letters equivalent to a change of the sense of integration in the study of
simple integrals. I shall speak then of the sense of integration in connection with
the order in which we find it convenient to arrange the letters y1, y2, . . . , ym.

I had occasion to deal with an analogous question in a memoir Sur les résidus
des intégrales doubles in vol. IX of Acta Mathematica, in particular in the
paragraph 3 of that memoir entitled: Conditions d’ intégrabilité.
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I investigated under what circumstances these conditions of integrability are
complete, i.e. under what circumstances the integral (11) is always zero when
taken over a closed manifold.

Here is what I found; writing

(α1, α2, . . . , αm)

in place of Xα1α2...αm
and [αp] in place of xαp

, the conditions of integrability
may be written

(12)





∂(α1,α2,...,αm)
∂[αm+1]

± ∂(α2,α3,...,αm−1)
∂[α1]

±∂(α3,α4,...,αm,αm+1,α1)
∂[α2]

± · · · ± ∂(αm+1,α2,...,αm−1)
∂[αm] = 0

Here the following law governs the choice of the signs ±. We always take the
sign + if m is even, and alternate + and − if m is odd.

We have as many equations (12) as there are systems of indices

α1, α2, . . . , αm, αm+1

i.e., since the indices may be chosen from the letters

1, 2, . . . , n

as many as the number of combinations of n letters m + 1 at a time.
We suppose now that the conditions (12), instead of being satisfied for all

possible values of the n variables

x1, x2, . . . , xn

are satisfied only for certain values of these variables. For example, consider a
manifold V defined by the conditions

Fα = 0, ϕβ > 0.

Next, let a domain D be defined containing all points near to V , for example,
by the conditions

−ε < Fα < ε, ϕβ > −ε

where ε is a small positive number.
We assume that the conditions (12) are satisfied for all points of the domain

D.
By repeating the reasoning of the memoir cited, with suitable modifications,

we can show the following: let a manifold V ′ of m+1 dimensions form part of V
(the number m+1 must then be less than or equal to the number of dimensions
of V ). We assume that the boundary of V ′ is composed of k manifolds of m
dimensions

W1, W2, . . . , Wk
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so that W1 + W2 + · · ·+ Wk ∼ 0.
Then if the integral (11) satisfies the conditions (12) in the domain D, the

algebraic sum of the integrals (11) taken over the manifolds W1,W2, . . . , Wk is
zero. It is necessary, of course, to pay attention to the sense of integration for
each of them.

The conditions (12) are sufficient for this to happen, but they are not neces-
sary; these conditions, as we have seen, are equal in number to the combinations
of n letters m + 1 at a time; it would suffice for the integral (11) to satisfy, at
all points of V , certain conditions equal in number to the combinations of n− p
letters m + 1 at a time, where p is the number of dimensions of V .

These conditions are quite easy to construct, but that would take me too far
away from my subject.

So if the integral (11) satisfies the conditions (12) in the domain D, the var-
ious values of that integral taken over various closed manifolds of m dimensions
forming part of V will be linear combinations, with integral coefficients, of a
certain number of them, which we could call the periods of the integral (11).

The maximum number of periods is equal to Pm − 1, since, if we consider
Pm closed manifolds of m dimensions there will always be a manifold of m + 1
dimensions which has these Pm manifolds as its boundary, or even some subset
of them. Then there will always be a linear relation with integral coefficients
between the Pm corresponding integrals. Moreover, we can see that there always
exist integrals of the form (11) for which the maximum period is attained. This
means of elucidating the definition of Betti numbers was employed by Betti
himself for the first and the last of these numbers, i.e. for P1 and Pm−1; but we
have come to see that it is easy to do the same for the other Betti numbers.

§8. Orientable and non-orientable manifolds

We consider a manifold V defined in the second manner, i.e. in the form of a
chain or network of partial manifolds each of which is defined by relations of
the form (8) and (9).

Let v1 be a partial manifold defined by the conditions

xi = θ(y1, y2, . . . , ym), |yk| < βk

Let v2 be another partial manifold defined by the conditions

xi = θ′i(z1, z2, . . . , zm), |zk| < γk

Suppose that these two manifolds have a common part v′ forming a con-
nected manifold. I claim that in the interior of this manifold the Jacobian

∆ =
∂(y1, y2, . . . , yn)
∂(z1, z2, . . . , zn)
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always has the same sign.
In fact, it cannot change sign without vanishing or becoming infinite. We

have

∆ =
∂(x1, x2, . . . , xm)
∂(z1, z2, . . . , zm)

÷ ∂(x1, x2, . . . , xm)
∂(y1, y2, . . . , ym)

so that ∆ is itself the quotient of two Jacobians; since these two Jacobians are
essentially finite, ∆ cannot be zero unless we have

∂(x1, x2, . . . , xm)
∂(z1, z2, . . . , zm)

= 0

and since nothing distinguishes the first m variables x1, x2, . . . , xm from the
n −m others, xm+1, xm+2, . . . , xn, it will be necessary for the Jacobian of any
m of the x with respect to the z to be zero.

All the Jacobians of the functions θ′ will then vanish simultaneously, contrary
to hypothesis. ∆ then cannot vanish, and we see in exactly the same way that
it cannot become infinite.

Thus ∆ is always of the same sign and we can choose the order of the
variables z in such a way that this sign is positive.

A difficulty may occur in certain cases; suppose that the common part of v1

and v2, instead of reducing to a single connected manifold v′, is composed of
several connected manifolds v′, v′′, v′′′; in each of them the sign of ∆ remains
constant, but it may change in passing from one to the other. In that case we
say that the manifold V is non-orientable.

We assume that this circumstance does not occur, and consider a sequence
of partial manifolds forming a closed chain

v1, v2, . . . , vq, v1.

Let
yi
1, yi

2, . . . , yi
m

be the m variables which play the rôle of y1, y2, . . . , ym in relation to vi.
Suppose that v1 and v2 have a common part v′1, v2 and v3 a common part

v′2, . . . , vq−1 and vq a common part v′q−1 and finally vq and v1 a common part
v′q.

Let ∆i be the Jacobian of

yi+1
1 , yi+1

2 , . . . , yi+1
m

with respect to
yi
1, yi

2, . . . , yi
m.

This determinant will be defined in the interior of v′i. In the interior of v′q I also
define the Jacobian ∆q of

y1
1 , y1

2 , . . . , y1
m
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with respect to
yq
1, yq

2, . . . , yq
m.

From what we have seen, we know we can always choose the order of variables
so that

∆1, ∆2, . . . , ∆q−1

are always positive. On the other hand, though Dq is always of the same sign,
is this sign + or −?

If the sign is −, then I say that the manifold V is non-orientable. I could
also say that the manifolds v1, v2, . . . , vq form a non-orientable chain.

Suppose now that we have constructed a certain connected network of partial
manifolds

(4) v1, v2, . . . , vq

such that each point of V is in the interior (exclusive of the boundary) of one or
more of the manifolds (4). If the determinant ∆ is positive in the common part
of any two of the manifolds (4), I say that the manifold is orientable. If this is
not the case then it is clear that we could always form a non-orientable chain
with some of the manifolds (4), and that the manifold V is non-orientable. I
could also say that the network of manifolds (4) forms an orientable system.

But to justify our definition completely, we have to see that V cannot be
orientable and non-orientable at the same time. It is clear, first of all, that in
the orientable system (4) we cannot find a non-orientable chain.

It remains to show that the system (4) remains orientable when we adjoin
any manifold vq+1 forming part of V .

Let v′i be the common part of vi and vq+1; each point of vq+1 belongs to at
least one of the manifolds v′i, and, since vq+1 is continued, if I consider two points
M1 and Mk of vq+1 belonging to v′1 and v′k respectively, we can find intermediate
manifolds which I can call (since the numbering remains arbitrary)

v′1, v′2, . . . , v′k

and which form a chain.
I can always choose the order of the variables, analogous to the y, defining

the manifold vq+1 in such a way that the determinant analogous to ∆ between
v1 and vq+1 is positive in v′1; I shall call it ∆1.

Likewise, we let ∆i be the analogue of ∆ between vi and vq+1; ∆i is defined
in the interior of v′i.

Then let ∆′ be the determinant between v1 and v2; it will be defined through-
out the common part of the two manifolds and, in particular, in the common
part of v′1 and v′2; it will be positive because the system (4) is orientable.

Now, in the common part of v′1 and v′2, since ∆1 and ∆′ are positive, it
follows that their ratio

∆2 =
∆1

∆′
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is positive, and since it always has the same sign, it will be positive for all points
of v′2.

Step by step, we show that ∆3, . . . , ∆k are likewise positive.
The system thus remains orientable with the adjunction of vq+1, it also

remains so if the variables y1, y2, . . . , ym in the equations for one of the manifolds
vi are replaced by holomorphic functions of new variables y′1, y

′
2, . . . , y

′
m with

non-vanishing Jacobian (this is necessary in order that a system of values of the
y correspond to a single system of values of the y′). It is necessary, of course,
to choose the order of the new variables y′ in such a way that this Jacobian is
positive.

The system always remains orientable, we cannot construct a non-orientable
chain, so that a manifold cannot be orientable and non-orientable at the same
time. Q.E.D.

Everyone knows the example of a one-sided (non-orientable) surface obtained
from a rectangle of paper ABCD (where the pairs of opposite sides are AB,CD
and BC, DA) by joining the sides AB, CD so that A coincides with C and B
with D.

Examples of orientable manifolds are easy to construct. Thus in the space
of n dimensions:

10 Every n-dimensional domain is orientable.

20 Every 1-dimensional curve is orientable.

30 Every closed hypersurface of n− 1 dimensions is orientable.

But we can go further.
Consider a manifold V defined in the first manner, i.e. by equations and

inequalities of the form (1). I claim that this will always be orientable.
In fact, let

F1 = F2 = · · · = Fp = 0

be the p equations which, together with some inequalities we shall not write,
define V . Let V be decomposed into a certain number of partial manifolds v,
defined by relations of the form (8) and (9). Let

v1, v2, . . . , vq, v1

be a certain number of partial manifolds which form a connected chain, i.e. such
that each has a part in common with its successor. I claim that this chain is
always orientable.

In fact, we have assumed above that the Jacobians of the p functions F
relative to any p of the variables x are never simultaneously zero. I may then
assume that the manifolds v are sufficiently small that in the interior of v1 one
of the Jacobians (which I shall call ∆1) does not vanish; in the interior of v2

another of the Jacobians (which I shall call ∆2) does not vanish, and so on.
If this is not already the case, we can attain it by subdividing each of the

manifolds v into sufficiently small manifolds.
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Suppose, for example, that

∆1 =
∂(F1, F2, . . . , Fp)

∂(xα1 , xα2 , . . . , xαp
)

∆2 =
∂(F1, F2, . . . , Fp)

∂(xβ1 , xβ2 , . . . , xβn
)

. . . . . . . . . . . . . . .

Since the order of the letters xα1 , xα2 , . . . , xαp
remains arbitrary and ∆1 does

not change sign in the interior of v1, I can always assume that ∆1 is positive in
the interior of v1. Likewise, ∆2 will be positive in the interior of v2; and so on.

Now in the interior of v1 we set

(13)
{

F1 = 0, F2 = 0, . . . , Fp = 0
y1
1 = x′α1

, y1
2 = x′α2

, . . . , y1
m = x′αm

Here m = n − p; the variables x1
αi

are the m = n − p variables x which
remain when we remove the p variables xαi .

In the interior of v2 we set

(14)
F1 = 0, F2 = 0, . . . , Fp = 0,
y2
1 = x′β1

, y2
2 = x′β2

, . . . , y2
m = x′βm

.

The variables x′βi
are the m = n− p variables which remain after we remove

the p variables xβi .
And so on.
I assume that the order of the variables x′αi

has been chosen in such a way
that we can pass from the normal order of the variables x, i.e.

x1, x2, . . . , xn

to the order

xα1 , xα2 , . . . , xαp
, x′α1

, x′α2
, . . . , x′αm

by a substitution of the alternating group.
Then, in solving the equations (13) we see that in the interior of v1 the x

are holomorphic functions of

y′1, y′2, . . . , y′m

and so on. In general, in the interior of vi the x are holomorphic functions of

yi
1, yi

2, . . . , yi
m.

It is then a question of calculating the determinant

∂(y2
1 , y2

2 , . . . , y2
m)

∂(y1
1 , y1

2 , . . . , y1
m)
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which we shall abbreviate
∂y2

i

∂y1
i

in the interior of the common part of v1 and v2.
To do this, we replace the equations (13) and (14) by the more general

equations

(13′)
{

F1 = λ1, F2 = λ2, . . . , Fp = λp

y1
i = x′αi

and

(14′) Fk = λk, y2
i = x′βi

.

We later put λk = 0.
Solving the equations (13′) we obtain the x as functions of the λk and the

y′i holomorphic in the interior of v1 and the Jacobian of

x1, x2, . . . , xn

with respect to

λ1, λ2, . . . , λp, y1
i , y2

i , . . . , ym
i

is evidently 1
∆1

.
Likewise solving the equations (14′) we obtain the x as functions of the λk

and y2
i holomorphic in the interior of ∆2, and the Jacobian is 1

∆2
.

It is then true for points common to v1 and v2 that

∂y2
i

∂y′i
=

∂(λ1, λ2, . . . , λp, y
2
1 , y2

2 , . . . , y2
m)

∂(λ1, λ2, . . . , λp, y′1, y
′
2, . . . , y

′
m)

=
∆1

∆2

and it only remains to make λk = 0 in the expressions for the x.
We similarly find that in the part common to vk and vh+1

∂yh+1
i

∂yh
i

=
∆h

∆h+1

and in the part common to vp and v1

∂y1
i

∂yq
i

=
∆q

∆1
.

We have already seen that we can always assume that ∆i is positive in the
interior of vi. All these quotients are then positive and the chain is orientable.
Q.E.D.

Thus all varieties which satisfy the first definition are orientable, and, since
I cited an example of a non-orientable manifold satisfying the second definition
we conclude that there are manifolds satisfying the second definition which do
not satisfy the first. This is what I claimed originally.

Any non-orientable manifold is, by definition, opposite to itself.
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§9. Intersection of two manifolds6

Let V and V ′ be two manifolds defined in the second manner, one having p
dimensions, the other n− p, and let M0 and M ′

0 be two points belonging to V
and V ′ respectively with respective coordinates

x0
1, x0

2, . . . , x0
n

and
x′01 , x′02 , . . . , x′0n .

Around the point M0 we construct a partial manifold v on V , analogous to
those envisioned in paragraph 3, in such a way that for a point x1, x2, . . . , xn of
v we have

xi = θi(y1, y2, . . . , yp) (i = 1, 2, . . . , n).

Likewise, around M ′
0 we construct a manifold v′ on V ′ so that for a point

x′1, x
′
2, . . . , x

′
n of v′ we have

x′i = θ′i(y
′
1, y

′
2, . . . , y

′
k−p) (i = 1, 2, . . . , n).

Consider the determinant
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1
∂y1

∂x2
∂y1

. . . ∂xn

∂y1

∂x1
∂y2

∂x2
∂y2

. . . ∂xn

∂y2

. . . . . . . . . . . .
∂x1
∂yp

∂x2
∂yp

. . . ∂xn

∂yp

∂x′1
∂y′1

∂x′2
∂y′1

. . .
∂x′n
∂y′1

. . . . . . . . . . . .
∂x′1

∂y′n−p

∂x′2
∂y′n−p

. . .
∂x′n

∂y′n−p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

This is a function of y1, y2, . . . , yp, y
′
1, y

′
2, . . . , y

′
n−p; thus it depends on the posi-

tion of the points M and M ′ with coordinates x1, x2, . . . , xn and x′1, x
′
2, . . . , x

′
n

on the manifolds v and v′. I therefore call it f(M, M ′).
I can change the variables by replacing y1, y2, . . . , yp by holomorphic func-

tions of p variables z1, z2, . . . , zp chosen in such a way that a system of values of
the y corresponds to a single system of values of the z. For this it is necessary
that the Jacobian of the y with respect to the z never vanishes, and I can al-
ways assume that the z are arranged in an order which makes the determinant
positive.

The function f(M, M ′) is then multiplied by this Jacobian, and consequently
retains its sign.

6The Supplement to Analysis situs takes this up again.
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It is the same when we make an analogous change of variables on the manifold
v′.

Consider now another manifold v1, analogous to v, constructed on V , and a
manifold v′1, analogous to v′, constructed on V ′.

Let M1 be a point of v1 and M ′
1 a point of v′1. We can construct a function

analogous to f(M,M ′) which I shall call f1(M1,M
′
1).

Suppose now that the manifolds v1 and v (likewise the manifolds v′1 and v′)
have a common part and that the points M and M ′ are identified, likewise the
points M ′ and M ′

1.
We compare the two functions

f(M,M ′), f1(M,M ′).

Suppose that the two manifolds V and V ′ are orientable. We may then
assume (by suitable choice of the order of the variables y relative to v1) that
the determinant analogous to that we called ∆ in §8, relative to v and v1, is
positive on the part common to v and v1; likewise, the determinant analogous
to ∆ relative to v′ and v′1 will be equally positive.

Then f and f1 have the same sign.
Then let S(M, M ′) be a function which is equal to +1, −1 or 0 according

as f(M, M ′) is positive, negative or zero. This function is well-defined, it does
not depend on the position of the points M and M ′ on V and V ′; nor does it
depend on the manner in which the manifolds v and v′ have been constructed
around M and M ′.

This is no longer true if one of the manifolds V and V ′ is non-orientable.
Suppose in particular that the points M and M ′ are the same, so that the

point M is a point of intersection of V and V ′; consideration of the function
S(M, M ′) is then of great interest.

Imagine that we construct the function S(M,M) for all points of intersection
M of V and V ′, and take the sum of all the functions S so obtained; I shall
denote this sum by N(V, V ′).

This definition of N(V, V ′) is applicable when the manifolds V and V ′ have
been defined as in §3. But we can simplify it when V and V ′ have been defined
as in §1.

Let
Fα = 0, ϕβ > 0, (α = 1, 2, . . . , p; β = 1, 2, . . . , q)

be the conditions which define V and let

F ′γ = 0, ϕ′δ > 0 (γ = 1, 2, . . . , n− p; δ = 1, 2, . . . , q′)

be those which define V ′. V has n− p dimensions and V ′ has p.
Consider a point M of V with coordinates x1, x2, . . . , xn and a point M ′ of

V ′ with coordinates x′1, x
′
2, . . . , x

′
n and form the determinant

∣∣∣∣∣∣∣∣

∂F1
∂x1

∂F2
∂x1

. . .
∂Fp

∂x1

∂F ′1
∂x′1

∂F ′2
∂x′1

. . .
∂F ′n−p

∂x′1
. . . . . . . . . . . . . . . . . . . . . . . .
∂F1
∂xn

∂F2
∂xn

. . .
∂Fp

∂xn

∂F ′1
∂x′n

∂F ′2
∂x′n

. . .
∂F ′n−p

∂x′n

∣∣∣∣∣∣∣∣
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which I shall call ψ(M, M ′). What is the relationship between ψ(M, M ′) and
S(M,M ′)?

To give an account of this, we set

x′i = xi + hi (i = 1, 2, . . . , n)

and allow the x′i and xi to simultaneously vary, but in such a way that their
difference hi remains constant.

We set
Fα(xi) = yα

F ′γ(xi + hi) = yγ

If the determinant ψ(M,M ′) is never zero we can solve these equations for
the xi and obtain

xi = θi(yα, y′γ)

The Jacobian of the θi with respect to the yα and the y′γ will then be 1
ψ(M,M ′) .

If we set yα = 0 we shall have

xi = θi(0, y′γ)

and this will be the equation of a manifold of n−p dimensions which forms part
of V ; likewise if we set

x′i = hi + θi(yα, 0)

we have the equation of a variety of p dimensions which forms part of V ′.
If we define it in the manner of the manifolds v and v′ at the beginning of

this section, we see that the Jacobian of the θi is none other than f(M, M ′),
whence

f(M, M ′)ψ(M,M ′) = 1.

Suppose now that the two manifolds V and V ′ are parts of a manifold W of
a greater number of dimensions. Suppose, for example, that

(1) Fα = 0, ϕβ > 0, (α = 1, 2, . . . , p;β = 1, 2, . . . , q)

are the relations which define W , which then has n− p dimensions.
Let

(2) F ′γ = 0, ϕ′δ > 0 (γ = 1, 2, . . . , p; δ = 1, 2, . . . , q′)

be the relations which, together with (1), define V , which then has n − p − p′

dimensions.
Finally let

(3) F ′′ε = 0, ϕ′′ζ > 0 (ε = 1, 2, . . . , p′′, ζ = 1, 2, . . . , q′′)

be the relations which, together with (1), define V ′, which then has n− p− p′′

dimensions. I assume that p + p′ + p′′ = n.
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Let M be a point of intersection of V and V ′.
I form the Jacobian of the Fα, the F ′γ and F ′′ε with respect to the x, and

this will be the determinant I call ψ(M).
Then by definition, S(M) will equal +1 or −1 according as ψ(M) is positive

or negative.
Next, I denote by N(V, V ′) the sum of all the quantities S(m) relative to

points of intersection of V and V ′.
It is clear that if one of the manifolds V or V ′ is replaced by the oppositely

oriented manifold, then the expression N(V, V ′) changes sign.
Now let V be a closed one-dimensional manifold and let W be a domain of n

dimensions, the boundary of which is composed of manifolds of n−1 dimensions

V1, V2, . . . , Vk

so that
V1 + V2 + · · ·+ Vk ∼ 0.

I claim that

N(V, V1) + N(V, V2) + · · ·+ N(V, Vk) = 0.

In fact, the manifold V will be composed of a certain number of connected
one-dimensional manifolds, i.e. a certain number of closed lines. The equations
of these lines take the form

xi = θi(t)

where t is a variable we can make increase from −α to +∞.
Since the line is closed we have

θi(−∞) = θi(+∞).

Imagine now a point M of intersection of one of these lines with the boundary
of W ; if, as t increases, this line passes from the interior of W to the exterior
we have

S(M) = 1.

If it passes from exterior to interior, S(m) will equal −1. But since the line is
closed it returns to its starting point, so that the sum of all the S(M) will be
zero. Q.E.D.

Suppose now that all the manifolds we consider, in particular V , W , V1, V2,
. . . , Vk form part of a manifold U , and that this is a manifold for which we
know the connectivities and the homologies in relation to them.

(What I mean to say is that when I defined homologies in §5 I had a certain
manifold V which played an important rôle in that definition; well, U plays that
rôle here.)

I assume that U has h dimensions, V one dimension, W h dimensions, and
V1, V2, . . . , Vk h− 1 dimensions.
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Without any change in the preceding, we see that if V is closed and one-
dimensional and if

V1 + V2 + · · ·+ Vk ∼ 0

then
N(V, V1) + N(V, V2) + · · ·+ N(V, Vk) = 0.

I claim that this is again true if the one-dimensional manifold V is no longer
closed, but if its two extremities are on the boundary of U and if W has no
points on the boundary of U .

In fact, U can be decomposed into two regions, connected or otherwise,
namely: W and the region R exterior to W . By hypothesis, the boundary of U
is contained entirely in R.

Since the line V is not closed, the initial point corresponding to t = −∞
does not coincide with the final point corresponding to t = +∞; however, by
hypothesis both these points belong to the boundary of V , and hence to R.

Our line then passes from R to W exactly as often as from W to R; so that
the sum is zero. Q.E.D.

I now want to establish the converse.
Let V1, V2, . . . , Vk be k closed manifolds of h − 1 dimensions situated in U ,

where U has no point in common with the boundary of Vi. Suppose that we do
not have

V1 + V2 + · · ·+ Vk ∼ 0;

I claim that we can always find a line V situated in U which is closed, which
has two extremities on the boundary of U , and which is such that

N(V, V1) + N(V, V2) + · · ·+ N(V, Vk) 6= 0.

In fact, suppose first of all that the manifolds V1, V2, . . . , Vk do not decompose
U into different regions. Then we can go from any point of U to any other point
of U without encountering any of the manifolds Vi.

Consider then a small line meeting V1 at a point M and not encountering
any of the other manifolds Vi; we can connect the two extremities of that line
by another continuous line which does not meet any of the manifolds Vi; we can
thus construct a closed line which does not meet any of the manifolds Vi except
at a single point. The sum of the S(M) then cannot be zero.

Suppose now that the manifolds Vi decompose U into several regions R,
while nevertheless being linearly independent. In that case the boundary of any
of the regions R cannot consist of part of the manifolds Vi, otherwise we would
have a homology between these manifolds, contrary to hypothesis.

The boundary of R is composed then of some of the manifolds Vi and a
part of the boundary of U . It follows that at any point of R we can go to the
boundary of U without leaving R and without meeting any of the manifolds Vi.

Now consider one of the manifolds Vi, V1 for example, and imagine a small
line cutting V1 at a point M ; let R and R′ be the regions to which the two
extremities µ and µ′ of that small line belong. We can go from µ to the boundary
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of U by a continuous line without leaving R, and from µ′ by a third continuous
line to the boundary of U without leaving R′.

The union of these three lines then goes continuously from the boundary of
V to the boundary of U , and if we call it V we have

N(V, V1) = 1, N(V, Vi) = 0 (i > 1).

Thus we can choose V in such a way that all the N(V, Vi) are zero, except
one which is equal to 1.

Suppose finally that we have a certain number of homologies between the
Vi, say three, for example

(α) ΣkiVi ∼ Σk′iVi ∼ Σk′′i Vi ∼ 0.

Then among the k manifolds Vi we can find k − 3 which are linearly inde-
pendent, say V1, V2, . . . , Vk−3.

We can choose V in such a way that all the N(V, Vi) where i = 1, 2, . . . , k−3
are zero with the exception of one of them which equals 1.

The values of
N(V, Vk−2), N(V, Vk−1), N(V, Vk)

may be deduced with the aid of the relations

(β) ΣkiN(V, Vi) = Σk′iN(V, Vi) = Σk′′i N(V, Vi) = 0

which are a necessary consequence of our homologies (α).
But we cannot have

(γ) ΣN(V, Vi) = 0,

regardless of which of the k − 3 quantities

N(V, Vi) (i = 1, 2, . . . , k − 3)

is equal to 1. This would mean, in fact, that the equation (γ) was a necessary
consequence of the equations (β); and then the homology

(δ) ΣVi ∼ 0

would be a necessary consequence of the homologies (α). But we have assumed
at the beginning that the homology (δ) does not hold.

Thus we can always choose V in such a way that the equation (γ) is not
valid. Q.E.D.

We shall give the name cut to each manifold contained in U , whether closed
or not, if its boundary forms part of the boundary of U .

We can then enunciate the following theorem which summarizes the preced-
ing discussion:
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The necessary and sufficient condition (if the manifolds Vi are closed and of
h− 1 dimensions) for the existence of a cut V such that the equation

ΣkiN(V, Vi) = 0

does not hold, is that the homology

ΣkiVi ∼ 0

does not hold.
We now try to extend this theorem to the case where V has p dimensions

and v1, v2, . . . , vk have h− p.
Let

Fα = 0, ϕβ > 0 (α = 1, 2, . . . , n− k)

be the equations of U and let

Fα = 0, F ′γ = 0, ϕβ > 0 (γ = 1, 2, . . . , h− p)

be those of V .
As far as V1, V2, . . . , Vk are concerned, we define them in the following man-

ner. We can always find p− 1 equations

Φ1 = Φ2 = · · · = Φp−1 = 0

satisfied by all the points of V1, V2, . . . , Vk; this is so if h = 3, p = 2, if U
is ordinary space and if V1, V2, . . . , Vk are curves, for we can always make a
surface pass through the curves.

To define Vi we adjoin a pth equation

F ′′i = 0.

Then let U ′ be the manifold of h− p + 1 dimensions

Fα = 0, Φv = 0, ϕβ > 0

and V ′ the one-dimensional manifold

Fα = F ′γ = Φv = 0, ϕβ > 0.

We have firstly that
N(V ′, Vi) = N(V, Vi).

On the other hand, if the homology

ΣkiVi ∼ 0

holds with respect to U ′, it holds with respect to U . It is true that the converse
is false, and that this homology can hold with respect to U without holding
with respect to U ′; however, if it holds with respect to U we can always find a
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manifold U ′ of h− p + 1 dimensions with respect to which it holds, by suitable
choice of the functions Φ.

We must then conclude that the theorem is again true when V has more than
one dimension.

Then if V1 and V2 are two closed manifolds of h − p dimensions, and if for
all cuts V of p dimensions we have

N(V, V1) = N(V, V2)

then we also have
V1 ∼ V2

and conversely.
We confine ourselves to the case where U is closed. Then U has no boundary

and all the cuts are closed.
The number of linearly independent cuts of p dimensions is Pp − 1.
Let

C1, C2, . . . , Cλ (λ = Pp − 1)

be the cuts.
Next, let

Vi (i = 1, 2, . . . , µ)

be µ closed manifolds of h− p dimensions.
The necessary and sufficient condition for a homology

ΣkiVi ∼ 0

is that we have

ΣkiN(C1, Vi) = ΣkiN(C2, Vi) = · · · = ΣkiN(Cλ, Vi) = 0.

But, if the number µ of the Vi is greater than λ we can always find integers
ki satisfying these conditions, because we have µ numbers ki and λ conditions
to satisfy. If the Vi are linearly independent then, we have

µ ≤ λ

Then
Ph−p ≥ Pp

but, changing p into h− p we find

Pp ≤ Ph−p

so
Pp = Ph−p.

Consequently, for a closed manifold the Betti numbers equally distant from
the ends of the sequence are equal.
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This theorem has not, I believe, been announced previously; nevertheless it
was known to various people who made applications of it.

We now look at what happens to the middle number Ph/2 when h is even.
Suppose that h is a multiple of 4 + 2, in such a way that h

2 is odd.
We know that when we make an odd number of permutations of lines in

a determinant, it changes sign. When we permute V and Vi, which have h
2

dimensions, the determinant f(M, M) will change sign; we then have

N(V, V1) = −N(V1, V )

from which we deduce
N(V, V ) = 0.

The symbol N(V, V ) in itself has no meaning, because with two coincident
manifolds V and V the number of points of intersection is infinite; we therefore
rectify the definition by setting

N(V, V ) = N(V, V ′)

where
V ∼ V ′.

That being given, I claim that Ph/2 is odd. Suppose in fact that it is even
and let

V1, V2, . . . , Vµ

be µ linearly independent manifolds of h
2 dimensions where

µ = Ph/2 − 1

is odd.
We form the determinant where the ith term in the kth column is N(Vi, Vk).

This determinant will be skew symmetric, i.e. the terms on the principal di-
agonal will be zero, and terms symmetric with respect to the diagonal will be
equal but of opposite sign. Since the number of columns will be odd, this deter-
minant will be zero. It then follows, contrary to hypothesis, that the manifolds
V1, V2, . . . , Vµ are not linearly independent.

Thus Ph/2 is odd.
This will no longer be true when h is a multiple of 4, nor when the manifold

U is non-orientable; since all our arguments assume an orientable manifold. We
shall see examples later.

§10. Geometric representation



§10. Geometric representation 49

There is a manner of representing manifolds of three dimensions situated in a
space of four dimensions which considerably facilitates their study.

Consider a certain number of polyhedra in ordinary space

P1, P2, . . . , Pn.

We may assume that in the space of four dimensions there are three-dimensional
manifolds

Q1, Q2, . . . , Qn

homeomorphic to the P1, P2, . . . , Pn respectively.
Let F1 be a face of the polyhedron P1, and Φ the set of points on the

boundary of Q1 which correspond to the points of F1. Likewise, let F2 be a face
of P2 and Φ2 the image of that face on the boundary of Q2.

It can happen that Φ1 coincides with Φ2. In that case the two manifolds Q1

and Q2 are contiguous, and we pass from the interior of one to the interior of
the other by crossing Φ1.

In that case we say that the faces F1 and F2 are conjugate.
It can happen that the faces F1 and F2 belong to the same polyhedron

P1. Then the two-dimensional manifold Φ1, which is the same as the two-
dimensional manifold Φ2, separates two portions of the manifold Q1.

We can understand this better in terms of an example in ordinary space.
Consider a rectangle ABCD and a torus on which we draw two cuts, namely,
latitudinal and longitudinal circles; let H be their point of intersection. The
surface of the torus will then be homeomorphic to the rectangle; the two sides
of the cut formed by the longitudinal circle correspond to the two sides AB and
CD, while the two sides of the cut formed by the latitudinal circle correspond
to the sides AD and BC. We see the analogy with the preceding: the rectangle
corresponds to the polyhedron P1, the torus to the manifold Q1, the sides AB
and CD to the two faces F1 and F2, the two sides of the longitudinal circle to
the two manifolds Φ1 and Φ2, which, as we see, coincide.

That being given, imagine that among the faces of the n polyhedra Pi we
have a certain number which are conjugate in pairs, and a certain number which
remain free.

Consider the total manifold V consisting of the set of manifolds Qi. Since
some of the manifolds Qi are contiguous, it may happen that the total manifold
V is connected: this is what I assume.

If there is none among the faces of the Pi which remains free, then the
manifold V will be closed. In the contrary case, the points which correspond to
free faces form the boundary of V .

We conceive that the knowledge of the polyhedra Pi and the mode of conju-
gation of their faces provides us with an image in ordinary space of the manifold
V , sufficient for the study of its properties from the point of view of Analysis
situs.

We should comment on the method of defining conjugation of faces. It is
clear first of all that for two faces to be conjugate they must have the same
number of sides. Next, for the mode of conjugation to be completely known,
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it does not suffice to know merely which faces are conjugate, but also which
vertices correspond.

Only then is the mode of conjugation completely defined.
Corresponding to two conjugate faces there is, by definition, a two-dimensional

manifold inside V . It may also happen that several edges of the polyhedra P
correspond to the same line inside V , or that several vertices of the polyhedra
correspond to the same point inside V . We then say that these edges or vertices
belong to the same cycle.7

We note here that we can form cycles of edges and cycles of vertices.
Let A1 be an edge, F ′1 one of the two faces that meet in A1, F2 the conjugate

of F ′1, A2 the edge of F2 which corresponds to Ai, F ′2 the other face which meets
A2, F3 the conjugate of F ′2, A3 the edge corresponding to A2, etc.

We stop when we arrive at a free face or when we return to the edge A1.
The edges A1, A2, A3, . . . form a cycle.

The same is true for vertices. Let S1 be a vertex, F ′1 one of the faces which
meet at S1, F2 the conjugate of F ′1, S2 the vertex corresponding to S1, F ′2 one
of the faces which meet at S2, etc.

S1, S2, S3, . . . belong to the same cycle.
However, in this case more than two faces meet at each vertex, so that F ′2,

for example, can be chosen in several ways; we should not stop until we have
exhausted all possible choices.

The analogy with the formation of cycles in the theory of fuchsian groups is
evident. It is even stronger if we assume there is only a single polyhedron P1.

First example. The simplest example is that where we have a single poly-
hedron which is a cube ABCDA′B′C ′D′, with vertices having the respective
coordinates

A . . . 0 0 0 A′ . . . 0 0 1
B . . . 0 1 0 B′ . . . 0 1 1
C . . . 1 0 0 C ′ . . . 1 0 1
D . . . 1 1 0 D′ . . . 1 1 1

I suppose that the opposite faces are conjugate, in the following fashion:

(1)





ABDC ≡ A′B′D′C ′

ACC ′A′ ≡ BDD′B′

CDD′C ′ ≡ ABB′A′

Here is what I intend this notation to mean: the relation

ABDC ≡ A′B′D′C ′

means

10 The faces ABDC and A′B′D′C ′ are conjugate,
7This appearance of the term “cycle” is a one-off, and should not be confused with

Poincaré’s systematic use of the term “cycle” in the homology of algebraic surfaces studied in
Supplements 3 and 4. (Translator’s note.)
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20 The vertices on the first of these faces occur in the order ABDC,

30 The vertices A and A′, B and B′, D and D′, C and C ′ correspond.

We observe in passing that the vertices ABDC are encountered on the first
of these faces in clockwise order; on the other hand, the vertices A′B′C ′D′ are
encountered on the second face in anti-clockwise order.

This condition must always be fulfilled if we want the manifold V to be
orientable. If two faces F1 and F2 are conjugate and if a point describes the
perimeter of F1 clockwise, then the corresponding point on F2 must describe
the perimeter of that face anti-clockwise.

That being given, suppose that the mode of conjugation is defined by the
relations (1). It is then easy to see that all the vertices form a single cycle and
that there are three cycles of edges, comprising those edges which are parallel
to the x axis, those parallel to the y axis, and those parallel to the z axis.

Second example. We retain our cube, but change the mode of conjugation
to that defined by the relations

(2)





ABDC ≡ B′D′C ′A′

ABB′A′ ≡ DD′C ′C
ACC ′A′ ≡ DD′B′B

We then have two cycles of edges and two cycles of vertices, and I summarize
the results in the following relations; I place the sign ≡ between two edges (or
two vertices) to denote that they are part of the same cycle.

Two cycles of edges

AB ≡ B′D′ ≡ C ′C ≡ B′A′ ≡ AC ≡ DD′

AA′ ≡ DC ≡ C ′A′ ≡ B′B ≡ C ′D′ ≡ DB

Two cycles of vertices
A ≡ B′ ≡ C ′ ≡ D

B ≡ D′ ≡ C ≡ A′.

Later we shall see why this mode of conjugation is inadmissible.

Third example. We retain our cube, with the following mode of conjugation.

(3)





ABDC ≡ B′D′C ′A′

ABB′A′ ≡ C ′CDD′

ACC ′A′ ≡ DD′B′B

We then find
Four cycles of edges

AB ≡ B′D′ ≡ C ′C, AA′ ≡ C ′D′ ≡ DB
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AC ≡ DD′ ≡ B′A′, CD ≡ BB′ ≡ A′C ′

Two cycles of vertices
A ≡ B′ ≡ C ′ ≡ D

B ≡ D′ ≡ A′ ≡ C

Fourth example. Now let

(4)





ABDC ≡ B′D′C ′A′

ABB′A′ ≡ CDD′C ′

ACC ′A′ ≡ BDD′B′

We find:
Three cycles of edges:

AA′ ≡ CC ′ ≡ BB′ ≡ DD′

AB ≡ CD ≡ B′D′ ≡ A′C ′

AC ≡ BD ≡ D′C ′ ≡ B′A′

and a single cycle of vertices.

Fifth example. Consider a regular octahedron; it has six vertices of which
four form a square BCED (the letters are arranged in the order in which they
are encountered in a circuit of the square’s perimeter) and of which two, A and
F , are outside the square. Let

(5)





ABC ≡ FED
ACE ≡ FDB
AED ≡ FBC
ADB ≡ FCE

be the mode of conjugation; we find six cycles of edges and three cycles of
vertices; each edge forms a cycle with the opposite edge, i.e. the edge symmetric
to it in relation to the centre of symmetry of the octahedron, and each vertex
forms a cycle with the opposite vertex.

It is unnecessary to multiply examples any longer; I now propose to survey
all the modes of conjugation which are admissible.

Let a star be the figure formed by a certain number of solid angles with the
same vertex, and arranged around that vertex in such a way that each point of
space belongs to exactly one of the solid angles.

I could suppose that the edges of the faces are extended indefinitely, or else
that they end on the surface of a sphere with its centre at the vertex of the
solid angles. Then the various solid angles are cut by the sphere in a certain
number of spherical polygons, so that the surface of the sphere is subdivided
into spherical polygons. The surface subdivided in this way can be regarded
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as homeomorphic to a convex polyhedron, the faces of which correspond to the
spherical polygons just defined.

Then the faces of the polyhedron correspond to the solid angles of the star,
its edges correspond to the faces of the star, and its vertices to the edges.

Let S, F and A be the number of solid angles, faces and edges of the star.
Since the polyhedron must satisfy Euler’s theorem, we must have

S − F + A = 2

We now return to the polyhedra

P1, P2, . . . , Pn

and imagine a cycle of vertices; all the vertices of this cycle correspond to the
same point of V , which I call M . Among the manifolds

Q1, Q2, . . . , Qn

there will be a certain number which have the point M on their boundary; I call
these the manifolds Qα, and they are those that correspond to the polyhedra
Pα to which various vertices of the cycle belong.

Now consider two manifolds Qα which are contiguous and the two-dimensional
manifold which is their common boundary. I call the two-dimensional manifolds
defined in this way Φα; they correspond to those faces of the polyhedra Pα to
which the various vertices of the cycle belong.

Now imagine finally the one-dimensional manifolds which are the intersec-
tions of two manifolds Φα, I call these Lα. They correspond to those edges of
the polyhedra Pα to which the various vertices of the cycle belong.

We consider the figure formed by the manifolds Qα,Φα, Lα or rather, the
points of that manifold which satisfy the inequality

(6) (x1 − x0
1)

2 + (x2 − x0
2)

2 + (x3 − x0
3)

2 + (x4 − x0
4)

2 < ε2

where ε is very small and x0
1, x

0
2, x

0
3, x

0
4 are the coordinates of the point M .

This figure is evidently homeomorphic to a star with faces and edges bounded
by a sphere. Let A be that star.

Consider any of the manifolds Qα and, in addition, the manifold W consist-
ing of those of its points which satisfy the inequality (6). This manifold will
be connected or not. If it is not, I decompose it into a number of connected
manifolds, and I call the connected manifolds formed in this way the Q′

α (thus
the number of Q′

α will be greater than the number of Qα if one of the manifolds
W is not connected).

I similarly define the Φ′α and the L′α.
Let qα, ϕα, `α be the numbers of Q′α, Φ′α and L′α respectively; these will also

be the numbers of solid angles, faces and edges of the star A, whence we reach
the conclusion:

For a mode of conjugation to be admissible it is necessary that for each cycle
of vertices we have

qα − ϕα + `α = 2
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We now see how to calculate the numbers qα, ϕα, `α for any cycle α of ver-
tices:

10 qα will be the number of vertices of the cycle.

20 To obtain ϕα we have to form the sum of the numbers of faces which
occur at the various vertices of the cycle and divide it by two. If, for
example, the cycle α consists of the vertices a, b, c belonging respectively
to polyhedra P1, P2 and P3; if the point a is the vertex of a trihedral angle,
so that three faces of P2 pass through a, if four faces of P2 pass through
b, and five faces of P3 through c, then we have

ϕα =
3 + 4 + 5

2
= 6.

30 To obtain `α we enumerate the edges which meet the various vertices of
the cycle in the following way: all the edges of the same cycle of edges
are counted once if one of the extremities belongs to the cycle α; they are
counted twice if two extremities belong to the cycle α.

If we apply these rules to the six examples dealt with above, then we arrive
at the following table.

Example qα ϕα `α

1st 8 12 6
2nd 4 6 2
3rd 4 6 4
4th 8 12 6
5th 2 4 4

It should be remarked that in the examples 2, 3 and 5 there are several cycles
of vertices, but we arrive at the same three numbers qα, ϕα, `α for each cycle in
the same example.

The table shows that the relation

qα − ϕα + `α = 2

is satisfied for all examples except the second. The mode of conjugation in the
second example must therefore be rejected.

§11. Representation by a discontinuous group

Here is another mode of representation which can also be applied in certain
cases.
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Let (x, y, z) be a point of ordinary space; consider a series of substitutions
which change x, y, z respectively into

ϕ1(x, y, z), ψ1(x, t, z), χ1(x, y, z)

ϕ2(x, y, z), ψ2(x, t, z), χ2(x, y, z)

. . . . . . . . . , . . . . . . . . . , . . . . . . . . .

ϕn(x, y, z), ψn(x, t, z), χn(x, y, z)

. . . . . . . . . , . . . . . . . . . , . . . . . . . . .

Suppose that the set of these substitutions forms a properly discontinuous
group. The space is then found to be divided into an infinity of domains

D0, D1, D2, . . .

such that each domain Di corresponds to a substitution Si of the group which
changes D0 into Di.

Consider a surface Σ which forms that part of the boundary of D0 which
separates D0 from Di; the substitution S−1

i inverse to Si changes Di into D0,
and since the points of Σ belong to the boundary of Di, the transform8 of the
surface Σ will be another part of the boundary of D0.

The boundary of D0 is thus divided into pieces of surface which are conjugate
in pairs, in such a way that each of them is transformed into its conjugate by a
substitution of the group.

The domain D0, with its boundary subdivided in this way, will be homeo-
morphic to a polyhedron, the faces of which are conjugate in pairs, as in the
preceding section. Then, as in the preceding section, we could make this poly-
hedron, and hence the domain D0, correspond to a closed three-dimensional
manifold situated in the space of four dimensions, obtained by transporting D0

to this space, then deforming it and glueing together the conjugate portions of
its boundary.

The analogy with the theory of fuchsian groups is too evident to need stress-
ing; I shall confine myself to a single example:

Sixth example. Consider the group generated by the three substitutions

(1)





(x, y, z; x + 1, y, z)
(x, y, z; x, y + 1, z)
(x, y, z; αx + βy, γx + δy, z + 1)

where α, β, γ, δ are integers such that

αδ − βγ. = 1

I call this group the group (α, β, γ, δ). I claim that it is properly discontin-
uous.

8On page 72 Poincaré introduces the word “transform” in another sense, to denote what
we now call the group-theoretic conjugate. (Translator’s note.)



56 Analysis Situs

To justify this, let us find how the transforms of a single point

x = a, y = b, z = c

are distributed in space.
First of all, all the transforms of this point by any combination of the first

two substitutions are covered by the formula

(2) x = a + k, y = b + k1, z = c

where k and k1 are any two integers; it is easy to see that these substitutions
commute with each other.

If we now transform the set of points (2) by the third substitution we find

(3) x = α(a + k) + β(b + k1), y = γ(a + k) + δ(b + k1), z = c + 1

If we set
αa + βb = a1, γa + δb = b1

then the point (a1, b1) is the transform of the point (a, b) under the substitution

(x, y; αx + βy, γx + δy)

which I shall call s.
We can then replace the equations (3) by the following:

(4) x = a1 + k′, y = b1 + k′1, z = c1 + 1

where k′ and k′1 are two new integers; applying the first two substitutions to
these points we always recover the same points.

We now apply the third substitution to them.
Let

a2 = αa1 + βb1, b2 = γa1 + δb1

so that the point a2, b2 is the transform of the point a1, b1 by s.
Then the transforms of the points (4) by the third substitution are covered

by the formula

(5) x = a2 + k′′, y = b2 + k′′1 , z = c + 2

where k′′ and k′′1 are two integers.
In general, suppose that the successive transforms of the point (a, b) by the

substitution s are a1, b1; a2, b2, . . . ; an, bn; . . . and the successive transforms
by the inverse substitution are a−1, b−1; a−2, b−2; . . . .

Then all the transforms of the point (a, b, c) by substitutions of the group
(1) are given by the formulae

x = an + k, y = bn + k1, z = c + n

where n, k and k1 are three arbitrary integers.
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Moreover, we see easily that the substitutions generated by the first two in
the group commute with the third.

The fundamental domain D0 is a cube with side of length 1 and bounded
by the six points

x, y, z = 0, 1.

The most simple case is that where

α = δ = 1, β = γ = 0

so that our three substitutions reduce to

(x, y, z; x + 1, y, z; x, y + 1, z; x, y, z + 1)

Each of these changes one face of the cube into an opposite face, so we have
simply recovered our first example.

However, the manner in which the surface of the cube D0 is divided into
conjugate regions is not always so simple.

Suppose for example

α = β = δ = 1, γ = 0.

Each of the faces parallel to the z axis will then be conjugate to the opposite
face; but for the faces z = 0, z = 1 perpendicular to the z axis it will be more
complicated.

Suppose that the points ABCD,A′B′C ′D′ have the same coordinates as in
our first example. Each of the faces ABCD, A′B′C ′D′ must be divided into two
triangles, namely: ABC and BCD on the one hand, A′D′C ′ and A′B′D′ on
the other, and the rule of conjugation of the faces is expressed by the relations

ACC ′A′ ≡ BDD′A′

CDD′C ′ ≡ ABB′A′

ABC ≡ A′D′C ′

BCD ≡ B′A′D′

More generally, the faces parallel to the z axis remain conjugated in pairs,
but the faces perpendicular to the z axis must be divided into polygons small
enough to be as numerous as the numbers α, β, γ, δ are large, and conjugate in
pairs by a law which is more or less complicated.

A simple case is that of

α = δ = 0, β = 1, γ = −1.

In this case the mode of conjugation is the same as that of our fourth exam-
ple.
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§12. The fundamental group

We are led in this way to the notion of fundamental group of a manifold.
Let

F1, F2, . . . , Fλ

be λ functions of the coordinates x1, x2, . . . , xn of a point M of the manifold V
defined by the relations

fα = 0, ϕβ > 0.

I do not assume that the functions F are uniform. When the point M leaves
its initial position M0 and returns to that position after traversing an arbitrary
path, it may happen that the functions F do not return to their initial values.

To better fix ideas without omitting any of the essentials we shall assume
that the functions F are defined in the following manner. They must satisfy
differential equations of the form

(1) dFi = Xi,1dx1 + Xi,2dx2 + · · ·+ Xi,ndxn,

where the coefficients Xi,k are given functions of the xk and the Fi. These
functions must be uniform, finite and continuous, and have derivatives for all
values of F and all points sufficiently close to V .

I likewise suppose that for all points sufficiently close to V the equations (1)
satisfy conditions of integrability, which can be written

∂Xi,k

∂xq
+

∂Xi,k

∂F1
X1,q +

∂Xi,k

∂F2
X2,q + · · ·+ ∂Xi,k

∂Fλ
Xλ,k

=
∂Xi,q

∂xk
+

∂Xi,q

∂F1
X1,k +

∂Xi,q

∂F2
X2,k + · · ·+ ∂Xi,q

∂Fλ
Xλ,k.

Then if the point M describes an infinitely small contour on the manifold
V , the functions F return to their original values. It will again be the case if
the point M describes a hairpin bend, i.e. travels from M0 to M1 by any path
M0BM1, describes an infinitely small contour, then returns from M1 to M0 by
the same path M1BM0.

But they need not be the same if it describes a closed finite contour.
Suppose for example that we take ordinary space and let our manifold be

the torus. It is evident that the functions F will return to their original values
when the point M describes a hairpin bend on the torus, but this need not be
the case if M describes a longitudinal or latitudinal circle.

The final values of the functions F when the mobile point M leaves an initial
point M0, and returns after describing a closed contour, naturally depend on
the initial values.

So let F 0
a and F ′a be the initial and final values of Fa. The F ′a are functions

of the F 0
a or, in other words, the functions F undergo a certain substitution

when M describes the closed contour considered, which changes F 0
a into F ′a.
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The substitutions undergone by the functions F when the point M describes
all the closed contours that can be traced on the manifold V from an initial point
M0 evidently form a group, which I call g.

Now consider a closed contour M0BM0 traced on V from an initial point
M0. If that closed contour reduces to a hairpin bend I shall write

M0BM0 ≡ 0

Now if M0AM1, M0BM1, M0CM1 are three different paths traced on V
from M0 to M1 I shall write

M0AM1CM0 ≡ M0AM1BM0 + M0BM1CM0.

It is important to remark that M0AM1CM0 is not the same as M0CM1AM0,
nor is M0AM1BM0 + M0BM1CM0 the same as

M0BM1CM0 + M0AM1BM0;

we cannot change the order of terms in a sum.
It follows from this convention that we have

M0BM0 ≡ 0

if the closed contour M0BM0 constitutes a boundary of a two-dimensional man-
ifold forming part of V ; and in fact the closed contour can then be decomposed
into a large number of hairpin bends.9

We are thus led to consider relations of the form

k1C1 + k2C2 ≡ k3C3 + k4C4

where the k are integers and the C are closed contours traced on V , leaving
from M0. These relations, which I call equivalences, resemble the homologies
studied above. They differ in that

10 With homologies, the contours can leave from any initial point.

20 With homologies, we can change the order of terms of a sum.

We can add two equivalences to each other if the order of terms is respected;
thus if

A ≡ B and C ≡ D

we can conclude
A + C ≡ B + D

but not
C + A ≡ B + D.

If we have
2A ≡ 0

9This paragraph is manifestly false; H. Poincaré ultimately rectified it (Fifth supplement).
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we do not have the right to conclude

A ≡ 0.

This being given, it is clear that we can envisage a group G satisfying the
following conditions:

10 Each closed contour M0BM0 corresponds to a substitution S of the group,

20 The necessary and sufficient condition for S to reduce to the identity
substitution is that

M0BM0 ≡ 0

30 If S and S′ correspond to contours C and C ′ and if

C ′′ ≡ C + C ′

then the substitution corresponding to C ′′ will be SS′.

The group G is called the fundamental group of the manifold V .
We compare it to the group g of substitutions undergone by the functions

F .
The group g will be isomorphic to G.10

The isomorphism can be holoedric, but it will not be if there is a closed
contour M0BM0 indecomposable into hairpin bends on which the functions F
return to their original values.

§13. Fundamental equivalences

The group G will be generated by a certain number of principal substitutions
S1, S2, . . . , Sp. Each of them corresponds to a closed contour, so that we have
p fundamental closed contours C1, C2, . . . , Cp and any other closed contour is
equivalent to a combination of fundamental contours in a certain order.

These fundamental contours are not, in general, independent, and there are
certain relations between them that I call fundamental equivalences.11

Suppose for example that we have the equivalence

k1C1 + k2C2 + k′1C1 + k3C3 ≡ 0.

This signifies that the substitution Sk1
1 Sk2

2 S
k′1
1 Sk3

3 of the group G reduces to
the identity.

10Here, and in the next line, Poincaré is using the 19th-century terminology of “holoedric
isomorphisms” and “meriedric isomorphisms,” which are what we call “isomorphisms” and
”homomorphisms” respectively. Thus we would say that there is a homomorphism G → g.
(Translator’s note.)

11The fundamental contours are what we now call generators of the fundamental group,
and the fundamental equivalences are what we call defining relations. (Translator’s note.)
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The fundamental equivalences enable us to know the structure of the group
G.

Suppose that the manifold V has been defined by the mode of representation
of §10 and that we have only a single polyhedron P1. It is clear that we obtain all
the fundamental contours in the following manner. Let M0 be a point inside P ,
A a point on one of the faces of P1, A′ the corresponding point on the conjugate
face. If we go from A to M0, then from M0 to A′, without leaving P1, then the
corresponding path on the manifold V will be closed.

Thus there are as many fundamental contours as there are pairs of faces.
Now here is how we find the fundamental equivalences:

Consider a cycle of edges. Take for example an edge which is the intersection of
faces F1 and F ′µ, and which I call for that reason the edge F1, F

′
µ; let F ′1 be the

face conjugate to F1 and F2F
′
1 be the edge on that face corresponding to F1F

′
µ;

let F ′2 be the face conjugate to F2 and F3F
′
2 the edge on that face corresponding

to F2F
′
1; and so on until we return to the face F ′µ and the edge F1F

′
µ.

We remark that in carrying out this process, we may return several times to
the same face.

Let Ai be a point of Fi and A′i the corresponding point of F ′i ; let Ci be the
fundamental contour

M0Ai + A′iM0.

Then we have the fundamental equivalence

C1 + C2 + · · ·+ Cµ ≡ 0

and there are as many fundamental equivalences as there are cycles of edges.
When we have formed the fundamental equivalences in this way we realize

that the fundamental homologies are none other than the results of letting
the order of terms become immaterial. The knowledge of these homologies
immediately yields the Betti number P1.

We apply these principles to the examples above, and remark that all the
manifolds cited are closed and three-dimensional, so P1 = P2.

First example:

ABDC ≡ A′B′D′C ′(C1)
ABB′A′ ≡ CDD′C ′(C2)
ACC ′A′ ≡ BDD′B′(C3)

Here is what I mean by the notation

(C1) ABDC ≡ A′B′D′C ′.

I want to say that the face ABDC is conjugate to A′B′D′C ′ and that if α
denotes a point of ABDC and α′ a point of A′B′D′C ′ then the fundamental
contour M0α + α′M0 is denoted by C1.
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Fundamental equivalences

C1 + C2 ≡ C2 + C1, C1 + C3 ≡ C3 + C1, C2 + C3 ≡ C3 + C2.

The fundamental homologies reduce to the identity

P1 = P2 = 4.

I now pass immediately to the third example, since we have seen that the
second must be rejected.

Third example

ABDC ≡ B′D′C ′A′(C1)
ABB′A′ ≡ C ′CDD′(C2)
ACC ′A′ ≡ DD′B′B(C3)

Fundamental equivalences

C1 + C3 + C2 ≡ 0, C1 − C3 − C2 ≡ 0
C2 − C1 − C3 ≡ 0, C3 − C2 − C1 ≡ 0

which can also be written

2C1 ≡ 2C2 ≡ 2C3, 4C1 ≡ 0

Fundamental homologies

C1 ∼ C2 ∼ C3 ∼ 0

whence
P1 = P2 = 1.

We can give this result a simple geometric interpretation.
The group G is of finite order and consists of only eight distinct substitutions,

corresponding to the following contours

0, C1, C2, C3, 2C1, 3C1, 3C2, 3C3.

The group is isomorphic to the following group

(x, y, z, t; z,−t, x,−t, z;
−t,−z, y, x; z,−t,−x, y;

−x,−y,−z,−t; y,−x, t,−z
t, z,−y,−x; −z, t, x,−y)

This group, which transforms into itself the four-dimensional hypercube with
faces defined by

x = ±1, y = ±1, z = ±1, t = ±1

may be called the hypercubic group.
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Fourth example

ABDC ≡ B′D′C ′A′(C1)
ABB′A′ ≡ CDD′C ′(C2)
ACC ′A′ ≡ BDD′B′(C3)

Fundamental equivalences:

C2 + C3 ≡ C3 + C2, C3 + C1 ≡ C1 + C2, −C2 + C1 ≡ C1 + C3

Fundamental homologies

C2 ∼ C3 ∼ 0

whence
P1 = P2 = 2.

Fifth example

ABD ≡ FED(C1)
ACE ≡ FDB(C2)
AED ≡ FBC(C3)
ADB ≡ FCE(C4)

Fundamental equivalences

C1 ≡ C2 ≡ C3 ≡ C4, 2C1 ≡ 0

whence
C1 ∼ C2 ∼ C3 ∼ C4 ∼ 0

and
P1 = P2 = 1.

The group G reduces to two substitutions corresponding to the contours 0
and C1.

Sixth example. The group G is evidently isomorphic to the group (α, β, γ, δ).
The three substitutions

(x, y, z; x + 1, y, z)

(x, y, z; x, y + 1, z)

(x, y, z; αx + βy, γx + δy, z + 1)

correspond to the fundamental contours C1, C2 and C3 respectively.
First we have the fundamental equivalences

C1 + C2 ≡ C2 + C1
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C1 + C3 ≡ C3 + αC1 + δC2

C2 + C3 ≡ C3 + βC1 + δC2

whence it follows first of all that any combination of fundamental contours can
be expressed in the form

m3C3 + m1C1 + m2C2

where the m are integers. Since such an expression cannot be equivalent to 0 un-
less the three integers m are zero, it follows that we possess all the fundamental
equivalences.

Fundamental homologies:

(α− 1)C1 + γC2 ∼ 0

βC1 + (δ − 1)C2 ∼ 0

If these two homologies are not distinct we have

C1 ∼ C2 ∼ 0

whence

P1 = P2 = 2

which is what happens in the general case, and in our fourth example in partic-
ular.

If the determinant of these homologies is zero, i.e. if

(α− 1)(δ − 1)− βγ = 0

or

α + δ = 2

we have

P1 = P2 = 3

except for the case where the two homologies reduce to the identity. This is
what happens for

α = δ = 1, β = γ = 0

i.e., for our first example; we then have

P1 = P2 = 4.
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§14. Conditions for homeomorphism

We know that two closed two-dimensional manifolds with the same Betti num-
bers are homeomorphic. This follows, for example, from the study of the periods
of abelian functions. We consider a Riemann surface R and let z be the corre-
sponding imaginary variable; we can introduce a new imaginary variable t such
that z is a fuchsian function of t and t, as a function of z, has no singular point
on the surface R. All the fuchsian groups corresponding to Riemann surfaces
with the same connectivity are isomorphic.

Moreover, it is evident that the fuchsian group is none other than the fun-
damental group g of the surface R, considered as a two-dimensional manifold.

We remark that not all fuchsian groups arise in this way from a closed two-
dimensional manifold. Consider the fuchsian fundamental polygon R0 and, if
the fuchsian function exists over the whole plane, it is necessary to adjoin its
mirror image R′0 in the real axis; but then the domain R0+R′0 will not be simply
connected. To each point of the closed manifold V there corresponds a point of
R0 (or of R0 +R′0), and conversely. Suppose that there exists one or more cycles
of vertices and that the sum of the angles of this cycle is zero or 2π

n where n is
an integer greater than 1. Then let M be the point of V corresponding to this
cycle of vertices and imagine an infinitely small loop around M . By definition
of the group g, this loop must correspond, in g, to the identity substitution, but
in the fuchsian group it corresponds to a non-identity substitution. Thus the
fuchsian group cannot be isomorphic to g.

This leaves fuchsian groups of the first family such that the sum of the angles
of each cycle is 2π, and those of the third family. But the latter must likewise
be rejected. In fact, if the group is of the third family then the domain R0 +R′0
is not simply connected. Let C be a closed contour traced in this domain such
that we do not have

C ∼ 0.

Corresponding to this contour, in the fuchsian group, we have the identity sub-
stitution (because the variable z returns to its point of departure). But in the
group g we have a non-identity substitution. Here again, the fuchsian group
cannot be isomorphic to g.

Thus we are left with the groups of the first family for which the sum of the
angles of each cycle is 2π.

All of the groups of the same genus are isomorphic, and it is for this reason
that all the closed two-dimensional manifolds with the same Betti number are
homeomorphic.

Is it the same when the number of dimensions is greater? Are two closed
manifolds of dimension h > 2 with the same Betti numbers homeomorphic?

We shall see that they are not, and that this is why questions of Analysis
situs become more complicated when the number of dimensions increases.

It is clear first of all that, if two manifolds are homeomorphic, then their
groups are isomorphic.
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Now we return to our sixth example and enquire whether two of the groups
(α, β, γ, δ) can be isomorphic.

Let (α, β, γ, δ) and (α′, β′, γ′, δ′) be the two groups, and let C1, C2, C3;
C ′1, C

′
2, C

′
3 be the three fundamental contours of each, so

(1)





C1 + C2 ≡ C2 + C1

C1 + C3 ≡ C3 + αC1 + γC2

C2 + C3 ≡ C3 + βC1 + δC2

(1′)





C ′1 + C ′2 ≡ C ′2 + C ′1
C ′1 + C ′3 ≡ C ′3 + α′C ′1 + γ′C ′2
C ′2 + C ′3 ≡ C ′3 + β′C ′1 + δ′C ′2

are the fundamental equivalences of the two groups.
Suppose that the two groups are isomorphic and let

a3C3 + a1C1 + a2C2,

b3C3 + b1C1 + b2C2,

c3C3 + c1C1 + c2C2,

be the contours of the first group that correspond respectively to the contours
C ′1, C

′
2, C

′
3 of the second group. The a, b and c are integers, and we have seen

above that each contour of the first group can be expressed in this form.
If we are to have an isomorphism we must recover the equivalences (1) when

a3C3 +a1C1 +a2C2, . . . are substituted in place of C ′1, C
′
2, C

′
3 in the equivalences

(1′).
Thus it is necessary, first of all, that the substitutions (which I denote by

the same symbols as the corresponding contours)

a3C3 + a1C1 + a2C2,

b3C3 + b1C1 + b2C2,

commute. To make writing simpler, I shall use the following notation: I put

a3 = h, b3 = k, a1C1 + a2C2 = S0; b1C1 + b2C2 = T0,

so that our first two substitutions reduce to hC3 + S0, kC3 + T0.
I let S1 denote the result of applying the linear substitution (α, β, γ, δ) to

the coefficients of S0, that is, replacing a1 and a2 by

αa1 + βa2 and γa1 + δa2.

S2 will be the result of applying the same substitution to the coefficients of
S1, and so on; likewise, T1, T2, . . . are the successive transforms of T0.

That being so, the equivalences (1) give

S0 + hC3 ≡ hC3 + Sh.
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For our substitutions to commute, it is therefore necessary that

hC3 + S0 + kC3 + T0 ≡ kC3 + T0 + hC3 + S0

or
(k + h)C3 + Sk + T0 ≡ (k + h)C3 + Th + S0

or

(λ) Sk + T0 ≡ Th + S0.

Suppose first of all that h and k are equal and not 0. The preceding equivalence
can then be replaced by the equations

(αh − 1)(a1 − b1) + βh(a2 − b2) = 0,

γh(a1 − b1) + (δh − 1)(a2 − b2) = 0,

where I let (
αh βh

γh δh

)

denote the coefficients of the hth power of the linear substitution
(

α β
γ δ

)
.

These equations can be satisfied in two ways:

1o Certainly if
a1 = b1, a2 = b2,

in which case the two substitutions

hC3 + S0, kC3 + T0

will be identical;

2o Or else, if the determinant
∣∣∣∣

αh − 1 βh

γh δh − 1

∣∣∣∣

is zero. But the latter cannot happen unless we have

sh = 1,

where s is one of the roots of the equation

(2)
∣∣∣∣

α− s β
γ δ − s

∣∣∣∣ = 0,
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which means, if the substitution (α, β, γ, δ) is elliptic, that the roots of equation
(2) for s are imaginary (in which case each must equal an hth root of unity) and
if it is parabolic it means they are equal.

Suppose then that (α, β, γ, δ) is hyperbolic, which means that the roots of
the equation for s are real, and suppose no longer that h = k.

Then the kth power of
hC3 + S0

and the hth power of
kC3 + T0

must commute. Let
h′C3 + S′0

K ′C3 + T ′0

be these two powers. Since we have

h′ = k′ = hk,

these two powers must be identical, by what we have said above. In the isomor-
phic group (α′, β′, γ′, δ′) the kth power of C ′1 must be equal to the hth power of
C ′2. This cannot be so unless

h = k = 0,

that is,
a3 = b3 = 0.

We pass to the case of elliptic substitutions, among which we include the
substitution ( −1 0

0 −1

)
.

Then the determinant ∣∣∣∣
αh − 1 βh

γh δh − 1

∣∣∣∣
can vanish for a certain value of h I call ν.

But then the substitution
(

αν βν

γν δν

)

reduces to the identity substitution, that is, we have

αν = δν = 1, βν = γν = 0.

Then it happens that νC3 commutes with C1 and C2, and more generally
the two substitutions

a3C3 + a1C1 + a2C2,

b3C3 + b1C1 + b2C2,
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commute, provided a3 and b3 are divisible by ν. The latter sufficient condition
is also necessary, if we exclude, as above, the case where the powers of our two
substitutions are identical.

To show this I shall again employ an abbreviated notation. The symbol

m1C1 + m2C2

makes no sense unless m1 and m2 are integers, but the following

µ(a′1C1 + a′2C2) + ρ(b′1C1 + b′2C2)

can be given a meaning when µ, ρ, the a′ and the b′ are not integers, provided

µa′1 + ρb′1, µa′2 + ρb′2

are integers. It is evident that we can permit this, because C1 and C2 commute.
So choose

ξ0 = a′1C1 + a′2C2,

η0 = b′1C1 + b′2C2,

so that
ξ1 = ξ0s, η1 = η0s

−1,

where ξ1 and η1 are, following our conventions, the transforms of ξ0 and η0 by
the linear substitution (α, β, γ, δ); s is one of the roots of equation (2). It follows
from the theory of linear substitutions that we can always choose the numbers a′

and b′ (which are generally irrational or even imaginary) in this fashion. Then
we put

S0 = µξ0 + ρη0, T0 = µ′ξ0 + ρ′η0.

We have
µξ0 + ρη0 + hC3 ≡ hC3 + µshξ0 + ρs−hη0

and

k(hC3 + µξ0 + ρη0) ≡ khC3 + µ
skh − 1
sh − 1

ξ0 + ρ
s−kh − 1
s−h − 1

η0.

That being so, the equivalence (λ) can be written

µ(sk − 1) = µ′(sh − 1),

ρ(s−k − 1) = ρ′(s−h − 1).

If k and h are not divisible by ν, these relations are not satisfied identically
and we can put

µ = (sh − 1)ε, µ′ = (sk − 1)ε, ρ = (s−h − 1)ζ, ρ′ = (s−k − 1)ζ.

But then

k(hC3 + S0) ≡ khC3 + ε(skh − 1)ξ0 + ζ(s−kh − 1)η0,
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h(kC3 + T0) ≡ khC3 + ε(skh − 1)ξ0 + ζ(s−kh − 1)η0,

which shows that the kth power of our first substitution is identical with the hth

power of the second. Since we have excluded this case, it follows that we must
have

a3 ≡ b3 ≡ 0 (mod ν).

But we can go further; if C ′1 and C ′2 are our first two substitutions, we can
replace them by

ω1C
′
1 + ω2C

′
2, ω′1C

′
1 + ω′2C

′
2,

where the ω are any integers such that ω1ω
′
2 − ω2ω

′
1 = 1. We can then always

suppose that b3 = 0 (by replacing C ′1 and C ′2 by ω1C
′
1 + ω2C

′
2 and ω′1C

′
1 + ω′2C

′
2

and choosing the numbers ω so as to make the new b3 vanish).
But now the subgroup generated by C ′1 and C ′2, thanks to the isomorphism

with (α′, β′, γ′, δ′), must commute with all substitutions in the group, in partic-
ular, with C3.

We can therefore say that the substitution

−C3 + C ′2 + C3

belongs to the subgroup generated by C ′1 and C ′2. We have

C ′2 = µ′ξ0 + ρ′η0,

−C3 + C ′2 + C3 = µ′sξ0 + ρ′s−1η0.

For the latter substitution to belong to the group it is necessary, if a3 is
nonzero, for it to be a multiple of C ′2.

But it is evident that this can happen only if s = s−1 = −1.
If we leave this case aside, we must have

a3 = b3 = 0.

Then if we leave aside the case where

α + δ = ±2

[parabolic substitutions and the substitution (−1, 0, 0,−1)], we must have

a3 = b3 = 0.

I add that c3 must be equal to 1, otherwise the combinations of the three
fundamental substitutions

a1C1 + a2C2 ≡ C ′1,
b1C1 + b2C2 ≡ C ′2,

c3C3 + c1C1 + c2C2 ≡ C ′3,
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could not generate all the substitutions

m3C3 + m1C1 + m2C2

in the group (α, β, γ, δ), but only those where the integer m3 is divisible by c3.
Now each substitution in group (α, β, γ, δ) can be put in the form

m3C
′
3 + m1C

′
1 + m2C

′
2.

For C1 to be expressed in this form it is first of all necessary that m3 be
zero, and then that we have identically

C1 = m1(a1C1 + a2C2) + m2(b1C1 + b2C2),

and likewise that

C2 = m′
1(a1C1 + a2C2) + m′

2(b1C1 + b2C2).

Since the m and m′ are integers, it follows that the determinant

a1b2 − a2b1 = 1.

But I have said above that we can replace C ′1 and C ′2 by

ω1C
′
1 + ω2C

′
2, ω′1C

′
1 + ω′2C

′
2.

If a1b2 − a2b1 equals 1 we can choose the ω in such a way that

ω1C
′
1 + ω2C

′
2 = C1, ω′1C

′
1 + ω′2C

′
2 = C2,

that is, we can always suppose that

a1 = b2 = 1, a2 = b1 = 0.

But then the equivalence (1′)

C ′1 + C ′3 ≡ C ′3 + α′C ′1 + γ′C ′2

becomes
C1 + C3 ≡ C3 + α′C1 + γ′C2,

whence
α = α′, γ = γ′.

We similarly find that
β = β′, δ = δ′.

We must therefore conclude that the two groups (α, β, γ, δ) and (α′, β′, γ′, δ′)
cannot be isomorphic unless we can pass from one to the other by changing C ′1
and C ′2 into

ω1C
′
1 + ω2C

′
2, ω′1C

′
1 + ω′2C

′
2.

This can be stated in another way.
Let
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S =
(

α β
γ δ

)

be a linear substitution with integer coefficients such that

αδ − βγ = 1.

Let

T =
(

ω1 ω2

ω′1 ω′2

)

be another linear substitution with integer coefficients such that

ω1ω
′
2 − ω′1ω2 = 1.

The substitution T−1ST , which is called the transform12 of S by T , is also
linear with integer coefficients and of determinant 1.

If two linear substitutions S and S′ with integer coefficients and determinant
1 are transformed into each other by a substitution T , I say that S and S′ belong
to the same class.

It is clear first of all that S and S′ cannot belong to the same class unless
the sum α + δ has the same value for each, but this condition is not sufficient,
and α+δ can have the same value for several classes of linear substitutions, just
as the same determinant can correspond to several classes of quadratic forms.

Thus the necessary and sufficient condition for the two groups (α, β, γ, δ) and
(α′, β′, γ′, δ′) to be isomorphic is that the two linear substitutions (α, β, γ, δ) and
(α′, β′, γ′, δ′) belong to the same class.

We have so far left aside the case where

α + δ = ±2.

If α+δ = 2, the substitution (α, β, γ, δ) will be in the same class as (1, h, 0, 1);
the group (α, β, γ, δ) will be isomorphic to (1, h, 0, 1).

The latter contains a remarkable substitution C2, which is not a multiple of
any other and which commutes with all substitutions in the group. Moreover,
we see without difficulty that if h is nonzero, C2 is the only substitution with
this property.

We can also leave aside the case where h is zero, since the group (1, 0, 0, 1),
whose substitutions all commute with each other, evidently cannot be isomor-
phic to any other group (α, β, γ, δ).

If α + δ = −2, the group (α, β, γ, δ) will be isomorphic to (−1, h, 0,−1).
The latter contains a remarkable substitution C2, which is not a multiple of
any other, does not commute with all substitutions in the group, but whose
double commutes with all these substitutions. If h is not zero, C2 is the only

12It would be nice to call this substitution the conjugate of S by T , to avoid confusion
with Poincaré’s previous use of the word “transform,” but of course this would clash with
Poincaré’s use of the word “conjugate” to denote the pairing between identified edges of faces.
(Translator’s note).
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substitution that enjoys the latter property. If, on the other hand, h is zero, then
there are infinitely many such elements, which proves already that (−1, 0, 0,−1)
cannot be isomorphic to (−1, h, 0,−1).

Likewise, the presence of this remarkable substitution C2 in (1, h, 0, 1) and
the absence of any substitution enjoying the same property in (−1, h′, 0,−1)
shows that these two groups cannot be isomorphic.

It remains to resolve two questions:

10 Can the groups (1, h, 0, 1) and (1, h′, 0, 1), where |h| 6= 0, |h′| 6= 0, |h| 6=
|h′|, be isomorphic?

20 The same question for the groups (−1, h, 0,−1), (−1, h′, 0,−1).

I shall begin with the first question.
Observe first of all that, since C2 is the only substitution in the first group

with the characteristic property stated above, we must have

C ′2 ≡ C2

(or C ′2 ≡ −C2, but then we change C ′1 and C ′2 into −C ′1 and −C ′2).
Then, in order to recover all substitutions in the first group by combining

C ′2 ≡ a3C3 + a1C1 + a2C2,

C ′2 ≡ C2,

C ′3 ≡ c3C3 + c1C1 + c2C2,

it is necessary that
a3c1 − c3a1 = 1.

One then proves easily that

C ′1 + C ′3 ≡ C ′3 + C ′1 + hC ′2,

which shows that the two groups cannot be isomorphic unless

h = ±h′.

We pass to the second question.
We know, from a moment ago, that we must have

C ′2 ≡ C2

a3c1 − c3a1 = 1.

It follows that

C ′1 + C ′3 ≡ (a3 + c3)C3 + (c1 + a1ε)C1 + (c2 + a2ε− a1c3hε)C2,

where
ε = (−1)c3
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and

C ′3 − C ′1 ≡ (c3 − a3)C3 + (c1 − a1)ε′C1 + [(c2 − a2)ε′ + (a1 + c1)a3ε
′h]C2,

where
ε′ = (−1)a3 .

If we want
C ′1 + C ′2 ≡ C ′3 − C ′1 + h′C ′2,

then we need

a3 = 0, ε′ = 1, ε = −1, a1c3 = 1, h = h′.

Therefore our two groups cannot be isomorphic unless

h = ±h′.

The result stated above is therefore general and it extends to parabolic
substitutions.

If the two linear substitutions (α, β, γ, δ), (α′, β′, γ′, δ′) are not in the same
class, then the two corresponding groups cannot be isomorphic.

The result of this long discussion is that the different groups (α, β, γ, δ) give
rise to an infinity of different—that is, non-homeomorphic—closed manifolds V .
However, the number P1 can take only one of the three values 2, 3 or 4.

Thus for two closed manifolds to be homeomorphic, it does not suffice for
them to have the same Betti numbers.

This is shown equally well by our other examples.
In the third example, the group G reduces to eight substitutions and, in the

fifth example, to only two.
On the other hand, the hypersphere

x2
1 + x2

2 + x2
3 + x2

4 = 1

is a manifold whose group G consists of only a single substitution, the identity.
Thus we have three manifolds whose groups are of finite order, but non-

isomorphic, so the manifolds cannot be homeomorphic. Nevertheless, they have
the same Betti numbers

P1 = P2 = 1.

It seems natural to restrict the meaning of the term simply connected to
manifolds whose group G reduces to a single substitution. Then a closed man-
ifold of more than two dimensions can have a group G of finite order without
being simply connected.

This does not happen with two-dimensional manifolds: the group G of such
a manifold cannot be finite without reducing to a single substitution.13

13Poincaré is evidently considering only orientable manifolds, since the projective plane is
a counterexample among non-orientable two-dimensional manifolds (Translator’s note).
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We have seen why a fuchsian group which admits a vertex cycle with angle
sum 2π

n (n > 1) cannot be the group G of a closed two-dimensional manifold.
For the same reason, the group of such a manifold cannot be of finite order,

or, more generally, it cannot contain a substitution of finite order.
It would be interesting to treat the following questions.

10 Given a group G defined by a certain number of fundamental equivalences,
can it give rise to a closed n-dimensional manifold?

20 How may we construct such a manifold?

30 Are two manifolds of the same number of dimensions, and the same group
G, always homeomorphic?

These questions will demand lengthy and difficult study. I shall not say more
about them here.

However, I want to draw attention to one point.
Riemann has related the study of algebraic curves to that of two-dimensional

manifolds from the point of view of Analysis situs.
Similarly, the study of algebraic surfaces may be related to that of four-

dimensional manifolds. These manifolds have three Betti numbers:

P1 = P3 and P2.

M. Picard has shown that if the algebraic surface is the most general of its
degree then the number P1 reduces to 1; it takes a value greater than 1 only
in certain special cases. Thus multiple connectivity presents itself as a special
case of simple connectivity.

This result seems paradoxical, but it is a little less paradoxical to us now;
a group G can be much more complex than another group G′ and still have a
smaller value for the number P1.

§15. Other modes of generation

It is possible to present manifolds by other definitions which are, so to speak,
intermediate between the first two.

For example, we can view a manifold V as the set of points satisfying certain
inequalities and the equations

(1)





F1(x1, x2, · · · , xn; y1, y2, · · · , yq)
F2(x1, x2, · · · , xn; y1, y2, · · · , yq)

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Fp(x1, x2, · · · , xn; y1, y2, · · · , yq)





= 0,

where the x are the coordinates of a point and the y are arbitrary parameters.
The dimension of V is then n− p + q.
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We can adjoin to the equations (1) the relations

ϕα(y1, y2, . . . , yq) = 0 (α = 1, 2, . . . , λ),

between the y. The y are then still entirely arbitrary parameters and the di-
mension of V becomes equal to n− p + q − λ.

Again, we can view a manifold V as defined by certain inequalities and by
the relations

(2) xi = θi(y1, y2, . . . , yp) (i = 1, 2, . . . , n),

where the y are parameters connected by λ equations

ϕα(y1, y2, . . . , yp) = 0 (α = 1, 2, . . . , λ).

The dimension of V is then p− λ.
Suppose for a moment that y1, y2, . . . , yp are the coordinates of a point P in

a space of p dimensions. The equations

ϕα = 0

then define a certain manifold W in that p-dimensional space.
Each point of W corresponds to a point of V , because the equations (2)

express the x as functions of the y.
The simplest case is that where, conversely, each point of V corresponds to

a single point of W . But another case, also very interesting, is the following.
Suppose that the manifold W remains unaltered when the y undergo substi-

tutions from a certain group G. Let P be a point of W , and let P1, P2, . . . , Ph

be the images of P under the substitutions in G.
The points P, P1, P2, . . . , Ph form what I call a system of points.
If the functions θi are not altered by the substitutions in G, it is clear that

the various points in the same system correspond to the same point of V .
The interesting case is where a point of V corresponds to a single system of

points of W .
Given a manifold W and a group G which does not alter it, we can always

construct a manifold V in such a way that each point of V corresponds to a
system of points of W , and exactly one.

For V to be orientable, it is necessary and sufficient that W be orientable
and that all substitutions in G have the following property.

Let y1, y2, . . . , yp be the coordinates of P , and let y′1, y
′
2, . . . , y

′
p be those of

its image; then the Jacobian of the y′ with respect to the y must be positive.

Seventh example. Let
y2
1 + y2

2 + y2
3 = 1

be the equation of the manifold W , which is therefore a sphere in ordinary space.
This sphere is not altered when we change y1, y2, y3 to −y1,−y2,−y3. This

will be our group G.
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Then if we put, for example,

x1 = y2
1 , x2 = y2

2 , x3 = y2
3 ,

x4 = y2y3, x5 = y1y3, x6 = y1y2,

the x do not change when the y change their sign, and we have defined a two-
dimensional manifold V in six-dimensional space.

This manifold will be closed; it will be non-orientable.
In fact, let P be a point of W , with coordinates y1, y2, y3. To define the

position of this point on the sphere W it suffices to know two of the coordinates,
for example y1 and y2, since the equation of the sphere gives us y3 as a function
of y1 and y2.

Its image P ′ with coordinates −y1,−y2 and −y3 is diametrically opposite.
But now it does not suffice to define the position of the point P from y1 and
y2, because y3 is not a uniform function of these two variables. Rather we must
put

y1 = cos ϕ sin θ,

y2 = sin ϕ sin θ,

y3 = cos θ.

The coordinates of the point P in the new system are ϕ and θ, those of P ′

are ϕ + π and π − θ, and now we see that

∂(ϕ + π, π − θ)
∂(ϕ, θ)

= −1 < 0.

The manifold V is therefore non-orientable.

Eighth example. Let y1, y2, . . . , yq; z1, z2, . . . , zq be 2q parameters connected
by the relations

(3)





y2
1 + y2

2 + · · ·+ y2
q = 1,

z2
1 + z2

2 + · · ·+ z2
q = 1.

If we regard these 2q parameters as the coordinates of a point in 2q-dimensional
space, then the equations (3) represent a closed manifold W of 2q−2 dimensions.

If we regard y1, y2, . . . , yq and z1, z2, . . . , zq as the coordinates of two points
Q and Q′ in q-dimensional space, these two points will both be found on the
hypersphere S with equation

y2
1 + y2

2 + · · ·+ y2
q = 1,

which is a closed manifold of q − 1 dimensions.
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Thus each pair of points of S corresponds to a single point of W , and con-
versely, provided we regard the two pairs QQ′ and Q′Q as distinct.

Now consider the q(q+3)
2 combinations

yi + zi, yizi, yizk + ykzi (i, k = 1, 2, · · · , q),

and set them equal to the q(q+3)
2 = n variables

x1, x2, · · · , xn.

We have now defined a manifold V of 2q − 2 dimensions in n-dimensional
space.

When we change yi into zi and zi into yi (that is, when we permute the two
points Q and Q′), the q(q+3)

2 combinations do not change.
Thus each pair of points on the hypersphere corresponds to a single point

on the manifold V , and conversely, but under the condition that the two pairs
QQ′ and Q′Q not be considered distinct.

Is this manifold V closed? I wish to show that it is not for q = 2, but it is
for q > 2.

In the former case we have

x1 = y1 + z1, x2 = y1z1, x3 = y2 + z2,

x4 = y2z2, x5 = y1z2 + y2z1.

Thus for the y and z to be real we must have

x2
1 > 4x2, x2

3 > 4x4.

We have analogous inequalities for q > 2; but in the latter case do the
inequalities define a true boundary of our manifold V ?

To make the situation clearer, I want to treat a simpler example first.
Suppose that, in ordinary space, we have the circle

x2 + y2 = 1, z = 0.

If we confine ourselves to the points of the circle for which y is positive, then
we have the following relations:

x2 + y2 = 1, z = 0, y > 0,

which define a one-dimensional manifold (in this case, a semicircle).
This manifold is not closed; it has two boundary points;

x = ±1, y = z = 0.

On the other hand, consider the following surface

(4) x2 + y2 − z2 + (x2 + y2 + z2)2 = 0.
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It is the surface generated by revolving a lemniscate about its major axis. It
consists of two distinct sheets N1 and N2 with a common conical point, which
is the origin. One passes from one sheet to the other through the origin. Thus
if we adjoin to equation (4) the inequality

(5) z > 0,

the relations (4) and (5) define a two-dimensional manifold which is none other
than the sheet N1. The latter manifold can be regarded as closed; it is homeo-
morphic to a sphere, and there is no need to regard the conical point

x = y = z = 0

as a true boundary point.
In general, if a p-dimensional manifold is not closed, its boundary will consist

of one or more (p− 1)-dimensional manifolds. If the set of points we suspect to
be boundary points forms one or more manifolds of less than p− 1 dimensions,
then they cannot be true boundary points, and the given manifold is closed.

But in our case we obtain the suspected boundary points by supposing the
points Q and Q′ to become equal, that is

y1 = z1, y2 = z2, . . . , yq = zq.

This gives a manifold of q−1 dimensions. Thus the boundary of V will have
q − 1 dimensions, whereas V has 2q − 2. V will therefore be closed unless

2q − 2 = (q − 1) + 1 or q = 2.

To understand this better, we compare the two examples q = 2 and q = 3.
First suppose q = 2 and consider our manifold in the neighbourhood of the

point
y1 = z1 = 0, y2 = z2 = 1,

that is, the point

x1 = 0, x2 = 0, x3 = 2, x4 = 1, x5 = 0.

We notice that, for small values of x1 and x2, the other three variables x3, x4

and x5 can be expanded in powers of x1 and x2; it therefore suffices to study
the variations of x1 and x2.

Next we see that x1 and x2 can take all values such that

x2
1 > 4x2.

The (x1, x2)-plane is therefore divided into two regions by the line

x2
1 = 4x2,

which is a true boundary line.
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We obtain the same result if we study the manifold V in the neighbourhood
of any other boundary point. This manifold is therefore not closed.

Now suppose q = 3 and let

x1 = y1 + z1, x2 = y1z1, x3 = y2 + z2, x4 = y2z2, x5 = y1z2 + y2z1,

x6 = y3 + z3, x7 = y3z3, x8 = y1z3 + y3z1, x9 = y2z3 + y3z2.

We study the manifold V in the neighbourhood of the point P0, which is
such that

y1 = z1 = y2 = z2 = 0, y3 = z3 = 1,

whence

x1 = x2 = x3 = x4 = x5 = x8 = x9 = 0, x6 = 2, x7 = 1.

We see that, in the neighbourhood of this point, x6, x7, x8, x9 can be ex-
panded in powers of x1, x2, x3, x4 and x5, so that it suffices to study the varia-
tions of the latter five variables.

In order to have only three variables, and make a geometric representation
possible, I cut my manifold V by the plane manifold

x1 = 0, x3 = 0,

so that the intersection will be a 2-dimensional manifold V ′.
Let x2, x4 and x5 be the coordinates of a point of V ′. We can regard these

three variables as the coordinates of a point in ordinary space, and thus we
have a geometric representation of the manifold V ′, or rather the portion of this
manifold in the neighbourhood of P0.

We then find
y1 = −z1, y2 = −z2,

because x1 and x3 are assumed to be zero and therefore

x2 = −y2
1 , x4 = −y2

2 , x6 = −2y1y2,

whence
4x2x4 − x2

5 = 0.

The latter equation is a cone of second degree, but only a single sheet of this
cone appears, since we must have

x2 < 0, x4 < 0.

The portion of the cone that appears is therefore separated from the portion
that does not by the vertex, which cannot be regarded as a true boundary point.
Thus the manifold V ′, and likewise V , is again closed.

We obtain a similar result by studying V in the neighbourhood of another
boundary point, or when we cut V by other plane manifolds.
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I could not have asked for an example better suited to clarify the preceding
reasoning.

In summary, the manifold V is closed if q > 2 and not if q = 2.
Now, is the manifold V orientable or non-orientable?
I propose to show that it is orientable if q is odd and non-orientable if q is

even.
We put

y1 = cos θ1, z2 = cos θ′1,
y2 = sin θ1 cos θ2, z2 = sin θ′2,
y3 = sin θ1 sin θ2 cos θ3, z3 = sin θ′1 sin θ′2 sin θ′3,
· · · · · · · · · · · · · · · · · ·
yq−1 = sin θ1 sin θ2 · · · sin θq−2 cos θq−1, zq−1 = sin θ′1 sin θ′2 · · · sin θ′q−2 cos θ′q−1,
yq = sin θ1 sin θ2 · · · sin θq−2 sin θq−1, zq = sin θ′1 sin θ′2 · · · sin θ′q−2 sin θ′q−1.

The position of a point on W is defined by the 2q − 2 coordinates

θ1, θ2, . . . , θq−1; θ′1, θ
′
2, . . . , θ

′
q−1.

On the other hand, the group G consists (apart from the identity substitu-
tion) of the single substitution that exchanges θi with θ′i. For the manifold V
to be orientable, it is therefore necessary and sufficient for the Jacobian

∂(θi, θ
′
i)

∂(θ′i, θi)
(i = 1, 2, · · · , q − 1)

to be positive. But the latter is equal to (−1)q−1, and hence it is +1 if q is odd
and −1 if q is even. Therefore

V is orientable if q is odd,
V is non-orientable if q is even.

Q.E.D.

Now we shall be concerned with determining the Betti number, Pq−1.
We first determine the Betti numbers of W .
We can construct two (q − 1)-dimensional manifolds on W in the following

way. We know that each point of W corresponds to a pair of points QQ′ on the
hypersphere S. The pairs Q0Q

′ for fixed Q0 and Q′ varying over the hypersphere
therefore form a closed (q−1)-dimensional manifold U1 which forms part of W .
Similarly, the pairs QQ0, where Q varies over the hypersphere and Q0 is fixed,
form a closed (q − 1)-dimensional manifold U3 which forms part of W .

These two manifolds are linearly independent (from the point of view of
homology).

To see this, consider the integral of order q − 1

J =
∫

sinq−1 θ1 sinq−2 θ2 · · · sin2 θq−2 sin θq−1dθ1dθ2 · · · dθq−1
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and let J ′ be the integral of order q − 1 obtained from J by replacing the θi by
the θ′i.

Now consider the integral
J + λJ ′

where λ is an irrational number.
We know the x as functions of the θ and θ′; conversely, we can calculate the

θ and θ′ as functions of the x, so that the integral J + λJ ′ takes the form
∫

ΣXδ,

where X is an entire function of the x, and δ is the product of the (q − 1)
differentials dxi.

I observe, at the outset, that the integral J + λJ ′ is zero when taken over
an infinitely small manifold forming part of W .

When taken over U2 it is equal to σ (surface of the hypersphere S): when
taken over U1 it is equal to λσ; and since there is no linear relation between σ
and λσ, U1 and U2 are linearly independent.

The Betti number Pq−1 therefore equals at least 3.
To go further, we consider the manifold W ′ obtained by removing from W

all points of the two manifolds U1 and U2; I propose to show that W ′ is simply
connected.

Consider, similarly, the manifold S′ obtained by removing the point Q0

from the hypersphere S. To each pair of points QQ′ in the manifold S′ there
corresponds a point of W ′, and conversely.

But S′ is homeomorphic to the domain D,

η2
1 + η2

2 + · · ·+ η2
q−1 < 1,

in (q−1)-dimensional space, where the coordinates are denoted by η1, η2, · · · , ηq−1.
(Just as the surface of an ordinary sphere, with one point removed, is homeo-
morphic to the interior of a disc.)

To each pair of points in the domain D there corresponds a point of W ′,
whence it follows that W ′ is homeomorphic to the domain ∆ defined by the
inequalities

η2
1 + η2

2 + · · ·+ η2
q−1 < 1,

ζ2
1 + ζ2

2 + · · ·+ ζ2
q−1 < 1

and situated in (2q − 2)-dimensional space, where the coordinates are denoted
by ηi and ζi.

But the domain ∆ is simply connected because it is convex. In fact, let v be
any closed manifold of any number of dimensions which forms part of ∆. I say
that we can reduce it to a point by a continuous deformation without leaving
V . We construct a manifold v′ by multiplying the coordinates of all points of
v by a positive factor k less than 1 (the manifold v′ will be homothetic to v,
with the centre of homothety being the origin, and the homothety ratio being
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k). The manifold v′ will be entirely inside ∆ and, when k decreases from 1 to
0, it begins as v and ends as a single point. Q.E.D.

Thus ∆, and consequently W , is simply connected. We now determine the
Betti numbers of W , beginning with the Ph for h < q − 1. If we consider a
closed h-dimensional manifold in W , it can always be taken as homologous to
a closed h-dimensional manifold disjoint from U1 and U2. This means it will be
homologous to zero in W ′ (because W ′ is simply connected) and a fortiori in
W .

Thus Ph is equal to 1.
On the other hand, since the Betti numbers equally distant from the extremes

are equal, Ph will also be equal to 1 when h is greater than q − 1.
It remains to determine Pq−1.
Consider a closed (q − 1)-dimensional manifold v contained in W .
If it is disjoint from U1 and U2 it will be homologous to zero; indeed, it will

be part of W ′, hence homologous to zero in W ′ and a fortiori in W .
Suppose that it meets U1 and U2.
The points of W corresponding to pairs Q1Q

′, where Q1 is fixed and Q′

describes the whole hypersphere, form a manifold U ′
1 homologous to U1. But

each point of W belongs to exactly one manifold U ′
1.

The points of W corresponding to pairs QQ2, where Q2 is fixed and Q
describes the whole hypersphere, form a manifold U ′

2 homologous to U2.
Each point of W belongs to exactly one manifold U ′

2.
Two manifolds U ′

1 and U ′
2 have exactly one point in common (namely, the

point corresponding to the pair Q1Q2). On the other hand, two manifolds U ′
1

(or two manifolds U ′
2) are disjoint.

Having established this, we return to the manifold v and suppose, to fix
ideas, that it meets U1 in two points M ′ and M ′′ and U2 in one point N ′.
Through the point M ′ I then take a manifold U ′

2, through the point M ′′ an
analogous manifold U ′′

2 , and through the point N ′ a manifold U ′
1.

Next, by a small deformation of the manifold v, I arrange that it does not
meet U1 and U2 except at the points M ′, M ′′ and N ′, and that it has around
M ′ a small part u′2 in common with U ′

2, around M ′′ a small part u′′2 in common
with U ′′

2 , and around N ′ a small part u′1 in common with U ′
1.

Then the manifolds

U ′
1 − u′1, U ′

2 − u′2, U ′′
2 − u′′2 , −v + u′1 + u′2 + u′′2 ,

together form a closed manifold which meets neither U1 nor U2 and which will
therefore be homologous to zero. We then have

U ′
1 − u′1 + U ′

2 − u′2 + U ′′
2 − u′′2 ∼ v − u′1 − u′2 − u′′2 ,

whence
v ∼ U ′

2 + U ′
1 + U ′′

2 ∼ U1 + 2U2.

It could also happen, for example, that the number we have called S(M)
above does not have the same value for the point M ′ considered as the point of



84 Analysis Situs

intersection of v and U1 as for the point M ′ considered as the point of intersec-
tion of U ′

2 and U1. In that case U ′
2 must be replaced by the opposite manifold

and we have
v ∼ U ′

1 − U ′
2 + U ′′

2 ∼ U1.

In either case, v, U1 and U2 are not linearly independent and we have

Pq−1 = 3.

Finally, we determine the Betti numbers for V .
Pairs QQ′ and Q′Q correspond to the same point of V . It follows that U1

and U2 correspond to the same manifold in V , so I can write

U1 ∼ U2.

On the other hand, the integral J +J ′ is non-zero over that manifold, which
shows that we do not have

U1 ∼ 0.

The number Pq−1 therefore equals at least 2.
Each closed manifold v contained in V corresponds to a manifold w contained

in W , but there are two cases. We know that to each point of V there correspond
two points of W , and I shall say that these two points are symmetric because
we pass from one to the other by exchanging the yi with the zi.

We construct w by taking, for each point of v, one of the two points corre-
sponding to it. Then w may or may not be closed, but its boundary consists of
two symmetric parts.

First consider the case where w is closed.
If the number of dimensions is different from q−1, then w (and consequently

v) can be reduced to a point by continuous deformation and we have

v ∼ 0.

If the number of dimensions equals q − 1 we have, with respect to W ,

w ∼ mU1 + nU2

where m and n are integers; but U1 is homologous to U2 with respect to V .
We therefore have

v ∼ (m + n)U1

with respect to V .
Now consider the case where w is not closed. We suppose that the number

of dimensions is less than or equal to q−1; the case where the number is greater
than q − 1 follows easily, because the Betti numbers are equal in pairs. The
boundary f of w therefore has less than q − 1 dimensions.

Let H be the (q − 1)-dimensional manifold, contained in W , which consists
of the points symmetric to themselves, that is, the points

yi = zi.
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The boundary f can be continuously deformed, without its points ceasing
to be symmetric pairs, until the deformed boundary becomes part of H.

Then w can be continuously deformed, without ceasing to correspond to a
closed manifold v, so that w becomes closed at the end of the deformation.

Thus v is always homologous to a manifold corresponding to a closed mani-
fold w.

It follows that the possible cases are

v ∼ 0, v ∼ (m + n)U1.

Hence all the Betti numbers of V are equal to 1, except Pq−1 which is equal
to 2.

This has two consequences:

10 If q is odd, V will be orientable; whence it follows that, for an orientable
manifold of 4k dimensions, the number P2k is not necessarily odd.

20 If q is even, V will be non-orientable; whence it follows that, for a non-
orientable manifold of 4k + 2 dimensions. The number P2k+1 is not nec-
essarily odd, although it must be for an orientable manifold.

These are the results I announced at the end of §9.

§16. The theorem of Euler

We all know the theorem of Euler, according to which, if S, A and F are
the numbers of vertices, edges and faces of a convex polyhedron,

S −A + F = 2.

This theorem has been generalised by M. de Jonquieres to non-convex poly-
hedra. If a polyhedron forms a closed two-dimensional manifold with Betti
number P1, then we have

S −A + F = 3− P1.

The fact that the faces are planes is evidently of no importance; the theorem
applies just as well to curvilinear polyhedra. It also applies to a subdivision of
any closed surface into simply connected regions. These regions correspond to
the faces of the polyhedron, their boundary lines correspond to the edges, and
the extremities of these lines to the vertices.

I now propose to generalise these results to an arbitrary space.
Suppose then that V is a p-dimensional manifold. We subdivided it into a

certain number of p-dimensional manifolds vp; the manifolds vp are not closed,
and their boundaries consist of a certain number of (p−1)-dimensional manifolds
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vp−1. The boundaries of the vp−1 in turn consist of a certain number of (p− 2)-
dimensional manifolds vp−2, and so on; I finally arrive at a certain number of
one-dimensional manifolds v1, bounded by a certain number of isolated points
or zero-dimensional manifolds I call v0.

The manifold V can have arbitrary Betti numbers, but I assume that the
manifolds vp, vp−1, . . . , v1 are simply connected.

I let αp, αp−1, . . . , α1 and α0 denote the numbers of the vp, the vp−1, . . ., the
v1 and the v0.

The figure formed by all these manifolds may be called a polyhedron, since
the analogy with ordinary polyhedra is evident. An ordinary polyhedron is in
fact a closed two-dimensional manifold V , subdivided into a certain number of
manifolds v2, which are the faces. The faces are bounded by a certain number of
manifolds v1, which are the edges and which are bounded by a certain number
of manifolds v0 called vertices.

I propose to calculate the number

N = αp − αp−1 + αp−2 − · · · ∓ α1 ± α0.

Here I introduce some new terminology, not very well justified perhaps, but
convenient.

If two polyhedra are obtained by subdividing the same manifold V , I shall
say they are congruent.

Suppose now that the polyhedron P is formed from the manifold V , by
regions vp and their successive boundaries vp−1, . . . , v1, v0.

If we subdivide the vp into smaller regions v′p then the boundaries of the v′p
will consist of a certain number of new regions v′′p−2, together with the regions
v′p−1 obtained by subdividing the vp−1. The boundaries of the v′p−1 and the
v′′p−1 consist of a certain number of new regions v′′p−2 together with the regions
v′p−2 obtained by subdividing the vp−2, and so on. We finally arrive at v′1 and
v′′1 whose boundaries consist of a certain number of new points v′′0 , together with
the points v0.

Let P ′ be the polyhedron formed by the regions v′p, v
′
p−1, v

′′
p−1, v

′
p−2, v

′′
p−2, . . . ,

v′1, v
′′
1 , v′0, v

′′
0 .

I then say that the polyhedron P ′ is derived from the polyhedron P .
I shall clarify this definition with an example from ordinary geometry. Con-

sider a regular tetrahedron T . In each of its faces I join each vertex to the mid-
point of the opposite side. Each face is thereby decomposed into six triangles;
altogether there are twenty-four triangles. The polyhedron with twenty-four
triangles obtained in this way is derived from T .

Now let P and P ′ be two congruent polyhedra, that is, obtained from the
same manifold V by two different decompositions. Then there always exists a
polyhedron P ′′ derived from both P and P ′, and which we obtain by combining
the two decompositions. Thus if we let vp, v

′
p and v′′p denote the subdivisions of

V under the three decompositions corresponding to the three polyhedra P, P ′

and P ′′, the necessary and sufficient condition for two points to belong to the
same region v′′p is that they both belong to the same region vp and the same
region v′p.
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I propose to establish that the number N is the same for two congruent
polyhedra and, since we have seen that two congruent polyhedra have a common
derived polyhedron, it suffices to show that the number N is the same for a
polyhedron and all those derived from it.

If we consider one of the regions vp−1 in the polyhedron P , it always lies in
exactly two regions vp, which it separates from each other. On the other hand,
a region vp−2 can lie in more than two regions vp and more than two regions
vp−1. This is the case in ordinary polyhedra, where an edge always separates
two faces, but a vertex in general lies in more than two faces and in more than
two edges.

However, we do not exclude the case where one region vp−2 belongs to only
two regions vp−1. Thus for an ordinary polyhedron we do not exclude the case
where the midpoint of an edge is regarded as a vertex and where the edge is,
consequently, regarded as two juxtaposed edges.

The regions vp−2, which do not lie in more than two regions vp−1, will be
called singular. Now let vp−2 be a singular region that lies in two regions vp−1

I call v′p−1 and v′′p−1. It is clear that v′p−1 will separate the same two regions vp

that are separated by v′′p−1, so vp−2 will also lie in no more than two regions vp.
Similarly, I say that the manifold vq is singular if it lies in only two manifolds

vq+1, in which case the two vq+1 containing vq will lie in the same vq+2, the
same vq+3, . . ., the same vp, and the suppression of vq and mutual annexation
of the two vq+1 will change nothing in the vq+2, vq+3, . . . , vp.

Now consider a manifold vh. This manifold contains a certain number of
manifolds vh−1; if one of them is singular I say that the manifold vh is irregular.
In the contrary case it will be regular.

Consider then the polyhedron P with regions vp, vp−1, . . . and the derived
polyhedron P ′ with regions v′p, v′p−1, . . . . We shall try to reconstruct the poly-
hedron P from the polyhedron P ′. Take two regions v′p I call α and β. I suppose
that they are separated from each other by a region v′p−1 I call γ. Consequently,
they are contiguous and form parts of the same region vp. (Since α and β are
parts of the same region vp, the region γ is nothing but a subdivision of one of
the regions vp−1 that separate the regions vp from each other; γ is therefore one
of the regions I have called v′′p−1 in the definition of derived polyhedron, but
here I do not make the distinction and I denote both the manifolds I previously
called v′′p−1 and those I previously called v′p−1 by the same notation v′p−1.)

This being so, we suppress the region γ which bounds α and β and annex
the region α to the region β. We have therefore suppressed one region v′p and
one region v′p−1. On the other hand, we have not suppressed any region v′p−2

if γ is regular. If any of the regions v′p−2 is non-singular, it will lie in at least
three regions v′p−1 and, after the suppression of γ, it will still lie in at least two
regions v′p−1. Similarly, each region v′q (where q < p− 2) forms a part of γ lying
in at least three regions v′p−1 and, after the suppression of γ, it will still lie in
at least two regions v′p−1. The suppression of γ therefore does not suppress any
of the regions v′q; it therefore does not change the value of the number N .

If, on the other hand, the region γ is irregular, we have all the more right
to suppress it, since there then exists a region v′p−2 which lies only in γ and
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one other region v′p−1. After the suppression of γ it will lie in at most a single
region v′p−1, which is inadmissible.

What should we do then? The region γ separates two regions vp I have called
α and β, but it does not form the whole boundary between α and β. Indeed,
since γ is irregular, there is a singular region v′p−2 I call δ and which lies in γ
and another region v′p−1 I shall call γ′. The latter region γ′, from what we have
seen above, separates the same regions as γ, namely α and β.

If the region δ is regular, we can suppress it and annex γ to γ′. The region
γ + γ′ will separate α from β. We have therefore diminished αp−1 and αp−2 by
one, without changing the other numbers αi. Therefore N does not change.

If δ is irregular there will be a region v′p−3 I call ε which separates it from
another region δ′. Then we suppress ε and annex δ to δ′, and so on.

We can therefore suppress a region v′q which separates two regions v′q+1, and
annex the two regions v′q+1 to each other, under two conditions:

10 If q is less than p− 1 and the region v′q is singular;

20 And, in any case, if it is regular.

This being so, here is how we order our operations:
I want to reconstruct the polyhedron P from the polyhedron P ′. I can

suppose without inconvenience that the polyhedron P has no singular region,
although the polyhedron P ′ and the intermediate polyhedra may have them.

By a series of suppressions and annexations, we reconstruct P from P ′,
passing through a series of intermediate polyhedra I call

P0 = P ′, P1, P2, . . . , Pm−1, Pm.

How do we pass from the polyhedron Pi to the polyhedron Pi+1?
If Pi contains a singular v′0, I suppress it. If not, then all the v′1 are regular;

if there is a singular v′1, I suppress it.
If there is no singular v′1, all the v′2 are regular; if there is a singular v′2, I

suppress it.
And so on.
Finally, if there is no singular v′p−2, then all the v′p−1 will be regular and

we have the right to suppress any one of them. If one of the regions vp is
subdivided into several regions v′p, I choose two of these v′p that are contiguous
and separated by a region v′p−1, which is their common boundary. I annex these
v′p to each other by suppressing this common boundary.

None of these operations alter the number N .
We are not stopped until there are no more singular regions and none of

the regions vp are subdivided into regions v′p. But then we have arrived at the
polyhedron P .

None of the operations alter the number N .
This number is therefore the same for P and P ′. Q.E.D.

This proof gives rise to certain objections, since it may be asked whether all
the regions remain simply connected during the series of operations. However,
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before modifying the proof so as to meet these objections, I want to determine
the value of N for a simply connected polyhedron.

If our theorem is true, the number N must have the same value for two
polyhedra obtained by subdividing homeomorphic manifolds; it therefore has
the same value for any two simply connected polyhedra.

It therefore suffices to make the determination for an arbitrarily chosen sim-
ply connected polyhedron.

I shall choose the generalised tetrahedron.
I give that name to the polyhedron bounding the domain

x1 > 0, x2 > 0, . . . , xp > 0,

xp+1 > 0, x1 + x2 + · · ·+ xp + xp+1 < 1.

We then have

αp = p + 2, αp−1 =
(p + 1)(p + 2)

2
, . . . ,

αq =
(p + 2)!

(q + 2)!(p− q)!
, . . . , α1 =

(p + 1)(p + 2)
2

, α0 = p + 2,

that is, the numbers αq are the binomial coefficients. Therefore

(1− 1)p+2 = 1− αp + αp−1 − · · · ± α1 ∓ α0 ± 1 = 1−N ± 1,

where the sign of the last term is + if p is even, and − if p is odd.
We therefore have N = 2 if p is even, and N = 0 if p is odd.
I will arrive at the same result by choosing the generalised cube. I give that

name to the polyhedron bounding the domain

−1 < xi < 1 (i = 1, 2, . . . , p + 1)

We then have

αp = 2(p + 1), αp−1 = 22 p(p + 1)
2

, . . . , αq = 2p−q+1 (p + 1)
(q + 1)!(p− q)!

, . . . ,

α1 = 2p(p + 1), α0 = 2p+1,

whence
(1− 2)p+1 = 1− αp + αp−1 − · · · ± α1 ∓ α0 = 1−N,

whence
N = 1− (−1)p+1,

that is,
N = 2 if p is even,
N = 0 if p is odd.

Thus, for a simply connected polyhedron, the number N is equal to 2 if p is
even and to 0 if p is odd.
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This being so, I shall now establish our theorem in a complete and rigorous
fashion by supposing it true for all manifolds of less than p dimensions.

Consider our polyhedron P and a q-dimensional region vp contained in it.
This region vq will be part of a certain number of regions vq+1, a certain number
of regions vq+2, . . ., a certain number of regions vp. The set of all these regions
forms what I shall call the star of vp.

I let γh denote the number of regions vh (h > q) that form part of the star
of vq.

Let (x0
1, x

0
2, . . . , x

0
n) be a point of vq. We consider the hypersphere S with

equation
(x1 − x0

1)
2 + (x2 − x0

2)
2 + · · ·+ (xn − x0

n)2 = ε2,

where ε is very small.
Let Π be the plane manifold defined by the q equations

A1
i (x1 − x0

1) + A2
i (x2 − x0

2) + · · ·+ An
i (xn − x0

n) = 0 (i = 1, 2, · · · , q),

where the Ak
i are any constants.

The intersection of S, Π and V will be a (p− q − 1)-dimensional manifold I
call W , and it will be simply connected.

For this polyhedron the number αh will equal γh+q+1; since it has less than
p dimensions, our theorem will be applicable, so that we can write

(A) γp − γp−1 + · · · ± γq+2 ∓ γq+1 = 2 or 0,

according as p− q is even or odd.
We now define a polyhedron Q, formed by an operation we may call cubing.
Let V be a p-dimensional manifold in n-dimensional space. We construct an

infinite number of plane manifolds defined by the equations

(B) xi = ak,l,
(i = 1, 2, . . . , n; k = −∞, . . . ,−1, 0, +1, +2, . . . , +∞).

These plane manifolds decompose the space into an infinity of domains Dn

analogous to rectangular parallelepipeds. The boundaries of the Dn will consist
of a certain number of (n − 1)-dimensional domains Dn−1 forming part of the
various plane manifolds xi = ak,i, and likewise analogous to rectangular paral-
lelepipeds. The boundaries of the Dn−1 consist of a certain number of domains
Dn−2 analogous to rectangular parallelepipeds in (n−2)-dimensional space, and
so on.

The polyhedron Q is now defined as follows: the regions vp are the inter-
sections of V with the domains Dn, the regions vp−1 are the intersections of V
with the domains Dn−1, and so on. Finally, the regions v0 are the intersections
of V with the domains Dn−p.

It follows from this definition that the polyhedron Q has no singular region.
I consider, in addition, an arbitrary polyhedron P congruent to Q, and a

polyhedron P ′ derived from both P and Q.
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I want to reconstruct P from P ′, on the one hand, and Q from P ′ on the
other, and establish that N is unchanged under both these operations.

First we reconstruct P from P ′.
Let xi = a be one of the plane manifolds defined by equation (B). We classify

the regions v′q of arbitrary dimension making up the polyhedron P ′ into four
kinds.

Those of the first kind are those contained in the manifold

xi = a.

Those of the second kind are those which include points such that

xi = a + ε,

where ε is positive and very small.
Those of the third kind are those which include points such that

xi = a− ε.

All the others are of the fourth kind.
Let δq, δ

′
q, δ

′′
q be the numbers of q-dimensional manifolds that are respectively

of the first, second and third kind.
Every manifold of the second kind will be contiguous to a manifold of the

third kind, and their common boundary will be a manifold of the first kind
of one dimension less. The manifolds of the first three kinds are therefore in
one-to-one correspondence and we have

δ′q = δ′′q = δq−1.

Moreover, it is clear that

δ′0 = δ′′0 = δp = 0.

If, in the set of plane manifolds (B) which constitute the cubing and which
give rise to the polyhedra Q and P ′, we suppress the manifold xi = a, then we
obtain two polyhedra Q1 and P1 simpler than the originals. We compare P ′1
and P ′.

When we suppress the plane manifold xi = a we suppress the manifolds of
the first kind and we annex each manifold of the third kind to the corresponding
manifold of the second kind. Therefore, in passing from P ′ to P ′1, the number
αq is diminished by

δ′′q + δq = δq + δq−1.

In particular, the numbers αp and α0 are diminished by δp−1 and δ0. It
follows that the number N is diminished by

δp−1 − (δp−1 + δp−2) + (δp−2 + δp−3)− · · · ± (δ1 + δ0)∓ δ0 = 0.

Thus N does not change. Therefore, in suppressing the manifold xi = a, we
do not change N . However, in suppressing all the plane manifolds defined by
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(B), we recover the polyhedron P . The number N is therefore the same for P ′

and P .
Now we recover Q from P ′.
Let wp, wp−1, . . . , w1, w0 be the manifolds that make up the polyhedron Q.

Similarly, let v′p, v
′
p−1, . . . , v

′
1, v

′
0 be the manifolds that make up the polyhedron

P ′.
We divide the manifolds v′p into p + 1 classes.
Those of the first class are those that lie in one of the regions wp without

being in one of the regions wp−1. Since the polyhedron P ′ is derived from Q,
this first class includes all the manifolds v′p (which are all subdivisions of the
wp), those manifolds v′p−1 that separate two manifolds v′p in the same region
wp, and their intersections.

Those of the second class are those that lie in one of the regions wp−1,
without being in one of the regions wp−2.

Those of the third class are those that lie in one of the regions wp−2, without
being in one of the regions wp−3, etc.

Those of the pth class are those that lie in one of the regions w1, without
being in one of the points w0.

Finally, the (p + 1)th class consists of the points w0.
Here is how I proceed to recover W from P ′. I commence by suppressing all

manifolds in the first class that have at least p dimensions, which has the effect
of uniting all the regions v′p that are subdivisions of the same region wp.

I claim that this operation does not change the number N .
Indeed, I can suppose that the mesh of the cubing that gives rise to Q is

so fine that in the interior of one of the cells Dp, that is, in the interior of one
of the regions wp, we cannot find points belonging to two different manifolds
vp−1, except in the case where we find points belonging to the intersection of the
two manifolds. (I always denote by vp the manifolds which make up P .) More
generally, I can suppose that wp does not contain points from several manifolds
vq (q < p) unless it contains points belonging to their intersection.

In a region wp we can therefore have the points of a region vq and all the
regions vh (h > q) which make up the star of vq, without having the points of
a region vq−1 as well.

Then if I suppose that q is the least dimension of a region vq with points in
the interior of wp, I shall have in wp the points of single region vq and its star.

Consider such a region wp, containing the points of vq and the regions in the
star of vq.

Let
γq+1, γq+2, . . . , γp,

be the numbers we have defined above in defining the star.
It follows that, in the interior of wp, we have

1 region v′q of the first class

γq+1 regions v′q+1 of the first class
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γq+2 regions v′q+2 of the first class

· · · · · · · · · · · · · · · · · · · · ·
γp regions v′p of the first class.

In suppressing the regions of the first class with at least p dimensions and
uniting the γp regions v′p which make up wp we diminish αp by γp − 1, αp−1

by γp−1, . . . , αq+1 by γq+1, αq by 1. Therefore, by virtue of equation (A), the
number N will not change.

Next we suppress all the manifolds of the second class with at least p − 1
dimensions, in uniting the manifolds v′p−1 of the second class which make up the
same region wp−1. Then we suppress all the manifolds of the third class with at
least p− 2 dimensions, in uniting the manifolds v′p−2 which make up the same
region wp−2, and so on.

We finally arrive at the polyhedron Q.
One shows as above that each of these operations leaves the number N

unaltered.
The number N is therefore the same for P ′ and Q. It is therefore the same for

P and Q, and consequently the same for any two congruent polyhedra. Q.E.D.

§17. The case where p is odd

I am now going to define, for an arbitrary polyhedron P , some remarkable new
numbers I call Bλ,µ.

First suppose λ > µ. I consider all the manifolds vλ; for each of them I take
all the manifolds vµ they contain, sum all the numbers relative to the various
manifolds vλ, and call the sum βλ,µ.

Since all the manifolds vλ are simply connected by hypothesis, we have

βλ,λ−1 − βλ,λ−2 + · · · ± βλ,1 ∓ βλ,0 = 2αλ or 0,

according as λ is odd or even.
Now suppose λ < µ. I consider all the manifolds vλ; for each of them I take

all the manifolds vµ they are contained in (that is, take the number γµ relative
to the star of vλ), sum all the numbers relative to the different manifolds vλ and
call the sum βλ,µ.

By virtue of equation (A) of the preceding section, we have

βλ,β − βλ,p−1 + · · · ± βλ,λ+2 ∓ βλ,λ+1 = 2αλ or 0,

according as p− λ is odd or even.
It follows from this definition that

βλ,µ = βµ,λ.

This being so, we form the following table
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+βp,p−1,−βp,p−2, +βp,p−3 . . . , ±βp,1,∓βp,0,
+βp−1,p−2 − βp−1,p−3, . . . , ∓βp−1,1,±βp−1,0,

· · · · · · · · · · · · , · · · · · · · · ·
+β2,1,−β2,0,

+β1,0.

We see that, in each row and each column, each term βλ,µ is affected alter-
natively by the + sign and the − sign, the + sign when λ− µ is odd and the −
sign otherwise.

We form the sum of all terms in this table, which can be done in two ways
– by rows and by columns.

The sums of the rows in the table, starting at the top, are

2αp, 0, 2αp−2, 0, . . . , 2α3, 0, 2α1

if p is odd, and

0, 2αp−1, 0, 2αp−3, . . . , 2α3, 0, 2α1

if p is even. The sum of the terms in the table is therefore

2α1 + 2α2 + · · ·+ 2αp

if p is odd, and
2α1 + 2α3 + · · ·+ 2αp−1

if p is even.
The sums of the columns in the table, starting at the left, are

2αp−1, 0, 2αp−3, 0, . . . , 2α2, 0, 2α0

if p is odd, and

2αp−1, 0, 2αp−3, 0, . . . , 0, 2α1, 0

if p is even.
The sum of the terms in the table is therefore

2α0 + 2α2 + · · ·+ 2αp−1

if p is odd, and
2α1 + 2α3 + · · ·+ 2αp−1

if p is even.
Equating the two expressions for the sum, we obtain an identity if p is even,

and the equation
N = 0

if p is odd.
This has the following consequence:
The number N is zero and independent of the Betti numbers if p is odd;

however, it depends on the Betti numbers if p is even.
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§18. Second proof

The second proof will show us how this works.
To assist understanding, I shall begin by explaining the case of an ordinary

polyhedron with α0 vertices, α1 edges and α2 faces.
To each of the α0 vertices I assign an arbitrary number, to each of the α1

edges I assign a number δ equal to the difference of the numbers corresponding
to its vertices.

We therefore have α1 differences δ, but they cannot all be chosen arbitrarily.
Indeed, they are determined when we know the α0 numbers assigned to various
vertices, and also when we know the excesses of α0 − 1 of these numbers over
one of them. It follows that only α0 − 1 differences can be chosen arbitrarily.

This implies that there are

α1 − α0 + 1

linear relations between the differences δ.
It is clear that we can obtain all these linear relations in the following way:

consider a sequence of edges forming a closed contour. Then the algebraic sum
of the differences corresponding to the various edges in the sequence will be
zero.

We therefore proceed to construct closed contours consisting of edges.
First we have the polygonal contours of the faces; there are α2 of them.
Then, if the polyhedron is not simply connected, we can trace on its surface

P1 − 1 linearly independent contours in the sense assigned to that word in
the section on homologies. Let C be one of these contours, which successively
traverses different faces. Let a1a2, a2a3, . . . , an−1an, ana1 be the arcs of this
contour in the successive faces.

We take the first of these arcs a1a2 and let F be the corresponding face.
The point a1 and the point a2 are on the perimeter of this face. We can

therefore go from a1 to a2 following the perimeter, by a path I shall call

a1m1a2 + a2a1 ∼ 0,

that is, in the contour C we can replace the arc a1a2 by the arc a1m1a2. Oper-
ating the same way on the other arcs of C we finally replace C by a homologous
contour

a1m1a2 + a2m2a3 + · · ·+ anmna1,

I shall call C ′. This contour C ′ consists of a certain number of edges and portions
of edges. For example, the arc a1m1a2 consists of an edge segment joining a1

to the nearest vertex, then a certain number of complete edges, then a segment
Sa2 joining a2 to the nearest vertex.

However, the segment Sa2 is retraced in the arc a2m2a3. The portions of
edges in C ′ are therefore each traversed twice, in opposite senses, and hence we
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can suppress them to obtain a closed contour C ′′ consisting entirely of complete
edges, and homologous to C or C ′.

We have P1−1 contours analogous to C ′′, which give P1−1 relations between
the δ.

We thus obtain α2 + P1− 1 closed contours consisting of edges. I claim that
all possible closed contours are combinations of these.

First consider a closed contour, consisting of edges, which is homologous
to zero. It separates the surface into two regions. If R is one of them, then
it evidently consists of a certain number q of faces, because the contour con-
sists entirely of edges. We can therefore replace the given contour by q partial
contours which are the perimeters of these q faces.

Now if the given contour is not homologous to zero, we can always replace
it by a combination of the contours C ′′ and a contour homologous to zero.

We therefore have
α2 + P1 − 1

relations between the δ and no others, but are they all distinct?
To decide this, we have to see whether we can form a linear combination of

these relations which reduces to an identity or, what comes to the same thing,
whether we can form a combination of our α2 + P1 − 1 contours, each edge
of which is traversed twice, in opposite senses (or, if it is traversed more than
twice, equally often in each sense).

Can we first form such a combination with the α2 perimeters Π? To say that
each edge is traversed twice in opposite senses is to say that the set of polygons
whose perimeters are thereby traversed forms a closed polyhedron.

But we can evidently construct only one such closed polyhedron, which is
the given polyhedron.

Thus with the α2 relations corresponding to the α2 perimeters Π we can
form one linear identity, and only one.

Can we now form such a combination with the perimeters Π and the contours
C ′′? If so, the set of polygons whose perimeters are thereby traversed form a
non-closed polyhedral surface whose boundary is a combination of the contours
C ′′. But this is impossible, because the contours C ′′ are linearly independent.

We therefore form just one identity combination from our α2 + P1 − 1 rela-
tions. It follows that there are

(α2 + P1 − 1)− 1

distinct relations between the δ. The number of arbitrary δ is therefore

α1 − (α2 + P1 − 1) + 1,

so that we have
α0 − 1 = α1 − (α2 + P1 − 1) + 1

or
N = 3− P1.

We now extend this proof to the case of a polyhedron of three dimensions,
where
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The number of vertices v0 is α0,
The number of manifolds v1 is α1,
The number of manifolds v2 is α2,
The number of manifolds v3 is α3.

We assign a number to each v0, and to each v1 the difference δ of the numbers
assigned to its vertices. We therefore have α1 differences δ, α0− 1 of which will
be arbitrary.

We obtain the linear relations between the δ by constructing all the closed
contours consisting exclusively of the v1.

First we have the α2 perimeters Π of the v2. Now let C be any closed contour
not homologous to zero. It traverses different v3 in turn; let a1a2, a2a3, . . . be
the successive arcs of C in each of these v3.

Consider the arc a1a2 in one of the v3, which I call Φ, and whose extremities
a1 and a2 are found in two of the v2 making up the boundary of Φ, say a1 in
ϕ1 and a2 in ϕ2.

Let b1 be a vertex of ϕ1 and let b2 be a vertex of ϕ2. We join a1 and b1

by any line a1b1, then b1 to b2 by a line b1b2 consisting entirely of v1 in the
boundary of Φ, and b2 to a2 by any line a2b2, so we have

a1a2 ∼ a1b1 + b1b2 + b2a2,

and we can replace the arc a1a2 by the arc a1b1b2a2. We operate similarly on
all the other arcs in C, so that C is replaced by the homologous contour

a1b1b2a2 + a2b2b3a3 + · · ·

which I call C ′. The contour C ′ consists of a certain number of v1 and the
arcs a1b1, a2b2, . . ., which are each traversed twice, in opposite senses. We
can therefore suppress these arcs, leaving a contour C ′′ homologous to C and
consisting exclusively of v1.

There are P1 − 1 contours C ′′.
I now claim that closed contour K formed from the v1 is a combination of the

Π and the C ′′. If K ∼ 0, K will be the boundary of a certain two-dimensional
region R. This region R can be subdivided into a certain number of manifolds
r, each of which is the portion of R inside one of the v3. We consider one of
the manifolds r, and let ϕ be the region v3 containing it. The boundary of r
will be a closed one-dimensional manifold u, part of the boundary of ϕ. Since
ϕ is simply connected, u will separate the boundary of ϕ into two regions. Let
r′ be one of these regions; it will consist of a certain number of complete v2

and a certain number of portions of v2 (because, among the v2 which form the
boundary of ϕ there may be some divided into two parts by u). We see that r
is homologous to r′, so we can replace r by r′. If we operate in the same way on
all the regions r we obtain a manifold R′ homologous to R and which consists of
a certain number of complete v2 and a certain number of portions which occur
twice, with opposite senses. We can suppress these portions of v2 and thus
obtain a manifold R′′ homologous to R and bounded by the same contour K.
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This manifold R′′ can be decomposed into a certain number of polygons v2, and
hence the contour K can be replaced by the perimeters Π of these polygons.

If K is not homologous to zero we can replace it by a certain number of
contours C ′′ and a contour homologous to zero.

We therefore have
α2 + P1 − 1

relations between the δ, which I write

ε = 0,

and no others. But are they all distinct?
In other words, can we form a linear combination of the ε which is identically

zero, or again, a combination of the Π and C ′′ in which each v1 occurs twice,
with opposite senses?

If a C ′′ occurs in the latter combination then the set of polygons v2 whose
perimeters Π occur in the combination will form a two-dimensional manifold
which is not closed and has a certain number of the contours C ′′ as its boundary.
But this is not possible, because the C ′′ are linearly independent.

It therefore remains to examine the combinations containing only the Π. The
set of polygons v2 whose perimeters Π are involved then form a closed manifold.

This leads us to examine the closed manifolds consisting exclusively of v2.
We first have the boundaries that I call Φ and which are α3 in number.
Now suppose D is any two-dimensional manifold, not homologous to zero.

We treat it as we have treated R, and see that it is homologous to a closed
two-dimensional manifold D′′ formed exclusively from v2.

The number of D′′ is P2 − 1.
I now claim that each closed manifold K formed from the v2 is a combination

of the Π and the D′′. Indeed, if it is homologous to zero it will bound a three-
dimensional region S composed of a certain number of v3, because K consists
of a certain number of v2. We can therefore replace K by the boundaries Φ of
these v3. If K is not homologous to zero we can replace it by a certain number
of D′′ and a manifold homologous to zero and formed exclusively from the v2.

We therefore have, between the ε,

α2 + P2 − 1

linear relations which I write
ζ = 0,

and no others. Are they distinct?
To form a linear combination of the ζ which is identically zero, it is necessary

to form a combination of the Φ and the D′′ such that each v2 occurs twice, with
opposite senses. We see, as above, that the D′′ cannot figure in this combination
and that the v2, which figure in the boundaries Φ, must form a closed three-
dimensional manifold. But we can construct only a single manifold of this kind:
the given polyhedron itself.
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It follows that there is only one linear combination of ζ which vanishes
identically.

We therefore have
(α3 + P2 − 1)− 1

distinct linear relations between the ε,

(α2 + P1 − 1)− (α3 + P2 − 1) + 1

distinct linear relations between the δ.
Therefore there are

α1 − (α2 + P1 − 1) + (α3 + P2 − 1)− 1

of the δ which remain arbitrary, so we find

α0 − 1 = α1 − (α2 + P1 − 1) + (α3 + P2 − 1)− 1.

And we find

α0 − 1 = α1 − (α2 + P1 − 1) + (α3 + P2 − 1)− (α4 + P3 − 1) + 1

for polyhedra of four dimensions.
We therefore have

N = P2 − P1

for three-dimensional polyhedra and

N = 3− P1 + P2 − P3

for four-dimensional polyhedra.
In general we have

N = Pp−1 − Pp−2 + · · ·+ P2 − P1

if p is odd, and
N = 3− P1 + P2 − · · ·+ Pp−1

if p is even.
If we now observe that the Betti numbers equally distant from the extremes

are equal, we see that
N = 0

when P is odd, as we have already seen in the preceding paragraph.
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SUPPLEMENT TO ANALYSIS SITUS

Rendiconti del Circulo Matematico di Palermo 13 (1899), pp. 285-343.

§I. Introduction

In the Journal de l’École Polytechnique (volume for the centenary of the
founding of the school, 1894) I published a memoir entitled Analysis situs, or the
study of manifolds in spaces of more than three dimensions and the properties of
the Betti numbers. Since I shall have occasion to mention this memoir frequently
in what follows, I shall use simply the title Analysis situs.

The following theorem is found in that memoir: For any closed manifold,
the Betti numbers equally distant from the extremes are equal.

The same theorem was announced by M. Picard in his Théorie des fonctions
algébriques de deux variables.

M. Heegaard returned to the same problem in his remarkable work, published
in Danish under the title “Forstudier til en topologisk teori for algebraiske Sam-
menhäng” (Copenhagen, det. Nordiske Forlag Ernst Bojesen, 1898), according
to which the theorem in question is inexact and its proof is without value.

After examining the objections of M. Heegaard, it is advisable to make a
distinction. There are two ways of defining the Betti numbers.

Consider a manifold V which I shall assume, for example, to be closed; let
v1, v2, · · · , vn be n manifolds of p dimensions forming part of V . I assume that
we cannot find a (p + 1)-dimensional manifold forming part of V for which
v1, v2, · · · , vn is the boundary; but that if we adjoin an (n + 1)th manifold of p
dimensions which I shall call vn+1, and which forms part of V , then we can find
a (p + 1)-dimensional manifold forming part of V for which v1, v2, · · · , vn, vn+1

constitutes the boundary, and this is true whatever the choice of the (n + 1)th

manifold vn+1. In that case we say that the Betti number is equal to n + 1 for
manifolds of p dimensions.

This is the definition adopted by Betti. However, we can give a second
definition.

Suppose that we can find a (p + 1)-dimensional submanifold of V for which
v1, v2, · · · , vn constitute the boundary; I express this fact by the following rela-
tion

v1 + v2 + · · ·+ vn ∼ 0

which I call a homology.
It can happen that the same manifold v1 appears several times in the bound-

ary of our (p + 1)-dimensional manifold; in that case the first member of the
homology will appear with a coefficient, which must be an integer.

According to this definition we can add and subtract homologies, and mul-
tiply them by integers.

We shall likewise make the convention that it is permissible to divide a ho-
mology by an integer provided all its coefficients are divisible by that integer.
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Consequently, if we have a (p+1)-dimensional manifold with boundary consist-
ing of four times the manifold v1, we shall agree to write not only the homology

4v1 ∼ 0

but also the homology
v1 ∼ 0

so that the latter homology signifies that there is a (p+1)-dimensional manifold,
the boundary of which is a certain number of times v1.

The homology
2v1 + 3v2 ∼ 0

signifies that there is a (p + 1)-dimensional manifold with boundary twice v1

and thrice v2, or four times v1 and six times v2, or six times v1 and nine times
v2, etc.

Such are the conventions that I adopted in Analysis situs p. 30.
I shall say that several manifolds are independent if they are not connected

by any homology with integer coefficients.
Then, if there are n independent p-dimensional manifolds, the Betti number

according to the second definition is n + 1.
This second definition, which is the one I adopted in Analysis situs, does not

agree with the first.
The theorem enunciated above, and criticized by M. Heegaard, is true for

the Betti numbers defined in the second manner, but false for Betti numbers
defined in the first manner.

This is what happens with the example of M. Heegaard, p. 86:
If we adopt the first definition we have

P1 = 2, P2 = 1

and consequently
P2 < P1.

If, on the contrary, we adopt the second definition, we find

P1 = 1, P2 = 1

and consequently
P2 = P1

in conformity with the theorem enunciated.
This is likewise exhibited in an example I have cited myself in Analysis situs.

This is the third example on p. 51.
We have formed the fundamental equivalences (p. 62), which are written in

the following fashion:

2C1 ≡ 2C2 ≡ 2C3 ≡ 0, 4C1 ≡ 0



102 Supplement to Analysis Situs

from which we deduce the homologies

4C1 ∼ 4C2 ∼ 4C3 ∼ 0.

Since, according to our convention, we can divide these homologies by 4, we
arrive at the following system of fundamental homologies:

C1 ∼ C2 ∼ C3 ∼ 0.

Then if P1 and P2 are the Betti numbers, defined in the second manner, we
find

P1 = P2 = 1.

But equality between the numbers P1 and P2 does not persist when we adopt
the first definition, that of Betti; we always have P2 = 1, but we no longer have
P1 = 1.

In fact, there is no two-dimensional manifold which has the closed line C1

as boundary, because we don’t have the equivalence C1 ≡ 0.14

The only thing that is true is that there is a two-dimensional manifold which
has boundary four times the line C1. Then P1 is not equal to 1.

Now, to return to the theorem according to which the Betti numbers equally
distant from the extremes are equal.

The proof that I have given in Analysis situs seems to apply equally well to
the two definitions of Betti number; therefore it must have a weak point, since
the preceding examples show adequately that the theorem is not true for the
first definition.

M. Heegaard has given a good account, but I do not believe that his first
objection is warranted.

After having cited the fashion in which I define the manifolds V1, V2, · · · , Vp

(Analysis situs, p. 46) by the equations Φ = 0, F ′′i = 0 he adds (p. 70): “Enhver
af Mangfoldighederne V skulde altsaa kunne voere den fulstaendige Skoering
mellem p Mangfoldighder af h−1 Dimensioner iU”15 This is not exact, since, as
well as my equations, I have a certain number of inequalities which I introduced
at the beginning of the memoir but neglected to describe afresh in what followed;
my manifolds are then not complete intersections.

The second objection, however, is well-founded. “Naar omvendt”, says M.
Heegaard, “Homologien

∑
Vi ∼ 0 ikke finder Sted, saa i U ′ kan legges en lukket

Kurve K ′ saa at ∑
N(V ′, Vi) 6= 0

men det er ikke sikker at denne Kurve kan udskoeres of nogen Mangfoldighed
V ”16 This is, indeed, the true weak point of the proof.

14Here Poincaré repeats his error of p. 59, that the boundary of a surface is equivalent to
0, that is, null-homotopic. (Translator’s note.)

15Each of the manifolds V must then be the complete intersection of the p (h−1)-dimensional
manifolds in U .

16If conversely the homology
∑

iVi ∼ 0 does not hold, then we can trace a closed curve V ′
on it such that

∑
N(V ′, V ) 6= 0, but it is not certain that this curve is an intersection of the

manifolds V .
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It is therefore necessary to return to this question, and this is the object of
the present work.

In order to simplify the proofs, I shall often consider only the case of closed
three-dimensional manifolds in a space of four dimensions. We can easily extend
this to the general case.

I consider then, in what follows, a closed manifold V , but in order to calculate
its Betti numbers I shall suppose that it is divided into smaller manifolds in the
manner of forming a polyhedron.

§II. Schema of a polyhedron

We consider then, as in Analysis situs, a polyhedron of p dimensions, i.e. a
manifold V of p dimensions, divided into manifolds vp; the boundaries of the vp

are the vp−1, those of the vp−1 are the vp−2 · · · those of the v1 (edges) are the
v0 (vertices).

I let αi be the number of vi.
Let aq

1, a
q
2, · · · , aq

αq
be the different vq.

Let aq
1 be one of the manifolds vq and aq−1

1 one of the manifolds vq−1 which
serve as its boundary. We study the connection between the aq

1 and the aq−1
1 .

Let

(1) F1 = F2 = · · · = Fn−q = Fn−q+1 = 0, ϕj > 0

be the equations and inequalities which define aq−1
1 according to the first defi-

nition of manifold (Analysis situs, p. 20).
The relations which define aq

1 can be arranged in the form

(2) F1 = F2 = · · · = Fn−q = 0, Fn−q+1 > 0, ϕj > 0

In this case we say that the relation between aq
1 and aq−1

1 is direct.
This relation will become inverse if one of the two manifolds is replaced by

its opposite; it remains direct if each of the two manifolds is replaced by its
opposite.

We know that a manifold is replaced by its opposite (Analysis situs, p. 28)
when we permute two of the functions F (which, being equal to zero, give the
equations which define the manifold), or if we change the sign of one of them.

Thus the two manifolds

F1 = F2 = F3 = 0; F1 = F2 = 0, F3 > 0;

F1 = F2 = F3 = 0; F1 = F3 = 0, F2 < 0;

F1 = F2 = F3 = 0; F2 = F3 = 0, F1 > 0
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are in a direct relation; whereas the two manifolds

F1 = F2 = F3 = 0; F1 = F2 = 0, F3 < 0;

F1 = F2 = F3 = 0; F1 = F3 = 0, F2 > 0

are in an inverse relation.
That being given, let εq

i,j be a number which is equal to zero if aq−1
j is not

in the boundary of aq
i , + 1 if aq−1

j is part of the boundary of aq
i and in a direct

relation to aq
i ; and finally −1 if aq−1

j is a part of the boundary of aq
i but in an

inverse relation to aq
i .

We agree to write the congruence

(3) aq
i ≡

∑
εq

i,ja
q−1
j

to express the boundary of the aq
i .

17

The set of congruences (3) relative to the different vp, vp−1, · · · , v0 of V
constitute what may be called the schema of a polyhedron.

Two questions may be posed:

10 Given a schema, does there always exist a corresponding polyhedron?

20 If two polyhedra have the same schema, are they homeomorphic?

Without dealing with these two questions for the moment, we seek some
conditions a schema must satisfy in order to correspond to a polyhedron.

Consider one of the vp−1, a
p−1
1 for example; this manifold should separate

two and only two of the vp from each other; so that among the numbers εp
i,1 we

have one which is equal to + 1 and one which is equal to −1, and all the others
are zero.

This is not all; consider any of the vq, aq
i for example, and any of the vq−2,

aq−2
k for example.

There are two possibilities: first, where aq−2
k does not belong to aq

i , all the
products

(4) εq
i,jε

q−1
j,k

must be zero, for if aq−1
j does not belong to aq

i the first factor is zero; while if
aq−1

j belongs to aq
i the manifold aq−2

k cannot belong to aq−1
j (otherwise it would

belong to aq
i , contrary to hypothesis) and the second factor must be zero.

Or secondly, aq−2
k could belong to aq

i , but then we can argue about aq
i as we

have all along about the manifold, and conclude that aq−2
k must separate two

of the manifolds vq−1 from each other, and exactly two, belonging to aq
i . Let

them be aq−1
1 and aq−1

2 .

17It is unfortunate that Poincaré chooses the symbol ≡ to express the asymmetric relation
“
∑

εq
i,jaq−1

j is the boundary of aq
i .” (Translator’s note.)
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Among the products (4) we have two that are non-zero, namely

εq
i,1 εq−1

1,l , εq
i,2 εq−1

2,k

For all the others, in fact, either aq−1
j does not belong to aq

i or aq−2
k does

not belong to aq−1
j .

Moreover, these two products are + 1 and −1.
Then in all cases we have

(5)
∑

j

εq
i,j εq−1

j,k = 0

We likewise have ∑

i

εp
i,1 = 0

and more generally, for any k,

(5′)
∑

i

εp
i,k = 0.

The relation (5′) can be regarded, from a certain point of view, as a particular
case of the relation (5).

Let P be the portion of (p+1)-dimensional space bounded by the polyhedron
V ; then the boundary of P is composed of various manifolds vp, which, in their
totality, form V ; we can then write, in the sense of the congruence (3),

(3′) P ≡
∑

i

ap
i

or
P ≡

∑

i

εp+1
0,i ap

i

where the numbers εp+1
0,i are all equal to 1 by definition.

On that account, the relation (5′), which can be written
∑

i

εp+1
0,i εp

i,k = 0

is no more than a particular case of the relation (5).
Next we have that each v1 is bounded by two v0, given by congruences (3)

of the form
a1

i ≡ a0
j − a0

k

and a relation analogous to (5) and (5′)
∑

j

ε1
i,j = 0
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which again takes the form (5) if we make the convention that all the ε0 are
equal to +1.

On the other hand, consider one of the aq
i ; all of the aq+1

j which it bounds;
all of the aq+2

k which these aq+1
j bound, and so on. The set of all these manifolds

constitutes what we have called a star (Analysis situs p. 90).
We have seen (loc. cit p. 90) that the polyhedron which corresponds to

a star must be simply connected. Thus one condition for a given schema to
correspond to a polyhedron is that the polyhedra which correspond to different
stars, according to the convention of page 90 of Analysis situs, must all be simply
connected.

This is not a necessary condition for a schema to correspond to a polyhedron;
it is simply one condition which, unless the contrary is stated, we shall suppose
is satisfied.

To clarify these definitions by a few examples, let us see first of all what is
the scheme of the generalized tetrahedron defined in p. 89 (Analysis situs).

The faces of the tetrahedron may be defined by the n + 1 equations

(6)
{

x1 = 0, x2 = 0, · · · , xn = 0
x1 + x2 + · · ·+ xn = 1

We obtain the aq
i by suppressing q +1 of these equations; to define the sense

of the manifold aq
i we suppose that we suppress these q + 1 equations without

changing the order of the remaining n− q equations.
That being given, we consider the relation between aq

i and aq−1
j and try to

determine the number εq
i,j .

First of all, if aq−1
i is to belong to aq

i it is necessary that aq−1
j be defined by

the n− q equations which define aq
i , to which we must adjoin an (n− q + 1)th

equation from among the equations (6). If this is not the case then the number
εq

i,j is zero.
Suppose then that aq−1

j is obtained by suppressing the q equations which
occupy the positions

α1, α2, · · · , αq

Suppose that aq
i is obtained by suppressing, in addition, the βth equation;

then the number εq
i,j , the absolute value of which is always equal to 1, has the

same sign as the product

(β − α1)(β − α2) · · · (β − αq)

It is then easy to verify that the relation (5) holds.
In fact, consider the manifold aq−2

k obtained by suppressing the equations
at positions α1, α2, · · · , αq−1, and the manifold aq

i obtained by suppressing,
in addition, the equations at positions β and γ. (It is clear that if aq

i is not
obtained by suppressing the same equations as for aq−2

k , plus two others, then
all the products εq

i,jε
q−1
j,k will be zero.)
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In that case all the products will again be zero except two

εq
i,1ε

q−1
i,2 and εq

i,2ε
q−1
2,k

which correspond to the two manifolds aq−1
1 and aq−1

2 obtained by suppressing
the equations at positions α1, α2, · · · , αq−1, β and α1, α2, · · · , αq−1, γ.

Then the four numbers

εq
i,1, εq−1

1,k , εq
i,2, εq−1

2,k

have respectively the same sign as

(γ − β)(γ − α1)(γ − α2 · · · (γ − αq−1),
(β − α1)(β − α2) · · · (β − αq−1),

(β − γ)(β − α1)(β − α2) · · · (β − αq−1),
(γ − α1)(γ − α2) · · · (γ − αq−1).

Thus one verifies that the two products which are non-zero are equal but of
opposite sign.18 Q.E.D.

§III. Reduced Betti numbers

I am now going to find the Betti numbers of a polyhedron, but in order to
avoid the doubts which I indicated above, I shall agree to define the numbers
in the second manner, i.e. Pq − 1 will be the number of closed manifolds of
q dimensions which we can trace on our polyhedron V and which are linearly
independent, by which I mean there is no homology between them, in the sense
of Analysis situs, p. 30.

However, I propose first of all to determine the number P ′q − q of manifolds
of q dimensions, closed and linearly independent, which can be traced on our
polyhedron V but restricted to those which are combinations of the variety vq.

Then number P ′q is then what I called the reduced Betti number.
The manifolds of q dimensions in which combinations of the vq can evidently

be represented by
∑

i λia
q
i , where the λi are integers and the letters aq

i continue
to represent the different manifolds vq.

First of all, what is the condition for the manifold
∑

i λia
q
i to be closed?

To determine this we find the manifolds vq−1 which bound this manifold.
To find them it evidently suffices to replace the aq

i by their values given by the
congruence (3).

18The polyhedron so defined, and hence all n-dimensional polyhedra bounded by n + 1
hyperplanes, will be called the generalized rectilinear tetrahedron. I shall call each manifold
homeomorphic to it a generalized tetrahedron.
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This set of bounding manifolds will then be given by the formula
∑

i

∑

j

λiε
q
i,ja

q−1
j

Then for the manifold
∑

i λia
q
i to be closed it suffices that we have identically

∑

i

∑

j

λiε
q
i,ja

q−1
j = 0

i.e. for any j we have ∑

i

λiε
q
i,j = 0

In other words, the manifold
∑

i λia
q
i will be closed if

(7, q)
∑

i

λia
q
i ≡ 0

by virtue of the congruences (3, q), which is how I describe the congruences (3)
that relate the aq

i to the aq−1
j .

We now find the homologies which can exist between the manifolds aq
i . We

obtain all these homologies by combining those obtainable in the following fash-
ion.

Consider the congruence

(8) aq+1
k ≡

∑
εq+1

k,i aq
i

which, according to the convention we have just made, is a congruence (3, q+1);
replacing the sign ≡ by ∼, and the first member by zero, we obtain

(9, q)
∑

i

εq+1
k,i aq

i ∼ 0

This homology evidently holds because, by definition and the congruence
(8), it expresses the fact that the aq

i form the boundary of aq+1
k .

We shall show later (§VI) that there are no others.
I denote this homology by (9, q) to indicate that it holds between the aq

i . I
claim that if the homology (9, q) holds, the congruence

(10, q)
∑

i

εq+1
k,i aq

i = 0

will be a consequence of the congruences (3, q).
In fact, replacing the aq

i by their values given by the congruences (3, q) we
obtain ∑

i

εq+1
k,i aq

i ≡
∑

i

∑

j

εq+1
k,i εq

i,ja
q−1
j
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The second (right-hand side) member is identically zero by virtue of the relations
(5).

That being given, let αq be the number of manifolds aq
i ; let α′q be the number

of those manifolds which remain distinct when we do not regard manifolds as
distinct if connected by a homology of the form (9, q); let α′′q be the number of
manifolds which remain distinct when we do not regard manifolds as distinct if
connected by a congruence of the form (7, q).

It follows from these definitions that

10 αq − α′q is the number of distinct homologies of the form (9, q):

20 αq − α′′q is the number of distinct congruences of the form (7, q).

30 α′q ≥ α′′q since, if several αq
i are connected by a homology of the form

(9, q), they must likewise be connected by the corresponding congruence
(10, q).

Finally, the number sought, P ′q − 1, is equal to α′q − α′′q since the genuinely
distinct closed manifolds of the form

∑
i λia

q
i are equal in number to the con-

gruences (7, q), i.e. to the number αq − α′′q .
The number P ′q − 1 is the number of those manifolds which remain distinct

when those connected by a homology (9, q) are regarded as indistinct. But the
number of these homologies is αq − α′q; we then have

P ′q − 1 = (αq − α′′q )− (αq − α′q) = α′q − α′′q .

Q.E.D.
Let aq

1, a
q
2, · · · , aq

i be the manifolds vq, i in number, and let

aq
1 ≡ ∑

εq
i,ja

q−1
j

aq
2 ≡ ∑

εq
2, a

q−1
j

· · · · · · · · · · · · · · ·
aq

i ≡ ∑
εq
i,j , a

q−1
j

be the corresponding congruences (3). We form the corresponding homologies
∑

εq
i,ja

q−1
j ∼ 0,

∑
εq
2,ja

q−1
j ∼ 0, · · · ,

∑
εq

i,ja
q−1
j ∼ 0

The necessary and sufficient condition for these homologies to be distinct is that
we do not have any congruence of the form

λ1a
q
1 + λ2a

q
2 + · · ·+ λia

q
i ≡ 0

between the i manifolds aq
1, a

q
2, · · · , aq

j . The number of distinct homologies is
then equal to the number of distinct aq

i , bearing in mind the congruences (7, q).
Then

αq−1 − α′q−1 = α′′q or αq−1 = α′q−1 + α′′q .
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On the other hand, we have

α′0 = 1.

If in fact we can go from any vertex a0
1 to any other vertex α0i by following the

edges (i.e. if the polyhedron is in one piece) we have the homology

a0
1 ∼ a0

i

i.e. we only have one distinct vertex when the homologies are taken into account.
Now consider the congruence (3′)

P =
∑

ap
i

The corresponding homology is written
∑

ap
i ∼ 0

and there is no other homology (9, p). Then

αp = α′p + 1.

In addition, since the polyhedron is a single piece, only one of the combinations∑
λia

p
i can be closed, this is the polyhedron in its entirety, represented by the

formula
∑

ap
i .

We then will have a single congruence of the form (7, p)
∑

ap
i ≡ 0.

Then
αp = α′′p + 1, α′p = α′′p .

We then have the series of equations

α′0 = 0,
α0 = α′0 + α′′1 , α′1 − α′′1 = P ′1 − 1,
α1 = α′1 + α′′2 , α′2 − α′′2 = P ′2 − 1,
. . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . ,
αp−1 = α′p−1 + α′′p , α′p−1 − α′′p−1 = P ′p−1 − 1,
αp = α′p + 1, α′p − α′′p = 0,

whence we easily derive

αp−αp−1 +αp−2−· · ·±α1∓α0 = 1− (P ′p−1− 1)+ · · ·∓ (P ′2− 1)± (P ′1− 1)∓ 1

entirely analogous to the formula

αp − αp−1 − · · · ± α1 ∓ α0 = 1− (Pp−1 − 1) + · · · ∓ (P2 − 1)± (P1 − 1)∓ 1

that we found in Analysis situs p. 99.
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§IV. Subdivision of polyhedra

Consider a polyhedron V , of p dimensions, with its various manifolds

ap
i , ap−1

i , · · · , a1
0, a0

i .

Suppose that we subdivide each of these manifolds ap
i into several others,

which I shall call bp
i ; then let bp−1

i be the manifolds of p − 1 dimensions which
bound the bp

i ; let bp−2
i be the manifolds of p − 2 dimensions which bound the

bp−1
i ; and finally, let b0

i be the manifolds of zero dimensions (vertices) which
bound the b1

i (edges).
We then have a new polyhedron V ′ which is derived from the polyhedron V ,

in the sense I attached to this word on p. 86 of Analysis situs.
We can assume, furthermore, that if a simply or multiply connected manifold

vq−1 bounds two manifolds bq
j and bq

k, it is not necessarily a single one of the
manifolds bq−1

i but may itself be subdivided into several manifolds bq−1
i . In that

case, returning to the terminology of p. 87 of Analysis situs, the manifolds bq−1
i

are irregular, and the manifolds bq−2
i which separate them are singular.

If a manifold bq
i does not form part of one of the manifolds aq

j it will form
part of one of the manifolds aq+1

j , or one of the manifolds aq+2
j , · · · , or at any

rate one of the manifolds ap
j .

Can it simultaneously be part of two manifolds am
j and am

k ?
According to the assumed manner of subdivision, which always adjoins new

boundaries without suppressing any, this cannot happen unless the two mani-
folds are contiguous and have a common boundary part am−1

k .
I assume then bq

i forms part of ah
j , and does not form part of any manifold am

k

where m < h. The manifold ah
j always exists and we have h ≥ q; moreover, the

manifold ah
j is unique, i.e. bq

i cannot simultaneously be part of two manifolds
ah

k and ah
j .

Then if we agree to collect into the same class all the manifolds bq
i which

form part of the manifold ah
j without forming part of any manifold am

k where
m < h, then each manifold bq

i will belong to exactly one class.
I may then represent bq

i by a notation with four indices

bq
i = B(q, h, j, k)

where the index q indicates the number of dimensions of bq
i ; the indices h and

j indicate that bq
i belongs to the class ah

j ; and the index k serves to distinguish
the various members of that class. We have h ≥ q.

Then by the definition of the polyhedron V and its subdivision we will have:

10 The congruences (3, q) relative to the polyhedron V , which I shall write

(3,q, i) aq
i ≡

∑
j εq

i,ja
q−1
j
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20 The equations which give the subdivision of the manifold aq
i

(1,q, i) aq
i =

∑
k B(q, q, i, k)

30 The congruences analogous to the congruences (3), but relative to the
polyhedron V ′; I shall write these

(2,q, h, j, k) B(q, h, j, k) =
∑

ζB(q − 1, h′, j′, k′).

The ζ are numbers equal to ±1 or 0; they depend on the seven indices q, h,
j, k, h′, j′, k′, so that they would be written, if this were necessary, in the form

ζ(q, h, j, k, h′, j′, k′)

The indices h′, j′, k′ can run through all values under the
∑

sign. We note,
meanwhile, that the B(q − 1) which bound B(q, h, j, k) must, like B(q, h, j, k)
be part of ah

j ; but they can be part of other manifolds ak′
j′ , of a smaller number

of dimensions, which are part of ah
j . We then have

h′ ≤ h, h′ ≥ q − 1.

Moreover, if h′ = h we have j′ = j.
If the relations (1), (2), (3) are to define a true substitution they must satisfy

certain conditions.
The relations (1, q, i), (3, q, i) give

(α)
∑

k

B(q, q, i, k) ≡
∑

εq
i,ja

q−1
j .

If, on the left-hand side, I replace B(q, q, i, k) by its value derived from
2(q, q, i, k), and aq−1

j by its value derived from (1, q − 1, j), then the two sides
must become identical; this is a first condition, but it is evidently not sufficient.

§V. Influence of subdivision on reduced Betti numbers

Let
∑

αB(q, h, j, k) be a combination of manifolds bq
i which represents a

closed manifold of q dimensions, so that we have, according to our notations,

(1)
∑

αB(1, h, j, k) ≡ 0 (h ≥ q)

Among the manifolds bq
i which occur on the left-hand side of (1), we rewrite

those which belong to the same class. Let

SαB(q, h, j, k)
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be the set of all those which belong to the class ah
j ; the summation sign S

signifies that we only combine manifolds in the same class, whereas
∑

signifies
that we combine them all.

We shall then have

(2) SαB(q, h, j, k) =
∑

βB(q − 1, h′, j′, k′)

i.e. the manifold of q − 1 dimensions
∑

βB(q − 1, h′, j′, k′)

is the boundary of the q-dimensional manifold

SαB(q, h, j, k).

The manifolds ak′
j′ should belong to the boundary of ah

j or they will be
confused with ah

j ; in fact B(q − 1, h′, j′, k′) belongs to ah′
j′ and, on the other

hand, to one of the B(q, h, j, k) which forms the same part of ah
j , if then ah′

j′

does not form part of ah
j , B(q − 1, h′, j′, k′) will form part of a manifold am

k

common to ah
j and ah′

j′ , and which will have less than h′ dimensions. This is
contrary to the definition we have given for these classes.

On the other hand, ah′
j′ cannot be confused with ah

j .
In fact, let

Sα1B(q, h1, j1, k1) =
∑

αB(q, h, j, k)−SαB(q, h, j, k)

be the set of manifolds which occur in the left-hand side of (1) and which do
not belong to the class ah

j ; we evidently have

S1αB(q, h1, j1, k1) ≡
∑

βB(q − 1, h′, j′, k′).

Then B(q − 1, h′, j′, k′) must simultaneously be part of ah′
j and one of the

B(q, h1, j1, k1) and consequently, of one of the ah1
j1

different from ah
j . Then if

ah′
j′ is confused with ah

j ,

B(q − 1, h′, j′, k′) = B(q − 1, h, j, k)

must belong to a manifold am
k common to ah

j and ah1
j1

. Then either: ah
j does not

form part of ah1
j1

and we shall again have m < h, which will again be contrary
to the definition of the classes; or else ah

j will be part of ah1
j1

and we shall have
h1 > h. Suppose that I have chosen the class ah

j which corresponds to the
greatest number h. Then we cannot have h1 > h and ah′

j′ must belong to the
boundary of ah

j .
The congruence (2) entails the homology

(3)
∑

βB(q − 1, h′, j′, k′) ∼ 0
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since, on the other hand, ah
j is simply connected and since all the manifolds

B(q−1, h′, j′, k′) are on the boundary of ah
j , the left-hand side of (3) representing

a closed (q−1)-dimensional manifold on that boundary, must form the boundary
of a q-dimensional manifold

∑
γB(1, h′′, j′′, k′′)

likewise situated on the boundary of ah
j . (There is an exception if we have

h = q.) Thus we have the congruence

(4)
∑

βB(q − 1, h′, j′, k′) ≡
∑

γB(1, h′′, j′′, k′′).

Moreover, since B(q, h′′, j′′, k′′) is on the boundary of ah
j , it will be the same

for ah′′
j′′ ; since if B(q, h′′, j′′, k′′) is simultaneously part of ah′′

j′′ and a manifold ah′
j′

on the boundary of ah
j ; either ah′′

j′′ is not part of ah′
j′ , and then B must be part

of am
k , or m < h′′, and we have seen that this is impossible.
We then have

h′′ < h

The congruences (2) and (4) give

SαB(q, h, j, k) =
∑

γB(q, h′′, j′′, k′′)

and, since all the manifolds which occur in this congruence form part of ah
j or

its boundary, and since on the other hand ah
j is simply connected, we have the

homology
SαB(q, h, j, k) ∼

∑
γB(1, h′′, j′′, k′′).

Then we can replace the set of terms SαB(1, h, j, k) on the left-hand side
of (1) by the set of terms

∑
γB(q, h′′, j′′, k′′).

If we operate in the same way on all the classes corresponding to a single
value of h, the largest, we will have replaced the left-hand side of (1) by

∑
α2B(q, h2, j2, k2)

where the greatest value of the h2 will be smaller than the greatest value of the
h. Moreover, we have the homology

∑
αB(q, h, j, k) ∼

∑
α2B(q, h2, j2, k2).

Continuing in this way we can again diminish the greatest value of the h.
We stop when we have h = q everywhere.
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We can then finally replace the left-hand side of (1) by
∑

α0B(q, q, j0, k0)

and we have, in addition,

(5)
∑

αB(q, h, j, k) ∼
∑

α0B(q, q, j0, k0),

(6)
∑

α0B(q, q, j0, k0) ≡ 0.

That being done, let us take the congruences which belong to a class deter-
mined by ah

j0
in the left-hand side of (6); let them be

Sα0B(q, q, j0, k0)

We have

(7) Sα0B(q, q, j0, k0) ≡
∑

β0B(q − 1, h′0, j
′
0, k

′
0).

We see, as above, that a
h′0
j′0

must form part of the boundary of aq
j0

, whence
h′0 < q(and, since h′0 ≥ q − 1, we have h′0 = q − 1).

Then let

(8) aq
j0

=
∑

B(q, q, j0, k0)

be the equation (1, q, j0) which defines the subdivision of the manifold aq
j0

, and
let B(q, q, j0, 1) and B(q, q, j0, 2) be two manifolds appearing on the right-hand
side of (8); I claim that these must appear in the left-hand side of (6) with the
same coefficient α0.

Suppose first of all that the two manifolds are neighbouring; among the
(q − 1)-dimensional manifolds which serve as their common boundary there
will be at least one which does not belong to the boundary of aq

j0
, and which

consequently is not part of the class aq
j0

.
Let B(q−1, q, j0, 1) be that manifold: it does not belong to any other of the

manifolds B(q, q, j0, k).
Then let

(9)





B(q, q, j0, 1) ≡ εbq−1
i

B(q, q, j0, 2) ≡ εbq−1
i

B(q, q, j0, k) ≡ εbq−1
i (k > 2)

be the congruences (2, q, q, j0, 1), (2, q, q, j0, 2), (2, q, q, j0, k) which tell us the
boundaries of the manifolds B(q, q, j0). Let us see what is the coefficient ε of
the manifold B(q − 1, q, j0, 1) in these congruences.

From what we have seen, this coefficient will be +1 in the first, −1 in the
second, and zero in the others.
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Then let α1 and α2 be the values of the coefficients α0 corresponding to the
two manifolds B(1, 1, j0, 1) and B(q, q, j0, 2).

Combination of the congruences (9) furnishes us with a congruence

(10) Sα0B(q, q, j0, k0) ≡ εbq−1
i

which must be identical to (8), and the coefficient ε with which B(q−1, q, j0, 1)
appears on the right-hand side of (10) will evidently be α1 − α2. But B(q −
1, q, j0, 1) cannot appear on the right-hand side of (7), because we have seen
that on this right-hand side we must have α1 − α2 = 0.

Thus the two manifolds B(q, q, j0, 1) and B(q, q, j0, 2) must have the same
coefficient α0 if they are neighbouring. That will again be true if they are not,
for since aq

j0
is in one piece, we can pass from one of these manifolds to the other

by a sequence of analogous manifolds, each neighbouring to its predecessor.
Thus the coefficient α0 is the same for all our manifolds. Whence

Sα0B(q, q, j0, k0) = α0

∑
B(q, q, j0, k0) = α0a

q
j0

.

The congruence (6) and the homology (5) can then be written

(5′)
∑

αB(q, h, j, k) ∼
∑

α0a
q
j0

(6′)
∑

α0a
q
j0
≡ 0.

If a certain number of congruences of the form (1) are distinct, i.e. if any
linear combination of their left-hand sides is not homologous to zero, then I
claim that the congruences (6′) will be equally distinct, and conversely.

In fact, comparison of the relations (1), (5′) and (6′) shows that if we have

∑
αB(Q,H, J,K) ∼ 0

we will likewise have ∑
α0a

q
j0
∼ 0

and conversely.
It follows that if the aq

i and the bq
i are simply connected, the reduced Betti

numbers are the same for the two polyhedra V and V ′.
Now let W be any closed manifold of q dimensions, situated on V . We

can always construct a polyhedron V ′ derived from V in the sense of p. 86 of
Analysis situs, and such that W is a combination of the bq

i .
We must then conclude that, if the aq

i are simply connected, the reduced
Betti numbers relative to the polyhedron V are identical with the genuine Betti
numbers, defined in the second manner.
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§VI. Return to the proofs of paragraph III

Here we have to return to an essential point in the preceding reasoning. I said
above that we have no homologies other than the homologies (9, q) obtained in
paragraph III. This is not evident, and it will not even be always true unless we
assume that the aq

i are simply connected.
We show this first for a polyhedron P in four-dimensional space. Consider a

certain number of manifolds v2 or a2
i belonging to this polyhedron; I call these

its faces, just as the a3
i , the a1

i and the a0
i may be called its cells, its edges and

its vertices.
Suppose that we have a homology

∑
a2

i ∼ 0

between the faces a2
i .

This homology signifies that there exists a three-dimensional manifold V ,
forming part of V , which has

∑
a2

i as boundary.
I claim that V is composed of a certain number of cells of P .
In fact, if a point of some cell belongs to V it will be the same for any other

point of that cell, since we can go from the first point to the second without
encountering any face, and consequently, without encountering the boundary of
V and without leaving V .

Thus the theorem is evident as far as it concerns polyhedra in four-dimensional
space and homologies between their faces.

Now let ∑
b1 ∼ 0

be a homology among the b1, which are a certain number of the edges a1
i . This

says that there is a two-dimensional manifold V of which
∑

b1 is the boundary.
I denote the set of points common to V and ak

j by V (ak
i ).

The V (a3
i ) will be two-dimensional manifolds with boundaries that consist

either of edges b1 or of V (a2
j ) where the a2

j are the faces which bound the cell
a3

i . In fact, we cannot leave V (a3
i ) without crossing the boundary of V , i.e.

traversing one of the b1 or without crossing the boundary of a3
i , i.e. traversing

a face a2
j , and, since we remain on V , traversing one of the lines V (a2

j ).
The total manifold V is the set of the V (a3

i ).
Now considering V (a2

i ), we have to distinguish two cases:

10 None of the edges b1 belongs to a2
i . We cannot then leave V (a2

i ) without
leaving a2

i , i.e. traversing one of the edges a1
j ; the boundary of V (a2

j ) then
consists of the V (a1

j ).

20 Or else, one (or more) edge b, forms part of a2
i ; in that case it will likewise

form part of V (a2
i ); but it can happen that V (a2

i ) is composed of lines
other than the edge b1; these lines are bounded by the points V (a1

j ) or
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points lying on b1. These points situated on b1, or where the other lines
which compose V (a2

i ) terminate on the edge b1 are what I shall call nodal
points.

In each case V (a2
i ) will be a line or a set of lines, if in fact V (a2

i ) is a surface
it is because a2

i , or a portion of that face, forms part of V . But I have the
right to deform V as long as I do not change the boundary

∑
b1; and with an

infinitely small deformation I can always prevent a region of a2
i forming part of

V .
For the same reason, I may always assume that V (a1

i ) reduces to one or more
points, except if a1

i is one of the edges b1, in which case V (a1
i ) will be that edge

itself.
That being given, I can deform V :

10 In such a way that all the V (a1
i ) [other than V (b1)] will be vertices. Let

a0
j be a vertex of a1

i . Let M be one of the points which constitute V (a1
i );

around the point M and on V we describe a small closed curve C. Let K
be the infinitely small area cut out of V by this curve C. We construct
a sort of sleeve, infinitely slender, surrounding the edge a1

i and passing
through C. At the vertex a0

j I take any surface S; it is cut by the sleeve
in a very small closed curve C ′. Let K ′ be that portion of the surface
S bounded by C ′; let H be the surface of the sleeve between C and C ′.
Thus we imagine a sort of drum, with H as lateral surface and K and K ′

as the two bases.

We then consider the manifold

V ′ = V −K + H + K ′

This manifold has the same boundary as V ; but it no longer cuts a1
i at M ,

because we have deleted the portion K of V in which the point M occurs.
In return, H does not cut the edge a1

i , and K ′ cuts that edge in a0
j .

By operating in the same way on all the points of intersection of V and
a1

i we induce all these points to coincide with a0
j .

20 In such a way that all the nodal points will be vertices.

In fact, let a2
i be a face passing through the edge b1; the intersection of

V and a2
i comprises other lines apart from b1; let c be one of these lines,

terminating on b1 in a nodal point D. Let a0
j and a0

k be the two vertices of
b1. I make a surface S pass through b1, forming part of P and not cutting
a2

i . Since a0
j and a0

k are on the boundary of V , I join these two points
by a line L situated on V and slightly removed from b1. Since this line
is only slightly removed from b1 I can pass through it another surface S′

which does not pass through b1 but which cuts S in a line L′ only slightly
removed from b1. These three lines L, b1 and L′ have the same extremities
a0

j and a0
k.



§VI. Return to the proofs of paragraph III 119

Let V1 be the portion of V lying between L and b1; let S1 be the portion
of S between L′ and b1, and let S′1 be the portion of S′ between L and L′.

I replace V by
V ′ = V − V1 + S1 + S′1

V ′ has the same boundary as V , but V ′(a2
i ) does not present nodal points

outside of a0
j and a0

k; since if a line analogous to c abuts on a nodal point
situated between a0

j and a0
k, the portion of that line c near to the nodal

point should be found on S1, which is impossible because S does not cut
a2

i .

To summarize: we can always assume that the V (a2
i ) are the lines whose

extremities are the vertices of a2
i , having extremities two vertices a0

j and a0
k.

We can go from a0
j to a0

k by following the perimeter of a2
i ; let

∑
a1

m be the set of
edges of a2

i between a0
j and a0

k. Since the face a2
i is assumed simply connected,

the line L will divide it into two parts. Let Q be one of these parts, between L
and

∑
a′m.

Let a3
p and a3

q be the two components separated by a2
i . I pass a surface

S through the edges
∑

a1
m, very little different from the face a2

i and situated
entirely in the cell a3

p; I pass a second surface S′ through the same edges, very
little different from a2

i and situated in the cell a3
q; these two surfaces S and S′

cut V along two lines L1 and L′1 little different from L. and having extremities
a0

j and a0
k. Let S1 be the portion of S between

∑
a1

m and L1; let S′1 be the
portion of S′ between

∑
a1

m and A′1; let V1 be the portion of V between L1 and
L′1; it is on V1 that we will find L.

Now let
V ′ = V − S1 + S1 + S′1

V ′ has the same boundary as V ; V ′ no longer passes through L, but in return
it passes through the edges

∑
a1

m.
Operating in the same manner on all the lines like L, we see that we can

always assume that all the V (a2
i ) are reduced to combinations of edges.

Since the boundaries of V (a3
i ) are either the b1 or the V (a2

j ), we see that
the boundaries of the V (a3

i ) are combinations of edges of P and, of course, all
these edges must belong to a3

i . Thus V (a3
i ) is a simply or multiply connected

surface, bounded by one or more closed lines which themselves are combinations
of edges of a3

i .
Since, in the case where a3

i is simply connected, these closed lines will sub-
divide the surface into a certain number of regions, and since the closed lines
are combinations of edges of a3

i , these regions will be combinations of faces of
a3

i .
We can always find a combination of these regions which has the same bound-

aries as V (a3
i ). Suppose, for example, that the boundary of V (a3

i ) is composed
of three closed lines L, L1, L2; the line L will divide the surface of a3

i into two
regions R and R′; the lines L1 and L2 likewise divide this surface into two re-
gions R1 and R′1, or R2 and R′2. I suppose that when we traverse L in a certain
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sense we have V (a3
i ) on its left, and R and R′ on its right; likewise I suppose

that when L1 and L2 are traversed in a suitable sense they have on their left
V (a3

i ) and R1, or V (a3
i ) and R2.

Then the manifold R + R1 + R2 has the same boundary as V (a3
i ); we can

then replace V (a3
i ) by R + R1 + R2.

Operating in the same manner on all the V (a3
i ), we can replace V by another

manifold which has the same boundary
∑

b1, and which will be a combination
of the faces of P .

The theorem is then proved as far as it concerns polyhedra in the space of
four dimensions and the homologies between their edges.

It may be proved similarly for any polyhedron.

§VII. Reciprocal polyhedra

Let P be a polyhedron in four-dimensional space; this polyhedron is subdi-
vided into a certain number of manifolds ν3 which I call cells, denoted by a3

i .
These cells are separated from each other by manifolds ν2 or a2

i which I call
faces; these faces are bounded by manifolds ν1 or a1

i which I call edges, and the
extremities of the edges are the points ν0 or a0

i which I call vertices.
I assume of course that the cells and faces are simply connected.
We choose a point P (a3

1) in the interior of each cell a3
i , a point P (a2

i ) in the
interior of each face a2

i ; a point P (a0
i ) on each edge, so that each edge is divided

into two parts by the point P (a1
i ).

We join each point P (a2
i ) by lines to the vertices of the face a2

i and to each
of the points P (a1

i ) corresponding to different edges of the face a2
i . Thus each

face is divided into triangles, and the number of these triangles will be double
the number of edges of a2

i . We do the same for all the other faces.
Now consider a cell a3

i ; as we have said, all its faces a2
j have been decomposed

into triangles T . We construct curvilinear triangles with the point P (a3
i ) as

common apex and the various sides of the triangles T as bases. The cell a3
i

will then be decomposed into tetrahedra with P (a3
i ) as common apex and the

different triangles T as bases.
We now distinguish six sorts of lines (which are the edges of our tetrahedra):
The first kind join a vertex a1

i and a point P (a1
j ); thus each edge will consist

of two lines of the first kind;
The second kind join a point P (a3

i ) and a point P (a2
j );

The third kind join a point P (a2
i ) and a vertex a0

j ;
The fourth kind join a point P (a1

i ) and a point P (a2
j );

The fifth kind join a point P (a3
i ) and a point P (a1

j );
The sixth kind join a point P (a3

i ) and a vertex a0
j .

The lines of the second kind can be combined in pairs in two ways:

10 What I shall call the line b1
i will be formed from two lines of the second kind

joining the same point P (a2
i ) to two points P (a3

j ) and P (a3
k) corresponding
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to two cells a3
j and a3

k separated by the face a2
i . Thus there will be as many

lines b1
i as faces a2

i .

20 What I shall call a line c will be formed from two lines of the second kind
joining the same point P (a3

i ) to two points P (a2
i ) and P (a2

k) corresponding
to two faces a2

j and a2
k of the cell a3

i .

Now we have to define what I shall call the surfaces b2
i .

Take any a1
i and the point P (a1

i ). Suppose that the faces which pass through
a1

i are successively
a2
1, a2

2, · · · , a2
q

and suppose that the cells to which a1
i belongs are successively

a3
1, a3

2, · · · , a3
q

in such an order that a2
1 separates a3

1 from a3
2, a2

2 separates a2
2 from a3

3, · · · and
finally a2

q separates a3
q from a3

1. For the sake of symmetry we agree to denote
the cell a3

1 indifferently by a3
1 or a3

q+1.
We decompose each cell into tetrahedra and consider, in particular, the

tetrahedra which have the point P (a1
i ) as apex. Consider the 2q curvilinear

triangles

P (a1
i )P (a3

k)P (a2
2), P (a1

i )P (a3
k+1)P (a2

k) (k = 1, 2, · · · , q).

These 2q triangles form a certain polygon which I shall call b2
i , and which

has the set of lines
b1
1, b1

2, · · · , b1
q

as its boundary.
We now define the volumes b3

i ; the volume b3
i will be the set of tetrahe-

dra which have the point a1
i as apex; this volume will be a three-dimensional

polyhedron, simply connected, with boundary equal to the set of surfaces b2
k

corresponding to the edges a1
k which abut the point a0

i .
Juxtaposition of the volumes b3

i gives a new polyhedron P ′ which I shall call
the reciprocal polyhedron of P , and which has cells b3

i , faces b2
i , edges b1

i and
vertices the points b0

i = P (a0
i ).

To each cell b3
i of P ′ there corresponds a vertex a0

i of P ;

To each face b2
i of P ′ there corresponds an edge a1

i of P ;

To each edge b1
i of P ′ there corresponds a face a2

i of P ;

To each vertex b0
i of P ′ there corresponds a cell a3

i of P .

Moreover, in the sense of paragraph II, there is the same relation, for exam-
ple, between the edge b1

i and the face b2
j as between the face a2

i and the edge
a1

j .
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Then if the congruences characteristic of polyhedron P are written

a3
i ≡

∑

j

ε3
i,ja

3
i , a2

i ≡
∑

j

ε2
i,ja

1
i , a1

i ≡
∑

j

ε1
i,ja

0
j

those of the polyhedron P ′ will be written

b3
i =

∑

k

ε1
i,jb

2
j , b2

i ≡
∑

j

ε2
i,jb

1
i , b1

i ≡
∑

j

ε3
i,jb

0
j

Now consider a line c formed from two lines of the second kind, joining the
same point P (a3

i ) to two points P (a2
j ) and P (a2

k).
Let a0

m and a0
p be two vertices, both belonging to the cell a3

i . Let d and d′ be
the two lines of the third kind which respectively join P (a2

j ) to a0
m and P (a2

k)
to a0

p.
Since a0

m and a0
p belong to the same cell a3

i , we can go from one of these
vertices to the other by following a broken line consisting of edges a1

j belonging
to a3

i .
Let

∑
a1

q be that broken line with extremities a0
m and a0

p; the set of lines
c− d−∑

a1
q + d′ will be a closed line, which I shall express by the congruence

c ≡ d +
∑

a1
q − d′.

Since a3
i is simply connected, this closed line will be the boundary of a

two-dimensional manifold inside a3
i , which I shall express by the homology

c ∼ d +
∑

a1
q − d′.

Conversely, let
∑

x1
q be a broken line formed from edges all belonging to a3

i ,
the extremities of which are the vertices a0

m and a0
p; these two vertices belong

respectively to two faces a2
j and a2

k which are each part of a3
i . Let the three

lines be

c = P (a2
j )P (a3

i ) + P (a3
i )P (a2

k), d = P (a2
j )a

0
m, d′ = P (a2

k)a0
p.

We have again
c ∼ d +

∑
a1

q − d′.

Now let a0
i be a vertex belonging to two faces a2

j and a2
k. Take the two lines of

the third kind
dj = P (a2

j )a
0
i , dk = P (a2

k)a0
i .

We can trace a line L, infinitely slightly removed from the vertex a0
i , and

going from a point of a2
j to a point of a2

k.
Suppose, to fix ideas, that this line traverses three cells, encountering suc-

cessively the face a2
j , the cell a3

j , the face a2
m, the cell a3

m, the face a2
p, the cell

a3
p and finally the face a2

k.
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We construct the three lines c

cj = P (a2
j )P (a3

j ) + P (a3
j )P (a2

m)

cm = P (a2
m)P (a3

m) + P (a3
m)P (a2

p)

cp = P (a2
p)P (a3

p) + P (a3
p)P (a2

k)

and the two lines of the third kind

dm = P (a2
m)a0

i , dp = P (a2
p)a

0
i .

We have

cj ≡ dj − dm, cm ≡ dm − dp, cp ≡ dp − dk;

and since the three cells a3
j , a

3
m, a3

p are simply connected

cj ∼ dj − dm, cm ∼ dm − dp, cp ∼ dp − dk

and finally
cj + cm + cp ∼ dj − dk.

Then we can always find a broken line consisting of lines c and homologous
to dj − dk, where dj and dk are lines of the third kind, abutting on the same
vertex.

That being given, let

(1)
∑

b1
i ≡ 0

be a congruence between the edges b1
i of the polyhedron P ′.

The broken line
∑

b1
i is evidently formed from an even number of lines of

the second kind, and in traversing that broken line we successively encounter
the q faces

a2
1, a2

2, · · · , a2
q

before returning to the face a2
1, which I shall also denote by a2

q+1; and we
encounter q cells

a3
1, a3

2, · · · , a3
q

before returning to the cell a3
1, which I shall also denote by a3

q+1, so that the
face a2

k will separate the cell a3
k from the cell a3

k+1.
Our congruence is then written

∑
[P (a3

k)P (a2
k) + P (a2

k)P (a3
k+1)] ≡ 0

or, what comes to the same thing
∑

[P (a2
k−1)P (a3

k) + P (a3
k)P (a2

k)] = 0.

Then let a0
k be a vertex of the face a2

k, belonging, consequently, to both the
cells a3

k and a3
k+1.
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Let dk be the line P (a2
k)a0

k of the third kind; we have just seen that there
exists a broken line Ak, formed from lines belonging to the cell a3

k, such that we
have the homology

P (a2
k−1)P (a3

k) + P (a3
k)P (a2

k) ∼ dk−1 + Ak − dk.

Adding all these homologies, the left-hand side reduces to
∑

[P (a2
k−1)P (a3

k) + P (a3
k)P (a2

k)] =
∑

b1
i ,

the lines dk of the third kind disappear and
∑

b1
i ∼

∑
Ak

remains, so that consequently
∑

b1
i ≡

∑
Ak ≡ 0.

So to each congruence
∑

b1
i ≡ 0 between the edges of P ′ there corresponds

a congruence
∑

Ak ≡ 0 between the edges of P , and such that we have
∑

b1
i ∼

∑
Ak.

Thus if
∑

b1
i ∼ 0 we have

∑
Ak ∼ 0 and conversely.

Now let

(2)
∑

Ak ≡ 0

be a congruence between the edges of P ; suppose that Ak is a broken line formed
from edges belonging to the cell a3

k.
The left-hand side of the congruence (2) is composed of q similar broken

lines
A1, A2, · · · , Aq

among which I shall denote A1 by A1 or Aq+1 and Aq by A0 or Aq.
Let a0

k−1 and a0
k be the two extremities of the line Ak; the vertex a0

k will
belong simultaneously to the cells a3

k and a3
k+1; let a′2k be the face of a3

k, and
a2

k+1 be the face of a3
k+1 to which a0

k belongs.
Take the lines

d′k = P (a2
k)a0

k, dk+1 = P (a2
k+1)a

0
k

of the third kind, and on the other hand

ck = P (a2
k)P (a3

k) + P (a3
k)P (a2

k).

We have seen that
Ak ∼ −dk + ck + d′k.
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On the other hand, the lines dk+1 and d′k abut on the same vertex a0
k; we

have likewise seen that we can find a combination Ck of lines c such that we
have

Ck ∼ d′k − dk−1.

Adding all these homologies, I find
∑

Ak ∼
∑

ck +
∑

Ck

and consequently ∑
ck +

∑
Ck ≡ 0.

The left-hand side of the latter congruence is a combination of lines c, or,
what comes to the same thing, a combination of edges b1

i of the polyhedron P ′,
so that I can set ∑

ck +
∑

Ck =
∑

b1
i

whence ∑
Ak ∼

∑
b1
i .

In summary: to each congruence between the edges of P there corresponds a
congruence between those of P ′, and conversely, and the necessary and sufficient
condition for the left-hand side of one of the conditions to be homologous to
zero is that the other shall be.

In other words, the number of distinct congruences between the edges is the
same for P and P ′, if we do not consider congruences to be distinct when a
linear combination of their left-hand side is homologous to zero.

In other terms again, the reduced Betti number relative to the edges of P is
equal to the reduced Betti number relative to the edges of P ′.

We could arrive at the same result by remarking that we can construct a
polyhedron which will be simultaneously derived from the polyhedron P and de-
rived from the reciprocal polyhedron P ′, and applying the theorem of paragraph
V.

We shall see later, in paragraph X, that this proposition can be presented in
another form.

On the other hand, this permits us to show that the reduced Betti numbers
are equal to the genuine Betti numbers more simply than in paragraph V.

In fact, the definition of the polyhedron P ′ involves a certain arbitrariness:
its vertices b0

i are not required to lie in the interiors of the cells a3
i of P . Under

these conditions, we can evidently always choose the polyhedron P ′ in such a
fashion that any closed line is a combination of the b1

i .

§VIII. Proof of the fundamental theorem
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Let N1 be the number of edges of our polyhedron P, N2 the number of faces,
N3 the number of cells. We form a table by the following rules:

The table has N2 + N3 columns, N2 are called the first kind and N3 the
second; it has N2 + N1 rows, N2 of the first kind and N1 of the second. Here
are the elements of the table:

10 For an element of the ith row of the first kind I shall write 1 if i = j and
0 if i 6= j.

20 The elements belonging to a row of the second kind and a column of the
second kind are all zero.

30 The element of the ith column of the first kind and the jth row of the
second kind will be ε2

i,j , where ε2
i,j is the number that gives the relation

between the face a2
i and the edge a1

j .

40 The element of the ith row of the first kind and the jth column of the
second kind will be ε3

i,j , i.e. the number that gives the relation between
the cell a3

j and the face a2
i .

If we take an example with two cells, four faces and three edges our table
will have the following appearance:

(1)





1 0 0 0 ε ε
0 1 0 0 ε ε
0 0 1 0 ε ε
0 0 0 1 ε ε
ε ε ε ε 0 0
ε ε ε ε 0 0
ε ε ε ε 0 0
ε ε ε ε 0 0

For simplicity, I have not written the indices of the numbers ε.
Now here are the operations that I permit to be performed on the table:

10 Add one column to another of the same kind, or subtract.

20 Add one row to another of the same kind, or subtract.

30 Permute two columns of the same kind, changing all the signs of one of
them.

40 Permute two rows of the same kind, changing all the signs of one of them.

All these transformations, under which the elements of the table remain
integers, will be called arithmetic transformations of the table.

We can use them to simplify the parts of the table corresponding to columns
of the first kind and rows of the second kind, or columns of the second kind and
rows of the first kind.
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Here is how far we can push the simplification, according to well-known
arithmetic theorems. When the reduction terminates, the element of the ith

column of the first kind and the jth line of the second kind:

10 will be zero if i > j

20 will equal an integer Hi, which may be zero, if i = j.

30 will again be zero if i < j and Hi is prime to Hj .

40 finally will be zero if j > N2.

It will be the same for the element of the ith row of the first kind and jth of
the second kind.

The reduction can be pushed further again if we authorize a fifth operation:
multiply all the elements of a line or column by the same non-zero number
(integer or not).

The corresponding transformations will be called algebraic transformations
of the table.

We can then assume that the element in the ith column of the first kind and
the jth row of the second kind (likewise the element in the ith row of the first
kind and the jth column of the second kind) is zero if i 6= j. If i = j it can be
equal to 0 or 1. If this is the case I call the table reduced.

After the fifth operation, the elements belonging to rows and columns of the
first kind may no longer be integers; furthermore, the determinant formed from
these lines and columns may no longer be 1, but it must remain non-zero.

The table (1) concerns the faces of the polyhedron P and their relations
to cells and edges. In the same way we could set one up for the edges of the
polyhedron P and their relations to cells and vertices.

Likewise, we could consider the polyhedron P ′ defined above, and construct
two tables for the faces and edges of P ′.

Compare the table (1) for the faces of P with the table (1′) for the edges of
P ′.

It follows from the preceding that these tables can be derived from each
other by replacing rows by columns.

That being given, we imagine the table (1) for the faces of P and examine
how we can derive the Betti number P2 of P from that table.

First of all, how can we derive the congruences between the faces and the
edges?

Consider any column of the first kind; for example the ith column. We
multiply the elements of that column and those of the kth row of the first kind
by a2

k and add; then equate it to the sum obtained by multiplying the elements
of that same column and those of the jth row of the second kind by a1

j we obtain
the congruence

a2
i ≡

∑
ε2
i,ja

1
j

which is indeed one of the congruences (3) of paragraph II. All the other con-
gruences are just combinations.
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Now how can we find the homologies between the faces? To do this, imagine
for example the ith column of the second kind; we multiply the elements of the
kth row of that column by a2

k, add and equate to zero; we find
∑

ε3
i,ka2

k ∼ 0

which is indeed one of the homologies (5) of paragraph II, of which all the others
are combinations.

Now what happens to our table (1) if we apply any algebraic transformation?
Before the transformation, each column of the first kind corresponds to a

face, each column of the second kind to a cell, each row of the first kind to a
face, each row of the second kind to an edge.

As we have seen, we obtain as many congruences and homologies as there
are columns by multiplying each row of the first kind by the corresponding face,
and each row of the second kind by the corresponding edge, and adding.

Suppose now that we apply the second operation, i.e. we add a row of
the first kind, which corresponds to a2

i to one of the first kind corresponding
to a2

k. We agree to say that the new kth row (that with the ith row added)
always corresponds to the manifold a2

k; but that the new ith row (which has not
changed) corresponds to the manifold a2

i − a2
k.

If we apply the fifth operation to the kth row of the first kind, multiplying
the elements by a constant m, we agree to say that the new kth row corresponds
to the manifold 1

ma2
k (purely a symbolic notation, at least when the 1

m is not
an integer).

As regards the fourth operation, it is only a combination of several operations
analogous to the second.

We have thus defined the manifold which corresponds to any of the rows of
the first kind of table, after application of any combination of the 2nd, 4th and
5th operations to its rows.

Thanks to the conventions, it will again suffice to obtain the congruences
and homologies if we multiply the elements of each line by the corresponding
manifold, add and equate to zero, changing the sign of the products so obtained
when rows of the second kind are concerned.

Now if we apply the 1st, 3rd and 5th operations to columns of the table
we either combine the congruences between them, and the homologies between
them, or multiply one congruence and one homology by a constant factor.

Whence the following result:
To derive the congruences from the transformed table, it is necessary to do

the following : multiply each row of the first sort by the corresponding manifold
(according to our convention) and add; do the same for rows of the second kind;
equate the results; thus we have as many congruences as columns of the first
kind; all the other possible congruences are simply combinations.

Likewise, to derive the homologies it is necessary to : multiply each line of
the first kind by the corresponding manifold, add and equate to zero; thus we
have as many homologies as columns of the second kind; all the other possible
homologies are simply combinations.
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It is important to remark that the congruences and homologies thus obtained
are only of symbolic value, since their coefficients can be fractional.

In fact, on the one hand the elements of the transformed table may no longer
be integers, while on the other hand the manifold corresponding to a row may
be, as I have said, only symbolic.

However, since the coefficients, integral or not, are always commensurable, it
will suffice to multiply our congruence or homology by a suitable integer in order
to derive a congruence or homology with integral coefficients, which always has
a meaning.

Suppose now that we have reduced the table as I have described above. How
many distinct homologies are there?

Among the N3 columns of the second kind we have N3−N ′
2 which are zero,

and N2 which have one element equal to 1 and zeros elsewhere. The first N3−N ′
2

do not yield any homology; each of the N ′
2 others gives us one of N ′

2 homologies
which are evidently all distinct.

There are then N ′
2 distinct homologies.

How many distinct congruences are there between faces and their edges?
There are evidently N2, corresponding to the N2 columns of the first kind,

and these congruences are distinct, since the determinant formed from the lines
and columns of the first kind is non-zero.

We now consider the N1 rows of the second kind in our reduced table; among
them there are N1 −N ′′

2 which are zero, and N ′′
2 with one element 1 and zeros

elsewhere. Among our N2 congruences we then have N ′′
2 which contain an edge

and N2−N ′′
2 which do not. There are then N2−N ′′

2 congruences between faces
alone, and these congruences are all distinct.

We then have, between faces alone, N2−N ′
2−N ′′

2 congruences which remain
distinct when we omit those which can be derived from the others by means of
the homologies.

The Betti number relative to the faces of P is then

N2 −N ′
2 −N ′′

2 + 1.

Now we shall look for the Betti number relative to the edges of P .
We shall evidently find it by operating as we have just done on the table (1′)

relative to the edges of P ′.
But we pass from one table to the other by replacing rows by columns. The

numbers which play the same rôle relative to (1′) as N2, N
′
2, N

′′
2 play relative to

(1) are then N2, N
′′
2 , N ′

2 respectively.
Then the Betti number relative to the edges of P ′ is again

N2 −N ′
2 −N ′′

2 + 1.

Thus the Betti numbers relative to faces of P and edges of P ′ are equal.
But we have seen above that the Betti numbers relative to edges of P and

those of P ′ are equal, and likewise the Betti numbers for faces of P and those
of P ′.
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Thus the Betti number relative to faces of P is equal to the Betti number
relative to edges of P .

Our fundamental theorem is proved then, as far as it concerns the polyhedron
P , i.e. for polyhedra of four dimensions.

Without any doubt the proof can be extended to any polyhedron.

§IX. Various remarks

The fundamental theorem is now established, by a proof which differs essen-
tially from that on p. 46 of Analysis situs.

However, we are not satisfied with this. We must try to recover the inter-
mediate propositions, in particular that according to which:

The necessary and sufficient condition for the existence of a manifold V such
that

∑
N(V, Vi) 6= 0 is that there is no homology

∑
Vi ∼ 0.

Consider two manifolds, the first V1 of one dimension, composed of edges of
P ′, the second V2 of two dimensions, composed of faces of P , such that we have

V1 =
∑

αib
1
i , V2 =

∑
α′ia

2
i ,

the edge b1
i being that which corresponds to the face a2

i , according to the con-
ventions of paragraph VII.

The edge b1
i cuts the face a2

i , and no other face, and it cuts in a way which
is represented by the notation of p. 41 of Analysis situs as

N(V1, V2) =
∑

αiα
′
i.

In what follows we shall suppose that the manifolds V1 and V2 are closed,
which we express by the congruences

(1)
∑

αib
1
i ≡ 0,

∑
a′iα

2
i ≡ 0.

We verify first of all that we have
∑

αiα
′
i = 0

provided that we have one of the two homologies19

(2)
∑

αib
1
i ∼ 0,

∑
α′ia

2
i ∼ 0.

If we have the second homology, for example, this means we have

α′i =
N3∑

j=1

ζjε
3
i,j

19Cf. Analysis situs, pp. 45 and 46.
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where ζj is a coefficient not dependent on j.
On another side, the first of the congruences (1) can be derived from one of

the following

(3) b1
i ≡

∑
b0
jε

3
j,i,

whence ∑
aib

1
i ≡

∑∑
aib

0
jε

3
j,i.

Equating the coefficient of b0
j to zero we obtain successively

∑
αiε

3
j,i = 0,

∑ ∑
αiζjε

3
j,i = 0,

∑
αiα

′
i = 0.

Q.E.D.
We reason the same way if we have the first of the homologies (2).
I now claim that if the second homology (2) does not hold, we can choose

the αi in such a fashion that V1 remains closed and nevertheless
∑

αiα
′
i is not

zero.
In fact, to say that the second homology of (2) is not zero is to say that we

cannot find numbers ζj such that

(4) α′i =
∑

ζjε
3
j,i.

To say that V1 remains closed is to say that the αi are subject to the condi-
tions

(5)
∑

αiε
3
j,i = 0.

But it is clear that if the a′i do not satisfy equations of the form (4) the linear
equation

∑
αiα

′
i will be distinct from the equations (5); then we can always

find numbers αi which satisfy the equations (5) without satisfying
∑

αiα
′
i = 0.

We remark furthermore that we have not lost generality in assuming that our
manifolds V1 and V2 are combinations of the b1

i and the a2
i from the subdivision

of the manifold V into the polyhedra P and P ′. Whatever the manifolds V1

and V2, we can always subdivide V to form two reciprocal polyhedra P and P ′

such that V1 is a combination of edges of the latter, and V2 is a combination of
faces of the former.

It will be necessary to see how the table (1) of paragraph VIII and analogous
tables permit us to determine the Betti numbers as Betti himself defined them,
and not only the Betti numbers defined in the second manner, i.e. those we
have considered up to the present.

Consider for example a table analogous to (1) but relative to edges of the
polyhedron P and their relations with the faces and vertices. In particular,
consider the columns of the second kind and the rows of the first kind, where
the numbers ε2

i,j appear. Let T be the partial table obtained in this way. With
the aid of this table we can form the congruences

a2
i ≡

∑
ε2
i,ja

1
j
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whence we deduce the homologies

(6)
∑

ε2
i,ja

1
j ∼ 0.

Then we can recognize whether several closed lines formed by combinations
of the edges a1

j are distinct, in the sense of the first definition, i.e. in the sense
of Betti, which lets us know if they are connected by a homology obtained by
combination of the homologies (6) under addition, subtraction or multiplication,
but without division.

Suppose that we have subjected our table to a series of those transformations
which I have called arithmetic in paragraph VIII.

Let ζ2
i,j be the number which, in the transformed table, appears in the jth row

of the first kind and the ith column of the second kind. Let cj be the manifold
which corresponds to the jth row of the first kind in our table, transformed
according to the conventions of paragraph VIII. From what we have seen in
paragraph VIII, that manifold is none other than a combination of edges a1

j .
We then have the homologies

(6′)
∑

ζ2
i,jcj ∼ 0.

These homologies are just the combinations of the homologies (6) that we can
obtain without division, and conversely we can derive the homologies (6) from
the homologies (6′) without division, this is a consequence of the arithmetic
character of these transformations.

Thus when we want to decide whether two closed lines are distinct in the
sense of Betti we can use the homologies (6′) in place of (6).

We can assume that we reduce the table by arithmetic transformations, as I
explained in paragraph VIII and, consequently, that ζ2

i,j is zero: 1o if i > j; 2o

if j > N2.
When the table is reduced to columns of the second kind and rows of the

first kind it will assume, for example, the following form:

a 0 0 0 0
e b 0 0 0
f g c 0 0
h k l d 0
0 0 0 0 0
0 0 0 0 0

I have summed six rows and five columns; I have assumed that one of the
numbers ζ2

i,j is equal to zero so that one of the columns of the table transforms
entirely into zeros. I add that if d is equal to 1, the numbers h, k, l which appear
in the same row will be zero.

That being given, if d is not equal to zero the two definitions of Betti numbers
do not coincide, because we have a homology dc4 ∼ 0 whence we can deduce
the homology c4 ∼ 0 by division. If d = 1 we have h = k = l = 0 and if c is not
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equal to 1 we have the homology cs3 ∼ 0, and the two definitions do not agree;
and so on.

In summary, for the two definitions to agree it is necessary and sufficient
that the product abcd equal 1.

To interpret this result, we return to the untransformed table. The product
abcd will be the greatest common divisor of all the determinants obtained by
suppressing N2 −N3 lines of the table T , provided these determinants are not
all zero (in which case we shall have a column exclusively composed of zeros
in the transformed table). If the determinants are all zero, we form others by
suppressing a column and N2 − N3 + 1 rows of the table T ; the product abcd
will be the greatest common divisor of all these determinants, provided they are
not all zero; and so on.

Thus we arrive at the following rule:
Let ∆p be the greatest common divisor of the determinants obtained by

suppressing p rows and N2−N3 + p columns of the table T . The necessary and
sufficient condition for the two definitions of Betti numbers to coincide is that
the first non-vanishing ∆p shall equal 1 (the greatest common divisor of several
numbers equal to zero being equal to zero by definition).

Suppose that the manifold V1 =
∑

αib
1
i considered at the beginning of this

paragraph is not the boundary of a two-dimensional manifold, but satisfies the
homology V1 ∼ 0. In other words, the homology V1 ∼ 0 can be deduced from
the homologies (6) using division, but not otherwise. In that case we have
nevertheless

N(V1, V2) =
∑

αiα
′
i = 0.

§X. Arithmetic proof of a theorem of paragraph VII

Here is a way of forming homologies which can be useful to know.
Let b0

i be a vertex of the polyhedron P ′ situated in the interior of a cell a3
i

of the polyhedron P . On the other hand, let a0
k be a vertex of P belonging to

the cell a3
i .

Now let b1
i be an edge of P ′, the extremities of which are b0

j and b0
h, so that

one of the congruences (3) (cf. §II) relative to P ′ will be

b1
i = b0

j − b0
h

On the other hand, let a2
i be the face of P which corresponds to the edge b1

i

of P ′ and let a0
k be one of the vertices of a2

i ; we have the homology

(1) b1
i ∼ a0

kb0
j − a0

kb0
h.

Let a1
i be an edge of P , the extremities of which are a0

j and a0
h, so that one

of the congruences (3) relative to P is

a1
i ≡ a0

j − a0
h.
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Let a3
k be one of the cells of P to which a1

i belongs, and b0
k the corresponding

vertex of P ′; we have the homology

(2) a1
i ∼ b0

ka0
j − b0

ka0
h.

I claim now that all the homologies between the a1
i can be derived from the

homologies (2).
In fact, let a2

i be any face of P and let

a2
i ≡

∑
ε2

i,ja
1
j

be the congruence of the form (3) to which it corresponds; we deduce the ho-
mology

(3)
∑

ε3
i,ja

1
j ∼ 0

and we have seen in paragraph VI that all the homologies between the edges
are combinations of the kind just obtained.

Then let a1
j be one of the edges of P which appears in the homology (3),

and let
a1

i ≡ a0
h − a0

l .

Moreover, let a3
k be one of the cells bounded by a2

i . We have the homology

(2′) a1
j ∼ b0

ka0
h − b0

ka0
l .

If we add the homologies (2′) which are of the form (2), after having multi-
plied by ε2

i,j , all terms on the right-hand side disappear by virtue of the relations
(5) of paragraph II; we then recover the homology (3). Q.E.D.

We prove similarly that all the homologies between the b1
i can be deduced

from the homologies (1).
We have seen above, in paragraph VII, that if we have a congruence

∑
a1

i ≡ 0

we can find another congruence between the edges of P ′

∑
b1
j ≡ 0

in such a fashion that we have the homology

(4)
∑

a1
i ∼

∑
b1
j .

I now claim that this homology (4) can be deduced from the homologies (1)
and (2).

In fact we decompose the left-hand side of our congruence
∑

a1
i ≡ 0 into a

certain number of groups, in such a way that edges in the same group belong
to the same cell a3

k. Let
∑

a1
j be one of these groups; we have the congruence

(5)
∑

a1
j = a0

m − a0
p



§X. Arithmetic proof of a theorem of paragraph VII 135

where a0
m and a0

p are the two extremities of the line formed by the set of edges
in this group. I assume that all these edges belong to the cell a3

k. Let

a1
j ≡ a0

h − a0
l

be one of the edges; we have the homology

(2′′) a1
j ≡ b0

ka0
h − b0

ka0
p,

and in adding all these homologies we find

(6)
∑

a1
j ∼ b0

ka0
m − b0

ka0
p.

We now add all the homologies (6), as well as the congruences (5) which
correspond to different groups. Addition of the congruences (5) must give us
the congruence

∑
a1

i ≡ 0; it follows that if a vertex a0
m appears in one of the

congruences (5) with the sign +, it must appear in another with the sign −.
Addition of the homologies (6) then gives us

(7)
∑

a1
j ∼

∑
(b0

ka0
m − b0

ga
0
m).

In writing this relation I assume that a0
m appears in two of the congruences

(5), once with the sign + in the congruence which corresponds to the cell a3
k,

and once with the sign − in the congruence which corresponds to the cell a3
g.

Observe now that b0
k and b0

q are two vertices of P ′, and both these vertices
belong to the cell b3

m. We can then find a line consisting of edges of P ′, contained
in that cell b3

m, and going from b0
k to b0

q. Let
∑

b1
s be that line; we have

(5′)
∑

b1
s ≡ b0

k − b0
g.

Just as we have deduced the homology (6) from the congruence (5) and the
homologies (2′′), which are of the form (2); so we can deduce the homology

(6′)
∑

b1
s ∼ a0

mb0
k − a0

mb0
q

from the congruence (5′) and homologies of the form (1).
For each term of the right-hand side of (7) there is a homology (6′). Adding

these we find

(7′)
∑ ∑

b1
s ∼

∑
(a0

mb0
k − a0

mb0
q),

whence

(8)
∑

a1
j +

∑∑
b1
s ∼ 0

– a homology of the form (4) which has been deduced, as we wanted, from the
homologies (1) and (2). Q.E.D.
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One may ask why I have deemed it necessary to return to a theorem pre-
viously proved in paragraph VII. It may be considered to give an exposé, so
to speak, of the geometric nature of the proof in paragraph VII. The present
proof, on the contrary, has an arithmetic character; it invokes only properties
of the schemas defined in paragraph II and the tables constructed in paragraph
VIII; and it remains valid when these schemas and tables correspond to any
polyhedron.

What have we assumed, in fact? Simply that if αp
0, α

p
1, α

p
2 are the numbers

of vertices, edges and faces belonging to the same cell, and if βp
0 , βp

1 , βp
2 are the

number of cells, faces and edges which belong to the same vertex, then we have

αp
0 − αp

1 + αp
n = βp

0 − βp
1 + βp

2 = 2

and, in addition, any two vertices a0
i and a0

k are connected by a homology

(9) a0
i ∼ a0

k.

But we can recognize when a vertex belongs to a face, for example, by
applying purely arithmetic rules to the table of paragraph VIII, and in the
same manner we can recognize whether a homology such as (9) holds.

§XI. The possibility of subdivision

All of the preceding assumes that any manifold can be subdivided into
simply-connected manifolds, so as to form a polyhedron P of p dimensions
for which the manifolds ap

i , a
p−1
i , . . . , a2

i , a
1
i , a

0
i are all simply-connected. For

example, each manifold of three dimensions is supposed to be divisible into
simply-connected cells, separated from each other by simply-connected faces.

This is what remains to be proved, and it is what I am going to prove.
More precisely, I am going to show that every manifold of p dimensions can be
subdivided as a polyhedron P for which the manifolds ap

i , a
p−1
i , . . . , a2

i , a
1
i , a

0
i

are all generalized tetrahedra.
I suppose that the theorem has been proved for manifolds of p−1 dimensions,

and propose to extend the proof to a manifold of p dimensions.
We present the definition of manifold in the following form, which combines

the two definitions given in Analysis situs.
We have equations and inequalities:

(1)





xi = θi(y1, y2, . . . , yq) (i = 1, 2, . . . , n),
fk(y1, y2, . . . , yq) = 0 (k = 1, 2, . . . , q − p),
ϕh(y1, y2, . . . , yq) > 0.

These equations and inequalities define a manifold v that is bounded and,
in general, not closed. Other, analogous, systems of equations and inequalities
define partial manifolds that I call v1, v2, . . . , vm.
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Two of these manifolds will be called contiguous if they have a common part,
and I can suppose that one can pass from any point of one of these manifolds to
any point of another without leaving the set of these manifolds. The set makes
up the manifold that I call V , and serves to define it.

I assume that this manifold V is two-sided.
This is evidently the most general way to define a manifold.
We now consider the partial manifold v1 defined by the equations (1).
By the implicit function theorem, one can satisfy the equations

fk = 0,

by setting
yj = ψj(z1, z2, . . . , zp),

where the ψ are holomorphic functions of the z; but the series ψ may not
converge for all points of the variety v1.

The conditions for convergence are certain inequalities

ηk(z1, z2, . . . , zp) > 0.

When we replace the y by functions of z, the relations

xi = θi, ϕh > 0

become

xi = θ′i(z1, z2, . . . , zp),
ϕ′h(z1, z2, . . . , zp) > 0.

Then the set of relations

(1′) xi = θ′i, ϕ′h > 0, ηk > 0

define a certain manifold v′1, in such a way that the set of manifolds analogous
to v′1 reproduces the manifold v1.

In this way are reduced to the second definition from Analysis situs.
This being so, let v′′1 be a manifold satisfying the following conditions: it is

contained in v′1; it consists of all points of v′1 not in common with contiguous
manifolds; and consequently, the boundary of v′′1 lies entirely in the intersection
of v′1 with its contiguous manifolds.

Thus, for each of the manifolds v′1, v
′
2, . . . making up V , there corresponds a

manifold v′′1 , v′′2 , . . . satisfying the conditions just described. It is clear that one
can arrange things in such a way that each point of V belongs to exactly one of
the manifolds v′′, or at most to the boundary of another manifold v′′.

When the manifold is thus divided into manifolds v′′ it constitutes a poly-
hedron P in the sense of paragraph II. But this polyhedron is not yet suitable,
since we do not know that that manifolds v′′ are generalized tetrahedra, or even
whether they are simply connected.
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We consider the manifold v′′1 and let

z1 = 0, z2 = 0, . . . , zp = 0

be an interior point of this manifold. Also consider the one-dimensional mani-
fold

z1 = α1t, z2 = α2t, . . . , zp = αpt,

where the α are constants, and let t vary from 0 to +∞. This is what I will call
a radius vector.

Each radius vector meets the boundary of v′′1 in an odd number of points;
in fact, when we follow this radius by letting t vary from 0 to +∞ we will leave
the manifold v′′1 . We may later re-enter and leave several times, but we will
ultimately leave once more than we enter.

It may happen that a radius vector meets the boundary of v′′1 at two coinci-
dent points.20 Radius vectors that satisfy this condition will be called remark-
able rays.

The set of remarkable rays forms one or more manifolds of p−1 dimensions,
which I will call remarkable cones.

The intersections of the remarkable cones with the boundary of v′′1 form one
or more manifolds of p − 2 dimensions that I call U , and these manifolds U
divide the boundary of v′′1 into regions that I call R.

A region R cannot be met by a radius vector in more than one point, but
by what we have seen there are two cases: when we follow the radius vector by
letting t increase from 0 to ∞ we can, at the moment when we encounter R,
leave v′′1 or enter it. In the first case, for example, occurs for one of the vectors
that encounters R then it will occur for all the vectors that encounter R.

This leads to a distinction between regions R of the first kind, which are met
by vectors leaving v′′1 , and regions of the second kind, which are met by vectors
entering v′′1 .

Since the regions R are of p − 1 dimensions, it follows from our initial as-
sumption that they can be subdivided into generalized tetrahedra.

We suppose, to fix ideas, that a radius vector meets the boundary of v′′1 three
times, in the successive regions R1, R2, R3, so R1 and R3 are of the first kind
and R2 is of the second kind.

We subdivide R1 and R3 into generalized tetrahedra of p− 1 dimensions.
If T1 is one of these subdivisions of R1, we take all the rays passing through

points of T1 and keep the part between the point zi = 0 and the region R1 (the
part inside v′′1 ). The set of all these rays forms a generalized tetrahedron of p
dimensions, with vertex at the point zi = 0 and base the generalized tetrahedron
of dimension p− 1.

Now let T3 be one of the subdivisions of R3. Again we take all the rays
passing through the different points of T3 and keep the part between R2 and
R3 (the part inside v′′1 ). This set forms a manifold of p − 1 dimensions that
we could call a truncated generalized tetrahedron, whose two bases are T3 and

20That is, tangentially. (Translator’s note.)
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a generalized tetrahedron of p − 1 dimensions that I call T2 and which is part
of R2. It is, in other words, the difference between two generalized tetrahedra,
with common vertex zi = 0 and bases T3 and T2 respectively.

This truncated generalized tetrahedron may be subdivided in its turn, into
p generalized tetrahedra, just as a truncated triangular pyramid is divided into
three triangular pyramids in the classical theorem.

Thus v′′1 is finally subdivided into generalized tetrahedra.
However, one difficulty remains: we can subdivide the manifolds v′′2 , v′′3 , . . . as

we have subdivided v′′1 , and consider the subdivision of v′′1 into the generalized
tetrahedra T1 and that of v′′2 into generalized tetrahedra T2. The common
boundary of v′′1 and v′′2 is thereby subdivided—on the one hand into generalized
tetrahedra τ1 of p − 1 dimensions that are faces of the T1, on the other hand
into generalized tetrahedra τ2 of p− 1 dimensions that are faces of the T2. But
it is by no means evident that these two subdivisions coincide.

Consider then the common part of one of the τ1 and one of the τ2. By the
induction hypothesis, I can subdivide it into generalized tetrahedra σ of p − 1
dimensions. Thus each of the tetrahedra τ1 and each of the tetrahedra τ2 will
be subdivided into tetrahedra σ.

Now let τ ′1 be one of the manifolds of q dimensions belonging to τ1. (Here I
use the word “belonging” in the same sense as when I say that the faces, edges
and vertices of an ordinary tetrahedron belong to that tetrahedron, or when I
said in paragraph II that the manifolds aq

i belong to a polyhedron P .) Like-
wise, let τ ′2 be one of the manifolds of q dimensions belonging to τ2. These two
manifolds τ ′1 and τ ′2 are generalized tetrahedra because, by the definition of gen-
eralized tetrahedron, every manifold that belongs to a generalized tetrahedron
is itself a generalized tetrahedron. Then τ ′1 and τ ′2 will be found subdivided into
generalized tetrahedra σ′, of q dimensions, which belong to the tetrahedra σ of
p− 1 dimensions.

This will suffice at a pinch. Our manifolds v′′1 , . . . are partitioned into gen-
eralized tetrahedra T p of p dimensions, their boundaries into tetrahedra T p−1

of p − 1 dimensions, and so on. However, the tetrahedra T p−1 are not those
belonging to the tetrahedra T p, but only subdivisions of them.

But we can go further.
Consider one of the p-dimensional tetrahedra T p into which v′′1 is subdivided.

Recall that we obtained them by subdividing the truncated generalized tetra-
hedra arrived at above. Consequently, all vertices of T p are on the boundary
of v′′1 (with the exception of tetrahedra with the point zi = 0 as a vertex, but
these cause no difficulty).

Suppose, for example, that the points common to T p and the region that I
called R3 above form a q-dimensional generalized tetrahedron T q belonging to
T p, and that the points common to T p and the region R2 form a tetrahedron
of p− q − 1 dimensions, T p−q−1, belonging to T p.

The tetrahedra T p and T p−q−1 are analogous to the tetrahedra τ ′1 treated
above; they can therefore be subdivided into tetrahedra analogous to those I
called σ′. Let Sq

1 , Sq
2 , . . . be the tetrahedra, analogous to the σ′, which are

the subdivisions of T q, and let Sp−q−1
1 , Sp−q−1

2 , . . . be the tetrahedra analo-
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gous to σ′ which are the subdivisions of T p−q−1. I claim that we can sub-
divide T p

k into tetrahedra of p dimensions in such a way that the manifolds
Sq

1 , Sq
2 , . . . , Sp−q−1

1 , Sp−q−1
2 , . . . belong to T p.

To show this, suppose first that T p is a rectilinear tetrahedron (cf. end of
§II). We know that a rectilinear tetrahedron is completely defined when we know
its p+1 vertices. Then T p is the rectilinear tetrahedron whose vertices are those
of T q and T p−q−1.

Suppose that T q is decomposed into g subtetrahedra

Sq
1 , Sq

2 , . . . , Sq
g

and that T p−q−1 is decomposed into h subtetrahedra

Sp−q−1
1 , Sp−q−1

2 , . . . , Sp−q−1
h .

One can then check that T p is decomposed into gh subtetrahedra whose
vertices are those of

Sq
i and Sp−q−1

k (i = 1, 2, . . . , g; k = 1, 2, . . . , h).

If the tetrahedron T p is not rectilinear, the result still holds because any
tetrahedron is homeomorphic to a rectilinear tetrahedron.

Thus our manifold is decomposed into tetrahedra of p dimensions, so as to
form a polyhedron whose members each belong to one of the tetrahedra.

One is thus freed of all doubts on the subject of subdividing a manifold V
in the form of a polyhedron P for which all the aq

i are simply connected.
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SECOND SUPPLEMENT TO

ANALYSIS SITUS

Proceedings of the London Mathematical Society 32 (1900), pp. 277-308.

Introduction.

I published a work entitled “Analysis situs” in the Journal de l’École Poly-
technique, I dealt with the same problem a second time in a memoir bearing the
title “Complément à l’Analysis situs” which was published in the Rendeconti
del Circolo Matematico di Palermo.

Nevertheless, the question is far from exhausted, and I shall doubtless be
forced to return to it several times. This time, I confine myself to certain con-
siderations in the way of simplifying, clarifying and completing results previously
acquired.

References carrying simply an indication of paragraph or page apply to the
first memoir, that in the Journal de l’École Polytechnique; references where
these indications are preceded by the letter c are associated with the memoir in
the Rendeconti.

When references refer to paragraphs of the present memoir, I shall preface
them by the letters 2c.

§1. Review of the principal definitions

Consider a closed manifold of p dimensions. We assume that this manifold is
subdivided so as to form a polyhedron P of p dimensions. The elements of that
polyhedron are called the ap

i ; they are separated from each other by (p − 1)-
dimensional manifolds called the ap−1

i ; these are separated from each other by
(p− 2)-dimensional manifolds called the ap−2

i ; and so on until we arrive at the
vertices of the polyhedron which are called the a0

i .
All these manifolds are simply connected, i.e. homeomorphic to hyper-

spheres.21

If a manifold aq
i is bounded by the aq−1

j I shall write the congruence

(1) aq
i ≡

∑
εq

ija
q−1
j

where the ε are equal to +1,−1 or 0 (c, §II, p. 104).

21Poincaré seems to be unconsciously assuming the Poincaré conjecture here, or else forget-
ting his definition of simply connected from p. 74.(Translator’s note.)
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We write, as well, the homology

(2)
∑

εq
ija

q−1
j ∼ 0

We combine the congruences (1) and the homologies (2) by addition, subtrac-
tion, multiplication and sometimes division.

Among the congruences between aq
i and aq−1

i obtained by combination of
the congruences (1) we distinguish those which contain only the aq

i , i.e. those
from which the aq−1

i have disappeared.
We sometimes denote the a0

i by the name vertices, the a1
i by the name edges,

the a2
i by the name faces, the a3

i by the name cells, the a4
i by the name hypercells.

To a polyhedron P there corresponds a dual polyhedron P ′ (c, §VII) which
has elements bp

i in place of ab
i ; b

p−1
i in place of ap−1

i , . . . , and finally b0
i in place

of a0
i .
There is a correspondence between the two polyhedra such that bp−q

i corre-
sponds to aq

i . The two polyhedra result from subdivision of the same manifold
V .

Between the elements of P ′ we have congruences

(1′) bq
i =

∑
εp−q+1
ji bq−1

j

analogous to the congruences (1); we can also write

bq
i =

∑
ε′qijb

q−1
j

by setting
εp−q+1

ji = ε′qij

We have another relation between the elements of P and those of P ′.
Recall the notation N(V, V ′) (§9, p. 41). We then have

N(aq
k, bp−q

i ) = 0

if i is not equal to k, and
N(aq

i , b
p−q
i ) = ±1

It remains to see whether we must take the + sign or − sign.
To find out, consider two corresponding elements of P and P ′ which I shall

call aq
i and bp−q

i ; also consider two corresponding elements aq−1
j and bp−q+1

j such
that aq−1

i belongs to aq
i and bp−q

i belongs to bp−q+1
j .

I can always choose my coordinates in such a way that the equations of the
aq

i are

(3) F1 = F2 = · · · = Fp−q = 0

where the F are the functions of the coordinates y1, y2, . . . , yp which define the
position of a point on the manifold V .
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Likewise let

(4) Φ1 = Φ2 = · · · = Φq−1 = 0

be the equations of bp−q+1
j ; I can then assume that the equations of the aq−1

j

are obtained by adjoining the equation ψ = 0 to the equations (3), and those
of bp−q

i are obtained by adjoining the equation ψ = 1 to the equations (4). I
can arrange for the same function ψ to be on the left-hand side of these two
equations.

Then among the inequalities which, along with the equations (3), complete
the definition of ap

i we must have

ψ > 0.

Likewise, among the inequalities which, along with the equations (4) complete
the definition of bp−q+1

j , we must have

ψ < 1.

If we want εq
ij to be equal to +1 it is necessary by our conventions that the

equations of aq−1
j be placed in the following order:

F1 = F2 = · · · = Fp−1 = ψ = 0

and if we want a′p−q+1
ji to be +1 at the same time, it is necessary for the

equations of bp−q
i to be placed in the following order:

Φ1 = Φ2 = · · · = Φq−1 = 1− ψ = 0.

The number N(aq
i , b

p−q
i ) depends on the sign of the Jacobian of

F1, F2, . . . , Fp−q, Φ1, Φ2, . . . , Φq−1, 1− ψ.

Likewise, the number N(aq−1
j , bp−q+1

j ) depends on the sign of the Jacobian
of

F1, F2, . . . , Fp−q, ψ, Φ1, Φ2, . . . , Φq−1.

We can always assume that the functions F, Φ and ψ have been chosen so
that these determinants do not vanish in the domain considered.

We then see that the two determinants are of the same sign if q is even and
of opposite sign when q is odd.

In the first case we have

N(aq
i , b

p−q
i ) = N(aq−1

j , bp−q+1
j )

and in the second case

N(aq
i , b

p−q
i ) = −N(aq−1

j , bp−q+1
j ).
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Since we can always assume

N(a0
i , b

p
i ) = +1

we find successively

N(a1
i , b

p−1
i ) = −1, N(a2

i , b
p−2
i ) = 1, N(a3

i , b
p−3
i ) = +1, N(a4

i , b
p−4
j ) = +1, . . .

Apart from this, the number N(aq
i , b

p−q
i ) does not depend on g.

That being given, we can use the numbers εq
ij to form a table that I call Tq,

where the number εq
ij occupies the ith row and jth column. Then in the table

Tq there are as many rows as the aq
i and as many columns as the aq−1

j .
I let αp be the number of aq

i , so that the table Tq has αq rows and αq−1

columns. In particular, the table T1 gives us the relation between the edges and
the vertices, the table T2 gives that between the faces and the edges, etc.

I call the table for P ′, corresponding to Tq for P , the table T ′q. We see
that the table T ′q is obtained from the table Tp−q+1 by interchanging rows and
columns.

We have denoted (c, §III, p. 109) by αq−α′q the number of distinct homologies
between the aq

i and by αq −α′′q the number of distinct congruences between the
aq

i (the aq−1
j being eliminated); and by

Pq = α′q − α′′q + 1

the Betti number corresponding to the aq
i .

We have let βq, β
′
q and β′′q be the numbers analogous to αp, α

′
q and α′′q in

connection with the polyhedron P ′, so that

βq = αp−q.

§2. Reduction of tables

Consider a table T consisting of integers arranged in a certain number of
lines and columns. Our tables Tq are examples.

Suppose that we allow the following operations to be applied to this table:

10 Add one column to another, or subtract;

20 Permute two columns and change the sign of one of them;

30 Make the same operations on rows.

By combination of these operations we can subject the columns to any linear
substitution with integral coefficients and determinant 1. The same is true for
the rows.
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What is the greatest degree of simplicity we can achieve in the table by
means of these operations? This is what we are going to examine.

Suppose first of all, to fix ideas, that the table T does not have more rows
than columns.

LEMMA I. Let
a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

c1 c2 c3 c4 c5

be a table T , assumed to be of three rows and five columns to fix ideas.
I assume that the fifteen numbers a, b, c are relatively prime to each other;

I claim then that we can always find three numbers α1, β1, γ1 such that the five
numbers

h1i = α1αi + β1bi + γ1ci (i = 1, 2, 3, 4, 5)

are relatively prime.
For this purpose the numbers α1, β1, γ1 must first of all be relatively prime

to each other. If this condition is satisfied we can find six other numbers
α2, β2, γ2; α3, β3, γ3 such that the determinant

α1 β1 γ1

α2 β2 γ2 = 1
α3 β3 γ3

We then set

hki = αkαi + βkβi + γkci (i = 1, 2, 3, 4, 5; k = 1, 2, 3).

The rule for multiplication of determinants gives us

h11 h12 h13 α1 β1 γ1 a1 b1 c1

h21 h22 h23 = α2 β2 γ2 · a2 b2 c2

h31 h32 h33 α3 β3 γ3 a3 b3 c3

a1 b1 c1

= a2 b2 c2 = ∆ say.
a3 b3 c3

This shows that the greatest common divisor of the three numbers h11, h12, h13,
and consequently that of the five numbers h1i, divides ∆. It must likewise
divide all determinants obtained by suppressing two columns in the table and
consequently the greatest common divisor, M , of all these determinants.

Let p be any prime factor of M . Since our fifteen numbers a, b, c are relatively
prime to each other, at least one of them, c for example, will not be divisible by
p.

If we then put

(1) α1 ≡ 0, β1 ≡ 0, γ1 ≡ cp−2
5 (mod p)
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it follows that
h15 ≡ cp−1

5 ≡ 1 (mod p)

so that the greatest common divisor of the five numbers h1i will not be divisible
by p.

We obtain a system of congruences analogous to (1) for each of the prime
factors of M .

Then the greatest common divisor of the five numbers h1i will not be divisible
by any of the prime factors of M ; and since it divides M it will be equal to 1.

1ST COROLLARY: If we subject the rows of the table to the linear substi-
tution

α1 β1 γ1

α2 β2 γ2

α3 β3 γ3

it is clear that the elements of the ith column

ai, bi, ci

become
h1i, h2i, h3i

whence the consequence:
If the elements of the table are relatively prime to each other we can reduce

the table to one where the elements of the first row are relatively prime to each
other.

2ND COROLLARY. If the elements of the table have greatest common di-
visor δ we can reduce the table to one where the elements of the first row have
greatest common divisor δ.

THEOREM: Let m be the number of columns and n the number of rows
(m ≥ n); let M0 be the greatest common divisor of all the determinants obtained
by suppressing any m − n columns of the table; let M be the greatest common
divisor of all the determinants obtained by suppressing m− n + 1 columns and
one row; let M2 be that of the determinants obtained by suppressing m− n + 2
columns and two rows, etc.; finally let Mn−1 be that of the determinants obtained
by suppressing m−1 columns and n−1 rows, in other words the greatest common
divisor of all the elements.

These numbers M0,M1, · · · ,Mn−1 are not altered by the operations made on
the rows, or on the columns.

It goes without saying that the number Mk will be considered to be zero if
all the corresponding determinants are zero.

We can then enunciate our corollary in the following form:

3RD COROLLARY: We can reduce the table to one where the greatest com-
mon divisor of the elements in the first row is Mn−1.
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LEMMA II. By a transformation of columns we can reduce the table to one
where the first element of the first row becomes Mn−1, and all other elements of
the first row become zero.

In fact we are going to subject the columns (assumed to be five in number,
as above) to the linear substitution

(2)

α1 α2 α3 α4 α5

β1 · · · · · · · · · β5

γ1 · · · · · · · · · γ5

δ1 · · · · · · · · · δ5

ζ1 · · · · · · · · · ζ5

with determinant 1. Let

a1, a2, a3, a4, a5

be the elements of the first row. After the reductions the table has experienced
above, the greatest common divisor of these five numbers has become Mn−1.
We can then choose the substitution (2) in such a way that we have

∑
αiai = Mn−1,

∑
βiai =

∑
γiai =

∑
δiai =

∑
ζiai = 0

then, after the transformation, the elements of the first row will be

Mn−1, 0, 0, 0, 0.

LEMMA III. I claim that we can reduce to zero all elements of the first
column, except the first, which remains equal to Mn−1, by a transformation of
rows.

In fact, after the reductions made previously, the elements of the first column
(supposing three rows) are

Mn−1, q2Mn−1, q3Mn−1

where q2 and q3 are integers, since by our hypothesis all elements are divisible
by Mn−1.

If we then subtract the first row q2 times from the second, and q3 times from
the third, the first column becomes

Mn−1, 0, 0.

Meanwhile, the first row has not changed.
If we suppress the first row and first column of the table now, there remains

a table T ′ of m− 1 columns and n− 1 rows in which the numbers

M0

Mn−1
,

M1

Mn−1
, · · ·
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play the same rôle as the numbers M0,M1, · · · do in connection with the table
T .

In particular, the greatest common divisor of the elements of T ′ is Mn−2
Mn−1

.
We can continue the reduction, now operating only on the m− 1 remaining

columns and the n− 1 remaining rows. The first row does not change because
its last m−1 elements are zero, nor does the first column, because its last n−1
elements are zero.

Thus we can operate on the table T ′ as we have on the table T . After this
new reduction

10 All the elements of the first row and first column are zero, except the first
in each, which remains equal to Mn−1.

20 All the elements of the second row and second column have become zero,
except the second in each, which has become Mn−2

Mn−1
.

30 If we suppress the first two rows and the first two columns, we obtain a
table T ′′ of m− 2 columns and n− 2 rows, in which the numbers

M0

Mn−2
,

M1

Mn−2
, · · · ,

Mn−3

Mn−2

play the same rôle as M0,M1, · · · ,Mn−1 do in connection with the table
T . And so on.

At the end of the reduction the element in the ith row and jth column is
zero if i is unequal to j; the element in the ith row and the ith column is equal
to Mn−i

Mn−i+1
.

The n numbers

(3) Mn−1,
Mn−2

Mn−1
,

Mn−3

Mn−2
, · · · ,

M1

M2
,

M0

M1

may be called the invariants of the table T .
We may remark:

10 Each of these invariants divides its successor;

20 Any of these invariants can be zero, but if one of them is, so are all its
successors.

If the table T has more rows than columns the reduction is made in the same
manner, except that the rôles of rows and columns are interchanged.

We then have m < n; the number M0 will be the greatest common divisor
of the determinants obtained by suppressing n − m rows; in general, Mi will
be the greatest common divisor of the determinants obtained by suppressing
any n−m + i rows and i columns. Finally, the greatest common divisor of the
elements of the table will be Mm−1.

In general, the number of invariants will be the smaller of the two numbers
m and n.



§3. Comparison of the tables Tq and T ′q 149

§3. Comparison of the tables Tq and T ′
q

The table Tq tells us the relations between the aq
i and the aq−1

j in the poly-
hedron P . Each row of the table corresponds to an aq

i and each column to an
aq−1

j . Likewise each row of this table corresponds to a congruence

(1) aq
i ≡

∑
εq

ija
q−1
j

between the aq
i and the aq−1

j , and a homology

(2)
∑

εq
ija

q−1
j ∼ 0

between the aq−1
j .

Now what happens if we reduce the table Tq by the operations of the pre-
ceding paragraph? Each row of the reduced table corresponds to a linear com-
bination of the aq

i , and each column to a linear combination of the aq−1
j . I have

explained (c, §VIII, p. 128) the rules by which these linear combinations must
be formed. Here is how these rules may be summarized.

Suppose that we pass from the table Tq to the reduced table by application of
a certain linear substitution S to the rows of Tq and another linear substitution
σ to the columns of Tq. Let σ′ be the substitution contragredient to σ (by that
I mean that if we have two series of αq−1 variables xi and yi and we apply the
substitution σ to the first series and σ′ to the second, then the form

∑
xiyi will

not be altered).
Now suppose that S changes aq

i into

cq
i =

αq∑

j=1

λija
q
i

and that σ′ changes aq−1
i into

dq−1
i =

aq−1∑

i=1

µija
q−1
j

We shall make the ith row of the reduced table correspond to the linear
combination cq

i , and the ith column to the linear combination dq−1
i .

In our reduced table all these elements are zero except those in the ith row
and ith column which, by the preceding paragraph, are given by the formula

Mn−1

Mn−i−1

For brevity I denote by ωq
i this element in the ith row and column; and I

agree to regard ωq
i as zero if i is greater than the smaller of the numbers αq and

αq−1 (the numbers of rows and columns).
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Then corresponding to the ith row of the reduced table we have the congru-
ence

(1′) cq
i ≡ ωq

i dq−1
i

and the homology

(2′) ωq
i dq−1

i ∼ 0.

The congruences and the homologies (1′) and (2′) result from the congru-
ences and homologies (1) and (2) by addition, subtraction, multiplication, but
without division, and conversely.

If αq−1 > αq and if i > αq, ωq
i is zero, so that the congruence and homology

(1′) and (2′) reduce to
cq
i ≡ 0 and 0 ∼ 0.

The numbers ωq
i are those which I called the invariants of the table Tq in the

preceding paragraph. Suppose that among these invariants we have γq which
are non-zero; we shall have, of course,

γq ≤ αq, γq ≤ αq−1

Among the congruences (1′), the first γq will include both cq
i and dq−1

i be-
cause ωq

i will be non-zero. On the other hand, the last αq − γq will be written

cq
i ≡ 0,

and will not contain the aq−1
i ; it is clear that all these congruences will be

distinct, and that we obtain in this way all the congruences between the aq
i

from which the aq−1
j have been eliminated. We then have

αq − α′′q = αq − γq, α′′q = γq

Now among the homologies (2′), the last αq − γq reduce to identities, but
the first γq are distinct; we then have

αq−1 − α′q−1 = γq

whence the Betti number

Pq = αq − γq+1 − γq + 1

We now compare the table Tq with the table Tp−q+1 relative to the dual
polyhedron P ′. This table, which may be derived from Tq by interchanging
lines and columns has βp−q+1 = αq−1 rows and βp−q = αq columns. The
number γq is the same for both tables so that we get

β′′p−q+1 = γq = α′′q , βp−q − β′p−q = γq,

β′p−q = βp−q − γq = αq − α′′q ,
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whence
β′p−q+1 = αq−1 − γq−1

and for the Betti number P ′p−q+1 relative to the polyhedron P ′

P ′p−q+1 = β′p−q+1 − β′′p−q+1 + 1 = αq−1 − γq−1 − γq + 1.

We deduce from this that
P ′p−q = Pq

which, when we recall that the Betti numbers relative to the dual polyhedra P
and P ′ are the same, shows that the Betti numbers equally distant from the
extremes are equal.

Now let us return to the homologies (2′). If we concede the right to divide
homologies by non-zero integers, the first γq homologies will give us

dq−1
i ∼ 0 (i = 1, 2, · · · , γq)

and the most general of the homologies between the aq−1
j will be written

(3)
γq∑

i=1

λid
q−1
i ∼ 0

where the λi are any integers. If, on the other hand, division of homologies is
not permitted, the most general homology will be written

(4)
γq∑

i=1

λiω
q
i dq−1

i ∼ 0

where the λi are integers. For the two definitions of Betti number (c, §I, p. 100)
to coincide it is necessary and sufficient that the two formulas (3) and (4) agree,
i.e. that all the non-zero invariants ωq

i be equal to 1 (c, §IX, p. 133).
We now consider the linear combinations of the aq−1

j which will be homol-
ogous to zero by virtue of the homologies (3), and ask ourselves which among
these combinations will remain distinct if, abandoning the homologies (3), we
confine ourselves to the homologies (4) without admitting the right to divide
homologies.

We see immediately that the number of these expressions which are distinct
in this way is precisely the product

ωq
1ω

q
2 · · ·ωq

γq

But, referring to the notations of the preceding paragraph, we see that this
product is none other than one of the numbers of the sequence

M0, M1, M2, · · ·

and precisely the first member of this sequence which is non-zero (c. §IX, p. 133).
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The preceding shows how it is important to distinguish two kinds of mani-
folds.

Those of the first kind, which I call manifolds without torsion, are those
for which all the invariants of the tables Tq are equal to 0 or 1; for which,
consequently, the two formulas (3) and (4) agree and the two definitions of
Betti numbers are in accord.

Those of the second kind, which I call manifolds with torsion, are those for
which certain of these invariants are not equal to either 0 or 1, and for which,
consequently, the two definitions of Betti numbers are not in accord. In this
case we always adopt the second definition (c, §I), except where the contrary is
stated.

The justification of this nomenclature for the presence of invariants greater
than 1 lies, as we shall see later, to a circumstance truly comparable to a twisting
of the manifold on itself.

§4. Application to some examples

Desirous of applying the preceding to the examples given in Analysis si-
tus (p. 50 ff.), I must first of all make a distinction between several kinds of
polyhedra.

Ordinary polyhedra, or the first kind are those for which all the aq
i are sim-

ply connected (homeomorphic to hyperspheres) and such that all the elements
of these aq

i are distinct; for example, in ordinary space the tetrahedron will be a
polyhedron of the first kind since it has four faces which are triangles and con-
sequently simply connected (homeomorphic to circles), and all of these triangles
are distinct and likewise their sides and vertices.

Polyhedra of the second kind are those for which all the aq
i are simply con-

nected but such that not all the elements of these aq
i are distinct. Take for

example a torus in ordinary space; from a point A on the surface of the torus
draw a meridian and a parallel. These two cuts do not separate the surface
of the torus into two regions; however, they render it simply connected. The
surface is homeomorphic to a rectangle when rendered simply connected in this
way, with two opposite sides corresponding to the two sides of the meridian cut
and the other two corresponding to the two sides of the parallel cut. Thus the
torus is a species of polyhedron with a single face; that face is a quadrilateral,
and hence simply connected, but the four sides of that quadrilateral not distinct
– two are identified with the meridian cut and two with the parallel cut; likewise
the four vertices are not distinct but all four are identified with the point A.
The polyhedron so defined is then a polyhedron of the second kind.

Finally, polyhedra of the third kind are those for which not all the aq
i are

simply connected.
Properties of polyhedra of the first kind extend for the most part to those

of the second kind. Nevertheless, we note one difference. In a polyhedron of
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the first kind, each ap−1
j separates two aq

i , and does not belong to any other ap
i .

Consequently, in each column of the table Tp we shall have one of the numbers
εp
ij equal to +1, another equal to −1, and all the others 0.

It is not the same with polyhedra of the second kind. It can happen that
two of the ap−1

j for the same ap
i are not distinct. In that case, after crossing

that ap−1
j we shall find ourselves in the same ap

i as before. Thus we consider
our torus, as always, to be a polyhedron with a single face; after having crossed
the meridian cut, for example, we find ourselves on the same face again. It
happens then that this ap−1

j is not in the relation to this ap
j ; actually, it is

simultaneously in the direct and inverse relation, so that the two compensate,
and the corresponding number εp

ij is equal to zero. In that case, all the numbers
εp
ij which appear in the corresponding column of the table Tp are zero.

In the examples in question (p. 50 ff.) the manifolds are closed, three-
dimensional ones which we see can be regarded as polyhedra of the second kind.
Each of these polyhedra has a single cell (which in the first, third and fourth
examples is a cube, in the fifth an octahedron), but the faces of this cell are
identified in pairs.

1st example :

1st face ABDC = A′B′D′C ′, 1st edge AB = CD = A′B′ = C ′D′ ;
2nd face ACC ′A = BDD′A′, 2nd edge AC = BD = A′C ′ = B′D′ ;
3rd face CDD′C ′ = ABB′A′, 3rd edge AA′ = BB′ = CC ′ = DD′ ;
One unique cell, one unique vertex.

The three tables T1, T2, T3 are composed entirely of zeros. All their invariants
are therefore zero.

3rd example :

1st face ABDC = B′D′C ′A′, 1st edge AB = B′D′ = C ′C ;
2nd face ABB′A′ = C ′CDD′, 2nd edge AC = DD′ = B′A′ ;
3rd face ACC ′A′ = DD′B′B, 3rd edge AA′ = C ′D′ = DB ;

4th edge CD = BB′ = A′C ′ ;
1st vertex A = B′ = C ′ = D, 2nd vertex B = D′ = A′ = C.

Table T3 Table T2 Table T1

0 0 0 +1 −1 −1 −1 +1 −1
+1 +1 −1 +1 +1 −1
−1 +1 −1 −1 +1 −1

−1 +1
Table T3 has no non-zero invariant; table T1 has two which are 0 and 1; table

T2 has three which are 1, 2 and 2.

4th example :

1st face ABDC = B′D′C ′A′, 1st edge AA′ = CC ′ = BB′ = DD′ ;
2nd face ABB′A′ = CDD′C ′, 2nd edge AB = CD = B′D′ = A′C ′ ;
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3rd face ACC ′A′ = BDD′B′, 3rd edge AC = BD = D′C ′ = B′A′ ;
One unique cell, one unique vertex.

Table T3 Table T2 Table T1

0 0 0 0 0 0 0
0 +1 +1 0
0 +1 −1 0

Tables T1 and T3 have no non-zero invariants; table T2 has three which are
1, 2 and 0.

5th example :

1st face ABC = FED, 1st edge AB = FE, 1st vertex A = F ;
2nd face ACE = FDB, 2nd edge AC = FD, 2nd vertex B = E ;
3rd face AED = FBC, 3rd edge AE = FB, 3rd vertex C = D ;
4th face ADB = FCE, 4th edge AD = FC ;

5th edge BC = ED ;
6th edge CE = DB.

Table T3 Table T2 Table T1

0 0 0 0 +1 −1 0 0 +1 0 +1 −1 0
0 +1 −1 0 0 +1 +1 0 −1
0 0 +1 −1 +1 0 +1 −1 0
−1 0 0 +1 0 +1 +1 −1 0

0 +1 −1
0 −1 +1

The invariants are

0 for T3 ; 2, 1, 1 and 1 for T2 ; 0, 1 and 1 for T1.

We now pass to the sixth example (p. 55). We have seen (§14, p. 66) that
the fundamental equivalences may be written

C1 + C2 ≡ C2 + C1

C1 + C3 ≡ C3 + αC1 + γC2

C2 + C3 ≡ C3 + βC1 + δC2

To write the homologies which yield the fundamental homologies for addition
and multiplication, but without division, it suffices to permit permutation of
terms in the fundamental equivalences; thus we find

0 ∼ 0; (α− 1)C1 + γC2 ∼ 0; βC1 + (δ − 1)C2 ∼ 0.

The determinant
(α− 1)(δ − 1)− βγ

is equal to
2− α− δ.
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Now let µ be the greatest common divisor of the four numbers

α− 1, δ − 1, β, γ;

examination of the homologies that we have written shows that the two invari-
ants of the table T2 which are not equal to 0 or 1 are equal to

µ and
2− α− δ

µ

(The number µ can also be equal to 1.)
As far as the invariants of the tables T1 and T3 are concerned, we shall see

later that they are always equal to 0 or 1.
For example, let

α = −1, β = 1, γ = −1, δ = 0.

We have
µ = 1, 2− α− δ = 3

so that one of the invariants is 3 and the other 1.
This can also be verified by forming the table T2. Let

(x + 1, y, z), (x, y + 1, z), (−x + y,−x, z + 1)

be the three substitutions of the group G, which I shall call S1, S2 and S3, and
which correspond to the three fundamental contours C1, C2, C3 (§13, p. 63).

The manifold being studied is generated by the cube ABCDA′B′C ′D′ (§10,
p. 50). But the face ABCD must be considered to be decomposed into two
triangles ABD and ACD, and likewise the face A′B′C ′D′ into two triangles
D′A′B′ and C ′D′A′.

It is easy to see that the face ABB′A′ is changed into CDD′C ′ by the
substitution S2, the face ACC ′A′ into BDD′B′ by the substitution S1, the face
ABD into D′A′B′ by the substitution S3S1S2, the face ACD into C ′D′A′ by
the substitution S3S2.

Our polyhedron then has:

1o A single cell ;

2o Four faces, namely:

1st face ABB′A′ = CDD′C ′,

2nd face ACC ′A′ = BDD′B′,

3rd face ABD = D′A′B′,

4th face ACD = C ′D′A′;

3o Four edges, namely:

1st edge AA′ = BB′ = CC ′ = DD′,
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2nd edge AB = CD = D′A′,

3rd edge AC = BD = C ′D′ = A′B′,

4th edge AD = C ′A′ = D′B′

4o A single vertex.

The tables T1 and T3 are composed entirely of zeros.
We now pass to the example of M. Heegaard. Let x1, x2, y1, y2, z1, z2 be the

coordinates of a point in the space of six dimensions; let

x = x1 + x2

√−1 = |x|eξ
√−1

y = y1 + y2

√−1 = |y|eη
√−1

z = z1 + z2

√−1 = |z|eζ
√−1

Our manifold has the equations

z2 = xy, x2
1 + x2

2 + y2
1 + y2

2 = 1

whence
|z|2 = |xy|, ζ =

ξ + η

2
, |x2|+ |y2| = 1

To obtain the whole manifold we need the following ranges of the variables:

10 |x| from 0 to 1, with |y| varying at the same time from 1 to 0.

20 y from 0 to 2π.

30 ξ + η from 0 to 4π.

The polyhedron obtained has a single cell defined by the inequalities

0 < |x| < 1, 0 < η < 2π, 0 < ξ + η < 4π

It has two faces defined by the following relations:

1st face:
η = 0, 0 < |x| < 1, 0 < ξ < 4π;

this face is identical with

η = 2π, 0 < |x| < 1, −2π < ξ < 2π

2nd face:
ξ + η = 0, 0 < |x| < 1, 0 < η < 2π;

this face is identical with

ξ + η = 4π, 0 < |x| < 1, 0 < η < 2π.

It has three edges defined by the following relations:



§4. Application to some examples 157

1st edge:
ξ = η = 0, 0 < |x| < 1;

this edge is identical with the following three:

ξ = 0, η = 2π, 0 < |x| < 1;
ξ = −2π, η = 2π, 0 < |x| < 1;
ξ = η = 2π, 0 < |x| < 1;

2nd edge:
x1 = x2 = 0, 0 < η < 2π

3rd edge:
y1 = y2 = 0, −2π < ξ < 0,

identical with the following two:

y1 = y2 = 0, 0 < ξ < 2π;
y1 = y2 = 0, 2π < ξ < 4π.

Finally, there are two vertices, to wit:

1st vertex:
x1 = x2 = 0, η = 0,

identical with
x1 = x2 = 0, η = 2π;

2nd vertex:
y1 = y2 = 0, ξ = −2π,

identical with the following three:

y1 = y2 = 0, ξ = 0;
y1 = y2 = 0, ξ = 2π;
y1 = y2 = 0, ξ = 4π.

The table T3 is composed entirely of zeros; while T1 and T2 are written

T2 =
∣∣∣∣

0 0 +2
0 1 1

∣∣∣∣ ; T1 =

∣∣∣∣∣∣

0 −1
0 0
0 0

∣∣∣∣∣∣

We see that the invariants are 0, 2 and 1 for T2, 0 and 1 for T1.

§5. Extension to the general case of a theorem in the first
supplement
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I want to return to one of the questions treated in the previous memoir (c,
§X). In that place I envisaged the case p = 3, and I want to explain how we can
extend the same reasoning to the general case. Here is what is involved:

Let P and P ′ be dual polyhedra: we consider on the one hand the elements
ap

i of P , on the other hand the elements bq
i of P ′. I assume that we have found

a congruence

(1)
∑

λia
q
i ≡ 0

between the aq
i ; I claim that we can associate this congruence with a congruence

between the bq
i

(2)
∑

µib
q
i ≡ 0

such that we have the homology

(3)
∑

λia
q
i ∼

∑
µib

q
i .

Conversely, to each congruence of the form (2) there is a congruence of the
form (1), such that the left-hand sides of the two congruences are connected by
the homology (3).

Such is the theorem which is to be proved. I have given a simple proof in
the case p = 3, and it is a question of extending that proof to the general case.
I shall first of all make a preliminary remark.

Consider the congruences

(4) aq
i ≡

∑
εq

ija
q−1
j .

We know that by forming linear combinations of them we can eliminate the
aq−1

j and obtain congruences of the form

(5)
∑

ζia
q
i ≡ 0.

The number of distinct congruences of the form (5) is what we have called
αq − α′′q .

Suppose now that we consider the different elements ah
i of the polyhedron

p, where the number h of dimensions must be greater than p, but can equal
q + 1, q + 2, · · · , p− 1 or p. We fix the value of the number h once and for all.

We then divide the congruences (4) into groups, putting two congruences in
the same group if the two corresponding aq

i belong to the same ah
i ; it is clear

that we shall have as many groups as there are ah
i , and the same congruence

may be found in several groups, because an aq
i forms part of more than one ah

i .
By linearly combining congruences (4) of the same group we can eliminate

the aq−1
j and obtain congruences of the form

(5′)
∑

ζ ′ia
q
i ≡ 0.
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The congruences (5′) evidently form part of the system (5), because the latter
system consists of all distinct congruences of this form that we can obtain by
combining the congruences (4). On the other hand, the system (5) may contain
congruences that are not in the system (5′). In fact we obtained the latter
system by imposing restrictions on the right to combine the congruences (4),
because we have combined only congruences in the same group.

I now claim that the congruences (5’) entail the homology

(6)
∑

ζ ′ia
q
i ∼ 0.

In fact, the congruence (5′) is a congruence between the elements of the
polyhedron ah

i and, since by hypothesis this polyhedron is simply connected, this
congruence must entail the corresponding homology.

Conversely, if the homology (6) holds, the corresponding congruence will
form part of the system (5′). In fact, the validity of the homology (6) between
the elements of the polyhedron ah

i must entail the corresponding congruence,
and that congruence must be capable of derivation from the fundamental con-
gruences of the form (4) relative to the polyhedron ah

i , i.e. belonging to the same
group.

It follows that the number of distinct congruences of the system (5′) is αq −
α′q.

The system (5′) thus always remains the same, whatever value is attributed
to the number h.

We see at the same time that this consideration allows us to find the Betti
number Pq by considering only the table Tq, provided we know in addition
whether two congruences (4) belong to the same group or not.

Now we introduce a notion which can be considered as a generalization of
the notion of pyramid. Let aq be a domain contained in a hyperplane Pq of
q dimensions; let bm be a domain contained in another hyperplane P ′m of m
dimensions. I assume that these two hyperplanes have no common point. I can
then make exactly one hyperplane Π of q+m+1 dimensions pass through these
two hyperplanes.

That being given, we connect each of the points of the domain aq to each
of the points of the domain bm by lines. The set of all these lines generates a
certain domain contained in the hyperplane Π, having q + m + 1 dimensions,
which I designate by the notation aqbm, and which I can call a generalized
rectilinear pyramid.

If in fact the domain aq reduces to a plane polygon (q = 2) and the domain
bm to a point (m = 0) the domain aqbm reduces to an ordinary pyramid with
aq as base and bm as apex.

All figures homeomorphic to a generalized rectilinear pyramid may be called
generalized pyramids.

That being given, consider an element aq
i of the polyhedron P and an element

bm
j of the dual polyhedron P ′; this element bm

j corresponds to an element ap−m
j

of the polyhedron P . I assume that the element aq
i forms part of the element
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ap−m
j ; we then have

q < p−m; p ≥ q + m + 1.

I remark also that each point of bm
j forms part of the ap

k which contains
ap−m

j , and consequently of the ap
k which contains aq

i . It suffices to show this for
the vertices of bm

j ; but if bo
k is one of these vertices it will be in the interior of ap

k,
and since bo

k belongs to bm
j , ap−m

j will belong to ap
k by virtue of the definition of

the dual polyhedron itself.
Given that, we can define a system of lines L in the interior of each of the

ap
k, such that exactly one line passes through any two points in the interior of

that ap
k. The system of lines L then has the same qualitative properties of a

system of straight lines. This holds since ap
k is assumed simply connected.

We now join each of the points bm
j to each of the points of aq

i by a line L
situated in the ap

k to which aq
i and the point considered in bm

j belong.
The set of these lines L generates a figure I shall call aq

i b
m
j , which will be

homeomorphic to a generalized rectilinear pyramid and which will have q +m+
1 ≤ p dimensions.

What is the boundary of this manifold aq
i b

m
j ? Suppose that we have the

congruences
aq

i ≡
∑

εq
ikaq−1

h ; bm
j ≡

∑
ε′mjk bm−1

k .

The boundary is composed of generalized pyramids aq−1
h bm

i and aq
i b

m−1
k and

we have

(7) aq
i b

m
j ≡

∑
εq
ikaq−1

h bm
j +

∑
ε′mjk aq

i b
m−1
k .

This will no longer be true if we have m = 0. In that case, in fact, the
manifold aq

i has q = (q + m + 1)− 1 dimensions; it then must form part of the
boundary of aq

i b
m
j , and the congruence (7) will become

(7′) aq
i b

o
j ≡

∑
εq
ihaq−2

h bo
j − aq

i

(the terms in ε′ disappearing); likewise for q = 0 we have

(7′′) ao
i b

m
j ≡

∑
ε′mjk ao

i b
m−1
k + bm

j .

From the congruences (7), (7′) and (7′′) we deduce the homologies

(8)
∑

εq
ihaq−1

h bm
j ∼ −

∑
ε′mjkaq

i b
m−1
k ,

(8′) aq
i ∼

∑
εq
ikaq−1

h bo
j ,

(8′′) bm
j ∼ −

∑
ε′mjk ao

i b
m−1
k .
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The congruence (8′) assumes that aq
i forms part of ap

j ; this is what we have
envisaged elsewhere [c, §X, p. 134 equ. (2)].

Suppose now that we have found a congruence of the form

(9)
∑

λija
q
i b

m
j ≡ 0.

I claim that we can find a congruence of the same form where the number q is
increased by one and the number m decreased by one, and of such a kind that
the left-hand sides of the two congruences are homologous.

In fact, by virtue of (7) we have identically
∑

λija
q
i b

m
j ≡

∑
λijε

q
ihaq−1

h bm
j +

∑
λijε

′m
jk aq

i b
m−1
k

we must then have (annulling the coefficient of aq−1
i bm

j on the right-hand side)

∑

i

λijε
q
ih = 0

We deduce the congruence

(10)
∑

i

λija
q
i ≡

∑

i

λijε
q
ikaq−1

h ≡ 0.

All the elements aq
i which appear on the left-hand side of (10) belong to

ap−m
j ; but by hypothesis ap−m

j is simply connected; all congruences between its
elements then entail the corresponding homology, so that we have

∑

i

λija
q
i ∼ 0

whence ∑

i

λija
q
i ≡

∑
ρ

µρja
q+1
ρ

where the µ are integer coefficients and the aq+1
p are elements belonging to ap−m

j .
But ∑

ρ

µρja
q+1
ρ ≡

∑

ρi

µρjε
q+1
ρi aq

i .

We then have
λi =

∑
ρ

µρjε
q+1
ρi

The congruence (9) can then be written
∑

µρiε
q+1
i aq

i b
m
j ≡ 0

(the summation extends over the three indices ρ, i, j).
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But we can form the following homology which is none other than one of the
homologies (8)

(11)
∑

εq+1
i aq

i b
m
j ∼ −

∑
ε′mjk aq+1

ρ bm−1
k .

We then have ∑
λija

q
i b

m
j ∼ −

∑
µρjε

′m
kj aq+1

p bm−1
k ,

which proves the theorem claimed.
The case m = 0 is of course left to one side and must be treated separately.

In this case the homology (11) must be replaced by the following which is one
of the homologies (8′)

(11′)
∑

εq+1
ρi aq

i b
o
j ∼ aq+1

ρ

whence ∑
λija

q
i b

o
j ∼

∑
µρja

q+1
ρ

Then, corresponding to the congruence

(9′)
∑

λija
q
i b

o
j ≡ 0

we have the congruence ∑
µρja

q+1
ρ ≡ 0

which is of the form (1), and the left-hand sides of the two congruences will be
homologous.

Now let

(2)
∑

λjb
q
j ≡ 0

be a congruence of the form (2); by a homology analogous to (8′′) we have

bq
j ∼

∑
ε′qjkao

i b
q−1
k

if bp−1
j is one of the elements of P ′ which belongs to bq

i .
We then have the homology

∑
λjb

q
j ∼ −

∑
λjε

′q
jkao

i b
q−1
k

so that our congruence (2) will correspond to a congruence

(12) −
∑

λjε
′q
k ao

i b
q−1
k ≡ 0,

the left-hand side of which is homologous to that of (2).
Thus if we have a congruence of the form (2) we deduce the congruence (12)

which is a congruence of the form (9) where the numbers we have called q and
m above have the values 0 and q − 1 respectively. We next deduce another
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congruence of the form (9) but where the two numbers have values 1 and q− 2,
and so on; we finally arrive at a congruence of the form (9′), i.e. a congruence
where the two numbers have values q−1 and 0; and we then deduce a congruence
of the form (1).

The left-hand sides of all these congruences are homologous to each other.
Thus the theorem enunciated at the beginning of this paragraph is proved.
In order to draw all the admissible consequences we must realize that it is im-

portant to distinguish several kinds of homologies. Let vq be any q-dimensional
manifold forming part of our manifold v, and let vq−1 be its boundary, expressed
by the congruence

vq ≡ vq−1

We deduce the homology
vq ∼ 0.

The homologies obtained in this way are the fundamental homologies.
In combining fundamental homologies by addition, subtraction and multi-

plication we obtain others which are homologies without division. Finally, by
combining addition, multiplication and division we obtain others again, which
are homologies with division.

Well, all the homologies we have encountered in this paragraph are homologies
without division.

That said, we return to our tables Tq and T ′q and their invariants, and in
particular to those invariants which are not equal to 0 or 1, which we call the
torsion coefficients.

Suppose that we have the following homology:

(13)
∑

kλia
q
i ∼ 0,

where the λi are relatively prime integers, and that (13) is a homology without
division, while the homology

(14)
∑

λia
q
i ∼ 0

cannot be obtained without division. From what we have seen in one of the
preceding paragraphs, this says that k is one of the torsion coefficients of the
table Tq.

We have the congruence

(14′)
∑

λia
q
i ≡ 0.

Using the procedure of this paragraph, we can deduce from (14′) a congruence
between the bq

i which I shall write

(14′′)
∑

µib
q
i ≡ 0.

Moreover, by the theorem we have just established, we will have
∑

λia
q
i ∼

∑
µib

q
i
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This is a homology without division, and we deduce immediately, also without
division, that ∑

kλia
q
i ∼

∑
kµib

q
i

from which we have, without division,
∑

kµib
q
i ∼ 0,

whereas we do not have ∑
µib

q
i ∼ 0

without division, as this would imply
∑

λia
q
i ∼ 0

contrary to hypothesis.
This says that k is a torsion coefficient of the table T ′q.
Thus the torsion coefficients of the two tables Tq and T ′q are equal (the proof

is easy to complete) and, when we observe that the two tables T ′q and Tp−q

have the same invariants, we conclude that the tables equally distant from the
extremes have the same torsion coefficients.22

We can arrive at the same result by another method.
We have seen in one of the previous memoirs (§16) how to define the oper-

ation we have called annexation; I suppose that two elements of a polyhedron,
aq

i and aq
j for example, are separated from each other by an element aq−1

k , and
this is the only element of q dimensions common to aq

i and aq
j , and lastly that

aq−1
k does not belong to any q-dimensional elements other than aq

i and aq
j ; we

then have εq
ik = 1, εq

jk = −1; all the other εq
hk will be zero, and likewise all the

products εq
ihεq

jh.
Under these conditions, we can annex the two elements aq

i and aq
j to each

other by suppressing the element aq−1
k . What is the effect of this operation on

our tables Tk ? The table Tq loses a row and a column; the table Tq−1 loses a
row. One of the invariants, equal to 1, of Tq disappears; as far as the table Tq−1

is concerned, it loses an invariant if there are no longer more rows than columns,
in that case the invariant lost is equal to zero. All the other invariants of the
two tables are unchanged; so the two tables retain their torsion coefficients.

Now it is easy to form a polyhedron derived simultaneously from P and P ′,
we can then return from this polyhedron to either P or P ′ by regular annexa-
tions. Since these annexations do not alter the torsion coefficients, they must
be the same for the tables Tq and T ′q.

§6. Internal torsion of manifolds
22It is T ′q and Tp−q+1 which have the same invariants (2c, §3): see the classical treatises on

topology for a correct enunciation of the Poincaré duality theorem.
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Consider one of our tables Tq. We say that a sequence of distinct elements
of that table, arranged in a certain order, forms a chain if each element of odd
rank belongs to the same row as the following element and the same column as
the preceding element. The chain will be closed if the last element is the same
as the first. It is clear that a closed chain always contains an odd number of
elements and an even number of distinct elements. For example, the elements

(1) εq
11, εq

12, εq
22, εq

23, εq
33, εq

31, εq
11

form a closed chain.
Since all the elements of the table Tq are equal to 0, +1 or −1, the product

of the distinct elements of a closed chain will always be 0, +1 or −1.
Suppose that the elements of the chain (1) have the following values:

εq
12 = εq

23 = εq
31 = 1, εq

11 = εq
22 = εq

33 = −1;

the product of the elements of the chain will be −1; consider then the three
manifolds aq

1, a
q
2, a

q
3 and the three manifolds aq−1

1 , aq−1
2 , aq−1

3 ; by suppressing
the manifolds aq−1

1 , aq−1
2 and aq−1

3 we annex the other three manifolds aq
1, a

q
2

and aq
3 to each other, and the manifold obtained,

aq
1 + aq

2 + aq
3

is an orientable manifold.
If on the contrary we have

εq
12 = εq

23 = εq
31 = 1, εq

22 = εq
33 = −1, εq

11 = 1

we can again suppress aq−1
1 , aq−1

2 and aq−1
3 and obtain a manifold aq

1 + aq
2 + aq

3

by annexation; but this manifold will be non-orientable.
More generally, if all the elements of the chain (1) are equal to +1 or −1

then if we first suppress aq−1
2 and aq−1

3 we obtain the manifold

(2) aq
1 − εq

12ε
q
22a

q
2 + εq

12ε
q
22ε

q
13ε

q
23a

q
3.

Suppressing aq−1
1 next, we see that the manifold (2) is henceforth formed from a

closed chain of aq
i in the sense of paragraph 8 (p. 35) of Analysis situs, and that

chain is orientable or non-orientable according as the product of the distinct
elements of the chain (1) equals −1 or +1.

In the first case we say that the chain (1) is orientable, and in the second
case, that it is non-orientable.

We are then led to distinguish three categories among the closed chains
formed with the aid of elements of the tables Tq :

1o Null chains, i.e. those for which the product of the elements is zero

2o Orientable chains.

It is easy to see that these are those for which the product of the elements is
+1 if the number of elements is a multiple of 4, or those where this product is
−1 if the number of elements is a multiple of 4, plus 2.
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3o Non-orientable chains.

These are those where the product is −1 if the number of elements is a multiple
of 4, or +1 if the number is a multiple of 4, plus 2.

That being given, we say that the table Tq (or more generally, any table or
determinant, the elements of which are all 0, +1 or −1) is orientable if it does
not contain any non-orientable chains.

It follows from this definition that:
An orientable table remains orientable if we change all the signs of a column,

or all the signs of a row; or again, if we permute two colums or two rows.

THEOREM: An orientable determinant cannot equal 0, +1 or −1.

In fact, by changing the signs of columns where necessary we can always
arrange for the elements of the first row to be 0 or +1.

Suppose for example that the first two elements of the first row are +1, then
if I subtract the first column from the second the value of the determinant will
not change. I claim that the determinant remains orientable.

For consider a chain in the original determinant with first and last element
belonging to the second column and all the other elements in other columns.
Let a and c be the first and last elements; let ξ be the product of all the other
elements in the chain; let b and d be the elements in the first column next to a
and c respectively.

The product of the elements of our chain which I call the chain (1) will be
acξ and we have

acξ = 0 or 1 if the number of elements ≡ 0 (mod 4)

acξ = 0 or −1 if the number of elements ≡ 2 (mod 4).

The product of the elements of the chain which I call (2), and which consists
of the corresponding elements in the new determinant will be

(a− b)(c− d)ξ

and in fact the elements of our chain do not change, except the elements a and
c which become a− b and c− d.

The chain formed in the original determinant by the two elements of the
first row and the elements a and b will be orientable or null, so that we must
have

a− b = 0 or a = 0 or b = 0.

We must likewise have

c− d = 0 or c = 0 or d = 0.

If (a − b) or (c − d) is zero the theorem is proved because the product
(a− b)(c− d)ξ = 0.

If b = d = 0 we have
(a− b)(c− d)ξ = acξ
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and the theorem is proved because the products of the chains (1) and (2) are
the same, the number of elements is the same, and (1) is orientable or null.

If a = c = 0 we have
(a− b)(c− d)ξ = bdξ.

The chain (3) which belongs to the original determinant and has the same
elements as the chain (1), except that a and c are replaced by b and d is, I claim,
orientable or null; it has the same number of elements as (2) and its product is
bdξ, equal in this case to the product of (2). Then the chain (2) is orientable or
null in this case also.

If a = d = 0 we have

(a− b)(c− d)ξ = −bcξ.

This time it is necessary to consider a chain (4) in the original determinant,
the elements of which are the two elements of the first row, the elements b and
c, and the elements of the chain (1), save a and c. This chain (4) must be
orientable or null.

It contains two elements more than the chain (2).
Its product is equal to bcξ, and consequently, equal but of opposite sign to

the product of (2).
Then (2) is orientable or null.
Lastly, if b = c = 0 we have

(a− b)(c− d)ξ = −adξ

and we show just as in the preceding case that the chain (2) is orientable or
null.

We have just treated the case of chains where two elements belong to the
second column. The result is the same whatever the number of elements in the
second column, a number which must, however, always be even.

If this number is zero, the theorem is evident, since the chain in the new
determinant is no different from that in the old.

Suppose that the number is 4, to fix ideas. Let a, c, e, g be the four elements
in the second column, and imagine that we encounter in succession the element
a, various elements ξ belonging to other columns, the elements c and e, various
elements η belonging to other columns, and finally 9. Our chain will be closed.

aξceηg may be decomposed into two closed chains aξca, eηge and it will be
orientable provided these two are. Thus we are reduced to the case of chains
having two elements in the second column.

I should add that all the elements of the new determinant are 0, +1 or −1.
In fact, since we have

a− b = 0 or a = 0 or b = 0

we have
a− b = 0, a or − b
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whence
a− b = 0, 1 or − 1.

That being given, we subtract the first column from all the columns with +1
as the first element. The determinant retains its values, it remains orientable,
but all the elements of the first row are zero except the first, which is +1.

This reasoning is applicable in all cases except that where the first row is
zero; but then the determinant is zero and the theorem is evident.

Now if we suppress the first row and the first column we obtain a new
determinant equal to the first and, like it, orientable. We operate in the same
fashion on this new determinant, which has one row and column less than its
predecessor, and we finally arrive at a determinant which has a single element,
0, +1 or −1.

Our determinant is then equal to 0, +1 or −1.

1ST COROLLARY: If a table Tq is orientable, its invariants are all 0 or 1.

2ND COROLLARY: If a polyhedron and all its tables Tq are orientable, i.e.
if we cannot compose a non-orientable manifold from its elements aq

i , then this
polyhedron has no torsion coefficients.

We see that the existence of torsion coefficients (which is a necessity because
of the distinction between the definitions of the Betti numbers, or between
homologies with and without division) is due to the fact that the elements of a
polyhedron can engender non-orientable manifolds. i.e. the polyhedron is so to
speak twisted onto itself.

This is what justifies the expression “torsion coefficients” or that of manifolds
with or without torsion.

If the manifold V formed by the set of elements ap
i of the polyhedron P is

not itself non-orientable, the two tables T1 and Tp are orientable.
In fact, each line of one, and each column of the other has all elements zero,

except one equal to +1 and one equal to −1. Then if a chain is not null its
elements are in equal pairs with opposite signs; it is then orientable.

It follows that the two extreme tables T1 and Tp have all their invariants
equal to 0 or 1. This explains why we do not encounter torsion coefficients with
polyhedra in ordinary space; these polyhedra do not involve more than the two
tables T1 and T2.

This is no longer true if the manifold V is non-orientable. Thus the manifold
considered in the seventh example (§15, p. 76) can be subdivided into polyhedra
and, depending on the manner of subdivision given, we find for the table T2

∣∣ 2
∣∣ ,

∣∣∣∣
+1 +1
+1 −1

∣∣∣∣ , · · ·

In order to avoid making this work too prolonged, I confine myself to stating
the following theorem, the proof of which will require further developments:
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Each polyhedron which has all its Betti numbers equal to 1 and all its tables
Tq orientable is simply connected, i.e. homeomorphic to a hypersphere.23

23This is Poincaré’s first (erroneous) step towards the Poincaré conjecture. He disproved
the present conjecture with the construction of the so-called Poincaré homology sphere in the
Fifth Supplement, and replaced it by the (correct) conjecture that any simply-connected and
finite 3-manifold is homeomorphic to a hypersphere. (Translator’s note.)
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ON CERTAIN ALGEBRAIC
SURFACES;

THIRD SUPPLEMENT TO
ANALYSIS SITUS

Bulletin de la Sociétè Mathématique de France, 30 (1902), pp. 49–70.

We propose to study, from the viewpoint of analysis situs, the surface

(1) z =
√

F (x, y),

where F is a polynomial. We suppose that the curve

F (x, y) = 0

has no ordinary points where ∂F
∂x is nonzero, or even where ∂F

∂x = 0, without
∂2F
∂x2 or ∂F

∂y vanishing; nor ordinary double points where

∂F

∂x
=

∂F

∂y
= 0

without ∂2F
∂x2 or ∂2F

∂x2
∂2F
∂y2 −

(
∂2F
∂x∂y

)2

vanishing.
First we treat y as a constant. Then equation (1) represents an algebraic

curve, and we know that the coordinates x and y of a point on that curve can be
expressed as fuchsian functions of the same auxiliary variable u. We consider the
corresponding fuchsian group and its generating fuchsian polygon. In general,
the fuchsian polygon that corresponds to a curve of genus p is a polygon of 4p
sides, and we can suppose that the conjugate pairs of sides are those of ranks
4q + 1, 4q + 3 and 4q + 1, 4q + 4 (corresponding to the so-called normal periods
of abelian functions), or else that opposite sides are conjugate.

We adopt the latter hypothesis.
We recall that the angle sum of a polygon is equal to 2π. However, in the

particular case of the curve (1) one has the case called hyperelliptic, where the
corresponding abelian functions are hyperelliptic functions.

In that case we know that our fuchsian polygon admits a centre of symmetry
and it may be decomposed into two polygons of 2p+1 sides, each symmetric to
the other with respect to the centre.

To go further, I have to clarify what I mean by the word symmetry. At this
point we take the viewpoint of non-euclidean geometry:
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• Non-euclidean lines are circles orthogonal to the fundamental circle.

• Two figures are symmetric with respect to a non-euclidean line when we
can map one onto the other by an inversion (transformation by reciprocal
radii) that leaves that line fixed.

• Two figures are congruent24 when they are symmetric to a third with
respect to non-euclidean lines, or else when they are both congruent to a
third figure.

• Finally, we say that two figures are symmetric with respect to a centre
when they are each symmetric to a third figure in non-euclidean lines
passing through that centre.

That being given, our polygon R with 4p sides may be decomposed into two
polygons R′ and R′′ with 2p + 1 sides, each of which is symmetric to the other
with respect to a centre.

We may assume that the polynomial F (x, y) is not divisible by any square.
Under these conditions, the equation in x

F (x, y) = 0

does not have a double root, except for certain singular values of y. There are
2p + 2 simple roots that I call

x0, x1, x2, . . . , x2p+1.

The root x0 corresponds to the 2p+1 vertices of the polygon R′, while the roots
x1, x2, . . . , x2p+1 correspond to the midpoints (as always, from the non-euclidean
point of view) of the 2p + 1 sides.

In the plane of x we can make 2p + 1 cuts

C1, C2, . . . , C2p+1,

from the point x0 to the points x1, x2, . . . , x2p+1, in such a way that the two
sides of the cut Ci correspond on the polygon R′ to the two halves of the ith
edge.

In the case where p = 1 (that is, when the equation F = 0 is of fourth
degree in x) the polygon reduces to a parallelogram, the polygons R′ and R′′ to
rectilinear triangles, and the fuchsian functions to elliptic functions.

Now, if we let y vary continuously, under what conditions does this variable
return to its initial value?

Our fuchsian group will vary in a continuous manner, along with x0, x1, x2,
. . ., x2p+1 and the fuchsian polygon R. When y makes a return trip the fuchsian
group will become itself again. The points xi will in general be permuted among

24Poincaré calls them “equal,” but later (p. 232) he switches to the more appropriate word
“congruent.” Unfortunately, this skates very close to conflict with Poincaré’s use of the word
“congruence” for the boundary relation in homology theory. (Translator’s note.)
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themselves and the polygon R will become another polygon R1, equivalent to
R, which I will say is also able to generate the same fuchsian group.

Take, for example, the case p = 1. The polygon R is a parallelogram whose
sides ω and ω′ represent the magnitude and direction of the two periods of an
elliptic function. When y makes a return trip, our parallelogram becomes R1,
whose sides again represent in length and direction two periods of the same
elliptic function. However, the two periods will not in general be the same as ω
and ω′, but two equivalent periods

αω + βω′, γω + δω′,

where α, β, γ, δ are four integers such that αδ − βγ = 1.
This brings us into contact with analysis situs. Suppose that p = 1 and

suppose that we agree to give y any one of the values on a certain closed contour
K, and x any complex value, and let z be defined by equation (1). The set of
these triples x, y, z form a certain closed manifold of three dimensions. What
are the properties of this manifold from the viewpoint of analysis situs?

At each point of the manifold I assign three real variables ξ, η, ζ defined as
follows: ζ is a function of y that increases by 1 whenever y describes its complete
contour. As for ξ and η, they are linear functions of the real and imaginary parts
of the elliptic integral u defined by equation (1). The linear functions are such
that ξ and η change to ξ +1, η when the elliptic integral is augmented by ω and
to ξ, η+1 when it is augmented by ω′ (in such a way that u = ξω+ηω′). Under
these conditions, we return to the same point on the manifold V when ξ, η, ζ
change to

ξ + 1, η, ζ

or to
ξ, η + 1, ζ

or to
δξ − γη, βξ + αη, ζ + 1.

Because, if ξ1 and η1 are what ξ and η become when ζ changes to ζ +1, we have

u = ξω + ηω′

and, on the other hand,

u = ξ1(αω + βω′) + η1(γω + δω′).

More generally, ξ, η, ζ are subject to any transformation in the group G gener-
ated by these three transformations.

Here we recognize the group considered in Analysis situs, p. 55, example 6◦.
The manifold V is homeomorphic to the manifold in example 6◦ and it has G
as its fundamental group (cf. Analysis situs p. 58).

The general definition of the manifold V is the same, except that we do
not assume that p = 1. Then R is a curvilinear fuchsian polygon. Again we
introduce the three variables ξ, η, ζ; with ζ being defined as above. As for ξ and
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η, they are bi-uniform functions of ζ and are the real and imaginary parts of the
variable u; in such a way that each complex value of u corresponds to a unique
pair of values ξ and η, and conversely. To each value of ζ there corresponds a
fuchsian group and the fuchsian polygon R for this group. This group will be
generated by 2p substitutions

S1, S2, . . . , S2p.

The substitution Sk changes ξ and η to

ϕk(ξ, η, ζ), ψk(ξ, η, ζ)

in such a way that we return to the same point of the manifold V when we
change ξ, η, ζ to

ϕk(ξ, η, ζ), ψk(ξ, η, ζ), ζ.

Moreover, we can define the functions ξ and η in such a way that ϕk and ψk

do not depend on ζ.
We consider the figure formed by the fuchsian polygon R = R′ + R′′ and

its transforms under the substitutions in the fuchsian group. This polygon and
its transforms cover the interior of the fundamental circle. The figure formed
in this way is deformed continuously as ζ varies continuously, but it remains
homeomorphic to itself. We can then set up a correspondence between each
point M0 of the initial figure and a unique point M in each of its consecutive
positions in such a way that:

10 The point M varies continuously when ζ varies continuously.

20 When M0 is a vertex of R, M remains a vertex of R; when M0 is on an
edge of R, M remains on an edge of R.

30 If two points M0 and M ′
0 are congruent (that is, transforms of each other

under substitutions in the fuchsian group), then the points M and M ′ are
likewise congruent.

I can then assume that there are two auxiliary variables ξ and η which are
the same for the the point M0 and the point M ; I can suppose, for example,
that they are the coordinates of the point M0.

Under these conditions, ϕk and ψk are independent of ζ.
When y makes a round trip, so that ζ increases by 1, the polygon R becomes,

through successive deformation, a polygon R1 equivalent to R.
The point M becomes a point M1 whose coordinates will be

θ(ξ, η), θ1(ξ, η).

We see that we return to the same point of V when ξ, η, ζ are changed to

θ(ξ, η), θ1(ξ, η), ζ + 1,
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or, more generally, when ξ, η, ζ are subjected to one of the substitutions in the
group G generated by the 2p + 1 substitutions that change ζ and η to

ϕk, ψk, ζ (k = 1, 2, . . . , 2p)

or to
θ, θ1, ζ + 1.

This group G will then be the fundamental group of the manifold V .
We remark first of all that this group is not simple. Let G′ be the group

generated by the 2p substitutions (ϕk, ψk, ζ) and let Σ be the substitution
(θ, θ1, ζ + 1). Then I claim that G′ is an invariant subgroup of G. It suffices to
show that G′ commutes with Σ. In fact, Σ changes the polygon R to an equiv-
alent polygon without changing the fuchsian group. But the fuchsian group is
none other than the group generated by the 2p substitutions (ξ, η;ϕk, ψk). We
see that this group commutes with the substitution (ξ, η; θ, θ1) and the theorem
follows immediately.

Now consider a manifold V defined as follows:

We represent the variable y on a sphere. On this sphere we distinguish
the ordinary points, for which the equation F (x, y) has multiple roots, and the
singular points for which this equation has multiple roots.

Let O be an ordinary point and let A1, A2, . . . , Aq be the singular points.
We join O to each of the latter points by disjoint cuts OA1, OA2, . . . , OAk.

In addition, we draw around each of the singular points a circle of very small
radius that we call its protective circle.

To construct the manifold V we give y any value not inside one of the
protective circles, x any complex value, and z one of the two values defined by
equation (1).

To each value of y there corresponds a fuchsian polygon R, and this polygon
is completely determined as long as y varies without crossing the cuts OA, since
it is only when y makes a complete circuit around one of the singular points A
that the polygon R can change.

The polygon R and its transforms under the fuchsian group form a figure
which, when y varies, is deformed in a continuous manner while remaining home-
omorphic to itself. We let y0 be the initial value of y, let R0 the corresponding
polygon, and let M0 be a point in the plane of R0. We can set up a correspon-
dence between M0 and a point M in the plane of R, in such a way that the
coordinates of M are continuous and bi-uniform functions of those of M0, M is
a vertex or on an edge of R if M0 is a vertex or on a side of R0, and M and M ′

are congruent when M0 and M ′
0 are congruent.

It follows that we can assign two auxiliary variables ξ and η to the point M
which are none other than the coordinates of M0. Under these conditions, the
fuchsian group is generated by the 2p substitutions,

S1, S2, . . . , S2p,
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such that Sk changes ξ and η to ϕk(ξ, η), ψk(ξ, η), and the functions ϕk and ψk

are independent of y.
When y makes a circuit around the singular point Ai, R changes to an

equivalent polygon R1. It follows that ξ and η change to

θi(ξ, η), θ′i(ξ, η),

where θi and θ′i are bi-uniform and continuous functions of ξ and η such that,
when the point ζ, η is a vertex or on a side of of R0, the point θi, θ

′
i is a vertex

or on a side of the polygon R0
1 analogous to R1 and equivalent to R0.

Now consider a second fuchsian group that I call Γ, such that y is a fuchsian
function, with group Γ, of the auxiliary variable ζ + iζ ′. The corresponding
fuchsian polygon P will be of the second family (that is, all its vertices will
be on the circle at infinity and all its angles zero) and of genus 0. Its vertices
correspond to the values A1, A2, . . . , Aq of the variable y.

Corresponding to the q singular points A1, A2, . . . , Aq there are q substitu-
tions

Σ1, Σ2, . . . , Σq

which generate the group Γ. And the substitution Σi will change ζ and ζ ′ to

χi(ζ, ζ ′), χ′i(ζ, ζ ′).

It follows that we return to the same point of the manifold V when the
four variables ξ, η, ζ, ζ ′ are subject to one of the substitutions in the group G
generated by the 2p + q substitutions that change these variables to

ϕk(ξ, η), ψk(ξ, η), ζ, ζ ′ (k = 1, 2, . . . , 2p);
θi(ξ, η), θ′i(ξ, η), χi(ζ, ζ ′), χ′i(ζ, ζ ′) (i = 1, 2, . . . , q).

The first 2p of these substitutions generate a group G′ (none other than
the fuchsian group applied to ξ and η, while leaving the two variables ζ and ζ ′

constant). Since this fuchsian group commutes with the substitutions Σi, we
conclude, as above, that G′ is an invariant subgroup of G.

The group G can be regarded as the fundamental group of the manifold
V , provided we assume, as above, that y is not permitted to penetrate the
protective circles.

In fact, let N be a point in the four-dimensional space whose coordinates are
ξ, η, ζ, ζ ′. To each point N there corresponds a point of V , but to each point of
V there corresponds an infinity of points of N ; I say that the latter points are
congruent to each other.

Following the definitions given in Analysis situs (cf. p. 59), to each substi-
tution in the fundamental group of V there corresponds a closed contour K on
V , with initial point a certain fixed point of V chosen once and for all (this is
the point I called M0 in Analysis situs). Let N0 be one of the points N corre-
sponding to this fixed point of V . Then, corresponding to our closed contour
K we have a line N)BN ′

0 in the space (ξ, η, ζ, ζ ′), going from N0 to a congruent
point N ′

0.
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It is clear that two lines N0BN ′
0 and N0CN ′

0 with the same extremities
give the same substitution in the fundamental group. It suffices to show that
the closed curve N0BN ′

0CN0 bounds a surface, since the corresponding closed
contour on V then bounds a surface that can be shrunk to a point by continuous
deformation.

Thus it remains to show that the region of four-dimensional space where the
point N moves is simply connected. What is this region? First of all, the point
ξ, η can move throughout the interior of the fundamental circle, which is simply
connected. Likewise, the point ζ, ζ ′ can cover the polygon P and its transforms
under the fuchsian group Γ. It, therefore, can also move throughout the whole
interior of the fundamental circle, if we ignore the existence of the protective
circles. But since y cannot penetrate the protective circles, it is necessary to
remove small regions from P in the neighbourhood of each vertex, and likewise
for the transforms of P . It is therefore necessary to remove infinitely many small
disks from the interior of the fundamental circle, but centred on the fundamental
circle. Since the remaining area is no less simply connected, the region in which
the point N = (ξ, η, ζ, ζ ′) moves is also simply connected. Q.E.D.

Thus, to a point N ′
0 (or, if you prefer, to the substitution in the group G that

changes N0 to N ′
0) there corresponds a unique substitution in the fundamental

group. It follows that the fundamental group is isomorphic to G, and we know,
moreover, that the isomorphism is not meriedric.25

This is how it happens that there are no points N ′
0 (other than N0) for

which the corresponding substitution is the identity, that is, such that the closed
contour on V corresponding to the line N0BN ′

0 can be reduced to a point by
continuous deformation.

We then need to find out whether, by describing an infinitely small contour
on V , it can happen that the point N undergoes a nonidentity substitution in
G. Now, when we describe an infinitely small contour on V , the variable y also
describes an infinitely small contour on its plane. This contour cannot enclose
any of the singular points Ai, because each of them has a protective circle
which y cannot penetrate. We can therefore arrange, by subjecting our contour
to an infinitely small deformation, that y remains constant and the variable x
describes an infinitely small contour on its plane. If the latter contour does not
enclose any of the singular points xi, the point N whose coordinates are ξ, η, ζ, ζ ′

returns to its original value, and it is subject only to the identity substitution. If
the contour encloses just one singular point, the variable z will change sign and
the cycle is not closed on V . Finally, it cannot happen that the contour encloses
two singular points, because it is infinitely small, and two singular points cannot
be infinitely close together except when y approaches one of the points Ai, and
we cannot approach the points Ai because of the protective circles.

In summary, when we describe a closed cycle on V the substitution experi-
enced by N is always the identity. Thus the isomorphism between G and the

25As mentioned on p. 60, Poincaré is using the obsolete terminology of “holoedric isomor-
phism” and “meriedric isomorphism” for what we now call “isomorphism” and “homomor-
phism.” (Translator’s note.)
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fundamental group is holoedric. In other words, since the fundamental group is
defined only up to isomorphism, the group is none other than G.

One sees the role played by the protective circles in the preceding reasoning.
We now suppress the protective circles and suppose that x and y can take any
complex values, so that V is the manifold defined by equation (1).

First, the fundamental group will always be isomorphic to G; I do not have
to change anything in that part of the argument. But it remains to find out
whether this isomorphism is meriedric. To find out, I am going, as above, to
study what happens when one describes an infinitely small cycle on V .

If, when this cycle is described, y does not turn around a singular point
Ai, or come infinitely close to Ai, then the preceding reasoning applies and the
substitution undergone by N is the identity. Now suppose that y describes a
very small closed circle around Ai. Then ζ and ζ ′ change to χi and χ′i and N
undergoes either the substitution (θi, θ

′
i, χi, χ

′
i), which I call Ti for short, or a

substitution in the group G′.
Let us be more precise. When we describe a circle, the point x describes an

infinitely small closed contour in its plane. At the same time, the points

x0, x1, x2, . . . , x2p+1,

because of the variations in y, describe very small curves. Two of these points,
which I call xa and xb, are very close to each other when y is in the neighbour-
hood of Ai. The other points xk describe closed contours when y turns around
Ai. As for xa and xb, it can happen that they change places while each describes
a very small arc, so that the union of these two arcs is a small closed curve.
Otherwise, they do not change places, so each of them describes a closed curve.

If x does not turn around any of the singular points xk, then the point N
undergoes the substitution Ti, corresponding to which we must have the identity
substitution in the fundamental group.

If x turns around a point xk other than xa and xb, then z changes sign and
the cycle is not closed. This case must therefore be excluded.

If x turns around the points xa and xb, then the sum of the arguments of
x−xa and x−xb increases by 2π or 4π. The first case must be excluded because
z changes sign; we examine the second.

We go back to the fuchsian polygon R and the two partial polygons R′ and
R′′. Corresponding to the point xa there is a certain point ua on R′ in the
middle of one of the sides (from the non-euclidean viewpoint). Let sa be the
substitution that changes a point u in the plane of R to the symmetric point
with respect to ua (from the non-euclidean viewpoint).

Let u′a be a point congruent to ua, the transform of ua by a substitution S
in the fuchsian group, and let s′a be a substitution that changes a point to its
symmetric point with respect to u′a. We evidently have

s′a = S−1saS.

We now consider the different points of the plane of R that correspond to
xb. Among these points, I distinguish those that tend to ua when y tends to
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Ai without crossing the cuts OA; I call them ub. I denote by u′b the transforms
of the ub by S. I define sb and s′b relative to ub and u′b just as sa and s′a were
defined relative to ua and u′a.

It is clear that
s2

a = s2
b = s′2a = s′2b = I,

that sasb and sbsa belong to the fuchsian group, and that

s′b = S−1sbS.

Moreover, sasb and sbsa are inverses of each other.
This being so, when x describes its contour around xa and xb the point ξ, η

undergoes the substitution sasb (or the substitution sbsa, depending on the sense
in which the contour is described) or, more generally, one of the substitutions
in the fuchsian group.

The point N then undergoes the substitution Ti followed by one of the
substitutions S′ in G′ or, what amounts to the same thing, a substitution S′′ in
G′ followed by Ti.

Thus, the substitution TiS
′ = S′′Ti in the group G again corresponds to the

identity substitution in the fundamental group.
Since we have already seen that Ti corresponds to the identity substitution,

we conclude that S′ and S′′ likewise correspond to the identity substitution.
Once again it can happen that, when we describe a small closed cycle on

V , y does not turn around Ai, but it remains very close to Ai. In that case, ζ
and ζ ′ return to their initial values and, at the same time, x describes a closed
contour in its plane. We may suppose that the latter contour encloses the two
singular points xa and xb because, when y is in the neighbourhood of Ai, these
two points xa and xb are close to each other. Then the point u undergoes a
substitution in the fuchsian group and the point N undergoes a substitution
S′′′ in G′ for which the corresponding substitution in the fundamental group is
again the identity.

If we then recall that our group G is generated by the subgroup G′ and the
substitutions Ti, we see that all the substitutions Ti and certain of the sub-
stitutions in G′ correspond to the identity substitution. Thus the fundamental
group will be isomorphic to G′ (and, consequently, to a fuchsian group), because
all the Ti correspond to the identity substitution, and this isomorphism will in
general by meriedric, because certain substitutions in G′ will correspond to the
identity.

Before going further, a distinction is necessary. The singular points xa and
xb may change places when y turns around Ai, or they may not. In the first
case there is no difficulty: the part of the manifold (1) in the neighbourhood of
the point y = Ai, x = xa = xb may be replaced by the part of the manifold

z2 = y − x2

in the neighbourhood of the origin, and every closed cycle that stays close to this
point is reducible to a point in such a way that the corresponding substitution
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in the fundamental group cannot be the identity substitution. In that case, Ti,
S′ and S′′ correspond to the identity substitution, as we have explained.

In the second case the surface (1) presents a cone point and the portion of
the manifold (1) in the neighbourhood of y = Ai, x = xa = xb may be replaced
by the portion of the manifold

z2 = y2 − x2

in the neighbourhood of the origin.
Then we can make two equally legitimate conventions. Suppose that a closed

contour on V may be shrunk to a point, but only by crossing the cone point.
We can admit that the corresponding substitution in the fundamental group is
again the identity or, in other words, we can treat the cone point as an ordinary
point of the manifold. In that case, Ti, S′, and S′′ again correspond to the
identity.

Or else we can make the opposite convention of treating the cone point as a
singular point which it is forbidden to cross. In that case Ti again corresponds
to the identity substitution, but this is not the case for S′′′. Then we always
have S′′ = S′′′.

A question arises here. Picard has shown (Théorie des fonctions algébriques
de deux variables, t. I, pp. 85 ff.) that, if an algebraic surface is the most general
for its degree, then the linear cycles can be reduced to points in such a way that
the Betti number P1 equals 1.

It does not follow immediately that the fundamental group reduces to the
identity substitution. In fact, Picard shows that each linear cycle is homologous
to zero, and to show that the fundamental group reduces to the identity substi-
tution it is necessary to show that each linear cycle is equivalent to zero. For
the difference between homologies and equivalences, see Analysis situs, p. 59.26

It is therefore necessary to return to this question from a new point of view.
We begin with the case where p = 1, that is, where our fuchsian polygon R is
a parallelogram. Then all the substitutions in G′, and hence all those in the
fundamental group, commute with each other.

The group G′ is generated by two substitutions that I call s and s1. Suppose
that we are given any cycle; to this cycle there corresponds a substitution in G′

that we can write as, for example,

sαsα1
1 sβsβ1

1 sγsγ1
1 .

Since the substitutions in G′ commute, we can write it equally well as

sα+β+γsα1+β1+γ1
1 .

If, as shown by Picard, each cycle is homologous to zero, this means that,
among the possible cycles, there are two corresponding to substitutions in G′

sasb
1, scsd

1

26It seems here that Poincaré has finally overcome his confusion between null-homologous
and null-homotopic curves, previously shown on p. 59 and p. 102. However, he confuses them
yet again on p. 192. (Translator’s note.)
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(where a, b, c, d are four integers whose determinant is nonzero) and which are
reducible to a point. It then follows that sasb

1 and scsd
1 correspond in the

fundamental group to the identity substitution, which I write

sasb
1 ≡ I, scsd

1 ≡ I.

We conclude, recalling that s and S1 commute, that

sε ≡ I, sε
1 ≡ I, where ε = ad− bc.

We see that, in this case, the fundamental group consists of a finite number
of substitutions—at most ε2.

But we can go further, to the case where p > 1.
Suppose, to fix ideas, that p = 2, and let

a, b, c, d, e, f

abbreviate the six singular point of the plane that we previously called x0, . . . , x5.
First suppose y = 0. We join the point x = 0 to the points a, b, c, d, e, f by

rectilinear cuts, in such a way that we encounter the cuts in the order

Oa, Ob, Oc, Od, Oe, Of

when turning around the point O.
We now let y vary continuously, but without crossing any of the cuts OAi.

At the same time the points a, b, . . . move continuously, but without changing
order or turning around each other. The cuts Oa, . . . may cease to be rectilinear,
but they maintain the same order in a circuit around O.

When we cross the cut Oa, the variable u (the argument of the fuchsian
function) undergoes a transformation that I call a and which is a sort of sym-
metry analogous to the transformation sa defined above, p. 177 (symmetry with
respect to ua).

I define the transformations b, c, d, e, f likewise. It is clear that we have

a2 = b2 = c2 = d2 = e2 = f2 = I, abcdef = I,

and that these are the only relations that hold among them. The fuchsian group
consists of all possible products of these transformations up to an even number.

When the point y is near Ai (but without having crossed the cut OAi), the
four cuts Oa, Ob, Oc, Od look like the solid lines in Figure 1.

After the the point y has described a contour around the point Ai the cuts
Oa and Od are deformed and take the form shown by the dotted lines in the
figure. Moreover, they are permuted in such a way that the solidly-drawn cut
Oma becomes the dotted cut Om′d, while the cut Ond becomes the cut On′a.

We now draw a closed contour in the plane, from any fixed point M0. If this
contour successively crosses the cuts Oa, Oc, Oa,Ob, Of,Oe, for example, then
it is equivalent to the substitution acabfe.
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Fig. 1.

That being so, we consider a closed contour that crosses exactly one of the
cuts

(1) Oma, Ob, Oc, Ond, Oe, Of.

As y loops around Ai it is transformed into a contour crossing exactly one of
the cuts

(2) Om′d, Ob, Oc, On′a, Oe, Of.

It is easy to see from the figure that a contour crossing one of the cuts (2) will
cross certain of the cuts (1) in a certain order, and conversely, thus producing
a certain combination of the substitutions a, b and c.

Suppose, for example, that M0 is outside the contour Om′dnO. The cycle
that crosses

Om′d will cross Ond and is equivalent to d,
Ob will cross Ond,Oma, Ob, Oma and Ond and is equivalent to dabad,
Oc will cross Ond,Oma, Oc, Oma and Ond and is equivalent to dacad,
Om′a will cross Ond,Oma and Ond and is equivalent to dad,
Oe will cross Oe and is equivalent to e,
Of will cross Of and is equivalent to f.

Consequently, the transformation Ti will change the substitutions

(3) a, b, c, d, e, f

respectively to

(4) d, dabad, dacad, dad, e, f.
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We have previously written down the relation

TiS
′ = S′′Ti

and showed that the two substitutions S′ and S′′ correspond to the same sub-
stitution in the fundamental group, so that we can write

(5) S′ ≡ S′′.

Since S′ is a certain combination of (and even number of) the substitutions
(3) and S′′ is the corresponding combination of the substitutions (4) it suffices,
for the equivalence (5) to hold, that we have

a ≡ d, b ≡ dabad, c ≡ dacad, d ≡ dad.

But all these equivalences reduce to

ad ≡ 1

or, which comes to the same thing, a ≡ d.
We then saw that the substitution S′′′ in G′ must correspond to the identity

substitution in the fundamental group, which I wrote

S′′′ ≡ 1.

Here we see that S′′′ is none other than ad, so that we recover the equivalence

ad ≡ 1,

which is (with Ti ≡ 1) the only one that we can derive by consideration of the
singular point Ai.

It remains for us to examine the case where the point

x = a, y = Ai

is a conical point of the surface z = F (x, y). We begin again with a figure
analogous to Figure 1. When the point y turns around Ai, the cuts Oma and
Ond drawn as solid lines are changes into the cuts Om′a and On′d drawn as
dotted lines (Figure 2).

Fig. 2.

By reasoning as usual, and considering the different cycles that originate at M0

and cross one of the cuts, we see that the cycle that crosses

Om′a will cross Ond, Oma and Ond,
Ob will cross Ond, Oma,Ond, Oma, Ob,Oma, Ond,Oma, Ond,
Oc will cross Ond, Oma,Ond, Oma, Oc,Oma, Ond,Oma, Ond,
On′d will cross Ond, Oma,Ond, Oma, Ond,
Oe will cross Oe,
Of will cross Of.
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These cycles will therefore be equivalent to the respective combinations

dad, dadabadad, dadacadad, dadad, e, f.

That is, Ti will transform the substitutions

a, b, c, d, e, f

into the substitutions

dad, dadabadad, dadacadad, dadad, e, f.

If we treat the conical point as an ordinary point of the manifold, then we
again have

S′ ≡ S′′, S′′′ ≡ 1.

The first condition implies

(6) a ≡ dad, b ≡ dadabadad, c ≡ dadacadad, d ≡ dadad.

The second gives simply
ad ≡ 1,

which also implies the conditions (6).
We now consider the conical point as one that it is not permitted to cross.

Then we again have S′ ≡ S′′ and, consequently, the conditions (6). But we do
not also have S′′′ ≡ 1, that is, ad ≡ 1.

The conditions (6) reduce to just one:

(ad)2 ≡ 1.

Thus if we forbid the crossing of a conical point we do not have ad ≡ 1, but we
do have (ad)2 ≡ 1.

This means that the cycle that turns around the two points a and d is not the
boundary of a two-dimensional manifold contained in V , but when this cycle is
taken twice it does form the boundary of a two-dimensional manifold contained
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in V , at least if we assume that the manifolds of one or two dimensions are not
all pushed away from the conical point.

It is easy to relate this to a well known fact. We have already remarked that
the portion of V in the neighbourhood of a conical point is homeomorphic to
the portion of the manifold z2 = x2 − y2, of z2 = xy, in the neighbourhood of
the origin.

We therefore let W be the four-dimensional manifold z2 = xy and suppose
that we exclude the origin, which is a conical point. The preceding teaches
us that if C is a closed one-dimensional cycle on W then we do not have the
equivalence

C ≡ 0,

but we do have the equivalence

2C ≡ 0.

Now consider the three-dimensional manifold

z2 = xy, |x2|+ |y2| = 1,

which I call W ′. This is the manifold due to Heegaard [cf. Premier Supplément
(sic) à l’Analysis situs (Rendiconti del Circulo matematico di Palermo, vol.
XIII, 1899)].

To each point x, y, z of W there corresponds a point of W ′:

x√
|x2|+ |y2| ,

y√
|x2|+ |y2| ,

z√
|x2|+ |y2| .

If a point of W describes a cycle C, the corresponding point of W ′ describes
a cycle C ′. But it is evident that if we have C ≡ 0 on W then we have C ′ ≡ 0,
and conversely. (Recall that the equivalence C ≡ 0 means that there is a two-
dimensional manifold in W with boundary C.)

So if we have 2C ≡ 0 on W without having C ≡ 0 then on W ′ we have a
cycle C ′ with 2C ′ ≡ 0 but without having C ′ ≡ 0.

We recall that the existence of such a cycle C ′ is one of the characteristic
properties of Heegaard’s manifold.

Nothing is now easier than finding the fundamental group. This group is
meriedrically isomorphic to the fuchsian group generated by all combinations
of an even number of the substitutions a, b, c, d, e, f , which are subject to the
relations

a2 = b2 = c2 = d2 = e2 = f2 = 1, abcdef = 1.

But if the two points a and d can be exchanged when y turns around Ai we
have ad ≡ 1, whence

a ≡ d.

I claim that the same relation holds if a is exchanged with d when y describes
any closed cycle, enclosing, for example, not just one singular point but two
singular points Ai and Ak. If, for example, a is exchanged with b when y turns
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around Ai, and b with d when y turns around Ak (so that a is exchanged with d
when y describes a contour enclosing both these singular points), then we have

a ≡ b, b ≡ d.

Consequently,
a ≡ d.

Q.E.D.

Thus if the singular points a, b, c, d are exchangeable we have

a ≡ b ≡ c ≡ d.

If the polynomial F (x, y) is indecomposable, the roots of the equation

F (x, y) = 0

(considered as an equation in x) will be exchangeable when we vary y arbitrarily.
Our 2p + 2 singular points (which are six in number, a, b, c, d, e, f , if p = 2)

are then exchangeable and we have

a ≡ b ≡ c ≡ d ≡ e ≡ f.

An arbitrary substitution in the fundamental group, which reduces to a
combination of an even number of factors a, b, c, d, e, f then reduces to an even
power of a, that is, to the identity.

Thus, if the polynomial F is indecomposable, the fundamental group consists
only of the identity substitution.

If the polynomial F decomposes into two factors, F = F1F2, we need to
distinguish two kinds of singular points: those satisfying the equation F1 = 0
and those satisfying the equation F2 = 0. Suppose, for example, that a, b, c, d
satisfy F1 = 0 and e, f satisfy F2 = 0. We then have

a ≡ b ≡ c ≡ d, e ≡ f.

We do not have a ≡ e (if the conical points are not regarded as ordinary points);
but we do have (ae)2 ≡ 1, so that the fundamental group consists only of the
two substitutions

1, ae.

It remains to see whether this number is not further reduced by considering
the relation

(7) abcdef = 1.

We observe that we can always make the degree of F even (up to a homo-
graphic transformation), because the number of singular points is 2p + 2. We
must then distinguish between the case where the degrees of F1 and F2 are both
even—in which case relation (7) is an identity and the fundamental group is not
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further reduced—and the case where the degrees of F1 and F2 are both odd, in
which case relation (7) reduces to ae ≡ 1 and the fundamental group consists
only of the identity substitution.

If F decomposes into three factors, F = F1F2F3, so that a is one of the roots
of F1 = 0, b is one of those of F2 = 0, and c is one of those of F3 = 0, then we
have

a2 ≡ b2 ≡ c2 ≡ 1, (ab)2 ≡ (bc)2 ≡ (ac)2 ≡ 1,

which shows that the fundamental group reduces to four substitutions

1, ab, bc, , ac.

This number may again be reduced, because of relation (7), if two of the factors
are of even degree.

Finally, if F decomposes into n factors, F = F1F2 · · ·Fn, and if ai is one of
the roots of Fi = 0, then we have

(8) a2
i ≡ 1, (aiak)2 ≡ 1 (i, k = 1, 2, . . . , n).

If S is any substitution in the fundamental group it will be the product of an
even number of the substitutions ai. But the relations (8) imply

aiak ≡ akai.

We can therefore permute the factors of S so as to write it in the form

aε1
1 aε2

3 · · · aεn
n (ε1 + ε2 + · · ·+ εn ≡ 0, mod 2).

After that, with the help of the relations (8), we can reduce all the expo-
nents to 0 or 1, so that S reduces to the product of k different factors among
a1, a2, . . . , an, where k is even and the order of the factors does not matter.
There are 2n−1 such combinations, so the fundamental group consists of 2n−1

substitutions. This number may be halved by means of relation (7) if two or
more of the factors are of odd degree.
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CYCLES ON ALGEBRAIC
SURFACES;

FOURTH SUPPLEMENT TO
ANALYSIS SITUS

Journal de Mathématiques, 8 (1902), pp. 169–214.

§1. Introduction

The beautiful works of Picard on Algebraic surfaces have, for a long time,
impressed on me the importance of the notion of cycles of one, two and three
dimensions. I have thought that it should be possible to apply, to the notion
in question, the principles I have expounded in Analysis situs and its first two
supplements (centenary volume of the Journal de l’École Polytechnique; Ren-
diconti del Circolo Matematico di Palermo, vol.XIII; Proceedings of the London
Mathematical Society, vol. XXXII), and I have obtained certain partial results
that were announced in a note in Comptes rendus and which complete those of
Picard at certain points.

Given a closed manifold V of p dimensions, I consider other manifolds con-
tained in it, closed or not, of fewer dimensions. I denote by Wq such a manifold
of q dimensions.

If
∑

Wq is a set of q-dimensional manifolds and
∑

Wq−1 is a set of (q − 1)-
dimensional manifolds, the congruence

∑
Wq ≡

∑
Wq−1

signifies (by definition) that
∑

Wq−1 is the complete boundary of the set of
manifolds

∑
Wq. I express the same fact without showing

∑
Wq by writing the

relation ∑
Wq−1 ∼ 0,

which I call a homology.
Then the congruence ∑

Wq ≡ 0

signifies that the manifold
∑

Wq is closed.
If we have

∑
Wq ≡ 0 without having

∑
Wq ∼ 0 (or n

∑
Wq ∼ 0 for some

integer n), I say that the manifold
∑

Wq is a cycle of q dimensions.
Now let

(1) f(x, y, z) = 0

be the equation of an algebraic surface, which defines a manifold of four dimen-
sions. To each value of y there corresponds a Riemann surface
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indexsurface!Riemann which will in general be of genus p. I suppose that the
genus does not fall for y = 0 or y = ∞, but that it falls for q singular points

y = A1, y = A2, . . . , y = Aq.

In the plane of y values I draw q cuts OA1, OA2, . . . , OAq. Let S be one
of the Riemann surfaces. When y varies without crossing any of the cuts, the
surface S will vary, but it will remain homeomorphic to itself in the sense that
any two of these Riemann surfaces correspond point-to-point in a one-to-one
and continuous manner.

Any one of the surfaces S can be decomposed as a polyhedron P ; let F be
the number of faces, B the number of edges, and C the number of its vertices.
Another surface S′, corresponding point-to-point with S, has a corresponding
subdivision as a polyhedron P ′, with faces, edges and vertices corresponding to
the faces, edges and vertices of the polyhedron P .

Now suppose that y, starting from a point infinitely close to one of the cuts,
describes an almost closed contour ending at another point infinitely close to the
initial point but on the other side of the cut. The surface S will be transformed
into a surface that differs from it by an infinitely small amount; but a point of
the first surface will correspond, in general, to an entirely different point on the
second surface.

The polyhedron P will therefore be transformed into a very different poly-
hedron P ′.

On the other hand, to different points in the plane of y values dissected by
our cuts we can make correspond the points of a polygon Q with 2q edges αiβi

and αiβi+1: the edges αiβi and αiβi+1 correspond to the two sides of the cut
OAi, the point αi to Ai, and the points βi and βi+1 to O. Needless to say, I
write β1 or βq+1 indifferently, likewise β2 or βq+2, in order to have symmetry of
notation.

We are now going to describe a subdivision of the manifold V as a polyhedron
of four dimensions.

To each face Fi of P there corresponds a hypercell of H that I also call Fi.
To each edge Bi of P there corresponds a cell Bi of H; likewise, to each of
the edges αiβi or αiβi+1 of Q, combined with each of the faces Fk of P , there
corresponds a cell αiβiFk or αiβi+1Fk of H.

To each vertex Ci of P there corresponds a face Ci of H. To each vertex αi

or βi of Q, combined with each of the faces Fk of P , there corresponds a face
αiFk or βiFk of H. To each edge αiβi or αiβi+1 of Q, combined with each of
the edges Bk of P , there corresponds a face αiβiBk or αiβi+1Bk of H.

To each vertex Ck of P , combined with each of the edges αiβi or αiβi+1 of
Q, there corresponds an edge αiβiCk or αiβi+1Ck of H. To each vertex αi of
βi of Q, combined with each edge Bk of P , there corresponds an edge αiBk or
βiBk of H.

Finally, to each vertex αi or βi of Q, combined with each of the vertices Ck

of P , there corresponds a vertex αiCk or βiCk of H.
Several observations are appropriate. First, for y = Ai the polyhedron P

degenerates in such a way that certain faces disappear. If, for example, the face
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Fk disappears for y = Ai, the corresponding face αiFk of the polyhedron H
does not exist.

Likewise, though this can be avoided, one can conceive of an edge Bk disap-
pearing for y = Ai. In that case, the edge αiBk does not exist.

On the other hand, suppose we fix a value of i and let the index k take all
possible values. We then consider the set of cells αiβiFk and the set of cells
αiβi+1Fk.

These two sets are identical [in extent], even though in general the cell αiβiFk

is not identical to the cell αiβi+1Fk, nor to another cell αiβi+1Fl.
It can also happen that certain of the faces αiβiB are identical to certain of

the faces αiβi+1B, or certain of the edges αiβiC to certain of the edges αiβi+1C.
On the other hand, we compare the different faces βiFk. The Riemann sur-

face S0 corresponding to the point O will be found subdivided into a polyhedron
in q different ways, according as we consider the point O to correspond to the
vertex β1, or to β2, . . . , or to βq. These are the q modes of subdivision that
generate the faces βF . Then if m is the number of faces of P , we have the
identities

(2) βiF1 + βiF2 + · · ·+ βiFm = βjF1 + βjF2 + · · ·+ βjFm (i, j = 1, 2, . . . , q).

It can happen that certain of the faces are identical, but this is not always
the case. It can equally well happen that certain of the edges βF , or certain of
the vertices βC, are identical.

Finally, as a result of the degeneration of P for y = Ai, it can happen that
certain of the faces αiF , or edges αiB, or vertices αiC, are identical.

To sum up, our partial manifolds—hypercells, cells, faces, edges or vertices—
can be divided into four categories as shown in the following table.

Category
︷ ︸︸ ︷

Nature of manifold 1 αβ α β

Hypercells Fk - - -
Cells Bk αiβiFk, αiβi+1Fk - -
Faces Ck αiβiBk, αiβi+1Bk αiFk βiFk

Edges - αiβiCk, αiβi+1Ck αiBk βiBk

Vertices - - αiCk βiCk

One cannot have identity between two manifolds of different categories. Two
manifolds of category 1 are always distinct.

There cannot be identity between two manifolds of category αβ unless the
index i of the α is the same for both (without this the corresponding values of
y will be on two different cuts OAi, OAj). The indices of the β, however, must
be different. For example, there can be identity between αiβiFk and αiβi+1Fh,
but not between αiβiFk and αiβiFh. Two manifolds of category α cannot be
identical unless the index of α is the same.

Before going further, we are going to modify our conventions slightly, in
order to avoid the inconvenience resulting from identities such as (2) between
two sums of faces, despite lack of identity between individual faces in the sums.
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For any point M on the cut OAi the corresponding Riemann surface can be
decomposed into a polyhedron in two different ways, according as one views the
point M as belonging to one side of the cut or the other. We superimpose the
two modes of subdivision by drawing the edges of one subdivision and then those
of the other. In this way we obtain a certain polyhedron that I call P ′, which
we can arrange to remain homeomorphic to itself as M traverses the whole cut
OAi (see below, §5).

I let F ′k, B′
k, C ′k denote the faces, edges and vertices of P ′. Each of the faces

F in the first mode of subdivision is decomposed into a certain number of faces
F ′, and it is the same for each of the faces F in the second mode. Thus each
face F ′ belongs to exactly one face F in the first mode, and to exactly one face
F in the second mode.

Each of the edges B in each of the two modes of subdivision is decomposed
into a certain number of edges B′. Each edge B′ belongs to at least one edge
B in each of the two modes, and possibly to an edge in each mode. But, in any
case, it does not belong to two different edges in the same mode.

Finally, the vertices C ′ will be the vertices in the two modes, together with
the points where edges in the first mode intersect edges in the second mode.

Likewise, we have seen that the surface S0 corresponding to the point O
may be decomposed into a polyhedron in q different ways. We superimpose
these q modes of subdivision, obtaining a polyhedron P ′′ whose faces, edges
and vertices I call F ′′k , B′′

k , C ′′k . Each of the faces F in one of the q modes, and
also each of the faces F ′ corresponding to a polyhedron P ′i obtained by viewing
the point O as a member of the cut OAi, is decomposed into a certain number
of faces F ′′. Each face F ′′ belongs to exactly one face F ′ of the polyhedron P ′i ,
and to exactly one face F in each of the q modes of subdivision.

Each of the edges B in the q modes, and each of the edges B′ of the various
polyhedra P ′i , is decomposed into a certain number of edges B′′. Each edge B′′

belongs to one of the edges B in one of the q modes, and to one of the edges B′

of one the polyhedra P ′i . It may belong to two different edges in two different
modes, or to two edges B′ in different polyhedra P ′, but not to two edges B in
the same mode or to two edges B′ in the same polyhedron.

The vertices C ′′ are the vertices in the q modes together with the intersection
points of edges in different modes.

None of this changes when we pass to manifolds of category 1; we move on
to category αβ. Each of the cells αiβiFk or αiβi+1Fk will be decomposed into
subcells αiβiF

′
k or αiβi+1F

′
k; likewise, each of the faces αβB will be decomposed

into faces αβB′. To the edges αβC we must adjoin, as we have just seen, other
edges corresponding to the intersections of edges B belonging to different modes.
The latter edges are what I call the edges αβC ′.

One sees that the cells αiβiF
′
k are identical with the cells αiβi+1F

′
k; likewise

for the faces αiβiB
′
k and αiβi+1B

′
k and for the edges αiβiC

′
k or αiβi+1C

′
k. But it

is important to remark that the cell αiβiFk is decomposed into subcells αiβiF
′

which are not the same, in general, as the subcells into which the cell αiβi+1Fk

is divided. The same observation applies to the faces αiβiBk and αiβi+1Bk.
We pass to category α. When the point M comes to Ai, the two modes of
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decomposition of the surface S into a polyhedron P coincide. On the other hand,
this polyhedron degenerates, as I have said, so that certain of the manifolds
αiF

′
k, αiB

′
k, αiC

′
k may disappear or coincide.

We pass to category β. Then we have the submanifolds βiF
′′
k , βiB

′′
k , βiC

′′
k .

The faces β1F
′′
k , β2F

′′
k , . . . , βqF

′′
k are identical, but the face βiF

′′
k is decom-

posed into subfaces βF ′′ which are not the same, in general, as those into which
we decompose the face β2Fk, or the face β3Fk, etc.. The same observation holds
for the edges.

This being so, I first make the following remark:

A manifold of category α is always homologous to a sum of manifolds be-
longing to other categories.

Consider, for example, the face αiF
′′
k . It belongs to the cell αiβiF

′
k which

admits, in addition, the face βiF
′
k and those of the faces αiβiB

′
h that correspond

to the edges B′
h belonging to the face F ′k of the polyhedron P ′. Then, if we have

the congruence (for the polyhedron P )

F ′k ≡
∑

εqB
′
q,

where the εq are equal to +1, −1 or 0, we will have the congruence

αiβiF
′
k ≡ αiF

′
k − βiF

′
k +

∑
εqαiβiB

′
q

and, consequently, the homology

αiF
′
k ∼ βiF

′
k −

∑
εqαiβiB

′
q.

The manifolds appearing on the right hand side of this homology belong to
the categories β and αβ, so the theorem is shown, and we can establish the
same for αiB

′
k and αiC

′
k.

§2. Three-dimensional cycles

I now pass to the study of homologies and congruences between manifolds,
beginning with the following remark:

We can always assume that our congruences do not contain a manifold of
category α.

Suppose, in fact, that ∑
αiA + H ≡ 0

is a congruence in which the αiA are p-dimensional manifolds of category α (cor-
responding to a manifold A with polyhedron P or P ′), and H is a combination
of p-dimensional manifolds of other categories.
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We then have, on our polyhedron P or P ′, the congruence

A ≡
∑

εa,

where the ε are integers and the a are manifolds of dimension one less than that
of A. We then have the congruence

αiβiA ≡ αiA− βiA +
∑

εαiβia,

and hence the homology

αiA ∼ βiA−
∑

εαiβia.

Combining this homology with the congruence
∑

αiA + H ≡ 0,

we find the congruence
∑

βiA−
∑∑

εαiβia + H ≡ 0,

which does not contain any manifold of category α. Q.E.D.

To obtain homologies between cells, it suffices to consider those that follow
from hypercells.

Suppose that, on the polyhedron P , we have the congruence

Fk ≡
∑

εqBq,

where the ε are +1, −1 or 0. Then we have, for the four-dimensional polyhedron,
the congruence

Fk ≡
∑

εqBq +
∑

αiβiFk −
∑

αiβi+1Fk,

and, consequently, the homology

(1)
∑

εqBq ∼
∑

αiβi+1Fk −
∑

αiβiFk.

We also recall that αiβiFk, and likewise αiβi+1Fk, can be replaced by the
sum of several subcells αiβiF

′.
Here is a first consequence: let

∑
ζqBq be any combination of cells Bq, where

the ζq are integers. I suppose that, on the polyhedron P , we have the homology
∑

ζqBq ∼ 0.

That is, the set of these edges (each multiplied by the coefficient ζq) forms a
cycle on the surface S that is continuously deformable to a point.27

27For the last time, Poincaré forgets that a null-homologous curve is not necessarily null-
homotopic. (Translator’s note.)
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Then on the polyhedron P we have the congruence
∑

ζqBq ≡
∑

θkFk,

where the θ are integers. So on the four-dimensional polyhedron we have the
congruence

∑
θkFk ≡

∑
ζqBq +

∑
θkαiβiFk −

∑
θkαiβi+1Fk,

and hence the homology
∑

ζqBq ∼
∑

θkαiβi+1Fk −
∑

θkαiβiFk.

Thus, if a combination of edges B is homologous to zero on P , the corre-
sponding combination of cells B will be homologous to a combination of cells of
the category αβ.

We now seek the congruences between cells.
These congruences are of the form

(2)
∑

ζqBq +
∑

θ′kαiβiF
′
k ≡ 0,

where the ζ and θ′ are integers. I claim first that on the polyhedron P we have
∑

ζqBq ≡ 0,

that is, the set of edges (weighted by the coefficients ζ) forms one or more cycles
on the surface S.

In fact, suppose we have the congruence

Bq ≡
∑

εhCh

on P . Then, on our four-dimensional polyhedron we have the congruence

Bq ≡
∑

εhCh + H,

where H denotes a combination of faces not belonging to category 1. On the
other hand, we have

αiβiF
′
k ≡ H,

where H has the same meaning. We deduce that
∑

ζqBq +
∑

θ′kαiβiF
′
k ≡

∑
ζqεhCh + H,

where H again has the same meaning.
Since the right hand side must be identically zero, we must have, identically,

∑
ζqεhCh = 0.
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Then, on the polyhedron P , we have

(3)
∑

ζqBq ≡
∑

ζqεhCh = 0.

Q.E.D.

One then has, by virtue of (2),

(4)
∑

θ′kαiβiF
′
k ≡

∑
ζqαiβi+1Bq −

∑
ζqαiβiBq.

Now let S(M) be the Riemann surface S at the point where y becomes equal
to M on the cut OAi. Let MF ′k be the face of the polyhedron P ′ corresponding
to this position of the point M ; let MP be the limit to which the polyhedron
P tends when y approaches M from the side αiβi of the cut. Let (MP ) be the
limit to which the same polyhedron tends when y approaches M from the side
αiβi+1 of the cut. Let MBq and (MBq) be the edges Bq of the two polyhedra
MP and (MP ).

If we take the congruence (4) and, in each of the manifolds involving y, retain
only the points that also belong to S(M), we obtain a new congruence

(5)
∑

θ′MF ′k ≡
∑

ζq(MBq)−
∑

ζqMBq.

The expressions
∑

ζq(MBq) and
∑

ζqMBq represent two cycles on the sur-
face S(M); let Ω′i and Ωi be these two cycles. From the congruence (5) one
derives the homology

(6) Ω′i − Ωi ∼ 0,

which must hold on the surface S(M).
Suppose that y, starting from the point M on the side αiβi of the cut, loops

around the singular point Ai and returns to the point M on the other side of
the cut. The cycle

∑
ζqBq is thereby deformed continuously, with initial value∑

ζqMBq = Ωi and final value
∑

ζq(MBq) = Ω′i.
Thus the homology says that Ωi is homologous to its transform Ω′i (under the

transformation of cycles of S induced when y takes a turn around the singular
point Ai). The cycle

∑
ζqBq therefore remains homologous to itself under a

sequence of these transformations, and hence also under a sequence of analogous
transformations corresponding to other singular points. Cycles which enjoy this
property may be called invariant cycles. We will come back to this notion later.
We see that every congruence of the form (2) corresponds to an invariant cycle.
I claim that, conversely, to every invariant cycle there corresponds a congruence
of the form (2).

Suppose that
∑

ζqBq is an invariant cycle. On S(M) we have

(6)
∑

ζq(MBq) ∼
∑

ζqMBq

and, consequently, we can find integers θ′ such that

(5)
∑

θ′kMF ′k ≡
∑

ζq(MBq)−
∑

ζqMBq.
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This yields the congruence
∑

θ′kαiβiF
′
k ≡

∑
ζqαiβi+1Bq −

∑
ζqαiβiBq +

∑
θ′kαiF

′
k −

∑
θ′kβiF

′
k.

Here the sign
∑

is with respect to the index k, with the index i held constant.
But from it we deduce

∑
ζqBq +

∑ ∑
θ′kαiβiF

′
k ≡

∑ ∑
θ′kαiF

′
k −

∑∑
θ′kβiF

′
k,

where the double
∑

sign is over the two indices i and k, since we evidently have
∑

ζqBq ≡
∑ ∑

ζqαiβiBq −
∑∑

ζqαiβi+1Bq.

It remains to show that
∑

θ′kαiF
′
k = 0,

∑∑
θ′kβiF

′
k = 0.

We begin with the first of these equations.
We return to the congruence (5) and let the point M tend to Ai, so the

limit MF ′k reduces to αiF
′
k and Ωi coincides with Ω′i and with

∑
q αiBq. The

congruence (5) then becomes

(7)
∑

θ′kαiF
′
k ≡ 0.

We examine the meaning of this congruence. First suppose that, for y = Ai,
the surface S does not decompose, that is, the curve

f(x,Ai, z) = 0

is indecomposable. Then the congruence can hold only under two conditions:
either we have the identity ∑

θ′kαiF
′
k = 0,

and, on the left hand side (with a coefficient θ′ different from zero) the faces
αiF

′
k disappear as a result of the degeneration of the polyhedron mentioned

above;
or else the combination

∑
θ′kαiF

′
k represents (one or more times) the Rie-

mann surface in its entirety, so that
∑

θ′kαiF
′
k = nS.

But, for the surface S corresponding to the point M , we can write

S =
∑

MF ′k,

because the set of faces F ′k of the polyhedron P ′i enables the surface S to be
recovered in its entirety.
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Moreover, we have ∑
MP ′k ≡ 0.

We therefore have the congruence

(5′)
∑

(θ′k − n)MF ′k ≡ Ω′i − Ωi

and, on the other hand, when M tends to Ai,
∑

αiF
′
k = S

and consequently ∑
(θ′k − n)αiF

′
k = 0.

The second condition is therefore reduced to the first; it suffices to change θ′k
to θ′k−n, and this is permissible because the congruence (5) is thereby replaced
by a congruence (5′) of the same form.

Now suppose that the curve F (x,Ai, z) decomposes, for example, that the
corresponding Riemann surface decomposes into two subsurfaces S1 and S2.

Then our congruence (7) can hold provided that we have
∑

θ′kαiF
′
k = n1S1 + n2S2,

where n1 and n2 are integers. This at least is what we have to fear, but we can
see in several ways that it does not happen.

The simplest is to argue as follows:

We begin with the Riemann surface S0 that corresponds to the point O.
We let y vary continuously from O to Ai along the cut OAi. The Riemann
surface S deforms continuously, remaining homeomorphic to itself. Let S(M)
be the surface S corresponding to the point M . To each point of S(M) we
can make correspond a point of S0 by passing from S0 to S(M) by continuous
deformation. On S(M) we consider the two cycles Ωi and Ω′i; these correspond
to two cycles on S0 that I call Ui and U ′

i .
When the point M traverses OAi in a continuous motion the two cycles Ui

and U ′
i undergo a continuous movement on the surface S0. When M is very

close to Ai the two cycles Ωi and Ω′i, and consequently the two cycles Ui and
U ′

i , are very close to one another. When the point M comes to O the two cycles
Ωi and Ui become identical and reduce to

∑
ζqβiBq = Ω0

i ;

the two cycles Ω′i and U ′
i become identical and reduce to

∑
ζqβi+1Bq = Ω0

i+1.

Suppose that the point M varies from Ai to a certain point M0 on the cut
OAi. The two cycles Ui and U ′

i , which initially coincide, then separate and
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sweep out a certain region R on S0. This region corresponds on S(M0) to a
region formed by a certain number of faces of the corresponding polyhedron P ′i ,
because it is bounded by the two cycles Ωi and Ω′i that are formed from certain
edges of this polyhedron. We can write the congruence

∑
θ′kMF ′k ≡ Ω′i − Ωi,

where
∑

θ′kMF ′k represents the region we have just defined.
This region shrinks to zero when M approaches Ai, in which case

(8)
∑

θ′kαiF
′
k = 0.

We now show that ∑∑
θ′kβiF

′
k = 0,

and for this we have to study the sum
∑

θ′kβiF
′
k.

From the preceding, the latter sum is none other than the region swept out
on the surface S0 by the two cycles Ui and U ′

i when the point M varies from Ai

to O. It is bounded by the two cycles Ω0
i and Ω0

i+1.
We see that

∑
θ′kβ1F

′
k ≡ Ω0

2 − Ω0
1,∑

θ′kβ2F
′
k ≡ Ω0

3 − Ω0
2,

...
∑

θ′kβqF
′
k ≡ Ω0

1 − Ω0
q,

whence, by addition, ∑∑
θ′kβiF

′
k ≡ 0.

This congruence shows that the combination
∑∑

θ′kβiF
′
k reduces to zero or

to a certain multiple of the surface S0.
We now explore whether the latter situation can occur. Suppose that y

describes a small closed contour infinitely close to the cuts OAi, first on one
side of OA1, then on the other side, then the two sides of OA2, and so on, and
finally the two sides of OAq. We consider a cycle on the corresponding Riemann
surface; this cycle first coincides with Ω0

1 when y is at O on the first side of OA1;
while y is on the first side of OA1 this cycle is continuously deformed, as is our
cycle Ω1 and the corresponding points on S0 forming the cycle U1; when the
point y returns from A1 to O from the second side this cycle becomes none other
than our cycle Ω′1, and the corresponding points on S0 form the cycle U ′

1; when
y returns to O this cycle coincides with Ω0

2; when y describes the two sides of
OA2 this cycle coincides first with Ω2, later with Ω′2, and the corresponding
points on S0 first form the cycle U2, later the cycle U ′

2, and so on. What we
want to know is whether the moving cycle, which coincides successively with
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U1, U
′
1, U2, U

′
2, . . . , Uq, U

′
q and in its initial and final positions with Ω0

1, describes
the entire surface S0.

To find out, we have to see how the cycles deform.
Consider the equation

f(x, y, z) = 0,

where y is held constant. The singular points of z as a function of x are given
by the equation

∂f

∂z
= 0.

We consider a cycle on the Riemann surface. To this cycle there corresponds,
in the plane of x, a certain contour enclosing a certain number of these singular
points. As y varies, these singular points move, and if we do not want the
cycle to pass through one of the singular points it is necessary to deform it to
avoid the moving singular points. Whatever the displacements of these singular
points may be, provided that two of them do not merge into one, it will always
be possible to deform the cycle continually so as not to pass through any of
them. We can likewise choose a certain number of fixed points and deform the
cycle in such a way that it does not pass through either the singular points or
the fixed points, provided that none of the singular points come into coincidence
with each other, or with the fixed points.

As y varies, the singular points are displaced, and the corresponding points
on S0 are likewise displaced. They do not come into coincidence unless y comes
to one of the points Ai, but we make y turn around these points, approaching
closely but not attaining them. On the other hand, these points describe lines
that we can find on S0, and we can find a region ρ on S0 not crossed by any
of these lines. It is the points of this region ρ that play the role of the fixed
points I mentioned above. We can then deform our cycle in such a way that
it neither passes through one of the singular points nor enters the region ρ. It
therefore cannot generate the entire surface S0. The second possible situation
must therefore be rejected, so we always have the identity

(9)
∑∑

θ′kβiF
′
k = 0.

In conclusion we remark that there are no congruences between cells of cat-
egory αβ alone. Suppose that, indeed,

∑
θ′kαiβiF

′
k ≡ 0

is such a congruence. First we find that
∑

θ′kαiβiF
′
k ≡

∑
θ′kε′hαiβiB

′
h +

∑
θ′kαiF

′
k −

∑
θ′kβiF

′
k,

so that we have
∑

θ′kε′hαiβiB
′
h = 0,

∑
θ′kαiF

′
k = 0,

∑
θ′kβiF

′
k = 0,
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and, consequently, on the poloyhedron P ′i [by reasoning like that used to deduce
(5) and (4)], ∑

θ′kMF ′k ≡ 0.

The set of faces MF ′k (weighted by numerical coefficients θ′k) of the polyhe-
dron P ′i must then be congruent to zero; that is, it must form a closed surface
which cannot be the entire surface S(M). The sum

∑
θ′kαiF

′
k then represents

the entire surface S(Ai), and we cannot then have
∑

θ′kαiF
′
k = 0.

Thus, our congruence is impossible.
We know that, to obtain all the three-dimensional cycles, it suffices to find

all combinations of cells that are congruent to zero without being homologous
to zero.

First, we have seen that such a combination must contain cells of category
1; let

∑
ζqBq be the set of these cells. The set of the corresponding edges

must form a cycle on the surface S (it is the cycle Ωi). This cycle cannot
be homologous to zero. Indeed, if it is, then the combination

∑
ζqBq will be

homologous to a combination of cells of category αβ. One can then replace∑
ζqBq by this combination in the left hand side of our congruence. The left

hand side then contains only cells of category αβ, which we have seen to be
impossible.

Finally, our cycle Ωi must be invariant, that is, it must change into a ho-
mologous cycle Ω′i when y turns around Ai. But when y turns around one of
the singular points Ai the cycles on the Riemann surface undergo one of the
substitutions in the Picard group. The cycle Ωi must therefore be invariant
under the Picard group.

Thus, every three-dimensional cycle of V corresponds to a cycle on the sur-
face S that is invariant under the Picard group.

Conversely, consider a cycle invariant under the Picard group. If Ωi is one
position of this cycle on the polyhedron P ′i , and if Ω′i is what becomes of Ωi

when y turns around Ai, then we have

Ωi ∼ Ω′i.

We can find integers θ′ so as to satisfy the congruence (5). The congruence
(4) likewise holds. But we have seen that, under these conditions, the identities
(8) and (9) hold, so that the congruence (4) can be written

∑∑
θ′kαiβiF

′
k ≡

∑
ζqαiβi+1Bq −

∑
ζqαIβiBq,

whence ∑
ζqBq +

∑∑
θ′kαiβiF

′
k ≡ 0.

The left hand side of this congruence represents a cycle of three dimensions.
To sum up: to the extent that the Picard group admits distinct invariant

cycles, the manifold V admits distinct three-dimensional cycles.
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A better way to represent three-dimensional cycles is to suppose that we
have not only

Ωi ∼ Ω′i,

but identically
Ωi = Ω′i,

which is an assumption we can always make, because of the arbitrary way in
which we can make points correspond on our Riemann surfaces.

Under these conditions, we can give y all possible values.
To each value there corresponds a position of the cycle Ωi and, because of

the invariance of this cycle, corresponding to two infinitely close points on one
of the cuts there correspond two infinitely close positions of the cycle Ωi.

The various positions of this cycle then generate a cycle of three dimensions.

§3. Two-dimensional cycles

To find all the two-dimensional cycles, it suffices to find all combinations of
faces that are congruent to zero without being homologous to zero.

We can suppose first that the combination in question does not contain faces
of category α since, by what we established in the preceding paragraph, each
face of category α is homologous to faces of categories αβ and β.

It is now a matter of finding whether these combinations can contain faces of
category 1. First I observe the following: if C1 and C2 are two vertices of a poly-
hedron P we can always pass from one to the other by following certain edges
of this polyhedron, so that we always have, on this polyhedron, the congruence

C1 − C2 ≡
∑

ζqBq,

where the right hand side represents the set of edges along which one passes
from C1 to C2. More generally, one can find integers ζ such that

(1)
∑

εkCk ≡
∑

ζqBq,

where the ε are integers such that
∑

εk = 0,

since
∑

εkCk can then be regarded as a sum of differences such as C1 − C2.
So, on the manifold V consider the combination of faces

∑
εkCk and suppose

that we have
∑

εk = 0. We can then find integers ζ satisfying the congruence
(1), so on the manifold V we have

∑
ζqBq ≡

∑
εkCk +

∑
ζqαiβiBq −

∑
ζqαiβi+1Bq
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and, consequently,
∑

εkCk ∼
∑

ζqαiβi+1Bq −
∑

ζqαiβiBq,

which shows that the combination
∑

εkCk is homologous to a combination of
faces of category αβ.

Now suppose that we have a congruence of the form
∑

εkCk + H = 0,

where H represents a combination of faces of categories αβ and β. If we have∑
εk = 0, then we can replace

∑
εkCk on the left hand side by the combination

of faces of categories β and αβ to which it is homologous. The left hand side
then no longer contains faces of category 1.

If we have two congruences of the same form
∑

εkCk + H ≡ 0,
∑

ε′kCk + H ′ ≡ 0,

then we can find two integers n and n′ such that

n
∑

εk + n′
∑

ε′k = 0,

and hence the congruence
∑

(nεk + n′ε′k)Ck + nH + n′H ≡ 0,

which is a combination of the preceding two, can be reduced to one no longer
containing faces of category 1.

To sum up, if there are congruences containing faces of category 1, there
cannot be two that are distinct.

We therefore look specially at congruences that contain only faces of cate-
gories β and αβ. Let

(2)
∑

θ′kαiβiB
′
k +

∑
θ′′kβiF

′′
k ≡ 0

be one of these congruences.
We consider the points common to the manifolds that figure in this congru-

ence and the surface S(M). Reducing each of these manifolds to these common
points we get

(3)
∑

θ′kMB′
k ≡ 0.

Indeed, if the point M is any point on the cut OAi, different from O, the
surface S(M) has no point in common with faces of category β, for which y
can take only the value O. Likewise, the surface S(M) has no point in common
with faces of the form αjβjB

′
k, where the index j is different from i, because for

these faces y must be on the cut OAj , whereas M is on the cut OAi.
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Congruence (3) means that, on the surface S(M), the set of edges B′
k of the

polyhedron P ′i (weighted by the coefficients θ′) must form a closed cycle. Let
Ki be this cycle.

We observe that
∑

θ′kαiβiB
′
k ≡

∑
θ′kαiB

′
k + H,

where H is the set of edges of categories β and αβ. Likewise,
∑

θ′′kβiF
′′
k ≡ H ′,

where H ′ is a combination of edges of category β.
We then have

∑
θ′kαiβiB

′
k +

∑
θ′′kβiF

′′
k ≡

∑
θ′kαiB

′
k + H + H ′,

so that the congruence (2) cannot hold unless we have identically

(4)
∑

θ′kαiB
′
k = 0.

Since we do not have any relation between the edges θ′kαiB
′
k for different

indices i, the identity (4) must hold when one gives the index i a definite value
and we extend the summation only over the different values of the index k.

The identity (4) therefore means that, as the point Ai tends to Ai, the cycle
K tends to zero.

Indeed, when M becomes Ai, the surface S(M) degenerates and its genus
decreases. Some of its cycles therefore vanish. We see how this happens by
studying the Picard group. Let Si be the substitution in this group that corre-
sponds to the singular point Ai; it changes the cycle ωh, for example, into

ω′h = m1ω1 + m2ω2 + · · ·+ m2pω2p.

Then, for M = Ai, we have

ωh = ω′h,

that is, for M = Ai the cycle ω′h − ωh vanishes.
Do we obtain, in this way, all the cycles that vanish for M = Ai (which I

call the vanishing cycles)?
Picard showed (vol. 1, p. 82) that every algebraic surface can be reduced,

by a birational transformation, to one with only ordinary singularities, that is,
double curves with triple points.

He then showed (p. 95) how to determine, for such a surface, the singular
points Ai and the corresponding substitutions in the Picard group.

One thereby sees, in this case, that there are no vanishing cycles except those
generated as we have just seen.

If one wants to consider surfaces with more complicated singularities (for
example, cone points) it is necessary to proceed differently.
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Suppose, for example, that we have an ordinary surface with two singular
points corresponding to the same substitution in the Picard group. If we allow
this surface to vary in such a way that the two singular points come into coin-
cidence, then the limiting surface will admit a vanishing cycle not generated in
the above manner.

Then, if we consider any vanishing cycle
∑

θ′kMB′
k, we have the congruence

(5)
∑

θ′kαiβiB
′
k ≡ −

∑
θ′kβiB

′
k.

To each singular point Ai we associate in this way a vanishing cycle Ki and,
consequently, a congruence of the form (5). By adding these congruences one
obtains ∑ ∑

θ′kαiβiB
′
k ≡ −

∑∑
θ′kβiB

′
k.

Suppose that the set of cycles Ki is homologous to zero, such that we have,
on the surface S, ∑

Ki ∼ 0,

and on S0 ∑∑
θ′kβiB

′
k ∼ 0.

That is, we can find coefficients θ′′ such that
∑∑

θ′kβiB
′
k ≡

∑
θ′′kβiF

′′
k .

We then have

(2)
∑∑

θ′kαiβiB
′
k +

∑
θ′′kβiF

′′
k ≡ 0.

Thus, for each combination of vanishing cycles Ki such that
∑

Ki ∼ 0, there
corresponds a congruence of the form (2).

To the congruence thus obtained it is convenient to adjoin the following:
∑

βF ′′k ≡ 0,

which represents a two-dimensional cycle making up the entire surface S0. All
the congruences of the form (2) are manifestly combinations of those we have
obtained.

Now, under what conditions are two congruences of the form (2) distinct?
In other words, which are the congruences of this form whose left hand side is
homologous to zero?

To obtain all homologies of the form
∑

θ′kαiβiB
′
k +

∑
θ′′kβiF

′′
k ∼ 0
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to find all the congruences between cells and faces of the form

(6)
∑

θ′kαiβiB
′
k +

∑
θ′′kβiF

′′
k ≡

∑
εkBk +

∑
ζ ′kαiβiF

′
k.

If we reduce all the manifolds appearing in the congruence (6) to their com-
mon points with a surface S corresponding to a value of y not situated on one
of the cuts, we obtain ∑

εkBk ≡ 0,

which means that the set of edges
∑

εkBk is a closed cycle on the polyhedron
P . Let K(y) be that cycle.

Let K(Mi) [or K ′(Mi)] be the limit to which this cycle tends as y approaches
a point M on the cut OAi from the first side of the cut (or from the second
side), so that K(Mi) [or K ′(Mi)] represents the set of points common to the
surface S(M) and

∑
εkαiβiBk (or

∑
εkαiβi+1Bk).

We then have (since εkBk represents a closed cycle on the polyhedron P )

(7)
∑

εkBk ≡
∑

εkαiβiBk −
∑

εkαiβi+1Bk,

whence

(8)
∑

ζ ′kαiβiF
′
k ≡

∑
θ′kαiβiB

′
k+

∑
εkαiβi+1Bk−

∑
εkαiβiBk+

∑
θ′′kβiF

′′
k

or, reducing all manifolds to their common points with the surface S(Mi),

(9)
∑

ζ ′kMiF
′
k ≡

∑
θ′kMiB

′
k + K ′(Mi)−K(Mi).

That is, on the polyhedron P ′i we must have

(10) Ki ∼ K(Mi)−K ′(Mi),

since
∑

θ′kMiB
′
k is none other than the cycle we called Ki above.

Moreover, if condition (10) is satisfied, we can find numbers ζ ′ so as to satisfy
the congruence (9). We then have, by letting Mi tend to Ai,

∑
ζ ′kαiF

′
k ≡

∑
θ′kαiB

′
k + K ′(Ai)−K(Ai).

But, by hypothesis, Ki is a vanishing cycle for the singular point Ai, so that
∑

θ′kαiB
′
k = 0.

Moreover,
K ′(Ai) = K(Ai) =

∑
εkαiBk.

Hence ∑
ζ ′kαiF

′
k ≡ 0,
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which means that the set of faces
∑

ζ ′kαiP
′
k forms a closed surface. This cannot

happen unless

(11)
∑

ζ ′kαiF
′
k = 0,

or if
∑

ζ ′kαiF
′
k represents the entire surface S(Ki) or one of its components, in

the case where the surface is decomposable (see above, p. 196).
Leaving aside the latter case, which will not occur for the surfaces with

ordinary singularities to which Picard reduces the others (and which, moreover,
we can treat as on p. 196), we see that we can always assume that

∑
ζ ′kαiF

′
k = nS(Ai),

where n is an integer. Whence
∑

(ζ ′k − n)αiF
′
k = 0.

But the congruence (9) continues to hold when we replace ζ ′k by ζ ′k−n, since
∑

MiF
′
k ≡ 0,

because the surface S(Mi) is closed.
We can therefore suppose that the identity (11) holds. It follows that

∑
ζ ′kαiβiF

′
k ≡∑

ζ ′kαiF
′
k +

∑
θ′kαiβiB

′
k +

∑
εkαiβi+1Bk −

∑
εkαiβiBk −

∑
ζ ′kβiF

′
k.

But, if we take account of the identity (11), and if we decompose the faces
F ′ into faces F ′′, we can put

−
∑

ζ ′kβiF
′
k =

∑
θ′′kβiF

′′
k .

This recovers the congruence (*) and, adjoining the congruence (7), we finally
get the congruence (6).

Thus, to each system of homologies (10) there corresponds a homology of
faces, and only one.

We verify similarly that the combination
∑

βiF
′′
k , which represents the en-

tire Riemann surface S0 and which, consequently, is congruent to zero, is not
homologous to zero.

Indeed, if one has a congruence of the form (6) with all the θ′ zero, then one
must have a homology of the form (10) with the cycles Ki zero. This means
that the cycle K(y) will be invariant under all substitutions in the Picard group.

The cycles K ′(Mi) and K(Mi) are none other than what we called Ω′i and
Ωi in the preceding paragraph. We therefore recover the homology (5) of the
preceding paragraph, which differs only in notation from the homology (9) of
the present paragraph. Indeed, to pass from one to the other it suffices to annul
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the θ′, change K ′(Mi) to Ω′i and K(Mi) to Ωi, and to write θ′k in place of ζ ′k.
To adopt these notations in the preceding paragraph, it suffices finally to write
ζqBq in place of εkBk.

In this case, our cells satisfy the congruence (2) of the preceding paragraph,
which is written ∑

ζqBq +
∑

θ′kαiβiF
′
k ≡ 0,

or, returning to the notations of the present paragraph,
∑

εkBk +
∑

ζ ′kαiβiF
′
k ≡ 0.

This shows that the left hand side of (6) must be identically zero; that is,
not only the θ′, but also the θ′′, must be zero.

Thus, all homologies between the faces βF ′′ reduce to the identity and, in
particular, we do not have ∑

βiF
′′
k ∼ 0.

Q.E.D.

Before I conclude, I want again to examine the congruences involving cells of
category 1. We have seen that we cannot have more than one such congruence,
or rather, if there are two such congruences we can pass from one to the other
by adjoining a homology.

Let us see whether there exists such a congruence

(12)
∑

εkCk + H ≡ 0,

where H is a combination of faces of categories αβ and β. We can assume that∑
εk is nonzero, otherwise we are reduced to one of the congruences studied

above.
I add that, if the exists a congruence of the form (12) with

∑
εk nonzero,

this congruence is certainly distinct from the preceding ones, since there cannot
be a homology of the form

(13)
∑

εkCk + H ∼ 0

without
∑

εk being zero.
So, does there exist a congruence of the form (12)? To answer this without

a long but not difficult discussion I suppose that there are m vertices of the
polyhedron P (which I call C1, C2, . . . , Cm), where m is the degree in z of the
equation F (x, y, z) = 0, and which correspond to a given value of x, for example
x = x0 (see §5 below).

Then the combination C1 + C2 + · · ·+ Cm, which I write
∑

Ck for short, is
nothing but the Riemann surface represented by the equation in y and z

f(x0, y, z) = 0.

We then have
∑

Ck ≡
∑

Ckαiβi −
∑

Ckαiβi+1.
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Since the m vertices C1, C2, . . . , Cm are only permuted when we cross from one
side of OAi to the other by turning around Ai, we have

∑
Ckαiβi =

∑
Ckαiβi+1,

and consequently ∑
Ck ≡ 0.

This congruence is indeed of the form (12) and
∑

εk = m 6= 0.

We initially have two singular two-dimensional cycles which are the two
Riemann surfaces, one corresponding to y = 0 and the other to x = x0.

To form other two-dimensional cycles it suffices to consider q cycles

K1, K2, . . . , Kq,

corresponding to the q singular points

A1, A2, . . . , Aq,

each of which vanishes relative to its corresponding singular point. In addition,
these cycles must satisfy, on the polyhedron P , the condition

∑
Ki ∼ 0.

Two systems of cycles

K1, K2, . . . , Kq,
K ′

1, K ′
2, . . . , K ′

q,

give us two distinct two-dimensional cycles, at least if we have (on P )

K ′
i −Ki ∼ K ′(Mi)−K(Mi),

where K(y) is any cycle on the polyhedron P .
If we let Ui and U ′

i denote the limits of the cycles Ki and K ′
i as the point Mi

tends to O, and let Ωi denote the limit of the cycle K(y) as the point y tends
to O in the sector Ai−1OAi, then on S0 we have

∑
Ui ∼ 0,

∑
U ′

i ∼ 0.

So, if we want two distinct cycles, we must not have

U ′
i − Ui ∼ Ωi+1 − Ωi.

In this way we see how to obtain distinct cycles, and thereby distinct con-
gruences of the form in question, and in the process find the number of distinct
homologies.

We form the table of vanishing cycles relative to the different singular points
Ai. We distinguish two kinds:
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10 Those of the form Ω′ −Ω, where Ω′ is the transform of the cycle Ω under
the transformation in the Picard group corresponding to the point Ai.

20 The vanishing cycles of the second kind are those not of the above form,
nor combinations of cycles of this form.

Evidently, for each of the singular points, we must reduce the number of
these vanishing as much as possible, so that the cycles in our table are linearly
independent. Then if the cycles are

m1,1ω1 + m1,2ω + 2 + · · ·+ m1,2pω2p,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mk,1ω1 + mk,2ω + 2 + · · ·+ mk,2pω2p,

the table of integers m, with k rows and 2p columns (k < 2p), is such that the
determinants formed by suppressing 2p− k columns are not all zero.

Now we unite the tables relative to the q singular points; the united table
has 2p columns and

∑
k = µ rows. If the determinants formed by suppressing

µ − 2p + r rows and r columns are all zero, but the determinants formed by
suppressing µ − 2p + r + 1 rows and r + 1 columns are not all zero, then the
number of distinct congruences that we seek will be µ− 2p + r + 1 (or µ− 2p if
the determinants formed by suppressing µ− 2p rows are not all zero).

To obtain the number of distinct homologies, it is necessary to find the
number of combinations of the cycles U1, U2, . . . , Uq such that we have

Ui ∼ Ωi+1 − Ωi.

Each cycle Ω evidently gives birth to such a combination; but if two cycles
Ω and Ω′ differ only by a cycle invariant under the Picard group they give birth
to the same combination. The number of homologies is therefore equal to the
total of cycles, 2p, minus the number of distinct invariant cycles, which I call n.

The number of distinct two-dimensional cycles (including the two singular
cycles) is therefore

2 + (µ + 2p + 1)− (n− 2p).

We see how we can generate the nonsingular two-dimensional cycles by con-
fining ourselves to the most general case, which is where there is no vanishing
cycle of the second kind. In this case we have

Ki = Γ′i − Γi,

where Γi is a cycle and Γ′i is its transform under the substitution corresponding
to Ai.

We then describe, in the plane of y, loops L1, L2, . . . , Lq that begin at O and
turn around the singular points A1, A2, . . . , Aq respectively.

Let Γi be a cycle on the surface S0. When y begins at O and describes the
loop, the surface S and the cycle deform in such a way that, when y returns to
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O, the cycle becomes the cycle Γ′i on S0. In its movement it generates a surface
σi bounded by the two closed curves Γi and Γ′i.

We therefore have

Γ1 + Γ2 + · · ·+ Γq = Γ′1 + Γ′2 + · · ·+ Γ′q,

and the set σ1 + σ2 + · · · + σq will form a closed surface. This will be our
two-dimensional cycle.

§4. One-dimensional cycles

The problem of one-dimensional cycles has been completely solved by Picard.
I therefore have only to translate Picard’s reasoning into our notation.

We are looking for congruences between edges. As we have seen at the
beginning of paragraph 2, we can always assume that such a congruence contains
no edges of category α. Our congruence must therefore be of the form

(1)
∑

θ′kαiβiC
′
k +

∑
θ′′kβiB

′′
k ≡ 0.

We observe that
∑

θ′kαiβiC
′
k ≡

∑
θ′kαiC

′
k + H,

∑
θ′′kβiB

′′
k ≡ H ′,

where H and H ′ are sets of edges of category β. We then have
∑

θ′kαiC
′
k + H + H ′ = 0,

and, since the vertices αiC
′
k cannot be reduced, either to vertices of category β

or to those of category α where the index of α where the index of α is different
from i, we must have

(2)
∑

θ′kαiC
′
k = 0,

where the summation is over the vertices αiC
′
k with the same index i, but

different indices k.
What does the identity (2) mean? When y reaches Ai the polyhedron P ′i

degenerates, several of its vertices come together, but none can disappear (al-
though edges and faces can disappear). The algebraic sum of all the coefficients
θ′k relative to the different vertices αiC

′
k that come to coincide must then be

zero; hence the sum of all the θ′k is zero:

(3)
∑

θ′k = 0.
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Because of the relation (3), we can find a combination of edges
∑

ζ ′kBk on
the polyhedron Pi such that

(4)
∑

ζ ′kB′
k ≡

∑
θ′kC ′k.

We then have

(5)
∑

ζ ′kαiβiB
′
k ≡

∑
ζ ′kαiBk −

∑
ζ ′kβiB

′
k +

∑
θ′kαiβiC

′
k.

Moreover, when y arrives at Ai, the edges and vertices B′
k and C ′k of the

polyhedron P ′i become the edges and vertices αiB
′
k and αiC

′
k. We then have

the congruence ∑
ζ ′kαiB

′
k ≡

∑
θ′kαiC

′
k

or, by (2), ∑
ζ ′kαiB

′
k ≡ 0.

The latter congruence says that the combination
∑

ζ ′kαiB
′
k forms a closed

cycle on the Riemann surface S(Ai). But, when y arrives at Ai, the Riemann
surface degenerates, cycles can disappear, but no new cycles appear. Therefore,
to the cycle

∑
ζ ′kαiB

′
k there corresponds on the surface S(Mi) at least one

closed cycle
∑

ε′iMiB
′
k, which reduces to

∑
ζ ′kαiB

′
k for Mi = Ai, so that we

have
∑

ε′kMiB
′
k ≡ 0,(6)

∑
ε′kαiB

′
k =

∑
ζ ′kαiB

′
k.

Then, if we replace ζ ′k by ζ ′k − ε′k, the congruence (4) continues to hold
because of (6); the congruence (5) remains equally true, and we have

∑
(ζ ′k − ε′k)αiB

′
k = 0.

Thus we can always assume that the ζ ′k have been chosen so that

(7)
∑

ζ ′kαiB
′
k = 0.

If we combine the congruence (5) with the identity (7) we obtain the homol-
ogy

(8)
∑

θ′kαiβiC
′
k ∼

∑
ζ ′kβiB

′
k

and, adjoining this homology to (1), we get
∑

ζ ′kβiB
′
k +

∑
θ′′kβiB

′′
k ≡ 0,

which involves only edges of category β.
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We can therefore suppose that our congruence (1) contains only edges of
category β. This is the theorem of Picard, according to which a one-dimensional
cycle can always be brought to a position for which y is constant along the cycle.

To each of the closed cycles on the surface S0 there corresponds a congruence
of the form (1), but not all these congruences are distinct. This was shown by
Picard. Let ω1, ω2, . . . , ω2p be the 2p cycles of S0, and suppose that a substitu-
tion Sh in the Picard group changes ωi into

m1ω1 + m2ω2 + · · ·+ m2pω2p.

Then we have the homology

(9) ωi ∼ m1ω1 + m2ω2 + · · ·+ m2pω2p.

These homologies reduce the number of one-dimensional homologies, and Picard
showed that, for the most general algebraic surface, the number is zero.

We use the term subsisting cycles for those that are not linear combinations
of the different vanishing cycles with respect to the various singular points Ai.
These are the cycles that remain distinct when the homologies (9) are taken
into account. Indeed, the homology (9) says that the cycle

ω −
∑

Mkωk

is nonvanishing with respect to the singular point corresponding to the substi-
tution Sh in the Picard group.

Thus there are as many one-dimensional cycles as there are subsisting cycles.
We have seen, on the other hand, that there are as many three-dimensional
cycles as there are invariant cycles.

But, by the fundamental theorem on Betti numbers, the number of one-
dimensional cycles must be the same as the number of three-dimensional cycles.

Thus the number of subsisting cycles must be the same as the number of
invariant cycles.

We now verify this.
The verification is easy if there are no vanishing cycles of the second kind.
We recall that the Picard group has a particular form.
Let ω1, ω2, . . . , ω2p be the fundamental cycles and consider the bilinear form

Φ = ω′2ω1 − ω′1ω2 + ω′4ω3 − ω′3ω4 + · · ·+ ω′2pω2p−1 − ω′2p−1ω2p.

Provided that the fundamental cycles have been conveniently chosen, when
we subject the ω to one of the substitutions in the Picard group and at the same
time subject the ω′ to the same substitution, the form Φ will be unaltered. On
the other hand, the number of subsisting cycles will be the same as the number
of solutions of the system (A) of linear equations obtained by equating each
fundamental cycle to its transform under each of the Picard substitutions.

Suppose then that
∑

miωi is an invariant cycle. Since the expression
∑

miωi

can be assimilated in the linear form Φ, by setting

ω′2 = m1, ω′1 = −m2, ω′3 = m3, ω′4 = −m4, . . . ,
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and since, on the other hand,
∑

miωi becomes
∑

miωi when the ω are subjected
to one of the substitutions in the Picard group, we conclude that the system of
values

−m2, m2, −m3, m4, . . .

is its own transform under this linear substitution. It is therefore a solution of
the system (A) just mentioned.

One sees, moreover, that two or more linearly independent cycles correspond
in this way to two or more linearly independent solutions of the system (A), and
conversely.

Thus there are as many subsisting cycles as there are invariant cycles. Q.E.D.

Now, what happens if there are vanishing cycles of the second kind?
As I have said, this case cannot occur for the surfaces with ordinary singu-

larities to which Picard has reduced all the others (vol. 1, p. 85). It is true that
it can occur for other surfaces if we want to study them without first apply-
ing Picard’s transformation. But these surfaces have a special kind of singular
point, and the four-dimensional manifold V generated by the surface also has a
singular point.

The general theorems we are concerned with and which we have proved
in Analysis situs and its supplements do not apply to manifolds with singular
points. They fail to be true, in general, unless we make some special conventions.

The question whether there is a vanishing cycle of the second kind likewise
depends on the conventions we make. It is true that such a cycle will be the
boundary of a two-dimensional submanifold of V , but this submanifold contains
a singular point of V .

To clarify the difficulty that arises, we take a very simple example. Imagine
a surface, in ordinary space, with a conical point, or even more simply a cone
of revolution and its prolongation. Let S be the apex of the cone, and C a
circumference of the cone. In one sense, C is the boundary of a region on the
cone, namely, the region between the circumference C and the apex S. But, on
the other hand, a line drawn on the cone can leave this region without crossing
C, by passing through the apex S to the other sheet of the cone.

Under these conditions, it seems preferable to leave aside this singular case
and to confine ourselves to those surfaces with ordinary singularities to which
all the others may be reduced.

§5. Various remarks

In the course of the proofs we have made various assumptions about our
polyhedra. We recall them here:

10 We have assumed (see p. 190) that the polyhedron we call P ′ remains
homeomorphic to itself when y follows the cut OAi from Ai to O.
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20 We have compared (see p. 196) the Riemann surface S0 corresponding to
the point O to the Riemann surface S(M) corresponding to the point M ,
and we have said that we can make the two surfaces correspond point to
point. We have used this correspondence to define the cycles Ui and U ′

i

that correspond on S0 to Ωi and Ω′i.

30 We have next assumed (see p. 197) that, when the point M varies from Ai

to M0, the two (initially coincident) cycles Ui and U ′
i sweep out a certain

region R on S0 which corresponds, on S(M0), to the region
∑

θ′kM0F
′
k.

40 We have claimed that, when the point M crosses successively the two sides
of the cut OA1, then the two sides of the cut OA2, . . . , then finally the
two sides of the cut OAq, the moving cycle Ui (which returns to its initial
situation Ω0

i after occupying a continuous series of successive situations)
does not sweep out the entire surface S0.

50 We have said (p. 202) that, if the surface f(x, y, z) = 0 is reduced, by
Picard’s procedure, to one possessing only ordinary singularities, then
each singular point Ai corresponds to only one vanishing cycle.

60 We have assumed (p. 206) that the vertices of P include m which corre-
spond to a constant value of x, for example x = 0.

Since the legitimacy of these assumptions is almost evident, I have not
wanted to interrupt the reasoning of the preceding paragraphs to give explicit
proofs. Moreover, I have not constructed a particular polyhedron P , not want-
ing to make particular assumptions about the way in which the Riemann surface
is subdivided.

I believe that it is now useful to return to these points and to give a proof
that adopts particular assumptions about P .

We can, for example, construct the polyhedron P as follows:
We begin by reducing the surface f = 0 to one with only ordinary singular-

ities.
We give y any value, and consider the corresponding Riemann surface S.

This surface consists of m sheets over the plane of x (if the equation f = 0 is of
degree m in z).

On the plane of x we mark the origin O and the singular points corresponding
to the equations

f = 0,
df

dz
= 0.

Let n be the number of singular points, and let B1, B2, . . . , Bn be these
singular points. We join the point O to the n singular points B1, B2, . . . , Bn

by n cuts OB1, OB2, . . . , OBn which do not cross and which succeed each other
around O in the order of their subscripts.

One obtains the Riemann surface as usual by joining the first side of a cut
in one of the sheets with the second side of the cut on some other sheet. The
cuts thereby subdivide the Riemann surface into our polyhedron P .
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One sees that the polyhedron has M faces (which are the Fk) and that each
of the faces is a polygon with 2n edges.

Now what happens when y varies? The singular points B are displaced, the
cuts OB are deformed, and we suppose that they are deformed in such a way
that they continue not to cross each other and to succeed each other in the same
order around O. When y describes a small closed contour, the deformation is
one in which the cuts return to their original positions, unless there is s singular
point inside the contour.

The possible singular points are of two kinds:

10 First, there are those corresponding to the case where two of the singular
points B are exchanged (an argument of Picard shows that, if the surface
f = 0 has only ordinary singularities, this cannot happen unless the plane
y =const. is tangent to the surface f = 0).

20 Then there are those corresponding to the case where one of the singular
points B comes to O.

The singular points of the second kind are not essential, and I would let
them disappear if there were no advantage in retaining them.

I denote the singular points by A1, A2, . . . , Aq and draw the cuts OA1, OA2,
. . . , OAq in the plane of y values.

As long as y does not cross the cuts OA, the cuts OB can be deformed
so that they do not cross each other and, consequently, in such a way that P
remains homeomorphic to itself, and at the same time in such a way that, when
y describes a closed contour, the cuts OB return to their initial positions.

Now we compare the configurations of the cuts OB when y is at two infinitely
close points on opposite sides of a cut OAi.

First suppose that AI is a singular point of the first kind. If we assume that
the surface f = 0 has only ordinary singularities and that, consequently, the
plane y = Ai is tangent to f = 0 at an ordinary point, we see that, when y
turns around Ai, two singular points are exchanged, for example B1 and B3.
Moreover, if the point B1 permutes two sheets of the Riemann surface, then the
point B3 with which it is exchanged will permute the same two sheets. I call
these two sheets the first and second sheets of the surface.

When y, after turning around Ai, returns infinitely closely to its initial
position, but on the opposite side of the cut, we can assume that the cuts OB
return to their initial position, with the exception of the cuts OB1 and OB3.
The latter cuts, which initially occupy the positions of the solid lines OB1 and
OB3 on Figure 1, finally occupy the positions of the dotted lines OB3 and OB1.

One sees that the Riemann surface can be subdivided into a polyhedron P
in two ways. The two modes of subdivision differ because the solid lines OB1

and OB3 are replaced by the dotted lines OB3 and OB1.
If we superimpose the two modes of subdivision, we obtain the polyhedron

that I call P ′. One sees that two of the m faces of P , those corresponding to
the first two sheets, have been subdivided into three subfaces, denoted on the
figure by (α), (β), (γ).
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Fig. 1.

As y describes the cut OAi, the points B are displaced in a continuous
manner without coming into coincidence with each other or with the point O
(except, of course, when y arrives at Ai). It follows that we can deform all
our cuts OB (both solid and dotted) so as to avoid their meeting. In other
words, we can say that the polyhedron P ′ constantly remains homeomorphic
to itself. To say that P ′ remains homeomorphic to itself is to say that we can
make a point-to-point correspondence between the surface S(M) and another
surface S(M ′) corresponding to another position M ′ of y on OAi, and with S0

in particular. We remark that the correspondence can be made in such a way
that a point at infinity on S(M) corresponds to a point at infinity on S(M ′).

When y arrives at Ai the polyhedron degenerates: the two points B1 and B3

come into coincidence. Likewise, the solid cut OB1 comes to coincide with the
dotted OB3, and the dotted OB1 comes to coincide with the solid OB3. The
subface (β) in Figure 1 disappears.

To go further, we remark that there are two cuts projected onto the solid
line OB1. When one follows the first of these (which we call B1G) from O to
B1 one has the first sheet on the left and the second on the right; when one
follows the second (which we call B1D), on has the first sheet on the right and
the second on the left. We define B3G and B3D similarly. If, instead of the
solid line OB1 we consider the dotted line OB1, we similarly obtain two cuts
that I call B′

1G and B′
1D; and I again define B′

3G and B′
3D in the same way.

We see immediately that, when y turns around Ai, the cuts B1G and B′
3G,

B1D and B′
3D, B3G and B′

1G, B3D and B′
1D are exchanged; and that, for

y = Ai, B1G and B′
3G, . . . come to coincide.

I denote by β1 those subfaces β that belong to the first sheet if we adopt
first subdivision, corresponding to the solid lines; the other subfaces β will be
called β2.
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We then have the congruences

β1 ≡ B′
1D −B1D + B′

3D −B3D,

β2 ≡ B′
1G−B1G + B′

3G−B3G,

which come from the cuts forming the boundaries of β1 and β2.
Consider the combination

ω = B2D −B′
1D −B3G + B′

1G.

This is a cycle on our Riemann surface. When y turns around Ai it changes to

B′
1D −B3D −B′

1G + B3G,

that is, to −ω. This is therefore a vanishing cycle. It is easy to see that it is
the only one.

We now return to the cycles that we called Ωi and Ω′i in paragraph 2. Let

Ωi = ζ1B1D + ζ2B1G + ζ3B3D + ζ4B3G + H,

where the ζ are integer coefficients and H is a combination of other edges of P1.
Since the cycle Ω1 must be closed, we have

ζ1 + ζ2 = ζ3 + ζ4 = 0,

because the vertex B1, for example, belongs only to the two edges B1D and
B1G. It follows that we have

Ω′i = ζ1B
′
3D + ζ2B

′
3G + ζ3B

′
1D + ζ4B”1G + H.

This is because the edges of P , other than B1D,B1G,B3D, B3G, are not changed
when y turns around Ai, so H does not change.

We then have

Ωi − Ω′i = ζ1(B1D −B1G−B′
3D + B′

3G)
+ ζ3(B3D −B3G−B′

1D + B′
1G).

But

(B1D −B1G−B′
3D + B′

3G) = (B′
1G−B1G + B′

3G−B3G)
+ (B′

1D −B1D + B′
3D −B3D)

+ (B3D −B′
1D + B3G−B′

1G)

or
(B1D −B1G−B′

3D + B′
3G) + ω ≡ β2 − β1;

whence

Ωi − Ω′i + (ζ1 − ζ3)ω ≡ ζ1(β2 − β1),
Ωi − Ω′i ∼ (ζ3 − ζ1)ω.
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But we have assumed that the cycle Ωi is invariant, that is, that

Ωi ∼ Ω′i,

which requires ζ1 = ζ3. Under these conditions, we recover congruence (5) of
paragraph 2, which can be written

Ωi = Ω′i ≡
∑

θ′kMF ′k.

Comparing this with the preceding congruence, we find
∑

θ′kMF ′k = ζ1(β2 − β1).

When y (or M) comes to Ai the subfaces β1 and β2 disappear, so that
the right hand side of this equation vanishes. The left hand side reduces to∑

θ′kαiF
′
k, whence one concludes

∑
θ′kαiF

′
k = 0.

This justifies what we said on page 195 and those following.
Now suppose that Ai is a singular point of the second kind, and that when

y = Ai the singular point B1 comes to O.
We can then draw a Figure 2 analogous to Figure 1. For the sake of simplicity

I represent only three singular points, B1, B2, and B3.

Fig. 2.

When y turns around Ai, the cut OB1 returns to its original position, but
the cuts OB2 and OB3 (drawn solid) are transformed to the cuts OB2 and OB3

(drawn dotted).
This gives two modes of subdivision and, by superimposition, we obtain the

polyhedron P ′. Each face of P ′ (that is, each sheet of S) is thereby subdivided
into a certain number of subfaces. In the case of Figure 2, we have five, denoted
on the figure by (α), (β), (γ), (δ), (ε).

It is clear that, when y describes the cut OAi, one can arrange for the
preceding figure (and, consequently, the polyhedron P ′) to remain constantly
homeomorphic to itself.
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I let OB2 and OB3 denote the solid cuts, and OB′
2 and OB′

3 the corre-
sponding dotted cuts. I observe that these cuts cross each other, with the
pieces forming the edges of P ′. On each of these cuts I distinguish the terminal
segment, which is the one adjoining the point B2 or B3.

When y comes to Ai the polyhedron degenerates; several of its edges are re-
duced to zero, in particular the edge OB1 and all segments of OB2, OB3, OB′

2, OB′
3,

except the terminal segments. Moreover, the terminal segment of OB2 comes to
coincide with that of OB′

2, and that of OB3 with that of OB′
3. It follows that

the four subfaces (α), (β), (γ), (δ) disappear.
If there is no vanishing cycle here, the singular point Ai is not essential.
On the figure we have

OB2 −OB′
2 ≡ (α) + (γ) + (δ),

OB3 −OB′
3 ≡ (α) + (β) + (δ).

Returning to our cycle Ωi, we have

Ωi =
∑

ζ1OB1 +
∑

ζ2OB2 +
∑

ζ3OB3.

I use the sign
∑

because there are several cuts (belonging to different sheets
of the Riemann surface) that project onto OB1. It follows that we have

Ω′i =
∑

ζ1OB1 +
∑

ζ2OB′
2 +

∑
ζ3OB′

3;

whence

Ωi − Ω′i =
∑

ζ2(OB2 −OB′
2) +

∑
ζ3(OB3 −OB′

3),

Ωi − Ω′i ≡
∑

ζ2[(α) + (γ) + (δ)] +
∑

ζ3[(α) + (β) + (δ)],

and, comparing with congruence (5) of paragraph 2,
∑

θ′kMF ′k =
∑

ζ2[(α) + (γ) + (δ)] +
∑

ζ3[(α) + (β) + (δ)].

When y comes to Ai, (α), (γ), (δ) disappear, so what remains is
∑

θ′kαiF
′
k = 0,

which again justifies what we said on page 195.
Supposing that the point y describes the different cuts OA1, OA2, . . . , OAq,

the singular points B describe certain lines. We can assume that these lines are
not indefinitely distant. Indeed, if this were so, we could always find a small
circle in the plane of x values that did not cross any of these lines, and then,
by a simple linear change of variables, we could send the centre of this circle to
infinity.

Thus, when the point y moves successively across the two sides of OAi, the
two sides of OA2, etc., and finally those of OAq, the singular points B remain
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at a finite distance. We can then control the deformation of the cuts OB so that
the cuts remain at a finite distance. The cycle Ωi, which is a combination of
these cuts, therefore always remains at a finite distance. It will then be the same
for the corresponding cycle Ui on S0 [since we can choose the correspondence
between S(M) and S0 in such a way that a point at infinity on S(M) corresponds
to a point at infinity on S0]. This cycle then cannot sweep out the entire surface
S0, which justifies what we said on p. 198.

We remark finally that, among the vertices of P , there are m that correspond
to x = 0.

All our hypotheses are therefore justified.
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FIFTH SUPPLEMENT TO ANALYSIS
SITUS

Rendiconti del Circulo Matematico di Palermo 18 (1904), pp. 45-110.

§1
I have previously been involved with Analysis situs on several occasions; I

first published a memoir on that subject in the volume Centenaire du Journal de
l’École Polytechnique; this memoir was followed by four supplements which have
appeared in vol. XIII of the Rendiconti del Circolo Matematico di Palermo, vol.
XXXVII of the Proceedings of the London Mathematical Society, in the Bulletin
de la Société Mathématique de France in 1901, and finally in the Journal de
Liouville in 1901.

I now return to this same question, persuaded that it has not yet been
exhausted and its importance is sufficient to justify further effort.

This time I confine myself to the study of certain three-dimensional mani-
folds, but the methods used without doubt are of more general applicability. I
shall devote considerable space to certain properties of closed curves which can
be traced on closed surfaces in ordinary space.

The final result which I have in view is the following. In the second supple-
ment I showed that to characterize a manifold it does not suffice to know the
Betti number; one also needs to know certain coefficients which I have called
torsion coefficients (2nd supplement, §5, p. 163), and which play an important
rôle.

One could then ask whether the consideration of these coefficients is suf-
ficient, e.g. whether a manifold, all Betti numbers and torsion coefficients of
which equal 1, is simply connected in the true sense of the word, i.e. homeo-
morphic to a hypersphere; or whether, on the contrary, it is necessary, in order
to affirm that a manifold is simply connected, to study its fundamental group,
which I have defined in the Journal de l’École Polytechnique, §12, p. 58.

We can now answer this question; in fact, I construct an example of a man-
ifold, all Betti numbers and torsion coefficients of which equal 1, but which is
not simply connected.

§2
I consider a manifold V of m dimensions situated in the space of k dimen-

sions. Then let
ϕ(x1, x2, · · · , xk) = t

be the equation of a hypersurface of k − 1 dimensions situated in the same
space, which I shall call the surface ϕ(t); in this equation x1, x2, · · · , xk are the
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coordinates of a point in the space of k dimensions and t an arbitrary parameter
such that the surface ϕ(t) deforms continuously as t varies continuously. I
suppose that the function ϕ is uniform and such that only one surface ϕ(t)
passes through each point.

The surface ϕ(t) intersects V in a certain number of (m − 1)-dimensional
manifolds

w1(t), w2(t), · · · , wp(t)

the set of which constitutes a system W (t).
When t varies continuously from −∞ to +∞ the system W (t) varies contin-

uously and generates the manifold V . If the manifold V is closed, the manifolds
w(t) are likewise.

That being given, I now define what I call the skeleton of the manifold
V . To each of the partial manifolds w1(t), w2(t), · · · , wp(t) I assign a point
in ordinary space. One of the coordinates of this point, x for example, will
equal the parameter t, the other two are chosen arbitrarily, subject only to the
following conditions:

10 If two manifolds wi(t), wi(t + ε) differ very little from each other, the two
corresponding points will be very close together.

20 It may happen that for certain values, t = t0 for example, that a manifold
w(t) decomposes into two; in this case, for example, the manifold w1(t0−ε)
will differ very little from the set w1(t0 + ε) + w(t0 + ε) of two manifolds.
In that case, we must arrange the manner of correspondence so that the
points representing the two manifolds w1(t0 + ε) and w2(t0 + ε) which
result from the bifurcation of w1(t0 − ε) differ very little from each other
and from the point representing w1(t0 − ε).

Under these circumstances, when t varies in a continuous manner, the points
representing the p manifolds

w1(t), w2(t), · · · , wp(t)

generate p continuous lines

L1, L2, · · · , Lp

at least as long as the number p does not change. But this number can change
at t = t0, if one of the manifolds decomposes into two, or if, on the contrary,
two manifolds merge into one. In the first case one of the lines L bifurcates, in
the second case two of the lines L combine into one.

In this way we obtain a sort of network of lines, and it is this network which I
call the skeleton of V . I have drawn this network in the space of three dimensions
and not the plane, because then we can always avoid lines meeting except at
points of bifurcation.

If we follow one of these lines, L1 for example, described by the point repre-
senting w1(t), we see that this manifold remains homeomorphic to itself [and in
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such a way that two manifolds w1(t) and w1(t+ ε) corresponding to neighbour-
ing points differ very little from each other] as long as we do not pass through
a value t such that w1(t) has a singular point.

We must then mark the lines of our network at points where the correspond-
ing manifolds w(t) have singular points. These will be the points of division
which cut our lines into sections, but as long as we remain on one of these
sections the corresponding manifold w(t) will remain homeomorphic to itself.

We remark that if we consider one of the values t0 which corresponds to
a point of bifurcation where one of the manifolds wi splits, then the manifold
wi(t0) itself will have a singular point. We are then obliged to study these
singular points.

However, before proceeding on this study, I must make a few more remarks.
If I have a closed manifold V , this means first of all that the manifolds w(t) are
all closed themselves. The second condition is that one of the lines L ends in a
cul-de-sac, at t = t1 for example, the corresponding manifold reduces to a point
as t tends to t1, i.e. on approaching the end of the cul-de-sac.

In the second place, I have said that I have chosen the function ϕ to be
uniform, so that exactly one surface ϕ = t passes through each point of the
space. Apart from this condition, the system W (t) can be arbitrary. The
restriction does not prevent us from showing that any manifold V is susceptible
to this mode of generation, however we can relax it and consider any system
W (t) at all of closed manifolds

w1(t), w2(t), · · · , wp(t)

which vary continuously with t, allowing of course that for certain values of t
one of the manifolds may reduce to a point, or split into two.

Under these conditions, the system W (t) again generates a manifold V and
we can define the skeleton along the same lines as above, without changing
anything.

Nevertheless, there is a case where it would be of advantage to make a slight
change. I suppose that for two values of t, for example t = 0 and t = 2π, the
system W (t) is the same, or rather, I imagine that the two systems W (t) and
W (t + 2π) are identical. It will then suffice to let t vary from 0 to 2π, and it
will consequently be convenient to choose the point representing the manifold
w(t), not so that we have x = t but so that arctan y

x = t, that is, so that the
representative points of w(t) and w(t + 2π) are identical.

If we suppose, for example, that W (t) reduces to a single manifold w(t), the
skeleton of V will reduce to a closed curve under these conditions.

To take a thoroughly simple example, we consider a torus as our manifold V
and regard it as being generated by a meridian circle which will be our manifold
w(t), identical to w(t + 2π). With our new conventions, the skeleton of this
torus will be a closed curve.

We now commence the study of singular points of the manifolds w(t). The
part of one of these manifolds close to the singular point could be represented
by the following equations.
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xi = ψt(y1, y2, · · · , yq) (i = 1, 2, · · · , k)
ϕh(y1, y2, · · · , yq) = 0 (h = 1, 2, · · · , q −m)

to which it is necessary to adjoin certain inequalities which do not concern us.
In the region envisaged, the functions ϕ and ψ are holomorphic. We can

always assume that the singular point corresponds to

y1 = y2 = · · · = yq = 0

and at this value the first order partial derivatives of the functions ϕ are not all
zero, except for one among them, ϕ1.

Then the equations

ϕ2 = ϕ3 = · · · = ϕq−m = 0

enable us to express each y as a function of m + 1 of the others, depending
on which functions remain holomorphic in the vicinity of the singular point. I
then replace these y by the expressions derived for them, so that all expressions
are in terms of m + 1 of the quantities y, for example y1, y2, · · · , ym+1 and our
equations take the form

xi = ψi(y1, y2, · · · , ym+1)

ϕ1(y1, y2, · · · , ym+1) = 0

The function ϕ1 can be expanded in powers of y and this expansion begins
with terms of second degree, the set of which constitutes a quadratic form
f(y1, y2, · · · , ym+1).

It is not useful to envisage the singular points of other types, since if they
existed, they could be made to disappear by a slight change in the function
ϕ(x1, · · · , xk) which defines the surfaces ϕ(t), at least if we assume that the
manifold v is itself free of singular points. We are therefore led to study the
cone of second degree

f(y1, y2, · · · , ym+1) = 0

in the space of m + 1 dimensions of the y, and its intersection with the hyper-
sphere

y2
1 + y2

2 + · · ·+ y2
m+1 = 1.

Let C be that intersection. Everything will depend on the number of dimen-
sions and the number of positive and negative squares in the decomposition of
the form f as a sum of squares.

By change of coordinates we can always reduce f to the form

f =
∑

Aiy
2
i −

∑
Bky2

k

where the coefficients A and B are positive, so that we have q positive squares
and m + 1− q negative squares, the index i running from 1 to q and the index
k from q + 1 to m + 1.
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I can then write ∑
Aiy

2
i =

∑
Bky2

k = λ2

where
yi = ηiλ, yk = ηkλ

the η being any solutions of the equations

(1)
∑

aiη
2
i = 1,

∑
Bkη2

k = 1

We deduce
λ2(

∑
η2

i +
∑

η2
k) = 1.

In studying the equations (1) we see that the
∑

η2
i are bounded above and

below by the inverses of the smallest and largest of the coefficients A. We
similarly find upper and lower bounds for

∑
η2

k. We then conclude that λ is a
continuous function of η [constrained by the equations (1)] and that this function
cannot become zero or infinite. We may then assume that λ is always positive;
λ will then be a continuous function completely determined by the η, and hence
the same as the y.

Several cases can occur.

10 If q is zero or equal to m + 1, so that all squares have the same sign, it is
clear that the cone reduces to a point and C does not exist.

20 If q is not equal to 1 we can pass continuously from any solution of∑
Aiη

2
i = 1 to any other solution; if, however, q = 1 this equation admits

only two solutions: η1 = ± 1√
A1

, and we cannot pass from one to the other
in a continuous manner.

Likewise, if q is not equal to m we can pass continuously from any solution
of the equation

∑
Bkη2

k = 1 to any other; if, on the contrary, q = m then the
equation has only two solutions and such a passage is impossible.

The cases are therefore of three types:
If 1 < q < m, C is a single piece.
If 1 = q < m or if 1 < q = m, C consists of two pieces.
If 1 = q = m, C consists of four pieces, or rather, it reduces to four discrete

points.
In the latter case, we have m = 1 and the manifold V is of two dimensions;

this alerts us to the fact that we shall encounter a difference between manifolds
of two dimensions and those of more than two.

Suppose first of all that V has two dimensions (m = 1); we can then have:

10 q = 0 or q = 2. In this case C does not exist; when t passes through
a value which corresponds to a similar singular point we see that a new
manifold w(t) appears (or disappears); it reduces firstly to a point, then to
a small closed curve. This singular point then corresponds to a cul-de-sac
of the skeleton.



§2 225

20 q = 1. In this case C reduces to four points which I can number 1, 2, 3, 4.
The manifold w(t) reduces to a curve which admits, as a singular point, an
ordinary double point where two branches of the curve, 1 ·3 and 2 ·4, cross.
I suppose that the singular point occurs for t = 0; I shall let 1′, 2′, 3′, 4′

denote the points of the manifold w(t) which, for very small values of t,
are respectively very close to the points 1, 2, 3, 4 of the manifold w(0).

I begin by observing that the branch of the curve which runs from the double
point to the point 1 must return to the double point, because all our curves are
closed; it can return via one of the other three points 2, 3, 4. It follows that our
points 1, 2, 3, 4 are grouped in pairs, e.g. 1 with 2, 3 with 4, so that we can
go from 1 to 2 and from 3 to 4 on the curve w(0) without passing through the
neighbourhood of the double point. Similarly, we can go from 1′ to 2′, and from
3′ to 4′ on the curve w(t) without passing through the neighbourhood of the
double point, and this is true for all sufficiently small values of t, positive or
negative.

Now, if we consider the neighbourhood of the double point, we see that for
t < 0, for example, we can pass from 1′ to 2′ and from 3′ to 4′ on w(t) also by
passing near to the double point, whereas we cannot pass from 1′ to 4′ and from
2′ to 3′ in this way. On the other hand, for t > 0 we can pass not only from 1′

to 4′ and from 2′ to 3′, but also from 1′ to 2′ and 3′ to 4′.
It follows that for t < 0 the branches of w(t) form two distinct closed curves,

whereas for t > 0 they form only one.
Our singular point therefore corresponds to a bifurcation of the skeleton.
It is the same if 1 is associated with 4, and 2 with 3.
But now, suppose that 1 is associated with 3 and 2 with 4. We then see that

for t < 0, as well as for t > 0, our manifold w(t) reduces to a single closed curve;
however, for t < 0 this curve passes through the points 1′3′4′2′1′ in succession,
whereas for t > 0 the order of points is 1′3′2′4′1′. Our singular point does not
therefore correspond to a bifurcation.

In this case I claim that the manifold V is non-orientable.
To prove this, we take any closed two-dimensional surface (orientable or non-

orientable) and dissect it (leaving it as a single piece) so that it can be mapped
on to the plane; we thus obtain a polygon, analogous to a fuchsian polygon,
whose edges are conjugate in pairs, two conjugate edges corresponding to two
sides of the same cut.

Let AB and A′B′ be two conjugate edges, so that the vertex A is conjugate
to A′, and the vertex B to B′. If in moving from A to B the interior of the
polygon is (say) on the left, while in moving from A′ to B′ it is on the right, we
say that the conjugation is direct.

If, on the contrary, the interior is on the left when going from A to B and
also in going from A′ to B′, we say that the conjugation is inverse. (This
convention may seem surprising at first, but it will be justified on reflection.)
That being given, if all pairs of edges are directly conjugate (as is the case for
fuchsian polygons) the corresponding surface is orientable. If the conjugation is
inverse for one pair of edges then the surface is non-orientable.
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Suppose for example that our polygon is a rectangle whose vertices in cyclic
order are ABCD and whose opposite edges are conjugate. If AB is conjugate to
DC, and AD to BC the conjugation is direct, and the polygon can be regarded
as a map of the torus, an orientable surface. If AB is conjugate to CD, and AD
to BC the conjugate is direct for one pair and inverse for the other, and the
polygon is the map of a non-orientable surface analogous to that of Möbius. If
AB is conjugate to CD, and AD to CD, the conjugation is inverse for both pairs
and the polygon is the map of the “projective plane”, which is a non-orientable
surface.

With this in mind, we apply these rules to our manifold V , dissected and
mapped on to the plane so as to obtain our polygon. The figure presents only
that part of the polygon which is of interest to us.

Figure 1

We have a singular point at O; the lines CHD, AEB, C ′H ′D′, A′R′B′ rep-
resent part of the boundary of the polygon. The two lines E103E′ and H204H ′

which cross at O are the maps of the curves w(0). The lines B1′2′C,B′3′4′C ′

are the map of the curve w(t) for t < 0. The lines D2′3′A′ and D′4′1′A are
the map of the curve w(t) for t > 0. By hypothesis, this curve w(t) is closed
onto itself in such a way that the branch 1′ joins the branch 3′ and the branch
2′ joins the branch 4′. Then A must be pasted to A′, i.e. A is conjugate to
A′, and similarly B to B′, C to C ′, D to .D′. Thus in our polygon AB is
conjugate to A′B′ and CD to C ′D′. The conjugation is inverse, so our surface
is non-orientable. Q.E.D.
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Then if a two-dimensional V is orientable, its skeleton will not have singular
points other than culs-de-sac and bifurcations. This is the secret of the relative
simplicity of Analysis situs on ordinary surfaces.

I now come to manifolds V of three dimensions (m = 3), to which I confine
myself at present. Again we have to distinguish two cases:

10 q = 0 or q = 3; then C does not exist, and the singular point corresponds
to a cul-de-sac of the skeleton.

20 q = 1 or q = 2; then C is composed of two pieces; the manifold w(0)
represents an ordinary conical point (if the singular point corresponds to
t = 0) the parts of that manifold close to the singular point are assimilable
in an ordinary cone of second degree. We now give t a very small value.
The parts of w(t) close to the singular point will be assimilable, e.g. in
a hyperboloid of one sheet for t < 0 and a hyperboloid of two sheets for
t > 0.

We consider the ellipse at the neck E of the hyperboloid of one sheet; for
t = −ε (where ε is positive and very small) this ellipse is a very small closed
cycle traced on w(t); for t = 0 it reduces to a point and for t = +ε it disappears.

What we have called C (intersection of the cone and the hypersphere) is
composed here of two closed curves (as it is in the case of q = 1 or q = m) and
we have to distinguish two cases: when we can pass from one of these two curves
to the other on w(t) without passing close to the singular point, and when this
passage is impossible.

In the first case the ellipse E divides the manifold w(−ε) into two parts, since
we cannot pass from a neighbourhood of one of the curves ¸C to a neighbourhood
of the other curve C without passing through the neighbourhood of the singular
point, i.e. without crossing the ellipse at the neck E. We then have

E ∼ 0

on w(−ε).
In the second case, however, E does not separate w(−ε).
In the first case, the sheets of w(t) which pass in the neighbourhood of the

singular point form a single closed surface for t = −ε, because we can always
pass from one point to another on these sheets and, in particular, from the
neighbourhood of one of the curves C to that of the other by crossing the ellipse
E. On the other hand, for t = +ε they form two closed surfaces, because we
cannot pass from one of the curves C to the other.

In the first case, our singular point therefore corresponds to a bifurcation of
the skeleton.

In the second case, on the other hand, these sheets of w(t) always form a
single closed surface, both for t = −ε and t = +ε, because we can always pass
from one curve C to the other without going near the singular point.

In the second case, our singular point does not correspond to a bifurcation.
This second case itself divides into subcases. We consider a line giving

passage from one curve C to the other without going near the singular point.
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When we follow this line, if we are to conserve the form of the equations it will be
necessary from time to time to change the variables and replace the variables y
by other variables y′, then replace these y′ by new variables y′′, etc. We assume
always that these changes of variable are made in such a way that the Jacobian
relating the new variables to the old is positive. Let z1, z2, · · · , zm+1 be the final
variables when we return to the neighbourhood of the singular point. We then
have the x as functions of the z, but since, in the neighbourhood of the singular
point, our equations which give the x as functions of the y become valid again,
the series becomes convergent again, we have the z as functions of the y; two
cases can then occur according as the Jacobian of the z with respect to the y
is positive or negative. In the first case the path is two-sided, in the second
case one-sided. This is as I have explained in the Analysis situs, in defining
non-orientable manifolds.

Thus if there exist lines which permit us to pass from one curve C to the
other without going near the singular point it can be that: all of these lines are
two-sided, or some are two-sided and others one-sided, or all are one-sided.

For the moment we confine ourselves to the case where all the surfaces w(t)
are orientable. All the lines, if they exist, are therefore two-sided.

We know that for an orientable surface the Betti number is always odd.
Then if an orientable surface is (2p+1)-tuply connected, it will admit 2p distinct
cycles, any linear combination of which is homologous to zero. We then envisage
the 2p cycles on the surface w(−ε), and first distinguish between those which
meet the ellipse at the neck E and those which do not. If a cycle K meets E
we must divide the points of intersection into two categories according to the
sign of a certain determinant, as I explained in Analysis situs, p. 41. In this
way we define the number N(K,E) (cf. Analysis situs, p. 41) which will be
the difference of the numbers of points of intersection in the two categories. If
the number N relative to the cycle K is zero, K will be homologous to a cycle
which does not meet E at all. If, on the contrary, the number N is not zero, all
cycles homologous to K will meet E.

What happens then, when t varies continuously from the value −ε to the
value +ε? We could find a line K ′ on w(+ε) differing infinitely slightly from
the cycle K traced on w(−ε) only if K does not meet E, the line K ′ is closed
and constitutes a new cycle on w(ε); if, on the contrary, K meets E, the line K ′

cannot be closed. Then, in order to have cycles on w(ε) differing infinitely little
from a cycle homologous to K it is necessary and sufficient that the number
N(K, E) be zero.

In other words, all the cycles for which this number is non-zero disappear
when t passes from −ε to +ε, all the others survive.

Let K be a cycle of w(−ε) which survives and K ′ the cycle corresponding
to it on w(ε).

Under what circumstances do we have K ′ ∼ 0?
If we have K ′ ∼ 0 there exists an area A′ on w(ε) bounded by K ′; on w(−ε)

we can find an area A differing infinitely little from A′, and this area will be
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bounded by K only or else by K and the ellipse at the neck E, so that

K ∼ 0 or K ∼ E.

I might add that if we trace any cycle K ′ on w(ε) we can always find a cycle
K on w(−ε) which differs from it arbitrarily little, and we cannot have K ∼ 0
without having K ′ ∼ 0; for if there is an area A on w(−ε) bounded by K there
is an area A′ on w(ε) bounded by K ′ and which differs infinitely little from A.

Then, when t passes from −ε to +ε certain cycles can disappear, but new
cycles cannot appear; certain cycles can become homologous to zero, but no
cycle can lose this property, so that the Betti number can decrease, but not
increase.

It follows that only two cases can occur:

10 E ∼ 0 on w(−ε); in this case we have seen that when t passes from −ε to
+ε the manifold w(t) will decompose into two others.

The cycles on w(−ε) cannot disappear; in fact, since we have E ∼ 0 we
have N(K,E) = 0 for all cycles K. Also, none of these cycles K can
become homologous to zero. We have seen which new homologies can be
introduced between the cycles K in the passage from −ε to +ε; all of
them can be deduced from the new homology E ∼ 0; and, in fact, we have
said that when we have K ′ ∼ 0 without having K ∼ 0 it is necessary that
K ∼ E. But in the case we are concerned with we have E ∼ 0 on w(−ε)
as well as on w(ε). There are therefore no new homologies.

The total number of distinct cycles then remains the same; if w(−ε) is
(2p + 1)-tuply connected, w(ε) consists of two surfaces which are respec-
tively (2p + 1)-tuply and (2p′′ + 1)-tuply connected, where p′ + p′′ = p.

20 In the second case, we do not have E ∼ 0 on w(−ε); we have seen that
in that case w(t) does not decompose; we suppose that w(−ε) is (2p + 1)-
tuply connected, with 2p distinct cycles. At the moment when t becomes
positive, certain cycles K disappear; they are those for which N(K, E) is
not zero. But if we have two cycles K1 and K2 such that

N(K1, E) = m1, N(K2, E) = m2

then we have
N(m2K1 −m1K2, E) = 0

so that the cycle m2K1−m1K1 does not disappear. It follows that all the
cycles which disappear are linear combinations of one among them and
the cycles which do not disappear. The number of distinct cycles then
diminishes, for this reason, by one and one only.

On the other hand, one and only one new homology is introduced among
the cycles which survive,

E ∼ 0

so that the number of cycles again diminishes by one.
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In summary, the total number of distinct cycles diminishes altogether by
two, so that w(ε) is (2p− 1)-tuply connected.

§3
Before going further we must briefly review what we know of two-dimensional

surfaces, or rather those properties of surfaces we shall require in what follows;
I commence with orientable surfaces.

We know that a (2p + 1)-tuply connected closed orientable surface admits
2p distinct cycles. Let C1, C2, · · · , C2p be 2p fundamental cycles on the surface,
chosen in such a way that each cycle on the surface is homologous to a linear
combination of them.

Now let
X =

∑
xiCi, Y =

∑
yiCi

be two of these linear combinations where the coefficients x and y are integers.
We consider the number N(X, Y ) relating intersections of the two cycles X and
Y ; this number is equal to

N(X, Y ) = F (x, y)

where F (x, y) is a bilinear form in the variables x and y.
This form and all its coefficients are integers and it changes sign when we

permute x with y, so that

F (x, y) = −F (y, x).

Finally, its discriminant is equal to 1.
We can choose the fundamental cycles C (in infinitely many ways) so that

the form F (x, y) is reduced, i.e. it reduces to

x1y2 − x2y1 + x3y4 − x4y3 + x5y6 − x6y5 + · · · .

We see that if the form F is reduced, N(Ci, Ck) will be zero if the indices i
and k have the same parity; that is, if i and k have the same parity the cycles
Ci and Ck will not intersect, or else will be homologous to cycles which do not
intersect.

In what follows it will often be useful to us to replace our surface by a
fuchsian polygon; this can be done in two ways. Assuming that the form F is
reduced, we consider the p cycles of odd rank

C1, C3, · · · , C2p−1

which we may assume do not intersect.
In addition, here is how we can give account of the generation of these cycles.

We form the skeleton of our surface; this skeleton will be a network on which we
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can describe p distinct closed lines; by suitable choice of p points on the network
the p closed lines are cut off, the network being reduced to a single piece. Each
of these points represents a closed curve [which will be the manifold w(t) of the
preceding paragraph]. We then have p closed curves which have no common
point and which are our p cycles

C1, C3, · · · , C2p−1.

We cut our surface along these p curves; it remains in a single piece, but it
can now be mapped on to the plane, and, after the mapping it reduces to a plane
region bounded by 2p closed curves. One of the 2p curves bounds it from the
exterior and the others from the interior. These 2p curves are conjugate in pairs,
two conjugate curves corresponding to two sides of the same cut. The region will
therefore be capable of assimilation in the third family of fuchsian polygons; and
we have the advantage of being able to envisage the fuchsian group it generates,
and the decomposition of the plane into an infinity of polygons congruent to the
generator polygon.

Suppose now that we have cut our surface along the 2p cycles. The 2p cycles
have been traced so that they all pass through the same point and have no
other point in common. If, after cutting, we map the surface on to a plane, we
obtain a polygon of 4p sides conjugate in pairs, assimilable in a fuchsian polygon
(which does not have a single cycle of vertices) which has the sum of its angles
equal to 2π. If the form F is reduced, the rule of conjugation of the sides will
be the following: 1 with 3, 2 with 4, 5 with 7, 6 with 8, 9 with 11, 10 with 12,
etc. This allows us to envisage the fuchsian group and the decomposition of the
fundamental circle into congruent polygons.

This now brings us to a question which will detain us for some time. The
fuchsian group in question is none other than what was called, in Analysis situs
§12, the fundamental group of the surface. The definition of this group is based
on the notion of equivalence of cycles and on the distinction between this notion
and that of homology (cf. p. 30 and p. 59 of Analysis situs).

We consider two cycles K and K ′, beginning and ending at the same point;
I shall write the “equivalence”

K ≡ K ′

if we can pass from one to the other by a continuous deformation without
leaving the manifold in question. It may be that the cycle K ′ passes several
times through the initial point M and is therefore equivalent to a number of
consecutive cycles K1,K2,K3 which occur in the order indicated; we can then
write

K ≡ K1 + K2 + K3

but now we no longer have the right to change the order of the terms and write,
for example,

K ≡ K1 + K3 + K2.

This is precisely what distinguishes equivalences from homologies; in the
latter we have the right to change the order, so that the equivalence

K ≡ K1 + K2 + K3
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allows us to deduce not only the homology

K ∼ K1 + K2 + K3

but also the homology
K ∼ K1 + K3 + K2.

Likewise, suppose that K ′, instead of starting at point M , begins and ends
at some other point M ′. Let L be any line from M to M ′. Then the cycle
L + K ′ − L, like K, runs from M to M . Suppose that we have the equivalence

K ≡ L + K ′ − L.

Since we do not have the right to change the order of terms, we cannot deduce
the equivalence K ≡ K ′, but only the homology K ∼ K ′.

Thus with homologies, terms are composed according to the rules of ordinary
addition; with equivalences the terms are composed according to the rules of
substitutions in a group; this is why the set of equivalences can be said to be
symbolized by a group, which is the fundamental group of the manifold.

In the case we are concerned with, we envisage the fundamental circle de-
composed, as we have said, into congruent fuchsian polygons. Each of these
polygons has 4p sides. Any cycle will be represented by a closed line, or a line
from one point of the plane to another “congruent” point (i.e. a transform of
the former point under one of the transformations of the fuchsian group).

In the first case the cycle is equivalent to zero; in the second case it is not.
The fundamental group is then the fuchsian group itself, the group derived

from the 2p substitutions corresponding to the 2p fundamental cycles Ci; in
the case where the form F is reduced, the rule of conjugation of the sides of
the polygon is what I have said above; between the 2p cycles there is a single
equivalence which is written

0 ≡ C1 + C2 − C1 − C2 + C3 + C4 − C3 − C4 + C5 + C6 − C5 − C6 + · · · .

This equivalence suffices to define the fundamental group.
We can find the form of a cycle which is homologous to zero without being

equivalent to zero. We see first of all that we cannot have p = 1, since then the
equivalence I have just written becomes

C1 + C2 ≡ C2 + C1

which signifies that any two cycles commute (from the point of view of equiv-
alence). Moreover, we know that in this case the fuchsian functions reduce to
elliptic functions, and the fuchsian group of these substitutions is commutative.

If p > 1 we suppose that the rule of conjugation of the sides is as expressed
above, i.e. 1 with 3, 2 with 4, etc. Let 0 and 1 be the two vertices of edge 1;
1 and 2 those of edge 2 etc.; finally let 4p − 1 and 4p = 0 be those of edge 4p.
We join the vertices 0 and 4 by a line through the interior of the polygon. This
line represents a cycle which will be equivalent to

C1 + C2 − C1 − C2.
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It will therefore be homologous to zero, but not equivalent to zero.
We now have recourse to another mode of representation; we represent our

surface by a fuchsian polygon of the third family bounded by 2p closed curves
conjugate in pairs, one of them bounding the polygon from the exterior, the
others from the interior.

Let k be one of these closed curves, corresponding to the cycle C2, let k′ be
its conjugate. Let M be a point of k, M ′ the corresponding point of k′; we join
M and M ′ by a line MPM ′ which corresponds to the cycle C1. We now trace
a closed curve K in the interior of the polygon enveloping k and k′, but not
enveloping any of the other curves which form the boundary of the polygon.

Let Q be a point on k where this cycle begins and ends. Let L be a line
from Q to M . It is clear that we have the equivalence

K ≡ L + k + MPM ′ + k′ −MPM ′ − L

that is
K ≡ L + C2 + C1 − C2 − C1 − L;

from which we can conclude K ∼ 0, i.e. that K is homologous to zero without
being equivalent to zero.

Finally, we pass to the surface itself, and confine ourselves to simple cycles,
i.e. to cycles which do not intersect themselves.

Let C be such a cycle which is homologous to zero; it decomposes the (2p+1)-
tuply connected surface into two parts, so that if we strangle the surface in such
a way as to reduce the cycle — C to a point, the surface decomposes into two. If
one of the two surfaces obtained in this way is simply connected, then the cycle
C will be equivalent to zero. If the two surfaces are (2p′ + 1)-tuply connected
and (2p′′+1)-tuply connected, where p′ > 0, p′′ > 0, p′+ p′′ = p the cycle C, on
the contrary, is homologous to zero without being equivalent to zero.

It is easy to see, and of course we already know, that two orientable surfaces
with same Betti number are always homeomorphic. It suffices to remark that
each of them can be replaced by a fuchsian polygon of the third family, bounded
by 2p closed curves, and that two similar polygons, i.e. two regions bounded
from the exterior by one closed curve and from the interior by 2p − 1 closed
curves are evidently homeomorphic to each other.

But we can go further. Let S be a (2p + 1)-tuply connected surface, and
trace on it two systems of 2p cycles:

C1, C2, · · · , C2p; C ′1, C ′2, · · · , C ′2p.

The surface S can always be regarded as homeomorphic to itself; i.e. point M
on the surface can be made to correspond to any other point M ′ in such a way
that the correspondence extends to a one-one bicontinuous map of the whole
surface. In that case the correspondence can be chosen so that, when the point
M describes the cycles

C1, C2, · · · , C2p

the point M ′ describes either
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10 the cycles C ′1, C
′
2, · · · , C ′2p

or 20 cycles equivalent to C ′1, C
′
2, · · · , C ′2p

or 30 cycles homologous to C ′1, C
′
2, · · · , C ′2p.

I now deal with the third question, which is the most easy. I consider the form
F (x, y) which represents the number N relative to the intersection of the cycles∑

xC and
∑

yC. I also consider the form F ′(x′, y′) relative to the intersection
of the cycles

∑
x′C ′ and

∑
y′C ′.

It is clear first of all that if the correspondence is possible in such a way that
M ′ describes a cycle homologous to C ′i when M describes a cycle homologous to
Ci then the two forms will be identical, i.e. they will differ only by a substitution
of the variables x′, y′ for the variables x and y. If, for example, we suppose that
F is reduced and that

F = x1y2 − x2y1 + x3y4 − x4y3 + · · ·

then we must have

F ′ = x′1y
′
2 − x′2y

′
1 + x′3y

′
4 − x′4y

′
3 + · · ·

The cycles C ′ are linear combinations of the cycles C and if we suppose
∑

xC =
∑

x′C ′,
∑

yC =
∑

y′C ′

the new variables x′ and y′ will also be linear combinations of the x and the y
with integer coefficients. It is the case then, that the form F is not altered by
the linear substitution that converts the x to x′ and the y to y′.

I claim that this necessary condition is also sufficient.
To prove this, we look at those linear substitutions which do not alter the

form F , which we assume to be reduced.

10 If we suppose that we have

x′1 = x1 + x2, x′i = xi (i > 1)
y′1 = y1 + y2, y′i = yi (i > 1)

it is clear that we have

x′1y
′
2 − x′2y

′
1 + · · · = x1y2 − x2y1 + · · ·

It is clear that this will also be the case if we put

x′2 = x1 + x2

or x′3 = x3 + x4

or x′4 = x4 + x3

or more generally
x′2k−1 = x2k−1 + x2k

or x′2k = x2k−1 + x2k
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where all the remaining x′i equal the corresponding xi.

It will still remain the same if the x are subject to the inverses of the
preceding substitutions, i.e. if we put

x′2k−1 = x2k−1 − x2k

or x′2k = x2k−1 − x2k

while all the other x′i remain equal to the corresponding xi.

It goes without saying that the linear substitution by which we pass from
the y to the y′ is identical to that by which we pass from the x to x′.

We see then, a first type of linear substitution which does not alter the
reduced form F .

20 Now here is a second type.

Suppose that we put

x′1 = x1 + x3, x′4 = x4 − x2

x′i = xi (except for i = 1 and i = 4)

or more generally

x′2k−1 = x2k−1 + x2j−1, x′2j = x2j − x2k

x′i = xi (except for i = 2k − 1 and for i = 2j).

It is clear that the reduced form F is not altered.

It is also not altered by the inverse substitution

x′2k−1 = x2k−1 + x2j−1, x′2j = x2j + x2k

x′i = xi (except for i = 2k − 1 and for i = 2j).

This is our second type.

But it is easy to see that every substitution which does not alter the reduced
form F can be considered as a combination of substitutions of these two types.

It therefore suffices to demonstrate the theorem for substitutions of these
two types.

To deal with the second type first, we can represent our surface by a fuchsian
polygon of the third family, bounded from the exterior as well as the interior by
2p closed curves

A1, A′1; A3, A′3, · · · ; A2p−1, A′2p−1

conjugate in pairs and corresponding to p cycles of odd index

C1, C3, · · · , C2p−1.
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To construct the p cycles of even index, it suffices to operate in the following
fashion.

Let
P1, P3, · · · , P2p−1

be p points taken arbitrarily on the curves A1, A3, · · · , A2p−1; let P ′1, P
′
3, · · · , P ′2p−1

be the corresponding points on the conjugate curves A′1, A
′
3, · · · , A′2p−1. We join

P1 to P ′1, P3 to P ′3, · · · , P2p−1 to P ′2p−1 by p lines

L1, L3, · · · , L2p−1

traced so that they do not mutually intersect. These p lines will be homologous
to p cycles of even index

C2, C4, · · · , C2p.

To simplify, we suppose that it is the curve A5 (which does not play any
rôle in what follows) which bounds our fuchsian polygon from the outside. We
construct a curve B which envelopes the two curves A1 and A3 and does not
envelope the others; this curve B will represent a cycle homologous to

C1 + C3.

Let R be the region bounded from the outside by this curve B and from
the inside by A1 and A3. We envisage the substitution of the fuchsian group
which changes A1 into A′1 (and which corresponds to the cycle C2). Let R′ be
the image of the region R under this substitution; it will be bounded from the
exterior by A′1 and from the interior by two closed curves B′ and A′′3 which are
images of B and A3.

We modify the fuchsian polygon by cutting away the region R and adjoining
the region R′. Our new fuchsian polygon will be bounded from the outside by
A5 and from the inside by

A′5; B; B′; A′3, A′′3 ; A7, A′7; · · · ; A2p−1, A′2p−1.

Two points of the plane which transform into each other by a substitution
of the fuchsian group evidently correspond to the same point on the surface
S. Our new fuchsian polygon will therefore correspond, like the old, to the
whole surface S, because the region R removed has been replaced by its image
R′. Moreover, these two polygons, which are both plane regions bounded by 2p
closed curves, are homeomorphic to each other in such a way that

A1, A′1; A3, A′3; A5, A′5; · · · ; A2p−1, A′2p−1

correspond to

B, B′; A3, A′3; A5, A′5; · · · ; A2p−1, A′2p−1.

The result is that for this homeomorphism the odd cycles

C1, C3, C5, · · · , C2p−1
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correspond to cycles homologous to

C1 + C3, C3, C5, · · · , C2p−1.

To what do the cycles of even order correspond? Each of these cycles cor-
responds to a substitution of the fuchsian group, for example C2 corresponds
to the substitution T , which changes A1 into A′1, C4 to the substitution T3

which changes A3 into A′3 etc. It is also evident that in the homeomorphism
in question the substitution T1 is replaced by that which changes B into B′

(cycles which correspond to A1 and A′1), which is again T1, the substitution T3

is replaced by that which changes A′′3 into A′3, which is T−1
1 T3, and the other

substitutions remain the same. We could have already foreseen that the cycles

C2, C4, C6, · · ·
would correspond to

C2, C4 − C2, C6, · · · .

But a doubt may persist, since the substitution T1 corresponds not only to
the cycle C2, but to all the cycles C2 + K, where K is any linear combination
of cycles of odd order.

We should therefore return to the lines L we have defined; we can always
suppose that none of these lines cut B, with the exception of the lines L1 and
L3 which cut B at N1 and N3. I let M1 and M ′

1, M3 and M ′
3 designate the

points of intersection, of A1 and A′1 with L1, A3 and A′3 with L3; and let N ′
1 and

N ′
3 be the images of N1 and N3 under T which are on B′, then I envisage the

segments N ′
1M

′
1, N ′

3M
′′
3 which are the images under T , of the segments N1M1

and N3M3 of the lines L1 and L3. The point M ′′
3 is on A′′3 . The lines L do not

meet the new segments N ′
1M

′
1, N

′
3M

′′
3 at any point.

We consider again the segments N3N1 on B and N ′
3N

′
1 on B′, or rather,

the segments N3N
0
1 and N ′

3N
′0
1 adjoining the points N0

1 and N ′0
1 situated on B

and B′ infinitely close to N1 and N ′
1 and such that N1 and N ′

1 are not on the
arcs N3N

0
1 and N ′

3N
′0
1 ; in addition, I envisage a line N ′0

1 M ′0
1 N0

1 infinitely close
to N ′

1M
′
1N1 and not intersecting it; with the aid of these various segments I can

construct the lines
L′1, L′3, · · ·

which correspond under our homeomorphism to the lines

L1, L3, · · · .

The first will be the line N1M
′
1N

′
1; the second, which must go from M ′′

3 to M ′
3

will be
M ′′

3 N ′
3 + N ′

3N
′0
1 + N ′0

1 M ′0
1 N0

1 + N0
1 N3 + N3M

′
3.

Otherwise, L′5 will be identical to L5, L
′
7, etc. It will suffice to verify that these

various lines do not intersect.
We see then that these lines are homologous to

L1, L3 − L1, L5, · · ·
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which in terms of cycles C2, C4, · · · correspond to

C2, C4 − C2, C6, · · · .

In summary, we then have C ′i ∼ Ci except for i = 1 and 4, when

C ′1 ∼ C1 + C3, C ′4 ∼ C4 − C2.

If we now suppose that
∑

xC =
∑

x′C ′ we shall have xi = x′i except when
i = 2 and 3, and then

x′3 = x3 − x1, x′2 = x2 + x4.

If we had required
x′3 = x3 + x1, x′2 = x2 − x4

it would have been necessary to trace B around A1 and A3 and transform the
region R, not by T1, but by T3.

This procedure is applicable to all substitutions of the second type.
We operate in an analogous fashion for substitutions of the first type; I

suppose, for example

x′1 = x1 + x2, x′i = xi (i > 1)

that is,
Ci ∼ C ′i, C ′1 ∼ C2 − C1.

I do not represent our surface by a fuchsian polygon of the third family, nor
by a fuchsian polygon of the first family as I have above, instead I employ a
mode of representation in some sense intermediate between the two.

We remark, in fact, that nothing obliges us to confine ourselves to fuchsian
polygons in the strict sense, i.e. polygons bounded by arcs of circles orthogonal
to the fundamental circle. In the question we are concerned with, nothing
prevents us from replacing, e.g., a fuchsian polygon of the first family by another
curvilinear polygon which is homeomorphic to it, but otherwise arbitrary.

We can profit from this flexibility by adopting the following mode of repre-
sentation.

Our polygon will be bounded on the outside by a curvilinear quadrilateral
and on the inside by 2p−2 closed curves. The opposite edges of the quadrilateral
will be conjugate, and the 2p− 2 closed curves will be conjugate in pairs in an
arbitrary manner.

Let a, b, c, d be the four vertices of the quadrilateral and let

A3, A′3; A5, A′5; · · · ; A2p−1, A′2p−1

be the 2p − 2 closed curves in their conjugate pairs; these closed curves corre-
spond to the p− 1 cycles of odd order

C3, C5, · · · , C2p−1.
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The sides ab and dc of the quadrilateral correspond to the cycle C1; the sides
ad and bc to the cycle C2.

We choose any points Pi on the closed curves Ai, and join each of these
points Pi to the corresponding point, P ′i on the curve A′i. The line Li which
connects Pi to P ′i corresponds to a cycle Ci+1, under the condition that these
lines L have been traced in such a way as not to cut each other or the sides of
the quadrilateral.

We join the opposite vertices a and c of the quadrilateral by a curvilinear
diagonal ac which divides the quadrilateral into two triangles acb and acd and
which is traced in such a way that all the closed curves A and A′ lie in the
interior of the first triangle acb.

The group which will play the rôle of our fuchsian group in a moment will
be derived from the following substitutions; T1 changes ad into bc; T2 changes
ab into dc; Ti (i = 3, 5, · · · , 2p− 1)s changes Ai into A′i.

Then T1 transforms adc into bcf .
We replace the triangle adc by the triangle bcf and, as a consequence, we

can replace our generator polygon by a new polygon bounded on the outside by
the quadrilateral abfc and on the inside by the 2p− 2 closed curves A and A′;
these closed curves are again conjugate in pairs and the opposite edges of the
quadrilateral are conjugates.

These two polygons (both of which correspond to the whole surface S) are
homeomorphic to each other in such a way that

ab, bc, cd, da, Ai, A′i, Li

respectively correspond to

ab, bf, fc, ca, Ai , A′i, Li.

The cycles
C1, C2, Ci, Ci+1

correspond, under this homeomorphism, to

C1, C2 + C1, Ci, Ci+1.

Then the surface S is homeomorphic to itself in such a way that these cycles
correspond

C ′k = Ck (k = 1, 3, 4, 5, · · · , 2p)
C ′2 = C2 + C1.

In that case we have

x′1 = x1 − x2, x′2 = x2, x′3 = x3, · · · , x′2p = x2p.

This is now a substitution of the first type for which the theorem has been
proved, and it is clear that we can similarly prove it for all other substitutions
of the first type.

In summary, we can now say:
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The necessary and sufficient condition for the surface S to be homeomorphic
to itself in such a way that cycles Ci correspond to homologous cycles C ′i is
that the form F (x, y) relative to the cycles C be identical to the form F (x′, y′)
relative to the cycles C ′.

It is easy to deduce that a cycle
∑

aiCi is always homologous to a simple
cycle, i.e. one which does not intersect itself, if the integers ai are relatively
prime. If, on the contrary, the integers ai are not relatively prime it cannot be
homologous to a simple cycle.

We begin by establishing the first point.
It will suffice to show that we can find 2p cycles

C ′1, C ′2, . . . , C ′2p

such that
C ′1 =

∑
aiCi

and such that the form F (x′, y′) relative to the cycles C ′ is identical to the form
F (x, y) relative to the cycles C; in such a way that we have

F (x′, y′) = x′1y
′
2 − x′2y

′
1 + x′3y

′
4 − x′4y

′
3 + . . .

if we assume, as usual, that the cycles C have been chosen so that the form
F (x, y) is reduced.

In fact, if the cycles C ′ satisfy this condition, the surface S will be homeo-
morphic to itself in such a way that the cycle Ci corresponds to a homologous
cycle C ′i. Then we can find a cycle homologous to C ′1 which corresponds to
C1 under this homeomorphism and which consequently will not intersect itself,
since C1 does not intersect itself.

We remark initially that if the integers ai are relatively prime we can find
2p cycles

C ′′1 , C ′′2 , . . . , C ′′2p

such that
C ′′1 = C ′1 =

∑
aiCi, C ′′k =

∑
bikCi

where the ai and bik are integers whose determinant equals 1.
Let F (x′′, y′′) be the form relative to the cycles C ′′.
What kind of relation do we have between the variables x′ and x′′ ? Since

the cycle C ′1 must be identical to C ′′2 it is clear that

x′2, x′3, . . . , x′2p

must be linear combinations of

x′′2 , x′′3 , . . . , x′′2p

and the same must be true of the difference x′1 − x′′1 .
It remains to show that there is a linear transformation of variables which

satisfies this condition and which, at the same time, is such that F (x′, y′) is
reduced.
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But we can write

F (x′′, y′′) = x′′1Y2 − y′′2X2 + Φ(x′′, y′′)

where X2 is a linear combination of x′′2 , x′′3 , . . . , x′2p with relatively prime integer
coefficients, where Y2 is the same combination of y′′2 , y′′3 , . . . , y′′2p, and where
finally Φ is a bilinear form in

x′′2 , x′′3 , . . . , x′′2p; y′′2 , y′′3 , . . . , y′′2p.

I claim that the coefficients of X2 are relatively prime and that, in fact, if
the greatest common divisor a > 1 the determinant of the form F (x′′, y′′) will
be divisible by a2, which is impossible because the determinant is equal to 1.

Since the coefficients are relatively prime, we can find 2p − 1 linear combi-
nations

X2, X3, . . . , X2p

of x′′2 , x′′3 , . . . , x′′2p, the first of which is precisely X2 and whose coefficients are
integers whose determinant equals 1.

Under these conditions Φ will be a bilinear form in

X2, X3, . . . , X2p

and the corresponding combinations

Y2, Y3, . . . , Y2p

formed with the y′′. We can then write

Φ = X2Y
′ − Y2X

′ + ψ(X,Y )

where X ′ is a linear combination of X3, X4, . . . , X2p, where Y ′ is the same
combination of the Y , and where ψ is a bilinear form of qp− 4 variables

X3, X4, . . . , X2p; Y3, Y4, . . . , Y2p.

The determinant of this form ψ must divide that of F ; it therefore equals 1.
Since the form ψ has determinant 1 we can find 2p− 2 linear combinations

x′3, x′4, . . . , x′2p

of the variables X3, X4, . . . , X2p such that the form ψ is reduced when we take
the x′ as new variables, with the corresponding combinations y′ of the Y .

If we now put
x′1 = x′′1 −X, y′1 = y′′1 − Y ′

x′2 = X2, y′2 = Y2

we will get
F = x′1y

′
2 − x′2y

′
1 + ψ.
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Since the form ψ is reduced, the same is true of F , so that the new variables
x′ meet our needs.

The first point is therefore established.
Now suppose that the ai are not relatively prime; I claim that every cycle

homologous to
∑

aiCi intersects itself. In fact, let

ai = bid

where d is the greatest common divisor of the ai and the bi are relatively prime.
Then let ∑

biCi = C ′1,
∑

aiCi = dC ′1.

According to the results above, the surface S is homeomorphic to itself under
a mapping which makes C1 correspond to C ′1. It will then suffice to show that
every cycle homologous to dC1 intersects itself, because under our homeomor-
phism every cycle homologous to

∑
aiCi corresponds to a cycle homologous to

dC1.
For this, we recall the representation of our surface S by a fuchsian polygon

R0 of the first family with 4p edges, a polygon which, together with all its
transforms, fills the fundamental circle.

Let K be our cycle which we assume to be homologous to dC1. This cycle
will be represented by a certain line amb where a is a certain point in the interior
of the fundamental circle and b is its transform under some substitution of the
fuchsian group. As well as this line, we have to consider all of its transforms by
different substitutions of the fuchsian group, since any one of these transforms
represents the same line.

In particular, we visualize those arcs of the line amb whose transforms are
interior to the polygon R0. I shall call the set of these arcs the image of the
cycle K.

This image is composed of a certain number of arcs

A1B1, A2B2, . . . , AnBn

between certain points A1, A2, . . . , An on the perimeter of R0 and other points
B1, B2, . . . , Bn also on the perimeter of R0. For the cycle to be continuous
and closed it is necessary that the points B1 and A2, B2 and A3, . . . , Bn−1

and An, Bn and A1 correspond to the same points of S and consequently that
these be conjugate points on the perimeter of R0, i.e. corresponding points on
conjugate sides.

We assign a number to each point on the perimeter of R0 in the following
way:

10 the numbers corresponding to points Ai and Bi will be integers;

2o the numbers corresponding to other points on the perimeter will equal
integers + 1

2 ;

30 if the perimeter is described in the positive sense, our number will not
vary except when we pass a point Ai or a point Bi;
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40 it will increase by one when we pass through one of the points Ai and
decrease by one when we pass through one of the points Bi;

50 the value of the number at one of the points Ai or one of the points Bi

will be the arithmetic mean of the values on either side of it.

If, for example, we encounter the points

A3, A2, B1, B2, A1, B3

in that order when traversing the perimeter in the positive sense the number
will be equal to 0 at A3, 1

2 on the arc A3A2, 1 at A2, 1 + 1
2 on the arc A2B1, 1

at B1, 1
2 on the arc B1B2, 0 at B2, − 1

2 on the arc B2A1, 0 at A1, 1
2 on the arc

A1B3, 0 at B3 and finally − 1
2 on the arc B3A3.

Since we have equal numbers of A points and B points we always return to
the initial value after traversing the whole perimeter.

Having done that, I claim first of all that if the cycle does not intersect itself
or, what comes to the same thing if none of the arcs AiBi intersect each other,
then the two points Ai and Bi correspond to the same number. In fact, let
α be one of the two arcs on the perimeter of R0 going from Ai to Bi. If the
point Ak is on this arc α, then the point Bk must be also, otherwise the arcs
between Ai, Bi and Ak, Bk would cross. It follows that the arc α has as many
A points as B points, which means that the points at the extremities, Ai and
Bi, correspond to the same number. Q.E.D.

We now compare the numbers corresponding to points Bi and Ai+1 (for
greater symmetry of notation I designate the point A1 both by A1 and An+1).

As we have said, the points Ai and Bi+1 are conjugate on the perimeter of
R0.

How do we express the fact that our cycle K is homologous to dC1? This
must say that if we consider the intersections of the cycle K with the different
fundamental cycles Ci, and if we agree to regard intersections as positive or
negative according to the sense in which the two cycles intersect (cf. Analysis
situs, Journal de l’École Polytechnique) the number of positive intersections will
be the same as the number of negative intersections for all the cycles Ci except
C2, and for C2 the former exceeds the latter by d. (I say C2 because C1 cuts
C2 at a point, it does not cut the other cycles C2 if we choose the fundamental
cycles in such a way that the form F is reduced.)

In other words, let

P1, P2, P ′1, P ′2, P3, P4, P ′3, P ′4

be the successive edges of R0; I assume p = 2 to fix ideas; in this case the
edges P1, P2, P3, P4 are respectively conjugate to P ′1, P

′
2, P

′
3, P

′
4. The edge Pi

corresponds to the cycle Ci and the edge P ′i to the cycle Ci traversed in the
opposite sense. This represents the law of conjugation of the edges when the
form F is reduced.
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Then let Ni be the number of points A found on Pi minus the number of
points B found on the same edge Pj ; let N ′

i be the corresponding difference for
the edge P ′i .

We then have

N2 = d, N ′
2 = −d, N1 = N3 = N4 = N ′

1 = N ′
3 = N ′

4 = 0.

These are the conditions that express the fact that the cycle K is homologous
to dC1.

We let Qi, Si represent the vertices of Pi, where the positive sense of Pi is
from Qi to Si; similarly, let A′i, S

′
i be the two vertices of P ′i . It is clear from this

definition that S1 will be identical with Q2, S2 with Q′1 etc.
The number corresponding to Si will equal that corresponding to Qi, plus

Ni; and since all the N and N ′ are multiples of d, we are forced to conclude
that the numbers corresponding to the various vertices of R0 differ from each
other by multiples of d.

We now consider two conjugate edges Pi and P ′i and imagine two points, the
first traversing Pi from Qi and Si and the second traversing P ′i from Si to Q′

i,
in such a way as to remain conjugate throughout when the first passes a point
A, the second will pass a conjugate which will be a B point; the number relative
to the first will increase by one, and similarly relative to the second, for in the
latter case we are passing a B point in the reverse direction. Similarly when the
first point passes through B and the second through A the two numbers will be
diminished by one.

The difference between the two numbers therefore remains constant, and
since it was originally a multiple of d, it will always be a multiple of d.

Thus, the two numbers relative to two conjugate points Ai and Bi+1 differ
by a multiple of d; and since the number relative to Bi is equal to the number
relative to Ai we finally conclude that the numbers relative to the 2n points

A1, A2, . . . , An; B1, B2, . . . , Bn

differ from each other by multiples of d.
We now traverse the perimeter of R0 in the positive sense and look at con-

secutive points AiAk or AiBk or BiBk; according to our definition, the numbers
relative to these points will be equal or differ by one. Since the difference has
to be a multiple of d, we have to conclude that all the numbers relative to the
points A and B are equal, zero for example.

But then at other points of the perimeter our number will be ± 1
2 , so if

we consider two vertices of R0 in particular, the difference between their two
numbers will be 0 or ±1. But for the two vertices P2 and Q2 this difference is
N2 = d.

We have therefore arrived at a contradiction, from which we conclude that
our initial hypothesis was absurd, and that the cycle K intersects itself. Q.E.D.

§4
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In the preceding paragraph we have seen that it is relatively easy to recognize
when a given cycle is homologous to a simple cycle, or if two given cycles are
respectively homologous to two cycles which do not intersect. In the present
paragraph we have to examine an analogous question:

How can we recognize when a given cycle is equivalent to a simple cycle, or
if two given cycles are equivalent to two cycles which do not intersect?

However, before starting on this question we return to the definition of equiv-
alence.

Until now we have always understood equivalence in the following manner:
When we write

C ≡ C ′

we understand that the initial and endpoint of the closed cycle C is the same
as that of C ′, and that there is a simply connected area between C and C ′

whose boundary consists of C and C ′. In other words, we can pass from C to
C ′ by making C vary in a continuous manner so that it always forms a single
closed curve with fixed initial and endpoint. This is what we may call proper
equivalence.

It will be useful to write

C ≡ C ′ (impr.)

if it is possible to pass from C to C ′ by varying C continuously, so that it always
forms a single closed curve but allowing the initial and endpoint to vary. In other
words, we have improper equivalence

C ≡ C ′ (impr.)

when we have a proper equivalence

C ≡ −α + C ′ + α

where α is any arc whose initial point is the endpoint of C ′ and whose initial
point is the endpoint of C.28

We therefore have four sorts of relations: proper equivalences, in which we
cannot change the order of terms; improper equivalences, where we can change
the order of terms on condition that we respect cyclic order; homologies without
division, which are subject changes in order and which can be added, subtracted
and multiplied; and finally homologies with division, which can be divided as
well.

Unless the contrary is explicitly stated, when we speak of an equivalence we
always refer to a proper equivalence.

In the study of the question before us, equivalence can be viewed from several
different vantage points. Firstly, if we represent our surface by a fuchsian poly-
gon R0 of the first family, we construct the different transforms of this polygon

28Thus improper equivalence corresponds to “conjugacy” in the fundamental group, in the
group-theoretic sense of the word “conjugate” mentioned on p. ??. (Translator’s note.)
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by the transformations of the corresponding fuchsian group G; these transforms
fill the fundamental circle. An arbitrary cycle C will then be represented by an
arc of the curve MM ′ going from the point M to one of its transforms, M ′.
Two properly equivalent cycles will be represented by arcs MPM ′ and MQM ′

with the same extremities, and conversely, two arcs with the same extremities
will represent two equivalent cycles. An arc M1QM ′

1 will represent a cycle im-
properly equivalent to the cycle represented by the arc MM ′ if the substitution
of the group G which changes M into M ′ also changes M1 into M ′

1.
Let arc MPM ′ represent a cycle C; we consider the various transforms of this

arc under the substitutions of the group G; all these transforms also represent
the cycle C. The condition for the cycle C not to intersect itself is that the arc
MPM ′ does not meet any of its transforms.

Similarly, let MPM ′,M1QM ′
1 be two arcs representing two cycles C and C ′;

the condition for the two cycles C and C ′ not to intersect is that the arc MPM ′

does not cut the arc M1QM ′
1, or any of its transforms.

That being given, we look among the cycles improperly equivalent to C
for one which does not intersect itself; going back to the arc MPM ′ and the
substitution S of the group G which changes M into M ′. This substitution is
hyperbolic; in fact, in the case we are dealing with, which is that of a polygon
R0 of the first family whose vertices form a unique cycle and whose angles sum
to 4π, all the substitutions of G are hyperbolic.

The substitution S therefore has two fixed points α and β on the fundamental
circle.

We connect these two points by a non-euclidean line, i.e., following the ter-
minology adopted in the theory of fuchsian functions, by a circle orthogonal
to the fundamental circle. Let M1 be any point on that non-euclidean line
αβ; its transform M ′

1 under the substitution S will likewise lie on the line αβ.
Let M1QM ′

1 be the arc of the non-euclidean line between M1 and M ′
1. It will

represent a cycle improperly equivalent to the cycle MPM ′.
We now consider the transforms of M1QM ′

1 under the various substitutions
of G, which will also be arcs of non-euclidean lines. The transforms under S
and all its multiples give the whole line αβ; the other transforms give other
non-euclidean lines, namely the lines α′β′ joining the fixed points α′ and β′

of the various substitutions of G conjugate to S, i.e. the various hyperbolic
substitutions T−1ST where T is any substitution of G.

Then the cycle M1QM ′
1 will not intersect itself if its various non-euclidean

lines do not intersect; and for this to happen it is necessary and sufficient that for
any of the substitutions T−1ST the two fixed points α′ and β′ do not separate
the fixed points α and β, i.e. the points do not recur in the order αα′ββ′ or its
inverse.

Conversely, I suppose that two of the non-euclidean lines intersect; then I
claim that all cycles improperly equivalent to MPM ′ are self-intersecting. If
they intersect, in fact, it is because the double points α, β and α′, β′ of S and
T−1ST separate each other. Now consider any arc M2M

′
2 improperly equivalent

to MPM ′; then M ′
2 is the transform of M2 under S. We consider first of all

the transforms of the arc M2M
′
2 under multiples of the substitution S; then
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connect the successive transforms of M2 by multiples of S, and therefore form
a continuous path from α to β.

For the same reason, the transforms of the arc M2M
′
2 under the substitutions

SmT (where m is a positive or negative integer) form a continuous path from
α′ to β′; since α, β and α′, β′ separate each other, the two paths necessarily
cross; i.e. the two transforms of the arc M2M

′
2 intersect, which means that the

cycle M2M
′
2 is self-intersecting. Q.E.D.

It is the same if MPM ′ and NQN ′ are two arcs representing closed cycles.
Among the cycles improperly equivalent to MPM ′ and NQN ′, are there

any which do not intersect? Let S and S1 be the substitutions which change M
into M ′ and N into N ′. Let α and β be the fixed points of S; α1 and β1 the
fixed points of S1. We trace the two non-euclidean lines αβ and α1β1 and take
any two points M1 and N1 on these lines; let M ′

1 be the transform of M1 under
S and N ′

1 that of N1 by S1; the point M ′
1 will be on the line αβ and the point

N ′
1 on the line α1β1.

We consider the arcs M1M
′
1 and N1N

′
1 of the non-euclidean lines; they rep-

resent two cycles improperly equivalent to MPM ′ and NQN ′.
By reasoning similar to that above, we see that if the fixed points α and β

of S do not separate the fixed points α1 and β1 of S1, nor do the fixed points
of the various transforms T−1S1T of S1 and the cycles M1M

′
1 and N1N

′
1 do

not intersect; and if, on the contrary, α and β separate α1 and β1, or the fixed
points of one of the transforms T−1S1T , then not only do the cycles M1M

′
1 and

N1N
′
1 intersect, but it is the same for any two cycles improperly equivalent to

MPM ′ and NQN ′.
We can again present this fact under another form. Suppose that the cycle

M1M
′
1 does not intersect itself; then the non-euclidean line αβ and its various

transforms do not intersect; these non-euclidean lines then partition the surface
of the fundamental circle into infinitely many regions. If the point N belongs to
one of these regions and the transform N1 of N under S belongs to another, the
cycles M1M

′
1 and NN ′ intersect, so that the cycles are improperly equivalent; if

the two points N and N ′ belong to the same region, the cycles do not intersect.
We now adopt a different point of view. We envisage a cycle C represented

by an arc MPM ′ and all the transforms of that arc. The cycle will be self-
intersecting if two of these transforms intersect; but if there is an intersection
between two of the transforms, there will be infinitely many such, resulting from
each other by the substitutions of G and, in particular, there will be one in the
interior of R0.

It therefore suffices to consider the portions of the arc MPM ′ and its trans-
forms which are in the interior of R0. Our cycle will then be represented by a
certain number of arcs AiBi running from one point on the perimeter of R0 to
another.

When a point describes the closed cycle C on the closed surface S the cor-
responding point on R0 will describe the successive arcs

A1B1, A2B2, . . . , AnBn.
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The points A and B belong to the perimeter of R0, we know that this
perimeter consists of a certain number of sides conjugate in pairs; it is clear
that the points B1 and A2, B2 and A3, . . . , Bn−1 and Bn, Bn and A1 must be
conjugate.

If none of the arcs AiBi intersect each other, the cycle is simple.
Similarly, if instead of one cycle we have two or more, and if the arcs repre-

senting the different cycles do not intersect each other, the different cycles are
disjoint.

To fix ideas, suppose that p = 2. Then the polygon R0 is an octagon whose
consecutive sides represent the respective cycles

+C1, +C2, −C1, −C2, +C3, +C4, −C3, −C4,

which shows first of all that the four fundamental cycles satisfy the equivalence

(26) C1 + C2 − C1 − C2 + C3 + C4 − C3 − C4 ≡ 0

because the polygon R0 is a simply connected area.
Let M be a point in the interior of R0, N a point situated on one of the

sides of R0, and N ′ the corresponding point on the conjugate side. We see
immediately that the cycle MN ′ + NM is improperly equivalent to

(27)





+C2 if N is on the side + C1;
−C1 if N is on the side + C2;
−C2 if N is on the side − C1;
+C1 if N is on the side − C2;
+C4 if N is on the side + C3;
−C3 if N is on the side + C4;
−C4 if N is on the side − C3;
+C3 if N is on the side − C4.

That being given, we see that the arc AiBi is equivalent to the arc AiMBi;
consequently our cycle

C ≡ A1B1 + A2B2 + . . . + AnBn

is equivalent to
A1MB1 + A2MB2 + . . . + AnMBn

and consequently, improperly equivalent to

(MBn + A1M) + (MB1 + A2M) + . . . + (MBn−1 + AnM).

But each bracketed expression, for example MB1+A2M , is analogous to a cycle
MN ′ + NM of the type just discussed. It is therefore equivalent to one of the
fundamental cycles ±C1,±C2,±C3,±C4, and to know which one it suffices to
examine which side of R0 contains the point Ai and consult the table (27).

We see in this way that our cycle C is improperly equivalent to a combination
of fundamental cycles and we have a means of determining this combination.
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The combination found is not the only one to which C is equivalent, since we
can transform any equivalence obtained by means of the equivalence (26), which
is the only one which holds among the fundamental cycles.

Conversely, given any combination K of fundamental cycles we have the
means of forming an equivalent cycle represented by a series of arcs A1B1, A2B2,
. . . , AnBn.

For example, suppose our combination K is written

K = +C1 + C1 + C2 − C3 + C4 + C4 − C1 − C2 − C2

or some analogous form; each of the terms of the combination will be one of the
fundamental cycles Ci with a coefficient +1 or −1. The set of two consecutive
terms will be called a sequence, and I shall also call the set consisting of the
last and the first term a sequence, so that our combination will contain as many
sequences as terms.

Each sequence corresponds to an arc AiBi; the point Ai will be found on
the side

+C1, +C2, −C1, −C2, +C3, +C4, −C3, −C4

if the first term of the sequence is respectively

+C2, −C1, −C2, +C1, +C4, −C3, −C4, +C3

and the point Bi will be found on the side

−C1, −C2, +C1, +C2, −C3, −C4, +C3, +C4

if the second term of the sequence is respectively

+C2, −C1, −C2, +C1, +C4, −C3, −C4, +C3.

Two arcs AiBi and AkBk intersect of necessity if the points Ai, Bi separate
the points Ak, Bk on the perimeter of R0. We then say that the two corre-
sponding sequences are incompatible. If on the contrary, these four points do
not separate each other we can trace the two arcs in such a way that they do
not meet.

How can we recognize when two sequences are incompatible? This will not
present any difficulty when the four points Ai, Bi, Ak, Bk are on four different
sides; the circular order of the four points will be that of the four sides, which
is known.

However, if, for example, Ai and Ak are on the same edge, it is necessary
to look at two consecutive sequences, Ai−1Bi−1 +AiBi and Ak−1Bk−1 +AkBk.
On the one hand we want Ai−1, Bi−1 not to separate Ak−1, Bk−1 and on the
other hand we do not want Ai, Bi to separate Ak, Bk either. To designate the
side containing one of the points Ai, . . . , we employ the same letter Ai.

By hypothesis, the points Ai, Ak occur on the same side AiAk, and it follows
that the points Bi−1, Bk−1 are likewise on the same side Bi−1Bk−1, conjugate
to AiAk.
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That being established, we traverse the perimeter of R0 so as to succes-
sively encounter the sides Ai−1, Bi−1Bk−1, Ak−1; if the points Ai−1, Bi−1 do
not separate Ak−1, Bk−1 we shall encounter Bi−1 before Bk−1.

Now if we traverse the perimeter of R0 in the opposite direction, when we
traverse the side conjugate to AiAk we must encounter Ai before Ak, because
A1 is conjugate to Bi−1 and Ak to Bk−1; and since the points Ai, Bi are not
to separate Ak, Bk we shall encounter the sides Bi, AiAk and Bk in the order
indicated.

Then for the sequences to be compatible it is necessary to encounter the
sides Ai−1, Bi−1Bk−1, Ak−1 successively, or else the sides Bi, AiAk, Bk if R0 is
traversed in the opposite sense.

The other doubtful case reduces to the preceding by reversing one of the two
arcs AiBi or AkBk.

That being given, a cycle, all sequences of which are compatible, will be
equivalent to a simple cycle; a cycle which has incompatible sequences will not
be equivalent to a simple cycle, unless we can make these sequences disappear
by means of the equivalence (26). In the same way we recognize if two or more
cycles are equivalent to cycles which do not intersect.

Application of these rules shows us, for example, that of all the combinations
of odd cycles C1 and C3, the only ones equivalent to simple cycles are the
following

C1, C3, C1 + C3, C3 + C1.

However, for what follows, I want to take yet another point of view.
We represent our surface by a fuchsian polygon R′0 of the third family which,

for p = 2 will be bounded from the outside by a circle and from the inside by
three other circles. We construct the different transforms of R′0 under the sub-
stitutions of the corresponding group G′; this time it fills the whole plane with
the exception of an infinity of singular points corresponding to the boundary
points of the fundamental circle.

A cycle is again represented by an arc MM ′ between a point M and one of
its transforms M ′.

However, two arcs with the same extremities do not always represent two
equivalent cycles; it is necessary in addition that the area between them not
contain any singular point. Apart from this, all we have said about fuchsian
polygons of the first family remains valid.

We construct the various transforms of the arc MM ′ under the substitutions
of G′; and retain just the portions of these transforms which lie inside R′0; our
cycle is then represented by a series of arcs

A1B1, A2B2, . . . , AnBn

going from one point on the perimeter of R′0 to another, and such that the points
Bi−1 and Ai, Bn and Ai, are conjugate.

In order that a cycle be simple, or that cycles be disjoint, the condition is
that the arcs AiBi which represent the single cycle or the set of them do not
intersect; this can be recognized by means analogous to those above.
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However, one question remains to be dealt with. Given a cycle represented
by a certain number of arcs AiBi, to which combination of fundamental cycles
is it equivalent?

To resolve this question, we return to the case of the polygon of the first
family R0.

Figure 2

Our polygon R′0 is bounded on the outside by a circle +A and on the inside
by a circle −A conjugate to +A, and circles +B and −B conjugate to each
other. I want to modify R′0 in such a way as to transform it into a polygon R′′0
homeomorphic to R0.

Let D and D′ be two conjugate points on +A and −A; let E and E′ be two
conjugate points on +B and −B. We join DD′, DE, DE′ by arcs which are
regarded as cuts. We envelope the cut DE and the circle −B by a closed curve
DMD very little distance from it. We consider the figure DE′M bounded
by this closed curve and −B, together with its transform D′′EM ′ under the
substitution of G′ which changes −B into +B.

If we subtract the figure DE′M from the polygon R′0 and annex the figure
D′′EM ′ in return, we obtain a new polygon R′′0 which represents the closed
surface as justifiably as R′0; this polygon will be bounded on the outside by the
circle +A and on the inside by the circle −A and the closed curves DMD and
D′′M ′D′′; but, thanks to the cuts DD′, DE, DE′, D′′E, this polygon R′′0 will
be simply connected; the numerals 1, 2, . . . , 8 indicate the sequence of vertices
of this polygon when we traverse its perimeter. We see, from the order of
conjugation of the sides, that this polygon is homeomorphic to R0 in such a
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way that the sides of R′′0

81, 12, 23, 34, 45, 56, 67, 78

correspond to the sides of R0

+C1, +C2, −C1, −C2, +C3, +C4, −C3, −C4.

Having thus reduced to the case of R0 it is easy to enunciate the rule.
For each of the arcs AiBi crossing R′0 there may be several corresponding arcs

crossing R′′0 , because a primitive arc may be divided into several pieces by the
cuts. For each of the partial arcs crossing R′′0 there corresponds, according to the
rule demonstrated in the case of R0, one and only one term in the combination
of fundamental cycles found. Each of our primitive arcs AiBi will therefore
correspond to one or more terms of this combination.

The first of these terms will depend on the position of the initial point Ai;
if this point is on the circle

+A, −A, +B, −B

the first term will be respectively

+C2, −C2, −C4, +C4.

The terms following depend on the cuts DD′, DE, DE′ and the order in
which they are encountered by the arc AiBi; if this arc, going from left to right,
encounters

DD′ or DE or DE′

the corresponding terms will be respectively

+C1, +C3, −C4 − C3 + C4

and if the cuts are encountered from right to left,

−C1, −C3, −C4 + C3 + C4.

It is then easy, following this rule, to form the desired combination.
Throughout this chapter, I have made my examination from the point of

view of improper equivalence; if one wanted to deduce the analogous theorems
for proper equivalence it would suffice to observe that the whole closed surface
is homeomorphic to itself in such a way that any point A on the surface can
correspond to any other point A′ on the same surface.

§5
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We envisage, in particular, a three-dimensional manifold V defined as in
paragraph 2; its skeleton will reduce to a simple line segment along which the
variable we have called t will vary from 0 to 1. The system W (t) will be
composed of a unique manifold; this manifold will be an ordinary closed surface
which we can assume to be orientable, reducing to a point for t = 0 and with
connectivity increasing monotonically to 2p + 1 as t increases from 0 to 1.

It follows from this definition that the manifold V is not closed.
From what we have seen in paragraph 2, the line comprising the skeleton of

V will divide into segments at certain critical values of t.
Let

t1, t2, . . . , tp

be the critical values; they are those for which the surface W (t) has a singular
point, and hence by our hypothesis, those for which the connectivity of the
surface increases by two.

Thus W will be 1-tuply connected for t between 0 and t1, 3-tuply for t
between t1 and t2, . . . , (2q + 1)-tuply for t between tq and tq+1, and finally
(2p + 1)-tuply for t between tp and 1.

The surface W remains homeomorphic to itself as long as the variable t
remains within the same segment.

Suppose that we allow t to decrease and that t passes through a critical
value; then, as we have seen in paragraph 2, one of the cycles C of the surface
S reduces to a point; all cycles equivalent to C will become equivalent to zero
and the parts of all cycles cut off by C will cease to exist.

This is, however, the number of distinct cycles, and hence the connectivity
is reduced by two.

We now have to define the cycle Kq. For t = tq + ε there is an infinitely
small cycle on W (tq + ε) which reduces to a point when t = tq.

This is the cycle that I call Kq. The surface W (t) remains homeomorphic to
itself as t varies from tq to tq+1; [and we can assume that the homeomorphism
is such that for two infinitely close values t and t′ the two corresponding points
on W (t) and W (t′) differ from each other infinitely little]. The surface W (t)
therefore remains homeomorphic to W (tq + ε) and the cycle Kq will correspond
to a cycle on W (t) which I shall again call Kq. To define Kq on the surface
W (tq+1 +ε) it suffices to say that this cycle differs infinitely little from the same
cycle on the surface W (tq+1−ε); since W (t) remains homeomorphic to itself for
all values of t between tq+1 and tq+2 we can define Kq as above for all values of
t, and so on.

Having defined Kq in this way, I arrive at an essential property concerning
two cycles Kα and Kβ which do not intersect. Let β > α and let t = tβ + ε;
then Kβ is very small and I claim that Kα does not intersect Kβ . In fact, by
its definition, the cycle Kα exists before time tβ , for t < tβ , and I have said
that the cycles which cut the small cycle Kβ disappear when t falls below tβ .
We let t vary from tβ to tβ+1. Between these limits, all the surfaces W (t) are
homeomorphic, and since the cycles Kα and Kβ do not intersect on one of them,
the corresponding cycles Kα and Kβ do not intersect on any of them. Since
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Kα and Kβ do not intersect on W (tβ+1 − ε) we conclude that they also do not
intersect on the infinitely close surface W (tβ+1 + ε), so that the two cycles Kα

and Kβ do not ever intersect; for tβ+1 < t < tβ+2 all the surfaces W (t) are
homeomorphic and since Kα and Kβ do not intersect on one of them, they do
not intersect on any of them; and so on.

Then the cycles Kα and Kβ do not intersect. Q.E.D.

I add that the cycle Kq does not intersect itself; it does not for t = tq + ε
because it is then a very small closed curve; then because of the homeomorphism
this remains the case for tq < t < tq+1; and hence also for t = tq+ε because at
that time it differs very little from its position at t = tq+1 − ε; and so on.

If we let t vary from tq to 1 the cycle Kq will vary in a continuous fashion; for
t = tq it reduces to a point and for t > tq to a unique closed curve. It therefore
gives rise to a simply connected region that I call Aq.

Two regions Aα and Aβ have no common point; and, in fact, if there were,
this point would belong to a surface W (t), and on this surface to two cycles Kα

and Kβ ; but we have seen that these two cycles do not intersect.
I again use Bq to denote the partial region generated by Kq when t varies

between tq and t < 1 and which, like Aq, is simply connected. We are going to
treat Kq, Aq and Bq as cuts; for this purpose we consider two cycles K ′

q and K ′′
q

differing infinitely little from Kq; we can assume that these two cycles do not
intersect. The very small portion of the surface W (t) between these two cycles
will be called Sq(t). The two cycles K ′

q and K ′′
q generate two regions A′q and

A′′q as t varies from tq to 1 and two regions B′
q and B′′

q as t varies from Tq to t.
That being given, we remove the very small regions

S1(t), S2(t), . . . , Sp(t)

from the closed surface W (t).
After this operation the remaining surface W −ΣSq will no longer be closed,

it will be bounded by the 2p closed curves K ′
q and K ′′

q .
If we next adjoin the regions B′

q and B′′
q to this surface the result will be a

surface
W1(t) = W − ΣSq + ΣB′

q + ΣB′′
q

which will be closed because B′
q admits K ′

q as a complete boundary and B′′
q

admits K ′′
q .

I claim that the surface Wq(t) obtained in this way is simply connected and
without singularities. It has no singularities because its different parts do not
intersect and no common points other than those of the curves K ′

q and K ′′
q which

serve as their boundaries. And, in fact, W (t) can have no point in common with
B′

q and B′′
q apart from those of K ′

q and K ′′
q ; and, since the regions Bα and Bβ

do not intersect, the regions B′
q, B

′′
q , B′

α, B′′
α, . . . will not have any other common

points.
Concerning the other point, the bounded surface W −ΣSq is homeomorphic

to a plane region bounded on the outside by a closed curve and on the inside
by 2p− 1 other closed curves (this is none other than the representation of the
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surface W by a fuchsian polygon of the third family as in paragraph 3 above) or,
what comes to the same thing, a spherical region which results when 2p small
simply connected regions are removed from a sphere.

On the other hand, the 2p regions B′ and B′′ can be regarded as homeo-
morphic to 2p regions α; we therefore see, noting the way in which they are
attached, that the total surface

W1 = W − ΣS + ΣB′ + ΣB′′

is homeomorphic to a whole sphere, i.e. simply connected. Q.E.D.

We now let t vary from 0 to 1 and at the same time imagine that the cycles
K ′

q and K ′′
q approach Kq so as to coincide with it when t = 1.

I suppose that the successive positions of K ′
q and K ′′

q have no point in com-
mon, so that the successive positions of the regions A′q and A′′q , B′

q or B′′
q have

not either. Under these conditions, every interior point of V (excepting the
points of the region Aq) belongs to exactly one of the surfaces W1. The points
of the bounded surface W (1) belong to W1(1). For t = 1 the regions B′

q and B′′
q

reduce to A′q and A′′q , which in turn reduce to Aq because for t = 1 the cycles
K ′

q and K ′′
q reduce to Kq.

If we then consider a point of Aq, this point will again be found on Wq(1),
but this point of Aq will correspond to two points of Wq(1), one being considered
as belonging to B′

q = A′q and the other to B′′
q = A′′q .

The nested simply connected surfaces W1(t) generate (cf. §1) a simply con-
nected manifold.

We can then say that the p cuts Aq in V render it simply connected. We
execute these p cuts, and deform our manifold in such a way as to separate
the two sides of these cuts; the new manifold U thus obtained will be simply
connected, bounded by a simply connected surface H homeomorphic to a sphere.
On this simply connected surface we can distinguish 2p simply connected regions
which are the two sides of the p cuts; I call these cicatrices; they are conjugate
in pairs.

One point of V corresponds to each point of U , and similarly one point of U
corresponds to each point of V except for the points of the regions aq, for which
there are two points of U situated on conjugate cicatrices.

We consider two manifolds analogous to U ; each of these will be simply
connected and bounded. It is clear that the two figures formed in this way will
be homeomorphic to each other and to the figure consisting of a sphere whose
surface carries 2p cicatrices in the form of small disjoint circles.

This has the important consequence: all manifolds generated in the manner
of V and for which the integer we have called p is the same are homeomorphic.

Suppose that we construct a closed (2p+1)-tuply connected surface in ordi-
nary space. This surface divides the space into two regions, interior and exterior.
Let R be the interior region. This is a non-closed three-dimensional manifold
susceptible to the same mode of generation as V . Then V is homeomorphic to
R if the number p is the same.
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I shall call non-closed manifolds developable if they are homeomorphic to a
portion of ordinary space, thus all manifolds generated in the manner of V are
developable.

We can draw another consequence in passing; consider two closed surfaces
S and S′ in ordinary space, both (2p + 1)-tuply connected.

Let R be the interior of S, R′ the interior of S′. We know that the two
surfaces S and S′ are homeomorphic; but if we ask if it is the same for the
two volumes R and R′ we may first be inclined to respond negatively. For the
various sheets of the surface S may be entangled with each other in a complicated
fashion, forming knots which could not be resolved without leaving the space of
three dimensions. Despite this, we are now in a position to conclude that the
two volumes R and R′ are always homeomorphic, because both can be generated
in the manner of V , and two such manifolds are always homeomorphic.

I now come to a question which is important in what follows. I return to the
manifold V bounded by the surface W (1), and generated by the surface W (t).

The same manifold can be generated by another surface, which like W (t)
reduces to a point when t = 0, has a connectivity which increases monotonically
and finally reduces to W (1) for t = 1. It is evident that V is susceptible to an
infinity of such modes of generation. We shall now compare them.

I let K ′
1, . . . ,K

′
0 denote the p cycles that play the same rôle in the new

generation as K1, . . . , Kp did in the old.
What is the relation between the cycles K and K ′? Can we choose the cycles

K ′ arbitrarily, and what conditions must p cycles on the surface W (t) satisfy in
order to be able to play the rôle of the cycles K ′?

10 These cycles must be simple;

20 They must not intersect each other.

But that is not all. The cycle Kq, relative to the manifold V , is equivalent
to zero, because it forms the boundary of the region Aq which is part of V . We
therefore have the equivalences

(1) K1 ≡ K2 ≡ . . . ≡ Kq ≡ 0 (mod V ).

and those which follow from these. I claim that there are no others.
I say that if we have an equivalence of the following form

(2) C ≡ 0 (mod V )

where C is a cycle on the boundary surface W (1), which I shall call W for short,
we have, relative to this boundary surface W an equivalence of the form

(3) C = −α1 + β1 + α1 − α2 + β2 + α2 − . . .− αn + βn + αn (mod W )

where the αi are any cycles of W and the βi are the cycles of that surface such
that

βi ≡ mK (mod W )
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where m is an integer and K is one of the cycles K1,K2, . . . ,Kq; and in fact if
the equivalence (3) holds we have a fortiori

C ≡ Σ(−α + β + α) (mod V )

whence, because of the equivalences (1), which imply β ≡ 0

C ≡ Σ(−α + α) ≡ 0 (mod V )

The equivalence (2) is therefore a consequence of the equivalences (1).
To establish the proposition enunciated, I assume that the equivalence (2)

holds; it signifies that the cycle C is the boundary of a certain simply connected
region D situated in V .

This region cuts the region Aq along a line Lq running from one point of C
to another, because the extremities of Lq can only be found on the boundary of
Aq, i.e. on W , and since they are also on D they are on the intersection of W
and D, i.e. on C. The region D cannot cut Aq except along a number of distinct
lines Lq. In all cases the various lines L are disjoint because the various regions
A do not intersect and because we can always assume that the regions A and
D have no singularity and if necessary deform D a little so that the surfaces D
and A do not touch.

Each of the lines L divides the region D into two parts because this region is
simply connected. This region D will then be divided into a certain number of
partial regions ∆ in the following fashion, which I shall illustrate by an example.

Figure 3

On the figure, the cycle ABCDEFGHNIKLMPA is the cycle C; the lines
CE, BF, GK, HI, LP are the lines L.

It is clear that the whole cycle can be replaced by the sum of the following
arcs:

(4) Σ =





(ABCDE + ECBA) + (ABCE + EF + FBA)
+(ABF + FGH + HNI + IHGFBA)
+(ABFGHI + IK + KGFBA)
+(ABFGK + KL + LPA) + (APL + LMP + PA)

We see in fact that the last term in each bracket is cancelled by the first
term in the following bracket, and by erasing the cancelled terms we recover the
whole cycle C.
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Now let us take one of these brackets, the third for example; it can be written

ABFGH + HNIH + HGFBA.

We see that the first and the last term represent the same arc ABFGH,
described once directly and once in the opposite direction, and that the second
term represents the contour of one of the partial areas ∆, namely the region
HIN ; it is the same for the other brackets in the expression Σ which can be
written

(5)



(ABC + CDEC − CBA) + (AB + BCEFB + BA)
+(ABFGH + HNIH + HGFBA)
+(ABFG + GHIKG + GFBA) + (ABFGKLPA) + (AP + PLMP + PA)

I now modify the path Σ further. This path is composed of arcs forming part
of the primitive contour C and arcs formed by the lines Lq. The latter arcs
cancel each other, since we have seen that in the expression (4) the last term
of each bracket is cancelled by the first of the next bracket. We can transform
these latter arcs; we replace the line Lq by an arc belonging to the cycle Kq

and having the same extremities. This is possible because the two extremities
of the line Lq are on the cycle Kq, and in addition these new arcs, put in place
of the old ones, cancel each other just as the old ones do. And if Σ′ denotes the
result of this transformation on Σ, the primitive cycle C can then be considered
identical with the path Σ′ just as with S.

Like Σ, the path Σ′ can be put in the form (5); it suffices simply to assume
that, e.g. in the second term of (5), CE no longer represents the line Lq between
the extremities C and E, but the arc Kq which goes from C to E instead.

The advantage of this transformation is that all the points of the path Σ′

are on the bounded surface W , whereas this is not true for all the points of the
path Σ.

We now return to the simply connected manifold U defined above.
This manifold is bounded by a simply connected surface which we have called

H and which carries 2p cicatrices. The parts of H outside the cicatrices then
correspond to the surface W and the cicatrices, as we have seen, to the regions
Aq.

Any closed curve Q traced on this surface and remaining outside the cica-
trices will be equivalent to zero relative to the manifold V , by virtue of the
equivalences (1). In fact, this curve will envelope a certain number of cicatrices;
suppose to fix ideas that it envelopes the two cicatrices A1 and A2. Let M be
the initial and final point of the closed curve Q; similarly, let M1 and M2 be
the initial and final points of the two closed curves K1 and K2 which bound the
two cicatrices A1 and A2 respectively.

We join M to M1 and M2 by two arcs MM1 and MM2; we have

Q ≡ MM1 + K1 + M1M + MM2 + K2 + M2M (mod W )

because the part of the surface — H between the curves Q, K1 and K2 belongs
to that region of H which corresponds to W .
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But by virtue of the equivalences (1)

K1 ≡ K2 ≡ 0 (mod V )

then
Q ≡ MM1 + M1M + MM2 + M2M ≡ 0 (mod V )

so that the latter holds, as we have claimed, by virtue of the equivalences (1).
Now if we look at the second term in each bracket of the expression (5) for

the path S′, this term represents a closed curve on W ; it likewise represents a
closed curve on H. This is not evident and in fact it is no longer true for a closed
curve of W which crosses one of the cycles Kq; each point of Kq corresponds
to two distinct points on U in such a way that when a continuous path on W
meets Kq the corresponding path on U jumps suddenly from one of the two
points to the other and becomes discontinuous. But this cannot happen here
because the closed curve in question never crosses Kq, but goes around it.

The second term in each bracket is therefore equivalent to zero by virtue
of the equivalences (1). It is then the same for the whole bracket, because
the first and last terms cancel, and hence the same for the whole path Σ′ and
consequently for C.

Thus there are no equivalences between the cycles of W other than those
which are consequences of the equivalences (1). Q.E.D.

We can then adjoin a third condition to those which we have seen to be
necessary in order that p cycles of W can be chosen to play the rôle of the
cycles K ′.

The system of equivalences

K ′
1 ≡ K ′

2 ≡ . . . ≡ K ′
p ≡ 0

is no different from the system of equivalences

K1 ≡ K2 ≡ . . . ≡ Kp ≡ 0

so that each of these systems is a consequence of the other.
Are these three conditions sufficient?
Let K ′

1,K
′
2, . . . ,K

′
p be p non-intersecting cycles such that we have

K ′
1 ≡ K ′

2 ≡ . . . ≡ K ′
p ≡ 0 (mod V )

The equivalence K ′
q ≡ 0 tells us that there exists a simply connected region

A′q whose boundary is K ′
q. I claim that we can always assume that the various

regions A′q have no common point.
We imagine in fact that A′1, A

′
2, . . . , A

′
q−1 do not intersect but that one or

more of these q − 1 regions intersects A′q. Let Ei be the intersection of the
region A′q and the region A′i; this intersection has no point on K ′

q, because K ′
q

cannot meet A′i except on W and consequently on K ′
i, and K ′

i does not meet
K ′

q by hypothesis. This intersection is then entirely in the interior of A′q; we
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can assume that the surface A′i has no singularity and is not tangent to the
surface A′q, simply by deforming it slightly; it follows that our intersection is
then a curve without double point, it may then be decomposed into a number
of disjoint closed curves.

In addition, the intersection of A′i with A′q does not meet that of A′k with
A′q (if i, k < q) because A′i does not cut A′k by hypothesis.

The various intersections Ei and Ek are therefore composed of a certain
number of disjoint closed curves. If we envisage two of these curves, either one
is exterior to the other, or both are exterior to each other; the words interior
and exterior being understood in relation to the simply connected region A′q.
Among these curves we retain those curves which are not interior to any other;
they are then all exterior to each other. Let hi be one of the closed curves
retained, belonging to Ei. This curve hi will bound a simply connected part of
A′q which I call Gi; similarly it will bound a simply connected part of A′i which
I shall call Mi.

We can trace a closed curve h′i on A′q which is very little different from hi

and exterior to it. Then h′i will bound a simply connected part of the region A′q
that I shall call G′i; the same hi will bound a simply connected M ′

i which differs
infinitely little from Mi but which does not cut the region A′i.

We then form a region A′′q by removing all the regions G′i from A′q and
adjoining all the regions M ′

i :

A′′q = A′q + ΣM ′
i − ΣG′i.

We see that A′′q , like A′q, will be a simply connected region bounded by K ′
q,

because we replace each G′i by another simply connected region also bounded
by h′i. But the region A′′q does not meet A′1, A

′
2, . . . , or A′q−1.

We can then assume that the first q regions A′i do not intersect, and contin-
uing in this way we can assume that none of the p regions A′i meet, as required.

An analogous argument shows that the cycles K ′ do not intersect themselves
and we can always assume that the regions A′i are surfaces without double
curves.

I now propose to establish that the cycles K ′ which satisfy the three condi-
tions enunciated can play the rôle of the cycles K, i.e.:

10 that V can be generated by a surface W ′(t) which reduces to a point for
t = 0 and to W for t = 1, and which is (2q + 1)-tuply connected for
tq < t < tq+1;

20 that for tq < t < tq+1, W (t) meets the regions A′1, A
′
2. . . . , A

′
q along a

single closed curve and does not meet the regions A′q+1, A
′
q+2, . . . , A

′
p.

I suppose that this has been proved for a developable manifold V , i.e. one
homeomorphic to a portion of ordinary space and bounded by a (2p− 1)-tuply
connected surface, and I propose to prove it also for a developable manifold V
bounded by a (2p + 1)-tuply connected surface W .

We perform the cut A′p on V and, after separation, obtain a new developable
manifold V1 bounded by a (2p − 1)-tuply connected surface; this surface W1
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will be composed of two parts, one of which corresponds to the surface W on
which the cut K ′

p was performed, the other consisting of the two cicatrices
corresponding to the two sides of the cut A′p.

We can particularize this developable manifold V1 and this surface W1 in the
following fashion. We consider an interior point of V and let δ be the (shortest)
distance of this point from the bounded surface W or the cut A′p. The points
such that δ > ε (ε small) form the region V1; the points such that δ = ε form
the surface W1; the points such that δ < ε form the region V −V1. We easily see
that the surface W1 is (2p − 1)-tuply connected, and that it is homeomorphic
to the boundary of the region obtained by performing the cut A′p in V .

The surface W1 will not cut the region A′p and it will cut each of the other
regions A′q along a cycle K ′′

q differing little from K ′
q. The cycles K ′′

q will be
simple and disjoint from each other. Moreover, the cycle K ′′

q will cut a simply
connected region A′′q from the simply connected region A′q. This region A′′q is
the portion common to A′q and V1; this shows that K ′′

q ≡ 0 relative to V1. It
shows that the cycles K ′′ satisfy the conditions of the theorem relative to V1;
but this theorem was assumed to hold for V1.

Then V1 can be generated by a surface W ′(t) which reduces to a point for
t = 0, reduces to W1 for t = u (where tp−1 < u < tp) and which for tq < t < tq+1

cuts A′′1 , A′′2 , . . . , A′′q and consequently A′1, A
′
2, . . . , A

′
q along a single closed curve

and does not cut A′′q+1, A
′′
q+2, . . . , A

′′
p−1 nor consequently A′q+2, . . . , A

′
p+1 nor

A′p, because this region has no point in common with V1 and the A′i have no
points in common with V1 except those of A′′i .

We now envisage the region V −V1 bounded from the outside by the surface
W which is (2p + 1)-tuply connected and which does not cut the region A′p,
which lies entirely in the interior of V − V1. It is clear that we can take a point
M on a′p and construct a surface W2 entirely inside V −V1 with M as a conical
point and no other point in common with A′p, then generate the region V − V1

by a surface W ′(t) which reduces to W1 for t = u, is (2p − 1)-tuply connected
for u < t < tp, does not intersect A′p and cuts the other A′q along a single closed
curve; which reduces to W2 for t = tp; which is (2p + 1)-tuply connected for
tp < t < 1 and cuts all the A′q, including A′p, along a single closed curve; and
which, finally, reduces to W1 for t = 1.

We see that our manifold V can be generated by a surface W ′(t) satisfying
the enunciation of the theorem; the theorem is therefore demonstrated and the
three conditions enunciated are not only necessary, but sufficient.

In addition, in proving this theorem, I have appealed only to the fact that
the equivalences K ′ ≡ 0 are a consequence of the equivalences K ≡ 0, and I have
not appealed to the converse fact that the equivalences K ≡ 0 are a consequence
of the equivalences K ′ ≡ 0. Then if the cycles K ′ are disjoint and simple and
if the equivalences K ≡ 0 entail the equivalences K ′ ≡ 0, then conversely the
equivalences K ′ ≡ 0 entail the equivalences K ≡ 0. We could also verify this
directly.
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§6

We now consider a three-dimensional manifold V whose skeleton reduces to
a line segment along which the variable t varies from 0 to 1. The system W (t)
consists of a unique manifold; this manifold will be a closed orientable surface,
which reduces to a point for t = 0 and t = 1, and whose connectivity increases
between t = 0 and t = 1

2 , and decreases between t = 1
2 and t = 1. Our manifold

V is then closed.
We have 2p critical values of t, satisfying the inequalities

0 < t1 < t2 < . . . < tp <
1
2

< . . . < t′2 < t′1 < 1

such that when t passes from the value tp − ε to the value t1 + ε the surface
W (t) increases in connectivity from 2q − 1 to 2q + 1, and when t passes from
the value t′q − ε to the value t′q + ε the surface decreases in connectivity from
2q + 1 to 2q − 1.

The manifold V can be decomposed into two others, V ′ and V ′′, the first
corresponding to the values of t between 0 and 1

2 and the second to values of t
between 1

2 and 1. Each of these two partial manifolds satisfy the conditions of
the preceding paragraph; they are therefore developable, and it is the manifold
V formed from their union that we are now concerned with.

These two manifolds V ′ and V ′′ have the surface W ( 1
2 ), which is (2p + 1)-

tuply connected, as their common boundary. I shall call it W for simplicity.
On this surface I can trace the p cycles

K ′
1, K ′

2, . . . , K ′
p

defined with respect to the manifold V ′ just as the cycles K1,K2, . . . , Kp were
defined with respect to the manifold V in the preceding paragraph.

These p cycles are disjoint and simple. In addition we have the equivalences

(1) K ′
1 ≡ K ′

2 ≡ . . . ≡ K ′
p ≡ 0 (mod V ′)

On the other hand, on that same surface W I can trace the p cycles

K ′′
1 , K ′′

2 , . . . , K ′′
p

defined with respect to V ′′ as the cycles Kq were defined with respect to the
manifold V in the preceding paragraph.

The p cycles K ′′ are disjoint and simple; and we have the equivalence

(2) K ′′
1 ≡ K ′′

2 ≡ . . . ≡ K ′′
p (mod V ′′)

The cycles K ′ will then be the principal cycles of V ′ and the cycles K ′′ will
be those of V ′′.
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We now consider any cycle C in the interior of V ; if M is any point of this
cycle we can envisage the corresponding point N of the skeleton. When the
point M describes the whole cycle the point N on the line 01 which constitutes
the skeleton and will execute a series of oscillatory movements on this line,
ending in the return to its point of departure.

Let A and B be two extreme positions of the point N in this oscillation. We
suppose that the point A lies between tq and tq+1 and that when the point N
leaves the value tq+1−ε it decreases to the value A before returning to the value
tq+1 − ε. Let H be the arc corresponding to the cycle C; let M be a point of
that arc H, it belongs to the surface W (t) where t is between A and tq+1 − ε.
We know that the surface W (t) remains homeomorphic to itself when t varies
from tq+1 − ε to tq + ε and consequently, when t varies from tq+1 − ε to A,
becauseA is greater than tq. Then W (t) is homeomorphic to W (tq+1−ε). Then
let M ′ be the point of W (tq+1 − ε) which corresponds to M . When the point
M describes the arc H the point M ′ will describe the arc H ′ entirely situated
on W (tq+1 − ε). I claim that we have the equivalence

H ≡ H ′ (mod V ).

In fact, consider the different surfaces W (t) where t is an intermediate value
between that corresponding to the point M and the value tq+1−ε corresponding
to M ′. On each of these different surfaces, which are all homeomorphic to each
other, we consider the point which corresponds to M . This point generates a
line L whose extremities are M and M ′, when the point M describes the arc H
this line L will generate a simply connected region which will have the two arcs
H and H ′, thus demonstrating the equivalence claimed.

We now consider the two surfaces W (tq+1− ε) and W (tq+1 + ε); on the first
we have the arc H ′ whose two extremities D and E belong to the arc H and
consequently to the cycle C; on the second we have the two points D′ and E′

infinitely close to D and E and which also belong to C, in such a way that DD′

and EE′ are two infinitely small arcs of the cycle C. We can trace an arc H ′′

on the surface W (tq+1 + ε) going from D′ to E′ and differing infinitely little
from H ′. The latter point merits attention. The two surfaces W (tq+1 − ε) and
W (tq+1+ε) do not have the same connectivity; it may then happen that, because
the two surfaces differ very little from each other, we cannot trace a continuous
line on one differing very little from a continuous line traced on the other. If we
have a continuous line L on the surface of higher connectivity passing close to
the singular point and cutting the cycle which reduces to a point for t = tq+1

then we cannot trace a line differing only slightly from L on the other surface.
For example, consider the three surfaces which differ very little from each other;
the hyperboloid of one sheet, the cone and the hyperboloid of two sheets. The
cycle which reduces to a point is the ellipse at the waist of the one-sheeted
hyperboloid. A rectilinear generator of the one-sheeted hyperboloid cuts this
ellipse and it will be impossible to trace a similar line on the third surface. But
this difficulty will not arise in our situation because it is W (tq+1 + ε) which has
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the higher connectivity. Our arc H ′′ will therefore always exist and we will have

H ′′ ≡ D′D + H + EE′ (mod V );

We then put
C = C1 + D′D + H + EE′

in such a way that our cycle C decomposes into two arcs, the first C1 and the
second D′D + H + EE′ both having extremities D′ and E′. We have

C ≡ C1 + H ′′ (mod V ).

We have thus replaced the cycle C by an equivalent cycle C1 + H ′′ which
enjoys the same properties, but which differs inasmuch as the representative
point N , instead of going as far as A in its oscillators, does not go past tq+1 + ε.

Suppose first of all that the value t = 1
2 lies between the extremes A and B

of the oscillation of the point N , that the point A is between tq and tq+1 and
that the point B is between t′h and t′h+1. By the procedure described above,
we can replace the cycle C by another, where the point N oscillates between B
and the point tq+1 + ε, the latter point being between tq+1 and tq+2 and not
between tq and tq+1, as A is. In other words, we have pulled the point A back
between tq+1 and tq+2, and we can continue to pull it between tq+1 and tq+3

etc.; until it is finally between tp and 1
2 . Operating on B and V ′′ as we have on

A and V ′, we can pull this point B between 1
2 and t′p.

In summary, we have replaced the cycle C by an equivalent cycle C ′ such
that the point N always remains between tp and t′p. But when t is between tp
and t′p the surface W (t) remains homeomorphic to itself and in particular to
W ( 1

2 ) or W . Then let M be any point on the cycle C ′ belonging to W (t) and
M ′ the corresponding point of W . When the point M describes the cycle C ′

the point M ′ will describe a cycle C ′′ situated on W and we shall have

C ′ ≡ C ′′

by an argument completely similar to that by which we showed that H ≡ H ′.
We then have

C ≡ C ′′ (mod V ).

If the points A and B are not situated on opposite sides, if for example t
remained < 1

2 over the whole cycle C, we replace the cycle C by the equivalent
cycle

C + α− α

where the arc α, which is traversed out and back, leads from the endpoint of
the cycle C to any point of V for which t > 1

2 . We are then reduced to the
preceding case. Thus we are led to the following general conclusion:

Every cycle of V is equivalent to a cycle of W .
Now between the cycles of W we have the equivalences (1) and (2)

K ′
i ≡ 0 (mod V ′), K ′′

i ≡ 0 (mod V ′′)
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so we have a fortiori

(3) K ′
i ≡ K ′′

i ≡ 0 (mod V ).

I now claim that there are no others.
In fact, if we have an equivalence

K ≡ 0 (mod V )

where K is a cycle of W , this means that there is a simply connected region A in
V whose boundary is the cycle K. That being given, we distinguish the points
in A which belong to V ′ and form the region A′ from those which belong to V ′′

and form the region A′′. If the region A′ is not a single piece it will consist of
several separate regions A′1, A

′
2, . . ., each of which is a single piece. The same

holds for A′′. If we consider one of these partial regions, A′ for example, it may
happen that it is not simply connected. Suppose for example that it is triply
connected, and consequently bounded from the outside by a closed curve L and
from the inside by two closed curves L′ and L′′ (the words outside and inside
are understood to be in relation to the total region A). We join a point of L
to a point of L′ by a cut P ′ and similarly, a point of L to a point of L′′ by
a cut P ′′; the two cuts P ′ and P ′′ will be the arcs of a curve situated on A′1,
and it will render A′1 simply connected. Let B′

1 be the simply connected region
obtained in this way; and let D′

1 be its boundary consisting of the closed curves
L,L′ and L′′ and the two cuts traversed once directly and once in the opposite
direction. The region B′

1 will be entirely contained in V and we have

D′
1 ≡ 0 (mod V ′).

We operate in the same way on the regions A′2, . . ., and obtain a series of equiv-
alences

D′
2 ≡ . . . ≡ 0 (mod V ′).

We also operate in this way on the regions A′2, . . . and obtain a series of equiv-
alences

D′
2 ≡ . . . ≡ 0 (mod V ′).

We also operate in this way on the regions A′′1 , A′′2 , . . . which together form A′′

and this gives equivalences

D′′
1 ≡ D′′

2 ≡ . . . 0 (mod V ′′).

Since the region A is the union of the regions B′
1, B

′
2, . . . ; B′′

1 , B′′
2 , . . . ; the

equivalence K ≡ 0 where K is the boundary of A will be a consequence of the
equivalences

D′
1 ≡ D′

2 ≡ . . . ≡ 0 (mod V ′)

D′′
1 ≡ D′′

2 ≡ . . . ≡ 0 (mod V ′′)

where D′
1, D

′
2, . . . , D

′′
1 , D′′

2 , . . . are the boundaries of the partial regions B′
1, B

′
2, . . . ,

B′′
1 , B′′

2 , . . ..
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Our equivalence is therefore a consequence of the various equivalences with
respect to V ′ and V ′′ respectively. But all equivalences with respect to V ′

are consequences of the equivalences (1), by the preceding paragraph, and all
equivalences with respect to V ′′ are consequences of the equivalences (2). Thus
our equivalence is a consequence of the equivalences (1) and (2) or, in other
words, of the equivalences (3). Q.E.D.

Being in possession of all possible equivalences, it is easy to deduce all pos-
sible homologies without division; it suffices to allow the terms in these equiva-
lences to commute. Let

C1, C2, . . . , C2p

be the 2p fundamental cycles of the surface W .
We have homologies of the form

K ′
i ∼ m′

i,1C1 + m′
i,2C2 + . . . + m′

i,2pC2p (mod W )

and the form

K ′′
i ∼ m′′

i,1C1 + m′′
i,2C2 + . . . + m′′

i,2pC2p (mod W )

(where the m′ and m′′ are integers), so that the equivalences (3) yield the
following homologies:

(4)





m′
i,1C1 + m′

i,2C2 + . . . + m′
i,2pC2p ∼ 0

(mod V )
m′′

i,1C1 + m′′
i,2C2 + . . . + m′′

i,2pC2p ∼ 0

and no others.
To discuss these homologies we form the determinant ∆ of the integers m′

and m′′. Three cases need to be distinguished:

10 We have
|∆| > 1

Then ∆ is an integer which is not equal to 0,+1 or −1; we can then deduce
the homologies (4) to be

∆Ci ∼ 0 (i = 1, 2, . . . , 2p)

without using division, and with division

Ci ∼ 0.

The Betti number relative to homology with division is then equal to 1.

But we cannot obtain Ci ∼ 0 without using division, so that the “torsion
coefficients” are not equal to 1.
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20 We have
|∆| = 1

and we then deduce, without division

Ci ∼ 0.

In this case, not only the Betti number, but also the torsion coefficients
equal 1.

The Betti number and the torsion coefficients are therefore the same as
those for a simply connected manifold. However, this does not mean, as
we shall see shortly, that the manifold V is simply connected.

30 We have
∆ = 0

The homologies (4) then yield

Ci ∼ 0

without the use of division.

The Betti number is then greater than 1.

It is equal to 2 if the determinant is zero but all its first order minors are
not.

It is equal to k if the determinant of all the determinants of the first k− 2
orders are zero, but those of the (k − 1)th order are not.

We return to the case where ∆ is equal to ±1. In that case we can ask
whether the manifold is simply connected, because it has the same Betti number
and the same torsion coefficients as a simply connected manifold. It is the
principal objective of this work to show that this is not always the case, and it
will therefore suffice to give an example.

Suppose that p = 2, i.e. that the surface W is 5-tuply connected. I suppose
in addition that the cycles K ′

1 and K ′
2 are the two fundamental cycles of W ,

namely
K ′

1 = C1, K ′
2 = C3.

I represent the surface W by a fuchsian polygon R0 of the third family,
bounded by three non-intersecting circles. After this, we then have to trace the
two cycles C1 and C3 on the surface W so that they do not intersect, cut the
surface along these two cycles and map on to a plane.

The cycles K ′′
1 and K ′′

2 will then be represented on this plane by a certain
number of arcs of the curve going from one point on the perimeter of the fuchsian
polygon R0 to another.

Here are the conditions to which these arcs of the curve are subject:

10 They must not intersect each other; this is a necessary and sufficient con-
dition for the cycles K ′′

1 and K ′′
2 to be simple and disjoint.
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20 We then consider the series of arcs whose totality represents the cycle K ′′
1 .

These arcs must be followed in a certain order and each of them must go
from a certain initial point on the perimeter of R0 to an endpoint likewise
situated on the perimeter of R0. We observe that the perimeter of R0 is
composed of four circles conjugate in pairs; each point on one of the circles
corresponds to a conjugate point which I call the conjugate of the first.

That being given, the endpoint of each of the arcs which represents K ′′
1 must

be conjugate to the initial point of the arc which follows, and the endpoint of
the final arc must be conjugate to the initial point of the first arc.

Similarly for the arcs which represent K ′′
2 .

Figure 4

Here is the explanation of the figure: the perimeter of R0 is represented by
the four circles +A,−A,+B,−B; the circles +A and −A are conjugate and
correspond to K ′

1 = C1; the circles +B and −B are conjugate and correspond
to K ′

2 = C3; the cycles K ′′
1 and K ′′

2 are represented by the arcs of curve running
between points on the perimeter of R0.

The arcs which represent K ′′
1 are shown as unbroken lines; those which rep-

resent K ′′
2 are dotted. The arrows indicate the sense in which they are traversed.

The points where the arcs meet the circles ±A and ±B are designated by
numbers; these numbers also tell us which points are conjugate; thus the point
+B5 is conjugate to −B5, +A5 to −A5.

Near each of the four circles ±A, ±B we have an arrow which expresses
the fact that when a point describes the circle in the sense of the arrow the
conjugate point describes the conjugate circle in the sense of its arrow.
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We verify easily that if we follow either +A or −A in the sense of the arrow
we encounter in succession

1, 2, 3, 4, 6, 5, 7

and when we follow +B or −B in the sense of the arrow we encounter succes-
sively

1, 5, 2, 3, 4

The order of conjugation of our points is therefore properly chosen.
The cycle K ′′

1 then is represented by seven arcs which succeed each other in
the following order:

+A1 to −A2; +A2 to −A3;

+A3 to −A4; +A4 to + B1; −B1 to + A5;

−A5 to + B2; −B2 to −A1.

The cycle K ′′
2 is represented by the five arcs

+B3 to −B4; +B4 to + A6; −A6 to + B5;

−B5 to + A7; −A7 to −B3.

It is easy to see that the 12 arcs on the figure do not intersect; our two cycles
are therefore disjoint and simple.

We can then construct a manifold V ′ admitting the cycles K ′
1 = C1 and

K ′
2 = C3 as principal cycles and a manifold V ′′ admitting the cycles K ′′

1 and
K ′′

2 as principal cycles. The union of the two manifolds V ′ and V ′′ gives us V .
We can give a better account of it as follows.
We return to our figure and cut the polygon R0 along the 12 arcs which

represent K ′′
1 and K ′′

2 ; we have then decomposed R0 into 10 partial polygons,
which we glue together along the various conjugate arcs of the circles ±A, ±B,
for example the +A3, +A4 to the arc −A3,−A4; in this way we obtain a new
polygon which just as truly represents W as does R0, with the difference that
the cuts are made along the cycles K ′′

1 and K ′′
2 instead of K ′

1 and K ′
2.

The figure obtained in this way is entirely similar to figure 1, but the inter-
pretation is different. The circles +A and −A represent K ′′

1 and not K ′
1, the

circles +B and −B represent K ′′
2 ; the arcs drawn with solid lines inside the

figure represent K ′
1 and not K ′′

1 ; the dotted arcs represent K ′
2.

The points

±A1, ±A2, ±A3, ±A4, ±A6, ±A5, ±A7

represent the respective points

±A1, ±A2, ±A3, ±A4, ±B1, ±A5, ±B2

The points
±B1, ±B5, ±B2, ±B3, ±B4
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represent respectively

±A6, ±B5, ±A7, ±B3, ±B4.

We need not worry about the sign ±; the two points +A1 and −A1 in fact
correspond to the same point of the surface W .

The identity of the two figures shows us that the surface W is homeomorphic
to itself in such a way that the cycles

K ′
1, K ′

2, K ′′
1 , K ′′

2

correspond to the cycles

K ′′
1 , K ′′

2 , K ′
1, K ′

2.

We wish to express K ′′
1 and K ′′

2 as functions of the four fundamental cycles
C1, C2, C3, C4. To do this we have to apply the rule at the end of paragraph 4,
and to facilitate the application of this rule we have used double dotted lines to
trace the three cuts DD′, DE, DE′ which figure in its enunciation.

The arc +A1−A2 leaves from +A, which gives +C2

The arc +A2−A3 leaves from +A, which gives +C2

The arc +A3−A4 leaves from +A, which gives +C2

and meets DD′ and goes to the right which gives +C1.
The arc +A4 + B1 leaves from +A which gives C2

and crosses to the right of DE which gives −C3.

The arc −B1 + A5 leaves from −B which gives +C4
The arc −A5 + B2 leaves from −A which gives −C2

and crosses DE′ from left to right which gives −C4− C3 + C4.
The arc −B2−A1 leaves from −B which gives +C4.
Then

K ′′
1 ≡ 3C2 + C1 + C2 − C3 + C4 − C2 − C4 − C3 + 2C4

We turn to K ′′
2 .

The arc +B3−B4 leaves from +B, which gives −C4 and crosses DE′ from
right to left, which gives −C4 + C3 + C4.

The arc +B4 + A6 leaves from +B which gives −C4.
The arc −A6 + B5 leaves from −A which gives −C2.

and crosses DE′ from left to right which gives −C4 − C3 + C4.

The arc −B5 + A7 leaves from −B which gives +C4.
The arc −A7−B3 leaves from −A which gives −C2.
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Then
K ′′

2 ≡ −2C4 + C3 − C2 − C4 − C3 + 2C4 − C2

We now have

K ′
1 ≡ C1, K ′

2 ≡ C3

K ′′
1 ≡ 3C2 + C1 + C2 − C3 + C4 − C2 − C4 − C3 + 2C4

K ′′
2 ≡ −2C4 + C3 − C2 − C4 − C3 + 2C4 − C2.

In relation to V we have the equivalences

(1)
{

C1 + C2 − C1 − C2 + C3 + C4 − C3 − C4 ≡ 0
K ′

1 ≡ K ′
2 ≡ 0, K ′′

1 ≡ 0, K ′′
2 ≡ 0

The equivalences K ′
1 ≡ K ′

2 ≡ 0 where C1 ≡ C3 ≡ 0 permit us to simplify the
others; the equivalence (1) reduces to

C2 − C2 + C4 − C4 ≡ 0

i.e. an identity; the equivalence K ′′
1 ≡ 0 reduces to

(2) 4C2 + C4 − C2 + C4 ≡ 0

and the equivalence K ′
2 ≡ 0 reduces to

(3) −2C4 − C2 + C4 − C2 ≡ 0.

In summary, two distinct cycles, C2 and C4, remain and the only equivalences
between them are (2) and (3).

If we transform these equivalences into homologies we have

3C2 + 2C4 ∼ 0, −C4 − 2C2 ∼ 0.

The determinant is equal to −1; we are therefore in the case ∆ = ±1, where
the Betti numbers and torsion coefficients are equal to 1. Nevertheless, V is not
simply connected since its fundamental group does not reduce to the identity;
in other words, the equivalences (2) and (3) do not imply

C2 ≡ 0, C4 ≡ 0.

To show this, we adjoin to (2) and (3) the equivalence

(4) −C2 + C4 − C2 + C4 ≡ 0

whence
C4 − C2 + C4 − C2 ≡ 0.

From (2), (3) and (4) we deduce

(5)
{ −C2 + C4 − C2 + C4 ≡ 0

5C2 ≡ 0, 3C4 ≡ 0
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But the relations (5) are the relations of the structure in which the substitutions
C2 and C4 generate the icosahedral group. We then know that C2 ≡ 0, C4 ≡ 0
cannot be deduced, so a fortiori these equivalences cannot be deduced from (2)
and (3) alone.

We therefore have two cycles on V which are not equivalent to zero, so V is
not simply connected.

One question remains to be dealt with:
Is it possible for the fundamental group of V to reduce to the identity without

V being simply connected?29

In other words, can we trace the cycles K ′′
1 and K ′′

2 in such a way that they
are simple and disjoint, such that the equivalences

K ′
1 ≡ K ′

2 ≡ 0, K ′′
1 ≡ K ′′

2 ≡ 0

entail the equivalences
C1 ≡ C2 ≡ C3 ≡ C4 ≡ 0

but that nevertheless the surface W cannot be mapped homeomorphically on
to itself in such a way that the cycles C1, C2, C3, C4 correspond to the cycles
C ′1, C

′
2, C

′
3, C

′
4; such that the equivalences

K ′
1 ≡ K ′

2 ≡ 0

entail C ′1 ≡ C ′3 ≡ 0 and conversely; and finally that the equivalences

K ′′
1 ≡ K ′′

2 ≡ 0

entail C ′2 ≡ C ′4 ≡ 0 and conversely?
However, this question would carry us too far away.

29Here at last is a (correct) statement of the Poincaré conjecture. (Translator’s note.)
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invariant, 194
of q dimensions, 187
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on surface, 230
on algebraic surface, 179, 187
one-dimensional, 209
simple, 233, 240

equivalent to, 245
homologous to, 243

subsisting, 211
three-dimensional, 191
two-dimensional, 200

nonsingular, 208
vanishing, 202

Darboux, G., 7
de Jonquieres, E., 85
defining relations, 4

of 3-manifold group, 61
of surface group, 5
of torus group, 5

Dehn, M., 8
homology spheres, 10

Descartes, R., 1
differential equations, 19
domain, 21
Dyck, W., 2, 19

edges, 120, 142, 189
elliptic functions, 4, 171
equivalences, 59

differ from homologies, 59
improper, 245
proper, 245

Euler characteristic, 1
and Betti numbers, 2
and curvature, 1
and genus, 2
of Riemann surface, 2
of torus, 1

Euler polyhedron formula, 1
generalised, 6, 85

Euler polyhedron theorem, 19, 53, 85
generalised, 85

second proof, 95
Euler, L., 1

faces, 49, 120, 142, 189
admissible conjugation of, 53
conjugate, 49
free, 49

form boundary, 49
Freedman, M.H., 10

fuchsian function, 3, 65, 170
fuchsian group, 50, 55, 65, 170

as fundamental group, 65
defining relations, 4
generated by fuchsian polygon, 170
of first family, 65
of second family, 175
of third family, 65

fuchsian polygon, 170
edge pairing, 225
for surface, 230
of second family, 175
of third family, 231

function
abelian, 65
elliptic, 4, 171
fuchsian, 3, 65
hyperelliptic, 170

fundamental contours, 60
fundamental domain, 3, 57
fundamental equivalences, 60
fundamental group, 4, 58, 172

abelianisation, 6
and simple connectivity, 74, 220, 271
defining relations, 6
equivalences in, 59
generators and relations, 60
of 3-manifold, 61
of surface, 65, 231

defining relation, 5, 232
of torus, 5

fundamental homologies, 61

Garnier, R., 7
Gauss-Bonnet theorem, 2
genus, 2, 65, 170, 188
geometrisation conjecture, 10

proved by Perelman, 11
geometry

and group theory, 18
of n dimensions, 18

group, 18
continuous, 19
discontinuous, 3, 54
fuchsian, 50, 65, 170
fundamental, 58
homology, 6, 8
hypercubic, 62
icosahedral, 9, 272
of homeomorphisms, 23
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Picard, 199, 202

Hamilton, R., 10
Heegaard, P., 7, 100

criticism of Poincaré, 101
diagrams, 8
example, 101, 156, 184

holoedric, 60, 176, 177
homeomorphism, 22

and Betti numbers, 65
conditions for, 65
implies isomorphic groups, 65
of surfaces, 65
of manifolds, 24
of surfaces, 233

homology, 6, 30, 100, 187
and congruence, 108, 109, 142
and equivalence, 59, 231
and linear independence, 30, 101, 107
group, 6, 8
notation, 30
relation, 30
sphere, 8, 169

Dehn, 10
Poincaré, 8, 271

with division, 163
without division, 132, 150, 163

homomorphism, 176
hyperbolic plane, 3
hyperboloid, 263
hypercells, 142, 189
hyperelliptic functions, 170
hypergeometry, 18
hypersphere, 77
hypersurface, 18, 22

in five dimensions, 19

implicit function theorem, 137
integrals, 32

and Betti numbers, 34
periods of, 34

intersection
of manifolds, 40

invariance
of Betti numbers, 9
of dimension, 9, 23
of fundamental group, 6

invariant cycle, 194
invariant subgroup, 174
invariants

of table, 148, 150
give Betti numbers, 150

inversion, 171
isomorphic groups, 65
isomorphism, 60, 176

of fundamental groups, 71, 73

Kirby, R., 9
Klein, F., 3, 19

Leibniz, G.W., 3
lemniscate, 79
Leray, J., 7
linear independence, 30

and homology, 101, 107
linear substitution, 66

elliptic, 68
hyperbolic, 68
parabolic, 68

manifold
boundary of, 22
bounded, 22
closed, 22, 49
connected, 21
developable, 256
differentiable, 7

polyhedral structure, 9
dimension of, 21
finite, 21
first definition, 20
four-dimensional, 10
irregular, 87, 111
non-orientable, 8, 34, 77

definition, 35
open, 10
orientable, 34, 165

condition for, 51
examples, 37
has no torsion, 168

orientation of, 28
regular, 87
second definition, 24
self-opposite, 39
simply-connected, 7
singular, 87, 111
skeleton of, 221
subdivision of, 7, 9, 136
three-dimensional, 3, 6, 49, 220

polyhedral structure, 10
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two-dimensional, 65, 75
unbounded, 22
via discontinuous group, 54
with no polyhedral structure, 9
with torsion, 152
without torsion, 152

Maxwell. J.C., 2
meriedric, 60, 176
Möbius band, 2, 8, 226
Möbius, A.F., 2

classification of surfaces, 2
Moise, E.E., 10

Nielsen, J., 8
nodal points, 118
Noether, E., 6, 8
non-euclidean

geometry, 8, 170
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metric, 8
symmetry, 171

non-orientable chain, 36
null-homologous, 179, 192
null-homotopic, 102, 179, 192

orientation
opposite, 28

Perelman, G., 11
periods

of integral, 34
of abelian functions, 65, 170
of elliptic functions, 172
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algebraic surface reduction, 202, 205,
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group, 199, 202
on algebraic surfaces, 75, 187
on one-dimensional cycles, 209, 211
Théorie des fonctions algébriques de
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Poincaré, H., 1

Analysis situs, 5
Compléments, 7
conjecture, 9, 141, 272

and homology sphere, 9
incorrect version, 8, 169

duality theorem, 6, 7, 47, 100
homology sphere, 8, 169

polyhedra, 6, 49

congruent, 86
conjugate faces of, 49
dual subdivision of, 7
of first kind, 152
of second kind, 152
of third kind, 152
reciprocal, 7, 120
subdivision of, 111

polyhedron, 86
derived, 86
schema of, 103

projective plane, 226
protective circle, 174

Ricci curvature flow, 10
Riemann surface, 2, 65, 187

sheets of, 214
Riemann, G.F.B., 2, 19

connectivity of surfaces, 31

Siebenmann, L., 9
simple curve

on surface, 8, 245
simply connected, 7, 65

definition of, 74
skeleton, 221
Smale, S., 10
star, 52, 90, 106
surface

algebraic, 19, 75, 170
connectivity, 31
cycles on, 230
fuchsian polygon for, 230
fundamental group, 231

defining relation, 232
non-orientable, 37, 225
of constant curvature, 1
orientable, 225

has odd Betti number, 228
Riemann, 65
simple curves on, 8, 245

table, 126
invariants, 148
reduced, 127
reduction of, 144
transformations of, 126
yields Betti numbers, 127

tetrahedron, 86
generalised, 89, 106, 138
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geometrisation conjecture, 10

torsion, 8, 152
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of manifolds, 165
only if non-orientable, 168
reason for name, 8, 168

torsion coefficients, 6, 8, 163, 220
equidistant from the ends, 164
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equation of, 27
Euler characteristic, 1
fundamental group, 5
with single face, 152

transform, 55, 72

variety see manifold 11
vertices, 120, 142, 189
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