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Foreword to the New Edition
by Douglas R. Hofstadter

In August 1959, my family returned to Stanford, Cali-
fornia, after a year in Geneva. I was fourteen, newly
fluent in French, in love with languages, entranced by
writing systems, symbols, and the mystery of meaning,
and brimming with curiosity about mathematics and
how the mind works.

One evening, my father and I went to a bookstore
where I chanced upon a little book with the enigmatic
title Godel’s Proof. Flipping through it, I saw many in-
triguing figures and formulas, and was particularly
struck by a footnote about quotation marks, symbols,
and symbols symbolizing other symbols. Intuitively
sensing that Gadel’s Proof and 1 were fated for each
other, I knew I had to buy it.

As we walked out, my dad remarked that he had
taken a philosophy course at City College of New York
from one of its authors, Ernest Nagel, after which they
had become good friends. This coincidence added to
the book’s mystique, and once home, I voraciously gob-
bled up its every word. From start to finish, Godel’s Proof
resonated with my passions; suddenly I found myself
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obsessed with truth and falsity, paradoxes and proofs,
mappings and mirrorings, symbol manipulation and
symbolic logic, mathematics and metamathematics, the
mystery of creative leaps in human thinking, and the
mechanization of mentality.

Soon thereafter, my dad informed me that by
chance he had run into Ernest Nagel on campus. Pro-
fessor Nagel, normally at Columbia, happened to be
spending a year at Stanford. Within a few days, our
families got together, and I was charmed by all four
Nagels—Ernest and Edith, and their two sons, Sandy
and Bobby, both close to my age. I was thrilled to meet
the author of a book I so loved, and I found Ernest
and Edith to be enormously welcoming of my adoles-
cent enthusiasms for science, philosophy, music, and
art.

All too soon, the Nagels’ sabbatical year had nearly
drawn to a close, but before they left, they warmly
invited me to spend a week that summer at their cabin
in Vermont. During that idyllic stay, Ernest and Edith
came to represent for me the acme of civility, generos-
ity, and modesty; thus they remain in my memory, all
these years later. The high point for me was a pair of
sunny afternoons when Sandy and I sat outdoors in a
verdant meadow and I read aloud to him the entirety
of Godel’s Proof. What a twisty delight to read this book
to the son of one of its authors!

By mail over the next few years, Sandy and I ex-
plored number patterns in a way that had a profound
impact upon the rest of my life, and perhaps on his

Foreword xi

as well. He went on—known as Alex—to become a
mathematics professor at the University of Wisconsin.
Bobby, too, remained a friend and today he—known
as Sidney—is a physics professor at the University of
Chicago, and we see each other with great pleasure
from time to time.

I wish I could say that I had met James Newman. I was
given as a high-school graduation present his magnifi-
cent four-volume set, The World of Mathematics, and 1
always admired his writing style and his love for math-
ematics, but sad to say, we never crossed paths.

At Stanford I majored in mathematics, and my love
for the ideas in Nagel and Newman’s book inspired
me to take a couple of courses in logic and meta-
mathematics, but I was terribly disappointed by their
aridity. Shortly thereafter, I entered graduate school
in math and the same disillusionment recurred. I
dropped out of math and turned to physics, but after a
few years I found myself once again in a quagmire of
abstractness and confusion.

One day in 1972, seeking some relief, I was browsing
in the university bookstore and ran across A Profile of
Mathematical Logic by Howard DelLong—a book that
had nearly the same electrifying effect on me as Godel’s
Proof did in 1959. This lucid treatise rekindled in me
the long-dormant embers of my love for logic, meta-
mathematics, and that wondrous tangle of issues I had
connected with Godel’s theorem and its proof. Having
long since lost my original copy of Nagel and New-
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man’s magical booklet, I bought another one—luckily,
it was still in print!—and reread it with renewed fasci-
nation.

That summer, taking a break from graduate school
and driving across the continent, I camped out and
religiously read about Gédel’s work, the nature of rea-
soning, and the dream of mechanizing thought and
consciousness. Without planning it, I wound up in New
York City, and the first people I contacted were my old
friends Ernest and Edith Nagel, who served as intellec-
tual and emotional mentors for me. Over the next
several months, I spent countless evenings in their
apartment, and we ardently discussed many topics, in-
cluding, of course, Godel’s proof and its ramifications.

The year 1972 marked the beginning of my own
intense personal involvement with Godel’s theorem
and the rich sphere of ideas surrounding it. Over the
next few years, I developed an idiosyncratic set of ex-
plorations on this nexus of ideas, and wound up calling
it Godel, Escher, Bach: an Eternal Golden Braid. There is
no doubt that the parents of my sprawling volume were
Nagel and Newman’s book, on the one hand, and
Howard DeLong’s book, on the other.

What is Goédel’s work about? Kurt Godel, an Austrian
logician born in 1906, was steeped in the mathematical
atmosphere of his time, which was characterized by a
relentless drive toward formalization. People were con-
vinced that mathematical thinking could be captured
by laws of pure symbol manipulation. From a fixed set
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of axioms and a fixed set of typographical rules, one
could shunt symbols around and produce new strings
of symbols, called “theorems.” The pinnacle of this
movement was a monumental three-volume work by
Bertrand Russell and Alfred North Whitehead called
Principia Mathematica, which came out in the years
1910-1913. Russell and Whitehead believed that they
had grounded all of mathematics in pure logic, and
that their work would form the solid foundation for all
of mathematics forevermore.

A couple of decades later, Godel began to doubt this
noble vision, and one day, while studying the extremely
austere patterns of symbols in these volumes, he had a
flash that those patterns were so much like number
patterns that he could in fact replace each symbol by a
number and reperceive all of Principia Mathematica not
as symbol shunting but as number crunching (to bor-
row a modern term). This new way of looking at things
had an astounding wraparound effect: since the subject
matter of Principia Mathematica was numbers, and since
Godel had turned the medium of the volumes also into
numbers, this showed that Principia Mathematica was its
own subject matter, or in other words, that the pat-
terned formulas of Russell and Whitehead’s system
could be seen as saying things about each other, or
possibly even about themselves.

This wraparound was a truly unexpected turn of
events, for it inevitably brought ancient paradoxes of
self-reference to Godel’s mind—above all, “This state-
ment is false.” Using this type of paradox as his guide,
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Godel realized that, in principle, he could write down
a formula of Principia Mathematica that perversely said
about itself, “This formula is unprovable by the rules
of Principia Mathematica.” The very existence of such a
twisted formula was a huge threat to the edifice of
Russell and Whitehead, for they had made the absolute
elimination of “vicious circularity” a sacred goal, and
had been convinced they had won the battle. But now
it seemed that vicious circles had entered their pristine
world through the back door, and Pandora’s box was
wide open.

The selfundermining Godelian formula had to be
dealt with, and Goédel did so most astutely, showing
that although it resembled a paradox, it differed subtly
from one. In particular, it was revealed to be a true
statement that could not be proven using the rules of
the system—indeed, a true statement whose unprov-
ability resulted precisely from its truth.

In this shockingly bold manner, Gédel stormed the
fortress of Principia Mathematica and brought it tum-
bling down in ruins. He also showed that his method
applied to any system whatsoever that tried to accom-
plish the goals of Principia Mathematica. In effect, then,
Godel destroyed the hopes of those who believed that
mathematical thinking is capturable by the rigidity of
axiomatic systems, and he thereby forced mathemati-
cians, logicians, and philosophers to explore the mys-
terious newly found chasm irrevocably separating prov-
ability from truth.

Ever since Godel, it has been realized how subtle
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and deep the art of mathematical thinking is, and the
once-bright hope of mechanizing human mathematical
thought starts to seem shaky, if not utterly quixotic.
What, then, after Godel, is mathematical thinking be-
lieved to be? What, after Godel, is mathematical truth?
Indeed, what is truth at all? These are the central issues
that still lie unresolved, seventy years after Godel’s ep-
och-making paper appeared.

My book, despite owing a large debt to Nagel and
Newman, does not agree with all of their philosophical
conclusions, and here I would like to point out one key
difference. In their “Concluding Reflections,” Nagel
and Newman argue that from Godel’s discoveries it
follows that computers— “calculating machines,” as
they call them—are in principle incapable of reason-
ing as flexibly as we humans reason, a result that sup-
posedly ensues from the fact that computers follow “a
fixed set of directives” (i.e., a program). To Nagel and
Newman, this notion corresponds to a fixed set of axi-
oms and rules of inference—and the computer’s be-
havior, as it executes its program, amounts to that of a
machine systematically churning out proofs of theo-
rems in a formal system. This mapping of computer
onto formal system takes the term “calculating ma-
chine” very literally—that is, a machine built to deal
with numbers and arithmetical facts alone. The idea
that such machines by their very nature should churn
out sets of true statements about mathematics is seduc-
tive and certainly has a grain of truth to it, but it is far
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from the full vision of the power and versatility of
computers.

Although computers, as their name implies, are built
of rigidly arithmetic-respecting hardware, nothing in
their design links them inseparably to mathematical
truth. It is no harder to get a computer to print out
scads of false calculations (“2 + 2 = §; 0/0 = 43,7
etc.) than to print out theorems in a formal system. A
subtler challenge would be to devise “a fixed set of
directives” by which a computer might explore the
world of mathematical ideas (not just strings of mathe-
matical symbols), guided by visual imagery, the associ-
ative patterns linking concepts, and the intuitive pro-
cesses of guesswork, analogy, and esthetic choice that

- every mathematician uses.

When Nagel and Newman were composing Gddel’s
Proof, the goal of getting computers to think like
people—in other words, artificial intelligence—was
very new and its potential was unclear. The main thrust
in those early days used computers as mechanical in-
stantiations of axiomatic systems, and as such, they did
nothing but churn out proofs of theorems. Now admit-
tedly, if this approach represented the full scope of
how computers might ever in principle be used to
model cognition, then, indeed, Nagel and Newman
would be wholly justified in arguing, based on Godel’s
discoveries, that computers, no matter how rapid their
calculations or how capacious their memories, are nec-
essarily less flexible and insightful than the human
mind.
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But theorem-proving is among the least subtle of
ways of trying to get computers to think. Consider the
program “AM,” written in the mid-1970s by Douglas
Lenat. Instead of mathematical statements, AM dealt
with concepts; its goal was to seek “interesting” ones,
using a rudimentary model of esthetics and simplicity.
Starting from scratch, AM discovered many concepts of
number theory. Rather than logically proving theo-
rems, AM wandered around the world of numbers,
following its primitive esthetic nose, sniffing out pat-
terns, and making guesses about them. As with a bright
human, most of AM’s guesses were right, some were
wrong, and, for a few, the jury is still out.

For another way of modeling mental processes com-
putationally, take neural nets—as far from the theo-
rem-proving paradigm as one could imagine. Since the
cells of the brain are wired together in certain patterns,
and since one can imitate any such pattern in software—
that is, in a “fixed set of directives”—a calculating en-
gine’s power can be harnessed to imitate microscopic
brain circuitry and its behavior. Such models been
studied now for many years by cognitive scientists, who
have found that many patterns of human learning, in-
cluding error making as an automatic by-product, are
faithfully replicated.

The point of these two examples (and I could give
many more) is that human thinking in all its flexible
and fallible glory can in principle be modeled by a
“fixed set of directives,” provided one is liberated from
the preconception that computers, built on arithmeti-



xviii  Douglas R. Hofstadter

cal operations, can do nothing but slavishly produce
truth, the whole truth, and nothing but the truth. That
idea, admittedly, lies at the core of formal axiomatic
reasoning systems, but today no one takes such systems
seriously as a model of what the human mind does,
even when it is at its most logical. We now understand
that the human mind is fundamentally not a logic en-
gine but an analogy engine, a learning engine, a guess-
ing engine, an esthetics-driven engine, a self-correcting
engine. And having profoundly understood this lesson,
we are perfectly able to make “fixed sets of directives”
that have some of these qualities.

To be sure, we have not yet come close to producing
a computer program that has anything remotely resem-
bling the flexibility of the human mind, and in this
sense Ernest Nagel and James Newman were exactly on
the mark in declaring, in their poetic fashion, that
Godel’s theorem “is an occasion, not for dejection, but
for a renewed appreciation of the powers of creative
reason.” It could not be said better.

There is, however, an irony to Nagel and Newman'’s
interpretation of Gédel’s result. Godel’s great stroke of
genius—as readers of Nagel and Newman will see—
was to realize that numbers are a universal medium for
the embedding of patterns of any sort, and that for
that reason, statements seemingly about numbers
alone can in fact encode statements about other uni-
verses of discourse. In other words, Godel saw beyond
the surface level of number theory, realizing that num-
bers could represent any kind of structure. The analo-
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gous Godelian leap with respect to computers would
be to see that because computers at base manipulate
numbers, and because numbers are a universal me-
dium for the embedding of patterns of any sort, com-
puters can deal with arbitrary patterns, whether they
are logical or illogical, consistent or inconsistent. In
short, when one steps back far enough from myriads
of interrelated number patterns, one can make out
patterns from other domains, just as the eye looking at
a screen of pixels sees a familiar face and nary a 1 or
o. This Godelian view of computers has exploded on
the modern world to such an extent that today the
numerical substrate of computers is all but invisible,
except to specialists. Ordinary people routinely use
computers for word processing, game playing, com-
munication, animation, designing, drawing, and on
and on, all without ever thinking about the basic arith-
metical operations going on deep down in the hard-
ware. Cognitive scientists, relying on the arithmetical
hardware of their computers to be error-free and un-
creative, give their computers “fixed sets of directives”
to model human error-making and creativity. There is
no reason to think that the processes of creative math-
ematical thinking cannot, at least in principle, be mod-
eled using computers. But back in the 1950s, such
visions of the potential of computers were hard to see.
Still, it is ironic that in a book devoted to celebrating
Godel’s insight that numbers engulf the world of pat-
terns at large, the primary philosophical conclusion
would be based on not heeding that insight, and would
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thereby fail to see that calculating machines can repli-
cate patterns of any imaginable sort—even those of
the creative human mind.

I shall close with a few words about why I have taken
the liberty of making some technical emendations to
this classic text. Although the book received mostly
warm accolades from reviewers, there were some critics
who felt that in spots it was not sufficiently precise and
that it risked misleading its readers. The first time
through, I myself was unaware of any such deficiencies,
but many years later, when reading Gédel’s Proof with
an eye to explaining these same ideas myself as pre-
cisely and clearly as possible, I stumbled over certain
passages in Chapter VII and realized, after a while, that
the stumbling was not entirely my own fault. It made
me sad to realize that this beloved book had a few
blemishes, but there was obviously nothing I could do
about it. Oddly enough, though, in the margins of my
copy I carefully annotated all the glitches that I uncov-
ered, indicating how they might be corrected—almost
as if I had foreseen that one day I would receive an
email out of the blue from New York University Press
asking me if I would consider writing a foreword to a
new edition of the book.

I must certainly be among the readers most pro-
foundly affected by the little opus by Ernest Nagel and
James Newman, and for that reason, having been given
the chance, T owe it to them to polish their gem and to
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give it a new luster for the new millennium. I would
like to believe that in so doing, I am not betraying my
respected mentors but am instead paying them hom-
age, as an ardent and faithful disciple.

Center for Research on Concepts and Cognition
Indiana University, Bloomington
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I

Introduction

In 1931 there appeared in a German scientific period-
ical a relatively short paper with the forbidding title
“Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme” (“On Formally
Undecidable Propositions of Principia Mathematica
and Related Systems”). Its author was Kurt Godel, then
a young mathematician of 25 at the University of Vi-
enna and since 1938 a permanent member of the In-
stitute for Advanced Study at Princeton. The paper is a
milestone in the history of logic and mathematics.
When Harvard University awarded Godel an honorary
degree in 1952, the citation described the work as one
of the most important advances in logic in modern
times.

At the time of its appearance, however, neither the
title of Godel’s paper nor its content was intelligible to
most mathematicians. The Principia Mathematica men-
tioned in the title is the monumental three-volume
treatise by Alfred North Whitehead and Bertrand Rus-
sell on mathematical logic and the foundations of

1
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mathematics; and familiarity with that work is not a
prerequisite to successful research in most branches of
mathematics. Moreover, Godel’s paper deals with a set
of questions that has never attracted more than a com-
paratively small group of students. The reasoning of
the proof was so novel at the time of its publication
that only those intimately conversant with the technical
literature of a highly specialized field could follow the
argument with ready comprehension. Nevertheless, the
conclusions Godel established are now widely recog-
nized as being revolutionary in their broad philosophi-
cal import. It is the aim of the present essay to make
the substance of Godel’s findings and the general char-
acter of his proof accessible to the nonspecialist.
Godel’s famous paper attacked a central problem in
the foundations of mathematics. It will be helpful to
give a brief preliminary account of the context in
which the problem occurs. Everyone who has been
exposed to elementary geometry will doubtless recall
that it is taught as a deductive discipline. It is not pre-
sented as an experimental science whose theorems are
to be accepted because they are in agreement with
observation. This notion, that a proposition may be
established as the conclusion of an explicit logical proof,
goes back to the ancient Greeks, who discovered what
is known as the “axiomatic method” and used it to
develop geometry in a systematic fashion. The axio-
matic method consists in accepting without proof cer-
tain propositions as axioms or postulates (e.g., the ax-
iom that through two points just one straight line can
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be drawn), and then deriving from the axioms all other
propositions of the system as theorems. The axioms
constitute the “foundations” of the system; the theo-
rems are the “superstructure,” and are obtained from
the axioms with the exclusive help of principles of
logic.

The axiomatic development of geometry made a
powerful impression upon thinkers throughout the
ages; for the relatively small number of axioms carry
the whole weight of the inexhaustibly numerous prop-
ositions derivable from them. Moreover, if in some way
the truth of the axioms can be established—and, in-
deed, for some two thousand years most students be-
lieved without question that they are true of space—
both the truth and the mutual consistency of all the
theorems are automatically guaranteed. For these rea-
sons the axiomatic form of geometry appeared to many
generations of outstanding thinkers as the model of
scientific knowledge at its best. It was natural to ask,
therefore, whether other branches of thought besides
geometry can be placed upon a secure axiomatic foun-
dation. However, although certain parts of physics were
given an axiomatic formulation in antiquity (e.g., by
Archimedes), until modern times geometry was the
only branch of mathematics that had what most stu-
dents considered a sound axiomatic basis.

But within the past two centuries the axiomatic
method has come to be exploited with increasing
power and vigor. New as well as old branches of math-
ematics, including the study of the properties of the
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familiar cardinal (or “whole”) numbers,* were supplied
with what appeared to be adequate sets of axioms. A
climate of opinion was thus generated in which it was
tacitly assumed that each sector of mathematical
thought can be supplied with a set of axioms sufficient
for developing systematically the endless totality of true
propositions about the given area of inquiry.

Godel’s paper showed that this assumption is unten-
able. He presented mathematicians with the astound-
ing and melancholy conclusion that the axiomatic
method has certain inherent limitations, which rule
out the possibility that even the properties of the non-
negative integers can ever be fully axiomatized. What

* Number theory is the study, going back to the ancient Greeks,
of the properties of the natural numbers o, 1, 2, 3,... —also
sometimes called the “cardinal numbers” or “non-negative inte-
gers.” Such properties include: how many factors a number has;
how many different ways a number can be represented as a sum of
smaller numbers; whether or not there is a biggest number having
some specified property; whether or not certain equations have
solutions that are whole numbers; and so on. Although number
theory is inexhaustibly rich and full of surprises, its vocabulary is
tiny—an alphabet of just a dozen symbols allows any number-
theoretical statement to be expressed (although often cumber-
somely).

In this book, we shall occasionally use the term “arithmetic” as a
synonym for “number theory,” but of course what this term entails
is the full, rich universe of properties of the natural numbers, and
not merely the mechanics of addition, subtraction, multiplication,
and long division as taught in elementary schools, and as mecha-
nized in cash registers and adding machines. [—Fd.]
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is more, he proved that it is impossible to establish the
internal logical consistency of a very large class of de-
ductive systems—number theory, for example—unless
one adopts principles of reasoning so complex that
their internal consistency is as open to doubt as that of
the systems themselves. In the light of these conclu-
sions, no final systematization of many important areas
of mathematics is attainable, and no absolutely impec-
cable guarantee can be given that many significant
branches of mathematical thought are entirely free
from internal contradiction.

Godel’s findings thus undermined deeply rooted
preconceptions and demolished ancient hopes that
were being freshly nourished by research on the foun-
dations of mathematics. But his paper was not alto-
gether negative. It introduced into the study of founda-
tion questions a new technique of analysis comparable
in its nature and fertility with the algebraic method
that René Descartes introduced into geometry. This
technique suggested and initiated new problems for
logical and mathematical investigation. It provoked a
reappraisal, still under way, of widely held philosophies
of mathematics, and of philosophies of knowledge in
general.

The details of Godel’s proofs in his epoch-making
paper are too difficult to follow without considerable
mathematical training. But the basic structure of his
demonstrations and the core of his conclusions can be
made intelligible to readers with very limited mathe-
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matical and logical preparation. To achieve such an
understanding, the reader may find useful a brief ac-
count of certain relevant developments in the history
of mathematics and of modern formal logic. The next
four sections of this essay are devoted to this survey.

11

The Problem of Consistency

The nineteenth century witnessed a tremendous ex-
pansion and intensification of mathematical research.
Many fundamental problems that had long withstood
the best efforts of earlier thinkers were solved; new
areas of mathematical study were created; and in vari-
ous branches of the discipline new foundations were
laid, or old ones entirely recast with the help of more
precise techniques of analysis. To illustrate: the Greeks
had proposed three problems in elementary geometry:
with compass and straight-edge to trisect any angle, to
construct a cube with a volume twice the volume of a
given cube, and to construct a square equal in area to
that of a given circle. For more than 2,000 years unsuc-
cessful attempts were made to solve these problems; at
last, in the nineteenth century it was proved that the
desired constructions are logically impossible. There
was, moreover, a valuable by-product of these labors.
Since the solutions depend essentially upon determin-
ing the kind of roots that satisfy certain equations,
concern with the celebrated exercises set in antiquity

7
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stimulated profound investigations into the nature of
number and the structure of the number continuum.
Rigorous definitions were eventually supplied for neg-
ative, complex, and irrational numbers; a logical basis
was constructed for the real number system; and a new
branch of mathematics, the theory of infinite numbers,
was founded.

But perhaps the most significant development in its
long-range effects upon subsequent mathematical his-
tory was the solution of another problem that the
Greeks raised without answering. One of the axioms
Euclid used in systematizing geometry has to do with
parallels. The axiom he adopted is logically equivalent
to (though not identical with) the assumption that
through a point outside a given line only one parallel
to the line can be drawn. For various reasons, this
axiom did not appear “self-evident” to the ancients.
They sought, therefore, to deduce it from the other
Euclidean axioms, which they regarded as clearly self
evident.! Can such a proof of the parallel axiom be

! The chief reason for this alleged lack of self-evidence seems to
have been the fact that the parallel axiom makes an assertion about
infinitely remote regions of space. Euclid defines parallel lines as
straight lines in a plane that, “being produced indefinitely in both
directions,” do not meet. Accordingly, to say that two lines are
parallel is to make the claim that the two lines will not meet even
“at infinity.” But the ancients were familiar with lines that, though
they do not intersect each other in any finite region of the plane,
do meet “at infinity.” Such lines are said to be “asymptotic.” Thus,
a hyperbola is asymptotic to its axes. [t was therefore not intuitively
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given? Generations of mathematicians struggled with
this question, without avail. But repeated failure to con-
struct a proof does not mean that none can be found
any more than repeated failure to find a cure for the
common cold establishes beyond doubt that humanity
will forever suffer from running noses. It was not until
the nineteenth century, chiefly through the work of
Gauss, Bolyai, Lobachevsky, and Riemann, that the im-
possibility of deducing the parallel axiom from the oth-
ers was demonstrated. This outcome was of the greatest
intellectual importance. In the first place, it called at-
tention in a most impressive way to the fact that a proof
can be given of the impossibility of proving certain prop-
ositions within a given system. As we shall see, Gddel’s
paper is a proof of the impossibility of formally dem-
onstrating certain important propositions in number
theory. In the second place, the resolution of the par-
allel axiom question forced the realization that Euclid
is not the last word on the subject of geometry, since
new systems of geometry can be constructed by using a
number of axioms different from, and incompatible
with, those adopted by Euclid. In particular, as is well
known, immensely interesting and fruitful results are
obtained when Euclid’s parallel axiom is replaced by
the assumption that more than one parallel can be
drawn to a given line through a given point, or, alter-

evident to the ancient geometers that from a point outside a given
straight line only one straight line can be drawn that will not meet
the given line even at infinity.
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natively, by the assumption that no parallels can be
drawn. The traditional belief that the axioms of geom-
etry (or, for that matter, the axioms of any discipline)
can be established by their apparent self-evidence was
thus radically undermined. Moreover, it gradually be-
came clear that the proper business of pure mathema-
ticians is to derive theorems from postulated assumptions,
and that it is not their concern whether the axioms
assumed are actually true. And, finally, these successful
modifications of orthodox geometry stimulated the re-
vision and completion of the axiomatic bases for many
other mathematical systems. Axiomatic foundations
were eventually supplied for fields of inquiry that had
hitherto been cultivated only in a more or less intuitive
manner. (See Appendix, no. 1.)

The over-all conclusion that emerged from these
critical studies of the foundations of mathematics is
that the age-old conception of mathematics as “the
science of quantity” is both inadequate and misleading.
For it became evident that mathematics is simply the
discipline par excellence that draws the conclusions logi-
cally implied by any given set of axioms or postulates.
In fact, it came to be acknowledged that the validity of
a mathematical inference in no sense depends upon
any special meaning that may be associated with the
terms or expressions contained in the postulates. Math-
ematics was thus recognized to be much more abstract
and formal than had been traditionally supposed:
more abstract, because mathematical statements can
be construed in principle to be about anything what-
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soever rather than about some inherently circum-
scribed set of objects or traits of objects; and more
formal, because the validity of mathematical demon-
strations is grounded in the structure of statements,
rather than in the nature of a particular subject matter.
The postulates of any branch of demonstrative mathe-
matics are not inherently about space, quantity, apples,
angles, or budgets; and any special meaning that may
be associated with the terms (or “descriptive predi-
cates”) in the postulates plays no essential role in the
process of deriving theorems. We repeat that the sole
question confronting the pure mathematician (as dis-
tinct from the scientist who employs mathematics in
investigating a special subject matter) is not whether
the postulates assumed or the conclusions deduced
from them are true, but whether the alleged conclu-
sions are in fact the necessary logical consequences of the
initial assumptions.

Take this example. Among the undefined (or “prim-
itive”) terms employed by the influential German
mathematician David Hilbert in his famous axiomati-
zation of geometry (first published in 18gg) are
‘point’, ‘line’, ‘lies on’, and ‘between’. We may grant
that the customary meanings connected with these ex-
pressions play a role in the process of discovering and
learning theorems. Since the meanings are familiar, we
feel we understand their various interrelations, and
they motivate the formulation and selection of axioms;
moreover, they suggest and facilitate the formulation
of the statements we hope to establish as theorems.
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Yet, as Hilbert plainly states, insofar as we are con-
cerned with the primary mathematical task of explor-
ing the purely logical relations of dependence between
statements, the familiar connotations of the primitive
terms are to be ignored, and the sole “meanings” that
are to be associated with them are those assigned by
the axioms into which they enter.? This is the point of
Russell’s famous epigram: pure mathematics is the sub-
ject in which we do not know what we are talking
about, or whether what we are saying is true.

A land of rigorous abstraction, empty of all familiar
landmarks, is certainly not easy to get around in. But it
offers compensations in the form of a new freedom of
movement and fresh vistas. The intensified formaliza-
tion of mathematics emancipated people’s minds from
the restrictions that the customary interpretation of
expressions placed on the construction of novel sys-
tems of postulates. New kinds of algebras and geome-
tries were developed which marked significant depar-
tures from the mathematics of tradition. As the
meanings of certain terms became more general, their
use became broader and the inferences that could be
drawn from them less confined. Formalization led to a
great variety of systems of considerable mathematical
interest and value. Some of these systems, it must be

* In more technical language, the primitive terms are “implicitly”
defined by the axioms, and whatever is not covered by the implicit
definitions is irrelevant to the demonstration of theorems.
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admitted, did not lend themselves to interpretations as
obviously intuitive (i.e., commonsensical) as those of
Euclidean geometry or arithmetic, but this fact caused
no alarm. Intuition, for one thing, is an elastic faculty:
our children will probably have no difficulty in accept-
ing as intuitively obvious the paradoxes of relativity, just
as we do not boggle at ideas that were regarded as
wholly unintuitive a couple of generations ago. More-
over, as we all know, intuition is not a safe guide: it
cannot properly be used as a criterion of either truth
or fruitfulness in scientific explorations.

However, the increased abstractness of mathematics
raised a more serious problem. It turned on the ques-
tion whether a given set of postulates serving as foun-
dation of a system is internally consistent, so that no
mutually contradictory theorems can be deduced from
the postulates. The problem does not seem pressing
when a set of axioms is taken to be about a definite
and familiar domain of objects; for then it is not only
significant to ask, but it may be possible to ascertain,
whether the axioms are indeed true of these objects.
Since the Euclidean axioms were generally supposed
to be true statements about space (or objects in space),
no mathematician prior to the nineteenth century ever
considered the question whether a pair of contradic-
tory theorems might some day be deduced from the
axioms. The basis for this confidence in the consistency
of Euclidean geometry is the sound principle that logi-
cally incompatible statements cannot be simultane-
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ously true; accordingly, if a set of statements is true
(and this was assumed of the Euclidean axioms), these
statements are mutually consistent.

The non-Euclidean geometries were clearly in a dif-
ferent category. Their axioms were initially regarded as
being plainly false of space, and, for that matter, doubt-
fully true of anything; thus the problem of establishing
the internal consistency of non-Euclidean systems was
recognized to be both formidable and critical. In ellip-
tic geometry, for example, Euclid’s parallel postulate is
replaced by the assumption that through a given point
outside a line nmo parallel to it can be drawn. Now
consider the question: Is the elliptic set of postulates
consistent? The postulates are apparently not true of
the space of ordinary experience. How, then, is their
consistency to be shown? How can one prove they will
not lead to contradictory theorems? Obviously the
question is not settled by the fact that the theorems
already deduced do not contradict each other—for the
possibility remains that the very next theorem to be
deduced may upset the apple cart. But, until the ques-
tion is settled, one cannot be certain that elliptic ge-
ometry is a true alternative to the Euclidean system,
i.e., equally valid mathematically. The very possibility
of non-Euclidean geometries was thus contingent on
the resolution of this problem.

A general method for solving it was devised. The
underlying idea is to find a “model” (or “interpreta-
tion”) for the abstract postulates of a system, so that
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each postulate is converted into a true statement about
the model. In the case of Euclidean geometry, as we
have noted, the model was ordinary space. The method
was used to find other models, the elements of which
could serve as crutches for determining the consistency
of abstract postulates. The procedure goes something
like this. Let us understand by the word ‘class’ a collec-
tion or aggregate of distinguishable elements, each of
which is called a ‘member’ of the class. Thus, the class
of prime numbers less than 10 is the collection whose
members are 2, 3, 5, and 7. Suppose the following set
of postulates concerning two classes K and L, whose
special nature is left undetermined except as “implic-
itly” defined by the postulates:

1. Any two members of K are contained in just
one member of L.

2. No member of K is contained in more than
two members of L.

3. The members of K are not all contained in
a single member of L. '

4. Any two members of L contain just one
member of K.

5. No member of L contains more than two
members of K.

From this small set we can derive, by using custom-
ary rules of inference, a number of theorems. For
example, it can be shown that K contains just three
members. But is the set consistent, so that mutually
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contradictory theorems can never be derived from it?
The question can be answered readily with the help of
the following model:

Let K be the class of points consisting of the ver-
tices of a triangle, and L the class of lines made up
of its sides; and let us understand the phrase ‘a mem-
ber of K is contained in a member of L’ to mean
that a point which is a vertex lies on a line which is
a side. Each of the five abstract postulates is then
converted into a true statement. For instance, the
first postulate asserts that any two points which are
vertices of the triangle lie on just one line which isa
side. (See Fig. 1.) In this way the set of postulates is
proved to be consistent.

Fig. 1

Model for a set of postulates about two classes, Kand L, is a triangle
whose vertices are the members of K and whose sides are the
members of L. The geometrical model shows that the postulates
are consistent.

The consistency of plane elliptic geometry can also,
ostensibly, be established by a model embodying the
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postulates. We may interpret the expression ‘plane’ in
the axioms of elliptic geometry as the surface of a
Euclidean sphere, the expression ‘point’ as a pair of
antipodal points on this surface, the expression
‘straight line’ as a great circle on this surface, and so
on. Each elliptic postulate is then converted into a
theorem of Euclid. For example, on this interpretation
the elliptic parallel postulate reads: Through a point
on the surface of a sphere, no great circle can be drawn
parallel to a given great circle. (See Fig. 2.)

At first glance this proof of the consistency of elliptic
geometry may seem conclusive. But a closer look is
disconcerting. For a sharp eye will discern that the
problem has not been solved; it has merely been
shifted to another domain. The proof attempts to settle
the consistency of elliptic geometry by appealing to the
consistency of Euclidean geometry. What emerges,
then, is only this: elliptic geometry is consistent if Eu-
clidean geometry is consistent. The authority of Euclid
is thus invoked to demonstrate the consistency of a
system which challenges the exclusive validity of Euclid.
The inescapable question is: Are the axioms of the
Euclidean system itself consistent?

An answer to this question, hallowed, as we have
noted, by a long tradition, is that the Euclidean axioms
are true and are therefore consistent. This answer is no
longer regarded as acceptable; we shall return to it
presently and explain why it is unsatisfactory. Another
answer is that the axioms jibe with our actual, though
limited, experience of space and that we are justified



Fig. 2

The non-Euclidean geometry of the “elliptic plane” can be repre-
sented by a Euclidean model. The elliptic plane becomes the sur-
face of a Euclidean sphere, points on the plane become pairs of
antipodal points on this surface, straight lines in the plane become
great circles. Thus, a portion of the elliptic plane bounded by
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in extrapolating from the small to the universal. But,
although much inductive evidence can be adduced to
support this claim, our best proof would be logically
incomplete. For even if all the observed facts are in
agreement with the axioms, the possibility is open that
a hitherto unobserved fact may contradict them and so
destroy their title to universality. Inductive considera-
tions can show no more than that the axioms are plau-
sible or probably true.

Hilbert tried yet another route to the top. The clue
to his way lay in Cartesian coordinate geometry. In his
interpretation Euclid’s axioms were simply trans-
formed into algebraic truths. For instance, in the axi-
oms for plane geometry, construe the expression
‘point’ to signify a pair of numbers, the expression
‘straight line’ the (linear) relation between numbers
expressed by a first degree equation with two un-
knowns, the expression ‘circle’ the relation between
numbers expressed by a quadratic equation of a certain
form, and so on. The geometric statement that two
distinct points uniquely determine a straight line is
then transformed into the algebraic truth that two dis-
tinct pairs of numbers uniquely determine a linear re-
lation; the geometric theorem that a straight line inter-
sects a circle in at most two points, into the algebraic

segments of straight lines is depicted as a portion of the sphere
bounded by parts of great circles (center). Two line segments in the
elliptic plane are two segments of great circles on the Euclidean
sphere (bottom), and these, if extended, indeed intersect, thus con-
tradicting the Euclidean parallel postulate.



20 Godel’s Proof

theorem that a pair of simultaneous equations in two
unknowns (one of which is linear and the other quad-
ratic of a certain type) determine at most two pairs of
real numbers; and so on. In brief, the consistency of
the Fuclidean postulates is established by showing that
they are satisfied by an algebraic model. This method
of establishing consistency is powerful and effective. Yet
it, too, is vulnerable to the objection already set forth.
For, again, a problem in one domain is resolved by
transferring it to another. Hilbert’s argument for the
consistency of his geometric postulates shows that if
algebra is consistent, so is his geometric system. The
proof is clearly relative to the assumed consistency of
another system and is not an “absolute” proof.

In the various attempts to solve the problem of con-
sistency there is one persistent source of difficulty. It
lies in the fact that the axioms are interpreted by mod-
els composed of an infinite number of elements. This
makes it impossible to encompass the models in a finite
number of observations; hence the truth of the axioms
themselves is subject to doubt. In the inductive argu-
ment for the truth of Euclidean geometry, a finite
number of observed facts about space are presumably
in agreement with the axioms. But the conclusion that
the argument seeks to establish involves an extrapola-
tion from a finite to an infinite set of data. How can we
justify this jump? On the other hand, the difficulty is
minimized, if not completely eliminated, where an ap-
propriate model can be devised that contains only a
finite number of elements. The triangle model used to
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show the consistency of the five abstract postulates for
the classes K and L is finite; and it is comparatively
simple to determine by actual inspection whether all
the elements in the model actually satisfy the postu-
lates, and thus whether they are true (and hence con-
sistent). To illustrate: by examining in turn all the ver-
tices of the model triangle, one can learn whether any
two of them lie on just one side—so that the first
postulate is established as true. Since all the elements
of the model, as well as the relevant relations among
them, are open to direct and exhaustive inspection,
and since the likelihood of mistakes occurring in in-
specting them is practically nil, the consistency of the
postulates in this case is not a matter for genuine
doubt.

Unfortunately, most of the postulate systems that
constitute the foundations of important branches of
mathematics cannot be mirrored in finite models. Con-
sider the postulate in elementary arithmetic which as-
serts that every integer has an immediate successor
differing from any preceding integer. It is evident that
the model needed to test the set to which this postulate
belongs cannot be finite, but must contain an infinity
of elements. It follows that the truth (and so the consis-
tency) of the set cannot be established by an exhaustive
inspection of a limited number of elements. Appar-
ently we have reached an impasse. Finite models suf-
fice, in principle, to establish the consistency of certain
sets of postulates; but these are of slight mathematical
importance. Non-finite models, necessary for the inter-
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pretation of most postulate systems of mathematical
significance, can be described only in general terms;
and we cannot conclude as a matter of course that the
descriptions are free from concealed contradictions.

It is tempting to suggest at this point that we can be
sure of the consistency of formulations in which non-
finite models are described if the basic notions em-
ployed are transparently “clear” and “distinct.” But the
history of thought has not dealt kindly with the doc-
trine of clear and distinct ideas, or with the doctrine of
intuitive knowledge implicit in the suggestion. In cer-
tain areas of mathematical research in which assump-
tions about infinite collections play central roles, radi-
cal contradictions have turned up, in spite of the
intuitive clarity of the notions involved in the assump-
tions and despite the seemingly consistent character of
the intellectual constructions performed. Such contra-
dictions (technically referred to as “antinomies”) have
emerged in the theory of infinite numbers, developed
by Georg Cantor in the nineteenth century; and the
occurrence of these contradictions has made plain that
the apparent clarity of even such an elementary notion
as that of class* (or aggregate) does not guarantee the

* In this book, we use the term “class” to mean what most people
today tend to call “sets.” In the decades when Whitehead and
Russell developed Principia Mathematica and Godel made his discov-
eries, tfie more common term was “class,” however, and accord-
ingly, we shall use that word, since it is more reflective of the epoch
of which we are writing. [—Fd.]
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consistency of any particular system built on it. Since
the mathematical theory of classes, which deals with
the properties and relations of aggregates or collec-
tions of elements, is often adopted as the foundation
for other branches of mathematics, and in particular
for number theory, it is pertinent to ask whether con-
tradictions similar to those encountered in the theory
of infinite classes infect the formulations of other parts
of mathematics.

In point of fact, Bertrand Russell constructed a con-
tradiction within the framework of elementary logic
itself that is precisely analogous to the contradiction
first developed in the Cantorian theory of infinite clas-
ses. Russell’s antinomy can be stated as follows. Classes
seem to be of two kinds: those which do not contain
themselves as members, and those which do. A class
will be called “normal” if, and only if, it does not con-
tain itself as a member; otherwise it will be called “non-
normal.” An example of a normal class is the class of
mathematicians, for patently the class itself is not a
mathematician and is therefore not a member of itself.
An example of a non-normal class is the class of all
thinkable things; for the class of all thinkable things
is itself thinkable and is therefore a member of itself.
Let ‘N’ by definition stand for the class of all normal
classes. We ask whether N itself is a normal class. If N
is normal, it is a member of itself (for by definition N
contains all normal classes); but, in that case, N is non-
normal, because by definition a class that contains itself
as a2 member is non-normal. On the other hand, if N is
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non-normal, it is a member of itself (by definition of
“non-normal”); but, in that case, N is normal, because
by definition the members of N are normal classes. In
short, N is normal if, and only if, N is non-normal. It
follows that the statement ‘N is normal’ is both true
and false. This fatal contradiction results from an un-
critical use of the apparently pellucid notion of “class.”
Other paradoxes were found later, each of them con-
structed by means of familiar and seemingly cogent
modes of reasoning. Mathematicians came to realize
that in developing consistent systems familiarity and
intuitive clarity are weak reeds to lean on.

We have seen the importance of the problem of
consistency, and we have acquainted ourselves with the
classically standard method for solving it with the help
of models. It has been shown that in most instances
the problem requires the use of a non-finite model,
the description of which may itself conceal inconsisten-
cies. We must conclude that, while the model method
is an invaluable mathematical tool, it does not supply a
final answer to the problem it was designed to solve.

I11

Absolute Proofs of Consistency

The limitations inherent in the use of models for estab-
lishing consistency, and the growing apprehension that
the standard formulations of many mathematical sys-
tems might all harbor internal contradictions, led to
new attacks upon the problem. An alternative to rela-
tive proofs of consistency was proposed by Hilbert. He
sought to construct “absolute” proofs, by which the
consistency of systems could be established without as-
suming the consistency of some other system. We must
briefly explain this approach as a further preparation
for understanding Godel’s achievement.

The first step in the construction of an absolute
proof, as Hilbert conceived the matter, is the complete
formalization of a deductive system. This involves drain-
ing the expressions occurring within the system of all
meaning: they are to be regarded simply as empty
signs. How these signs are to be combined and manip-
ulated is to be set forth in a set of precisely stated rules.
The purpose of this procedure is to construct a system
of signs (called a “calculus™) which conceals nothing

25
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and which has in it only that which we explicitly put
into it. The postulates and theorems of a completely
formalized system are “strings” (or finitely long se-
quences) of meaningless marks, constructed according
to rules for combining the elementary signs of the
system into larger wholes. Moreover, when a system
has been completely formalized, the derivation of
theorems from postulates is nothing more than the
transformation (pursuant to rule) of one set of such
“strings” into another set of “strings.” In this way the
danger is eliminated of using any unavowed princi-
ples of reasoning. Formalization is a difficult and
tricky business, but it serves a valuable purpose. It re-
veals structure and function in naked clarity, as does
a cutaway working model of a machine. When a sys-
tem has been formalized, the logical relations be-
tween mathematical propositions are exposed to view;
one is able to see the structural patterns of various
“strings” of “meaningless” signs, how they hang to-
gether, how they are combined, how they nest in one
another, and so on.

A page covered with the “meaningless” marks of
such a formalized mathematics does not assert anything
—it is simply an abstract design or a mosaic possessing
a determinate structure.* Yet it is clearly possible to

* A more accurate way to describe such a formalized calculus is
to say that its symbols may appear to have meanings (and its rules
may well push its symbols around in such a way that they aet exactly
as symbols with the desired meanings would act), but their behavior
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describe the configurations of such a system and to
make statements about the configurations and their
various relations to one another. One may say that a
“string” is palindromic (i.e., is the same when read
backwards as forwards) or that it has two symbols in com-
mon with another “string,” or that one “string” is made
up of three others, and so on. Such statements are evi-
dently meaningful and may convey important informa-
tion about the formal system. It must now be observed,
however, that such meaningful statements abouf a mean-
ingless (or formalized) mathematical system plainly
do not themselves belong to that system. They belong
to what Hilbert called “meta-mathematics,” to the lan-
guage that is about mathematics. Meta-mathematical

is not a consequence of their meanings; indeed, quite the reverse is
the case. To the extent that formal symbols appear meaningful, this
appearance devolves entirely from their behavior, which in turn is
wholly determined by the system’s rules and initial formulas (axi-
oms). It is therefore not entirely unjustified or unreasonable to see
“meaningless strings” as having a type of meaningfulness, as long as
one bears in mind that any such meaning is passive rather than
active. To explain this notion metaphorically, the strings and their
constituent symbols couldn’t care less about any putative meanings
that anybody might wish to read into them-—all that matters to
them is how the rules manipulate them.

To give an analogy, you might give your car a pet name and
even think of it as animate, but the car will function exactly the
same with or without its pet name and its putative “soul”; all that
matters is the machinery that makes it work. The name and soul
have no effect on that machinery, although they may make it easier
for you to relate to your car. As with favorite cars, so with formal
calculi. [—Fd.]
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statements are statements about the signs occurring
within a formalized mathematical system (i.e., a cal-
culus) —about the kinds and arrangements of such
signs when they are combined to form longer strings of
marks called “formulas,” or about the relations between
formulas that may obtain as a consequence of the rules
of manipulation specified for them.

A few examples will help to convey an understanding
of Hilbert’s distinction between mathematics (i.e., a
system of meaningless signs) and meta-mathematics
(meaningful statements about mathematics, the signs
occurring in the calculus, their arrangement and rela-
tions). Consider the expression:

gt 9 = B

This expression belongs to mathematics (arithmetic)
and is constructed entirely out of elementary arithmet-
ical signs. On the other hand, the statement

‘e + g = p’ is an arithmetical formula

asserts something about the displayed expression. The
statement does not express an arithmetical fact and
does not belong to the formal language of arithmetic;
it belong to meta-mathematics, because it characterizes
a certain string of arithmetical signs as being a formula.
The following statement belongs to meta-mathematics:

If the sign ‘=" is to be used in a formula of arith-
metic, the sign must be flanked both left and right

by numerical expressions.
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This statement lays down a necessary condition for us-
ing a certain arithmetical sign in arithmetical formulas:
the structure that an arithmetical formula must have if
it is to embody that sign.

Consider next the three formulas:

X= X
0=20
0+#0

Each of these belongs to mathematics, because each is
built up entirely out of mathematical signs. But the
statement:

‘x’ is a variable

belongs to meta-mathematics, since it characterizes a
certain mathematical sign as belonging to a specific
class of signs (i.e., to the class of variables). Again, the
following statement belongs to meta-mathematics:

The formula ‘O = 0’ is derivable from the formula
‘x = x" by substituting the numeral ‘O’ for the vari-
able ‘x’.

It specifies in what manner one mathematical formula
can be obtained from another formula, and thereby
describes how the two formulas are related to each
other. Similarly, the statement

‘0 # 0" is not a theorem of formal system X

belongs to meta-mathematics, for it says of a certain
formula that it is not derivable from the axioms of the
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specific formal calculus mentioned, and thus asserts
that a certain relation does not hold between the indi-
cated formulas of the system. Finally, the next state-
ment belongs to meta-mathematics:

Formal system X is consistent

(i.e., it is not possible to derive from the axioms of
system X two formally contradictory formulas—for ex-
ample, the formulas ‘0 = 0" and ‘0 # 0’). This is
patently about a formal calculus, and asserts that pairs
of formulas of a certain sort do not stand in a specific
relation to the formulas that constitute the axioms of
that calculus.?

1t is worth noting that the meta-mathematical statements given
in the text do not contain as constituent parts of themselves any of
the mathematical signs and formulas that appear in the examples. At
first glance this assertion seems palpably untrue, for the signs and
formulas are plainly visible. But, if the statements are examined
with an analytic eye, it will be seen that the point is well taken. The
meta-mathematical statements contain the names of certain arith-
metical expressions, but not the arithmetical expressions them-
selves. The distinction is subtle but both valid and important. It
arises out of the circumstance that the rules of English grammar
require that no sentence literally contain the objects to which the
expressions in the sentence may refer, but only the names of such
objects. Obviously, when we talk about a city we do not put the city
itself into a sentence, but only the name of the city; and, similarly,
if we wish to say something about a word (or other linguistic sign),
it is not the word itself (or the sign) that can appear in the sen-
tence, but only a name for the word (or sign). According to a
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It may be that the reader finds the word ‘meta-
mathematics’ ponderous and the concept puzzling. We
shall not argue that the word is pretty; but the concept
itself will perplex no one if we point out that it is used
in connection with a special case of a well-known dis-
tinction, namely between a subject matter under study
and discourse about the subject matter. The statement
‘among phalaropes the males incubate the eggs’ per-
tains to the subject matter investigated by zoologists,
and belongs to zoology; but if we say that this assertion
about phalaropes proves that zoology is irrational, our
statement is not about phalaropes, but about the asser-
tion and the discipline in which it occurs, and is meta-
zoology. If we say that the id is mightier than the ego,
we are making noises that belong to orthodox psycho-
analysis; but if we criticize this statement as meaning-

standard convention we construct a name for a linguistic expression
by placing single quotation marks around it. Our text adheres to
this convention. It is correct to write:

Chicago is a populous city.

But it is incorrect to write:

Chicago is tri-syllabic.
To express what is intended by this latter sentence, one must write:

‘Chicago’ is tri-syllabic.
Likewise, it is incorrect to write:

x = g is an equation.
We must, instead, formulate our intent by:

‘x = 5’ is an equation.
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less and unprovable, our criticism belongs to meta-
psychoanalysis. And so in the case of mathematics
and meta-mathematics. The formal systems that math-
ematicians construct belong in the file labeled “math-
ematics”; the description, discussion, and theorizing
about the systems belong in the file marked “meta-
mathematics.”

The importance to our subject of recognizing the
distinction between mathematics and meta-mathemat-
ics cannot be overemphasized. Failure to respect it has
produced paradoxes and confusion. Recognition of its
significance has made it possible to exhibit in a clear
light the logical structure of mathematical reasoning.
The merit of the distinction is that it entails a careful
codification of the various signs that go into the mak-
ing of a formal calculus, free of concealed assumptions
and possibly misleading associations of meaning. Fur-
thermore, it requires exact definitions of the opera-
tions and logical rules of mathematical construction
and deduction, many of which mathematicians had
applied without being explicitly aware of what they
were using.

Hilbert saw to the heart of the matter, and it was
upon the distinction between a formal calculus and its
description that he based his attempt to build “abso-
lute” proofs of consistency. Specifically, he sought to
develop a method that would yield demonstrations of
consistency as much beyond genuine logical doubt as
the use of finite models for establishing the consistency
of certain sets of postulates—by an analysis of a finite
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number of structural features of expressions in com-
pletely formalized calculi. The analysis consists in not-
ing the various types of signs that occur in a calculus,
indicating how to combine them into formulas, pre-
scribing how formulas can be obtained from other for-
mulas, and determining whether formulas of a given
kind are derivable from others through explicitly stated
rules of operation. Hilbert believed it might be possible
to exhibit every mathematical calculus as a sort of “ge-
ometrical” pattern of formulas, in which the formulas
stand to each other in a finite number of structural
relations. He therefore hoped to show, by exhaustively
examining these structural properties of expressions
within a system, that formally contradictory formulas
cannot be obtained from the axioms of given calculi.
An essential requirement of Hilbert’s program in its
original conception was that demonstrations of consis-
tency involve only such procedures as make no refer-
ence either to an infinite number of structural proper-
ties of formulas or to an infinite number of operations
with formulas. Such procedures are called “finitistic”;
and a proof of consistency conforming to this require-
ment is called “absolute.” An “absolute” proof achieves
its objectives by using a minimum of principles of infer-
ence, and does not assume the consistency of some
other set of axioms. An absolute proof of the consis-
tency of a formalized version of number theory, if such
a proof could be constructed, would therefore show by
a finitistic meta-mathematical procedure that two con-
tradictory formulas, such as ‘0 = 0’ and its formal
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negation ‘~ (0 = 0)’—where the sign ‘~’ is used in a
rule-bound way so as to mimic, formally, our intuitive
concept of “negation”—cannot both be derived by
stated rules of inference from the axioms (or initial
formulas).*

It may be useful, by way of illustration, to compare
meta-mathematics as a theory of proof with the theory
of chess. Chess is played with g2 pieces of specified
design on a square board containing 64 square subdi-
visions, where the pieces may be moved in accordance
with fixed rules. The game can obviously be played
without assigning any “interpretation” to the pieces or
to their various positions on the board, although such
an interpretation could be supplied if desired. For ex-
ample, we could stipulate that a given pawn is to rep-
resent a certain regiment in an army, that a given
square is to stand for a certain geographical region,
and so on. But such stipulations (or interpretations)
are not customary; and neither the pieces, nor the
squares, nor the positions of the pieces on the board
signify anything outside the game. In this sense, the
pieces and their configurations on the board are
“meaningless.” Thus the game is analogous to a for-

* Hilbert did not give an altogether precise account of just what
meta-mathematical procedures are to count as finitistic. In the orig-
inal version of his program the requirements for an absolute proof
of consistency were more stringent than in the subsequent expla-
nations of the program by members of his school.
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malized mathematical calculus. The pieces and the
squares of the board correspond to the elementary
signs of the calculus; the legal positions of pieces on
the board, to the formulas of the calculus; the initial
positions of pieces on the board, to the axioms or
initial formulas of the calculus; the subsequent posi-
tions of pieces on the board, to formulas derived from
the axioms (i.e., to the theorems); and the rules of the
game, to the rules of inference (or derivation) for
the calculus. The parallelism continues. Although
configurations of pieces on the board, like the formu-
las of the calculus, are “meaningless,” statements about
these configurations, like meta-mathematical state-
ments about formulas, are quite meaningful. A “meta-
chess” statement may assert that there are twenty pos-
sible opening moves for White, or that, given a certain
configuration of pieces on the board with White to
move, Black is mate in three moves. Moreover, general
“meta-chess” theorems can be established whose proof
involves only a finite number of permissible configura-
tions on the board. The “meta-chess” theorem about
the number of possible opening moves for White can
be established in this way; and so can the “meta-chess”
theorem that if White has only two Knights and the
King, and Black has only a King, it is impossible for
White to force a mate against Black. These and other
“meta-chess” theorems can, in other words, be proved
by finitistic methods of reasoning, that is, by examining
in turn each of a finite number of configurations that
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can occur under stated conditions. The aim of Hil-
bert’s theory of proof, similarly, was to demonstrate by
such finitistic methods the impossibility of deriving cer-
tain formally contradictory formulas in a given mathe-
matical calculus.

IV

The Systematic Codification of Formal Logic

There are two more bridges to cross before entering
upon Godel’s proof itself. We must indicate how and
why Whitehead and Russell’s Principia Mathematica
came into being; and we must give a short illustration
of the formalization of a deductive system—we shall
take a fragment of Principia—and explain how its ab-
solute consistency can be established.

Ordinarily, even when mathematical proofs conform
to accepted standards of professional rigor, they suffer
from an important omission. They embody principles
(or rules) of inference not explicitly formulated, of
which mathematicians are frequently unaware. Take
Euclid’s proof that there is no greatest prime number
(a number is prime if it is divisible without remainder
by no number other than 1 and the number itself).
The argument, cast in the form of a reductio ad absur-
dum, runs as follows:

Suppose, in contradiction to what the proof seeks to
establish, that there is a greatest prime number. We
designate it by ‘x’. Then:
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1. xis the greatest prime

2. Form the product of all primes less than or
equal to x, and add 1 to the product. This yields a
new number y, where y =

(2XgXpXnX...Xx)+1

3. If yis itself a prime, then x is not the greatest
prime, for y is obviously greater than x

4. If y is composite (i.e., not a prime), then
again x is not the greatest prime. For if y is com-
posite, it must have a prime divisor z; and z must
be different from each of the prime numbers 2,
3, 5 7» - - - » % smaller than or equal to x; hence z
must be a prime greater than x

5. But y is either prime or composite

6. Hence x is not the greatest prime

7. There is no greatest prime

We have stated only the main links of the proof. It
can be shown, however, that in forging the complete
chain a fairly large number of tacitly accepted rules of
inference, as well as theorems of logic, are essential.
Some of these belong to the most elementary part of
formal logic, others to more advanced branches; for
example, rules and theorems are incorporated that be-
long to the “theory of quantification.” This deals with
relations between statements containing such “quanti-
fying” particles as ‘all’, ‘some’, and their synonyms. We
shall exhibit one elementary theorem of logic and one
rule of inference, each of which is a necessary but
silent partner in the demonstration.
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Look at line 5 of the proof. Where does it come
from? The answer is, from the logical principle (or
necessary truth): ‘Either p or non-p’, where ‘p’ is called
a sentential variable. But how do we get line 5 from
this theorem? The answer is, by using the rule of infer-
ence known as the “Rule of Substitution for Sentential
Variables,” according to which a statement can be de-
rived from another containing such variables by substi-
tuting any statement (in this case, ‘yis prime’) for each
occurrence of a distinct variable (in this case, the vari-
able ‘p’). The use of these rules and logical principles
is, as we have said, frequently an all but unconscious
action. And the analysis that exposes them, even in
such relatively simple proofs as Euclid’s, depends upon
advances in logical theory made only within the past
one hundred years.® Like Moliére’s Monsieur Jourdain,
who spoke prose all his life without knowing it, mathe-
maticians have been reasoning for at least two millen-
nia without being aware of all the principles underlying
what they were doing. The real nature of the tools of
their craft has become evident only within recent
times.

For almost two thousand years Aristotle’s codifica-
tion of valid forms of deduction was widely regarded as
complete and as incapable of essential improvement.
As late as 1787, the German philosopher Immanuel

5 For a more detailed discussion of the rules of inference and
logical principles needed for obtaining lines 6 and 7 of the above
proof, the reader is referred to the Appendix, no. 2.
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Kant was able to say that since Aristotle, formal logic
“has not been able to advance a single step, and is to
all appearances a closed and completed body of doc-
trine.” The fact is that the traditional logic is seriously
incomplete, and even fails to give an account of many
principles of inference employed in quite elementary
mathematical reasoning.® A renaissance of logical stud-
ies in modern times began with the publication in
1847 of George Boole’s The Mathematical Analysis of
Logic. The primary concern of Boole and his immedi-
ate successors was to develop an algebra of logic which
would provide a precise notation for handling more
general and more varied types of deduction than were
covered by traditional logical principles. Suppose it is
found that in a certain school those who graduate with
honors are made up exactly of boys majoring in math-
ematics and girls not majoring in this subject. How is
the class of mathematics majors made up, in terms of
the other classes of students mentioned? The answer is
not readily forthcoming if one uses only the apparatus
of traditional logic. But with the help of Boolean alge-
bra it can easily be shown that the class of mathematics
majors consists exactly of boys graduating with honors
and girls not graduating with honors.

Another line of inquiry, closely related to the work
of nineteenth-century mathematicians on the founda-

° For example, of the principles involved in the inference: 5 is
greater than g; therefore, the square of ; is greater than the square
of 5.
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All gentlemen are polite.
No bankers are polite.
No gentlemen are bankers.

g o 0g
Y Y 5
Salla~ Ala s

RO

&b
bp

gh=0

Symbolic logic was invented in the middle of the 1gth cen-
tury by the English mathematician George Boole. In this
illustration a syllogism is translated into his notation in two
different ways. In the upper group of formulas, the symbol
‘C’ means “is contained in.” Thus ‘g C #’ says that the class
of gentlemen is included in the class of polite persons. In the
lower group of formulas two letters together mean the class
of things having both characteristics. For example, *bf" means
the class of individuals who are bankers and polite; and the
equation ‘bp = O’ says that this class has no members. A line
above a letter means “not.” (‘#, for example, means “impo-
lite.”)

TABLE 1

tions of analysis, became associated with the Boolean
program. This new development sought to exhibit
pure mathematics as a chapter of formal logic; and it
received its classical embodiment in the Principia Math-
ematica of Whitehead and Russell in 1910. Mathemati-
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cians of the nineteenth century succeeded in “arith-
metizing” algebra and what used to be called the
“infinitesimal calculus” by showing that the various no-
tions employed in mathematical analysis are definable
exclusively in number-theoretical terms (i.e., in terms
of the integers and the arithmetical operations upon
them). For example, instead of accepting the imagi-
nary number ‘/Tl as a somewhat mysterious “entity,”
it came to be defined as an ordered pair of integers
(0, 1) upon which certain operations of “addition” and
“multiplication” are performed. Similarly, the irra-
tional number /2 was defined as a certain class of ra-
tional numbers—namely, the class of rationals whose
square is less than 2. What Russell (and, before him,
the German mathematician Gottlob Frege) sought to
show was that all number-theovetical notions can be de-
fined in purely logical ideas, and that all the axioms of
number theory can be deduced from a small number
of basic propositions certifiable as purely logical truths.

To illustrate: the notion of class belongs to general
logic. Two classes are defined as “similar” if there is a
one-to-one correspondence between their members,
the notion of such a correspondence being explicable
in terms of other logical ideas. A class that has a single
member is said to be a “unit class” (e.g., the class of
satellites of the planet Earth); and the cardinal number
1 can be defined as the class of all classes similar to a
unit class. Analogous definitions can be given of the
other cardinal numbers; and the various arithmetical
operations, such as addition and multiplication, can be
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defined in the notions of formal logic. An arithmetical
statement, e.g., ‘1 + 1 = 2’, can then be exhibited as
a condensed transcription of a statement containing
only expressions belonging to general logic; and such
purely logical statements can be shown to be deducible
from certain logical axioms.

Principia Mathematica thus appeared to advance the
final solution of the problem of consistency of mathe-
matical systems, and of number theory in particular, by
reducing the problem to that of the consistency of
formal logic itself. For, if the axioms of number theory
are themselves derivable as theorems in formal logic,
the question whether the axioms are consistent is
equivalent to the question whether the fundamental
axioms of logic are consistent.

The Frege-Russell thesis that mathematics is only a
chapter of logic has, for various reasons of detail, not
won universal acceptance from mathematicians. More-
over, as we have noted, the antinomies of the Canto-
rian theory of transfinite numbers can be duplicated
within logic itself, unless special precautions are taken
to prevent this outcome. But are the measures adopted
in Principia Mathematica to outflank the antinomies ad-
equate to exclude all forms of self-contradictory con-
structions? This cannot be asserted as a matter of
course. Therefore the Frege-Russell reduction of arith-
metic to logic does not provide a final answer to the
consistency problem; indeed, the problem simply
emerges in a more general form. But, irrespective of
the validity of the Frege-Russell thesis, two features of
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Principia have proved of inestimable value for the fur-
ther study of the consistency question. Principia pro-
vides a remarkably comprehensive system of notation,
with the help of which all statements of pure mathe-
matics (and of number theory in particular) can be
codified in a standard manner; and it makes explicit
most of the rules of formal inference used in mathe-
matical demonstrations (eventually, these rules were
made more precise and complete). Principia, in sum,
created the essential instrument for investigating the
entire system of number theory as an uninterpreted
calculus—that is, as a system of meaningless marks,
whose formulas (or “strings”) are combined and trans-
formed in accordance with stated rules, of operation.

Because of its historical importance, Principia Mathe-
matica will henceforth constitute our prototypical ex-
ample of a formalization of number theory, and the
phrase “und verwandter Systeme” (“and related sys-
tems”) in the title of Gddel’s article will be tacitly in-
cluded whenever we refer to Principia Mathematica: the
whole family of such systems will be meant.

v

An Example of a Successful Absolute Proof
of Consistency

We must now attempt the second task mentioned at
the outset of the preceding section, and familiarize
ourselves with an important, though easily understand-
able, example of an absolute proof of consistency. By
mastering the proof, the reader will be in a better
position to appreciate the significance of Godel’s paper
of 1931.

We shall outline how a small portion of Principia, the
elementary logic of propositions, can be formalized.
This entails the conversion of the fragmentary system
into a calculus of uninterpreted signs. We shall then
develop an absolute proof of consistency.

The formalization proceeds in four steps. First, a
complete catalogue is prepared of the signs to be used
in the calculus. These are its vocabulary. Second, the
“Formation Rules” are laid down. They declare which
of the combinations of the signs in the vocabulary are
acceptable as “formulas” (in effect, as sentences). The
rules may be viewed as constituting the grammar of the
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system. Third, the “Transformation Rules” are stated.
They describe the precise structure of formulas from
which other formulas of given structure are derivable.
These rules are, in effect, the rules of inference. Fi-
nally, certain formulas are selected as axioms (or as
“primitive formulas”). They serve as foundation for the
entire system. We shall use the phrase “theorem of the
system” to denote any formula that can be derived
from the axioms by successively applying the Transfor-
mation Rules. By a formal “proof” (or “demonstra-
tion”) we shall mean a finite sequence of formulas,
each of which either is an axiom or can be derived
from preceding formulas in the sequence by the Trans-
formation Rules.”

For the logic of propositions (often called the “sen-
tential calculus”) the vocabulary (or list of “elementary
signs”) is extremely simple. It consists of variables and
constant signs. The variables may have sentences sub-
stituted for them and are therefore called “sentential
variables.” They are the letters

‘P!’ ‘q” ‘T!’ etC.
The constant signs are either “sentential connectives”

or signs of punctuation. The sentential connectives are:

“ 1

~ which is short for ‘not’
(and is called the “tilde”),

71t immediately follows that axioms are to be counted among
the theorems.
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V' which is short for ‘or’,
‘D" which is short for ‘if . . . then .. .’, and
‘> which is short for ‘and’.

The signs of punctuation are the left- and righthand
round parentheses, ‘(" and ‘)’, respectively.

The Formation Rules are so designed that combina-
tions of the elementary signs, which would normally
have the form of sentences, are called “formulas.” Also,
each sentential variable counts as a formula. More-
over, if the letter ‘S’ stands for a formula, its formal
negation, namely, ~ (S), is also a formula. Similarly, if
S, and S, are formulas, so are (S;) V (S,), (S;) D (S,),
and (S,) - (S,). Each of the following is a formula: ‘p’,
“~ () () D (@ (9 V(1) D (p). But neither
“(p)(~ (9) nor ‘((p) 2 (¢)) V' is a formula: not the
first, because, while ‘(p)’ and ‘(~ (¢))’ are both for-
mulas, no sentential connective occurs between them;
and not the second, because the connective ‘V’ is not,
as the Rules require, flanked on both left and right by
a formula.®

Two Transformation Rules are adopted. One of
them, the Rule of Substitution (for sentential variables),

¥ Where there is no possibility of confusion, punctuation marks
(i.e., parentheses) can be dropped. Thus, instead of writing ‘~ (p)’
it is sufficient to write ‘~ p’; and instead of ‘(p) D (g)’, simply
‘p D g'. (This apparent relaxation of the formality of the system is
not really a step away from pure rule-boundness, since the elimina-
tion of unneeded parentheses can itself be easily characterized in a
purely mechanical manner.)
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says that from a formula containing sentential varia-
bles it is always permissible to derive another formula
by uniformly substituting formulas for the variables. It
is understood that, when substitutions are made for a
variable in a formula, the same substitution must be
made for each occurrence of the variable. For example,
on the assumption that ‘p D p’ has already been estab-
lished, we can substitute for the variable ‘p’ the for-
mula ‘¢’ to get ‘g D ¢'; or we can substitute the for-
mula ‘pV ¢ to get ‘(pV g D (pV g . Or, if we substi-
tute actual English sentences for ‘f’, we can obtain
each of the following from ‘p D p’: ‘Frogs are noisy D
Frogs are noisy’; ‘(Bats are blind V Bats eat mice) D
(Bats are blind V Bats eat mice)’.® The second Trans-
formation Rule is the Rule of Detachment (or Modus Po-
nens). This rule says that from two formulas having
the form S, and S; D S, it is always permissible to de-
rive the formula S,. For example, from the two formu-
las ‘pV ~ p and “(pV ~ p) D (p D p)’, we can derive
‘DD p.

Finally, the axioms of the calculus (essentially those
of Principia) are the following four formulas:

2 On the other hand, suppose the formula “(p 2 ¢) 2 (~ ¢ D
~ p)’ has already been established, and we decide to substitute ‘+’
for the variable ‘p’ and ‘p V #’ for the variable ‘¢’. We cannot, by
this substitution, obtain the formula ‘(r 2 (pV 1) D (~ ¢ D ~ 1),
because we have failed to make the same substitution for each
occurrence of the variable ‘. The correct substitution yields

DN M) DulEN DSk
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L (pVvp) 2 p

or, in ordinary En-
glish, if either p or p,
then p

P2 (VY

that is, if p, then either
porg

. (pV g D (gV P

that is, if either p or ¢,
then either gor p

(P29 D2 ((rvp D

(rvg)
that is, if (if p then ¢)
then (if (either ror p)
then (either ror g))

1. If (either Henry VIII

was a boor or Henry
VIII was a boor) then
Henry VIII was a boor

. If psychoanalysis is

fashionable, then (ei-
ther psychoanalysis is
fashionable or head-
ache powders are sold
cheap)

. If (either Immanuel

Kant was punctual or
Hollywood is sinful),
then (either Holly-
wood is sinful or Im-
manuel Kant was
punctual)

. If (if ducks waddle

then 5 is a prime)
then (if (either Chur-
chill drinks brandy or
ducks waddle) then
(either Churchill
drinks brandy or 5 is a
prime))

In the left-hand column we have stated the axioms,

with a translation for each. In the right-hand column
we have given an example for each axiom. The clum-
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siness of the translations, especially in the case of the
final axiom, will perhaps help the reader to realize the
advantages of using a special symbolism in formal logic.
It is also important to observe that the nonsensical
illustrations used as substitution instances for the axi-
oms and the fact that the consequents bear no mean-
ingful relation to the antecedents in the conditional
sentences in no way affect the validity of the logical
connections asserted in the examples.

Each of these axioms may seem “obvious” and trivial.
Nevertheless, it is possible to derive from them with
the help of the stated Transformation Rules an indefi-
nitely large class of theorems which are far from obvi-
ous or trivial. For example, the formula

(P 9D (rD D H) D (D ((rD 9D 1)
S ((pD W D (5D 1))

can be derived as a theorem. We are, however, not
interested for the moment in deriving theorems from
the axioms. Our aim is to show that this set of axioms
is not contradictory, that is, to prove “absolutely” that
it is #mpossible by using the Transformation Rules to
derive from the axioms a formula S together with its
formal negation ~ S.

Now, it happens that ‘p D (~ p D ¢)’ (in words: ‘if
p. then if not-p then ¢') is a theorem in the calculus.
(We shall accept this as a fact, without exhibiting the
derivation.) Suppose, then, that some formula S as well
as its formal negation ~ S were deducible from the
axioms. By substituting S for the variable ‘p’ in the
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theorem (as permitted by the Rule of Substitution),
and applying the Rule of Detachment twice, the for-
mula ‘¢’ would be deducible.!® But, if the formula con-
sisting of the variable ‘¢’ is demonstrable, it follows at
once that by substituting any formula whatsoever for g,
any formula whatsoever is deducible from the axioms. It is
thus clear that, if both some formula S and its formal
negation ~ S were deducible from the axioms, every
formula would be deducible. In short, if the calculus is
not consistent, every formula is a theorem—which is
the same as saying that from a contradictory set of
axioms any formula can be derived. But this has a
converse: namely, if not every formula is a theorem
(i.e., if there is at least one formula that is not derivable
from the axioms), then the calculus is consistent. The
task, therefore, is to show that there is at least one formula
that cannot be derived from the axioms.

The way this is done is to employ meta-mathematical
reasoning upon the system before us. The actual pro-
cedure is elegant. It consists in finding a characteristic
or structural property of formulas which satisfies the
three following conditions. (1) The property must be
common to all four axioms. (One such property is that
of containing not more than 25 elementary signs; how-

19 By substituting S for ‘p’ we first obtain: § D (~ S D ¢). From
this, together with S, which is assumed to be demonstrable, we
obtain by the Detachment Rule: ~ S D g. Finally, since ~ § is also
assumed to be demonstrable, using the Detachment Rule once
more, we get: g.
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ever, this property does not satisfy the next condition.)
(2) The property must be “hereditary” under the
Transformation Rules—that is, if all the axioms have
the property, any formula properly derived from them
by the Transformation Rules must also have it. Since
any formula so derived is by definition a theorem, this
condition in essence stipulates that every theorem must
have the property. (3) The property must not belong
to every formula that can be constructed in accordance
with the Formation Rules of the system—that is, we
must seek to exhibit at least one formula that does not
have the property. If we succeed in this threefold task,
we shall have an absolute proof of consistency. The
reasoning runs something like this: the hereditary
property is transmitted from the axioms to all theo-
rems; but if an array of signs can be found that con-
forms to the requirements of being a formula in the
system and that, nevertheless, does not possess the
specified hereditary property, this formula cannot be a
theorem. (To put the matter in another way, if a sus-
pected offspring (formula) lacks an invariably inher-
ited trait of the forebears (axioms), it cannot in fact be
their descendant (theorem).) But, if a formula is dis-
covered that is not a theorem, we have established the
consistency of the system; for, as we noted a moment
ago, if the system were not consistent, every formula
could be derived from the axioms (i.e., every formula
would be a theorem). In short, the exhibition of a
single formula without the hereditary property does
the trick.
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Let us identify a property of the required kind. The
one we choose is the property of being a “tautology.”
In common parlance, an utterance is usually said to be
tautologous if it contains a redundancy and says the
same thing twice over in different words—e.g., ‘John
is the father of Charles and Charles is a son of John’.
In logic, however, a tautology is defined as a statement
that excludes no logical possibilities—e.g., ‘Either it is
raining or it is not raining’. Another way of putting this
is to say that a tautology is “true in all possible worlds.”
No one will doubt that, irrespective of the actual state
of the weather (i.e., regardless of whether the state-
ment that it is raining is true or false), the statement
‘Either it is raining or it is not raining’ is necessarily true.

We employ this notion to define a tautology in our
system. Notice, first, that every formula is constructed
of elementary constituents %, g, 7, etc. A formula is
a tautology if it is invariably true, regardless of whether
its elementary constituents are true or false. Thus, in
the first axiom ‘(pV p) D ', the only elementary con-
stituent is ‘p’; but it makes no difference whether ‘p’ is
assumed to be true or is assumed to be false—the first
axiom is true in either case. This may be made more
evident if we substitute for ‘p’ the statement ‘Mt. Rai-
nier is 20,000 feet high’; we then obtain as an instance
of the first axiom the statement ‘If either Mt. Rainier
is 20,000 feet high or Mt. Rainier is 20,000 feet high,
then Mt. Rainier is 20,000 feet high’. Readers will have
no difficulty in recognizing this long statement to be
true, even if they should not happen to know whether
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the constituent statement ‘Mt. Rainier is 20,000 feet
high’ is true. Obviously, then, the first axiom is a
tautology— “true in all possible worlds.” It can easily be
shown that each of the other axioms is also a tautology.

Next, it is possible to prove that the property of
being a tautology is hereditary under the Transforma-
tion Rules, though we shall not turn aside to give the
demonstration. (See Appendix, no. g.) It follows that
every formula properly derived from the axioms (i.e.,
every theorem) must be a tautology.

It has now been shown that the property of being
tautologous satisfies two of the three conditions men-
tioned earlier, and we are ready for the third step. We
must look for a formula that belongs to the system (i.e.,
is constructed out of the signs mentioned in the vocab-
ulary in accordance with the Formation Rules), yet,
because it does not possess the property of being a
tautology, cannot be a theorem (i.e., cannot be derived
from the axioms). We do not have to look very hard; it
is easy to exhibit such a formula. For example, ‘pV ¢
fits the requirements. It purports to be a gosling but is
in fact a duckling; it does not belong to the family: it is
a formula, but it is not a theorem. Clearly, it is not a
tautology. Any substitution instance (or interpretation)
shows this at once. We can obtain by substitution for
the variables in ‘pV ¢ the statement ‘Napoleon died of
cancer or Bismarck enjoyed a cup of coffee’. This is
not a truth of logic, because it would be false if both of
the two clauses occurring in it were false; and, even if
it is a true statement, it is not true irrespective of the
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truth or falsity of its constituent statements. (See Ap-
pendix, no. g.)

We have achieved our goal. We have found at least
one formula that is not a theorem. Such a formula
could not occur if the axioms were contradictory. Con-
sequently, it is not possible to derive from the axioms
of the sentential calculus both a formula and its nega-
tion. In short, we have exhibited an absolute proof of
the consistency of the system."!

Before leaving the sentential calculus, we must men-
tion a final point. Since every theorem of this calculus is
a tautology, a truth of logic, it is natural to ask whether,
conversely, every logical truth expressible in the vocab-
ulary of the calculus (i.e., every tautology) is also a the-
orem (i.e., derivable from the axioms). The answer is
yes, though the proof is too long to be stated here. The
point we are concerned with making, however, does not

' The reader may find helpful the following recapitulation of
the sequence:

1. Every axiom of the system is a tautology.

2. Tautologousness is a hereditary property.

3. Every formula properly derived from the axioms (i.e., every

theorem) is also a tautology.

. Hence any formula that is not a tautology is not a theorem.

5. One formula has been found (e.g., ‘p V ¢) that is not a
tautology.

6. This formula is therefore not a theorem.

=. But, if the axioms were inconsistent, every formula would be
a theorem.

8. Therefore the axioms are consistent.

H
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depend on acquaintance with the proof. The point is
that, in the light of this conclusion, the axioms are suf-
ficient for generating all tautologous formulas— all log-
ical truths expressible in the system. An axiomatized sys-
tem with this property is said to be “complete.”

Now, it is frequently of paramount interest to deter-
mine whether an axiomatized system is complete. In-
deed, a powerful motive for axiomatizing various
branches of mathematics has been the desire to estab-
lish a set of initial assumptions from which all the true
statements in some field of inquiry are deducible.
When Euclid axiomatized elementary geometry, he ap-
parently so selected his axioms as to make it possible
to derive from them all geometric truths; that is, those
that had already been established, as well as any others
that might be discovered in the future.'? Until recently
it was taken as a matter of course that a complete set
of axioms for any given branch of mathematics can be
assembled. In particular, mathematicians believed that
the set proposed for number theory in the past was in
fact complete, or, at worst, could be made complete
simply by adding a finite number of axioms to the
original list. The discovery that this will not work is one
of Godel’s major achievements.

? Euclid showed remarkable insight in treating his famous par-
allel axiom as an assumption logically independent of his other
axioms. For, as was subsequently proved, this axiom cannot be
derived from his remaining assumptions, so that without it the set
of axioms is incomplete.

VI

The Idea of Mapping and Its Use in
Mathematics

The sentential calculus is an example of a mathemati-
cal system for which the objectives of Hilbert’s theory
of proof are fully realized. To be sure, this calculus
codifies only a fragment of formal logic, and its vocab-
ulary and formal apparatus do not suffice to develop
even elementary arithmetic. Hilbert’s program, how-
ever, is not so limited. It can be carried out successfully
for more inclusive systems, which can be shown by
meta-mathematical reasoning to be both consistent
and complete. By way of example, an absolute proof of
consistency is available for a formal system in which
axioms for addition but not multiplication are given.
But is Hilbert’s finitistic method powerful enough to
prove the consistency of a system such as Principia,
whose vocabulary and logical apparatus are adequate
to express the whole of number theory and not merely
a fragment? Repeated attempts to construct such a
proof were unsuccessful; and the publication of G6-
del’s paper in 1931 showed, finally, that all such efforts

: 57
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operating within the strict limits of Hilbert’s original
program must fail.

What did Godel establish, and how did he prove his
results? His main conclusions are twofold. In the first
place (though this is not the order of Godel’s actual ar-
gument), he showed that it is impossible to give a meta-
mathematical proof of the consistency of a system com-
prehensive enough to contain the whole of arithmetic
(such as Principia Mathematica) —unless the proof itself
employs rules of inference different in certain essential
respects from the Transformation Rules used in deriv-
ing theorems within the system. Such a proof may, to be
sure, possess great value and importance. However, if
the reasoning in it is based on rules of inference much
more powerful than the rules of Principia Mathematica,
so that the consistency of the assumptions in the reason-
ing is just as subject to doubt as is the consistency of the
formalized number theory, the proof would yield only a
specious victory: one dragon slain only to create an-
other. In any event, if the proof is not finitistic, it does
not realize the aims of Hilbert’s original program; and
Godel’s argument makes it unlikely that a finitistic
proof of the consistency of Principia Mathematica (or sim-
ilar systems) can be g.iven.

Godel’s second main conclusion is even more surpris-
ing and revolutionary, because it demonstrates a fun-
damental limitation in the power of the axiomatic
method. Godel showed that Principia, or any other sys-
tem within which arithmetic can be developed, is essen-
tially incomplete. In other words, given any consistent
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formalization of number theory, there are true number-
theoretical statements that cannot be derived in the
system. This crucial point deserves illustration. Mathe-
matics abounds in general statements to which no ex-
ceptions have been found that thus far have thwarted all
attempts at proof. A classical illustration is known as
“Goldbach’s theorem,” which states that every even
number is the sum of two primes. No even number has
ever been found that is not the sum of two primes, yet
no one has succeeded in finding a proof that Gold-
bach’s conjecture applies without exception to all even
numbers. Here, then, is an example of an arithmetical
statement that may be true, but may be non-derivable
from the axioms of a formal version of number theory.
Suppose, now, that Goldbach’s conjecture were indeed
universally true, though not derivable from the axioms.
What of the suggestion that in this eventuality the axi-
oms or rules of inference could be modified or aug-
mented so as to make hitherto unprovable statements
(such as Goldbach’s on our supposition) derivable in
the enlarged formal system? Godel’s results show that
even if the supposition were correct the suggestion
would still provide no final cure for the difficulty. That
is, even if Principia Mathematica were augmented by an
indefinite number of new axioms and rules, there will
always be further arithmetical truths that are not for-
mally derivable in the augmented system.'®

2 Such further truths may, as we shall see, be established by
some form of meta-mathematical reasoning about the system. But
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How did Gédel prove these conclusions? Up to a
point the structure of his argument is modeled, as he
himself pointed out, on the reasoning involved in one
of the logical antinomies known as the “Richard Para-
dox,” first propounded by the French mathematician
Jules Richard in 1gos. We shall outline this paradox.

Consider a language (e.g., English) in which the
purely arithmetical properties of cardinal numbers can
be formulated and defined. Let us examine the defini-
tions that can be stated in the language. It is clear that,
on pain of circularity or infinite regress, some terms re-
ferring to arithmetical properties cannot be defined
explicitly—for we cannot define everything and must
start somewhere—though they can, presumably, be un-
derstood in some other way. For our purposes it does
not matter which are the undefined or “primitive” terms;
we may assume, for example, that we understand what is
meant by ‘an integer is divisible by another’, ‘an integer
is the product of two integers’, and so on. The property
of being a prime number may then be defined by: ‘not
divisible by any integer other than 1 and itself’; the
property of being a perfect square may be defined by:
‘being the product of some integer by itself’; and so on.

We can readily see that each such definition will con-

this procedure does not fit the requirement that the calculus must,
so to speak, be self-contained, and that the truths in question must
be exhibited as the formal consequences of the specified axioms
within the system. There is, then, an inhkerent limitation in the axio-
matic method as a way of systematizing the whole of number theory.
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tain only a finite number of words, and therefore only a
finite number of letters of the alphabet. This being the
case, the definitions can be placed in serial order: a def-
inition will precede another if the number of letters in
the first is smaller than the number of letters in the sec-
ond; and, if two definitions have the same number of
letters, one of them will precede the other on the basis
of the alphabetical order of the letters in each. On the
basis of this order, a unique integer will correspond to
each definition and will represent the number of the
place that the definition occupies in the series. For ex-
ample, the definition with the smallest number of letters
will correspond to the number 1, the next definition in
the series will correspond to 2, and so on.

Since each definition is associated with a unique
integer, it may turn out in certain cases that an integer
will possess the very property designated by the defini-
tion with which the integer is correlated.'* Suppose, for
instance, the defining expression ‘not divisible by any
integer other than 1 and itself’ happens to be corre-
lated with the order number 17; obviously 17 itself has
the property designated by that expression. On the
other hand, suppose the defining expression ‘being
the product of some integer by itself” were correlated

4 This is the same sort of thing as would happen if the English
word ‘polysyllabic’ appeared in a list of words, and we characterized
each word of the list by the descriptive tags “monosyllabic” or
“polysyllabic”. The word ‘polysyllabic’ would then have the tag
“polysyllabic” attached to it.
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with the order number 15; 15 clearly does not have
the property designated by the expression. We shall
describe the state of affairs in the second example by
saying that the number 15 has the property of being
Richardian; and, in the first example, by saying that the
number 17 does not have the property of being Richar-
dian. More generally, we define ‘x is Richardian’ as a
shorthand way of stating ‘x does not have the property
designated by the defining expression with which x is
correlated in the serially ordered set of definitions’.

We come now to a curious but characteristic turn in
the statement of the Richard Paradox. The defining ex-
pression for the property of being Richardian ostensibly
describes a numerical property of integers. The expres-
sion itself therefore belongs to the series of definitions
proposed above. It follows that the expression is corre-
lated with a position-fixing integer or number. Suppose
this number is n. We now pose the question, reminis-
cent of Russell’s antinomy: Is n Richardian? The reader
can doubtless anticipate the fatal contradiction that now
threatens. For n is Richardian if, and only if, » does not
have the property designated by the defining expression
with which = is correlated (i.e., it does not have the
property of being Richardian). In short, n is Richardian
if, and only if, n is not Richardian; so that the statement
‘nis Richardian’ is both true and false.

We must now point out that the contradiction is, in
a sense, a hoax produced by not playing the game
quite fairly. An essential but tacit assumption underly-
ing the serial ordering of definitions was conveniently
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dropped along the way. It was agreed to consider the
definitions of the purely arithmetical properties of inte-
gers—properties that can be formulated with the help
of such notions as arithmetical addition, multiplica-
tion, and the like. But then, without warning, we were
asked to accept a definition in the series that involves
reference to the language used in formulating arithmet-
ical properties. More specifically, the definition of the
property of being Richardian does not belong to the
series initially intended, because this definition in-
volves meta-mathematical notions such as the number
of letters (or signs) occurring in expressions written in,
say, English. We can thus outflank the Richard Paradox
by distinguishing carefully between statements within
arithmetic (which make no reference to any system of
notation) and statements about some system of nota-
tion in which arithmetic is codified.

The reasoning in the construction of the Richard
Paradox is clearly fallacious.* The construction never-
theless suggests that it may be possible to “map” or
“mirror” meta-mathematical statements about a suffi-
ciently comprehensive formal system in the system it-

* Careful consideration of the Richard Paradox shows that it can
in fact be reconstructed within the context of a formal system,
bypassing the use of a highly ambiguous and ill-defined natural
language like English. In such a case, analysis of the fallacy becomes
subtler, and it turns out that ideas closely related to those of G-
del’s 1931 paper are needed in order to pinpoint the exact step at
which the seemingly logical flow of thought goes awry. Such an
analysis, however, is beyond the scope of our small book. [—£4d.]
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self. The idea of “mapping” is well known and plays a
fundamental role in many branches of mathematics. It
is used, of course, in the construction of ordinary
maps, where shapes on the surface of a sphere are
projected onto a plane, so that the relations between
the plane figures mirror the relations between the fig-
ures on the spherical surface. It is used in coordinate
geometry, which translates geometry into algebra, so
that geometric relations are mapped onto algebraic
ones. (The reader will recall the discussion in Section
II, which explained how Hilbert used algebra to estab-
lish the consistency of his axioms for geometry. What
Hilbert did, in effect, was to map geometry onto alge-
bra.) Mapping also plays a role in mathematical physics
where, for example, relations between properties of
electric currents are represented in the language of
hydrodynamics. And mapping is involved when a pilot
model is constructed before proceeding with a full-size
machine, when a small wing surface is observed for its
aerodynamic properties in a wind tunnel, or when a
laboratory rig made up of electric circuits is used to
study the relations between large-size masses in motion.
A striking visual example is presented in Fig. g, which
Fig. 3

Figure g (a) illustrates the Theorem of Pappus: If A, B, C are any
three distinct points on a line I, and A’, B’, C' any three distinct
points on another line I, the three points R, S, T determined by the
pairs of lines AB’ and A'B, BC' and B'C, CA’ and C’A, respectively,
are collinear (i.e., lie on line III).

Figure g (b) illustrates the “dual” of the above theorem: If A, B,
C are any three distinct lines on a point I, and A’, B’, C' any three

(a)

R B’

distinct lines on another point I1, the three lines R, S, T determined
by the pairs of points AB’ and A'B, BC' and B'C, CA" and C'A,
respectively, are copunctal (i.e., lie on point III).

The two figures have the same abstract structure, though in appear-
ance they are markedly different. Figure g (a) is so related to Figure
3 (b) that points of the former correspond to lines of the latter, while
lines of the former correspond to points of the latter. In effect, (b) is
a map of (a): a point in (b) represents (or is the “mirror image” of)
aline in (a), while a line in (b) represents a pointin (a).
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illustrates a species of mapping that occurs in a branch
of mathematics known as projective geometry.

The basic feature of mapping is that an abstract
structure of relations embodied in one domain of “ob-
jects” can be shown to hold between “objects” (usually
of a sort different from the first set) in another do-
main. It is this feature which stimulated Gédel in con-
structing his proofs. If complicated meta-mathematical
statements about a formalized system of arithmetic
could, as he hoped, be translated into (or mirrored by)
arithmetical statements within the system itself, an im-
portant gain would be achieved in facilitating meta-
mathematical demonstrations. For just as it is easier
to deal with the algebraic formulas representing (or
mirroring) intricate geometrical relations between
curves and surfaces in space than with the geometrical
relations themselves, so it is easier to deal with the
arithmetical counterparts (or “mirror images”) of com-
plex logical relations than with the logical relations
themselves.

The exploitation of the notion of mapping is the key
to the argument in Gédel’s famous paper. Following
the style of the Richard Paradox, but carefully avoiding
the fallacy involved in its construction, Godel showed
that meta-mathematical statements about a formalized
arithmetical calculus can indeed be represented by ar-
ithmetical formulas within the calculus. As we shall ex-
plain in greater detail in the next section, he devised a
method of representation such that neither the arith-
metical formula corresponding to a certain meta-
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mathematical statement, nor the arithmetical formula
corresponding to the denial of the statement, is de-
monstrable within the calculus. Since one of these ar-
ithmetical formulas must codify an arithmetical truth,
yet neither is derivable from the axioms, the system is
incomplete. Godel’s method of representation also en-
abled him to construct a number-theoretical statement
corresponding to the meta-mathematical statement
‘The calculus is consistent’ and to show that the formal
translation of this statement into the notation of the
formal calculus is not demonstrable within the calcu-
lus. It follows that the meta-mathematical statement
cannot be established unless rules of inference are
used that cannot be represented within the calculus, so
that, in proving the statement, rules must be employed
whose own consistency may be as questionable as the
consistency of the formal calculus itself. Godel estab-
lished these major conclusions by using a remarkably
ingenious form of mapping.
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Godel’s Proofs

Godel’s paper is difficult. Forty-six preliminary defini-
tions, together with several important preliminary
propositions, must be mastered before the main results
are reached. We shall take a much easier road; never-
theless, it should afford the reader glimpses of the
ascent and of the crowning structure.

A Gédel numbering

Godel described a formalized calculus, which we shall
call “PM,” within which all the customary arithmetical
notations can be expressed and familiar arithmetical
relations established.'® The formulas of the calculus are
constructed out of a class of elementary signs, which

15 Godel used an adaptation of the system developed in Principia
Mathematica. But any formal system within which the cardinal num-
bers (i.e., the non-negative whole numbers) and their addition and
multiplication can be constructed would have suited his purposes.
We shall therefore use the initials “PM” to represent any such
system.
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constitute the fundamental vocabulary. A set of primi-
tive formulas (or axioms) are the underpinning, and the
theorems of the calculus are formulas derivable from
the axioms with the help of a carefully enumerated set
of Transformation Rules (or rules of inference).

Gaodel first showed that it is possible to assign a
unique number to each elementary sign, each formula
(or sequence of signs), and each proof (or finite se-
quence of formulas). This number, which serves as a
distinctive tag or label, is called the “Godel number” of
the sign, formula, or proof.'®

The elementary signs belonging to the fundamental
vocabulary are of two kinds: the constant signs and the
variables. We shall assume that there are exactly twelve
constant signs,'” to which the integers from 1 to 12 are
attached as Godel numbers. Most of these signs are al-
ready known to the reader: ‘~’ (short for ‘not’); V'
(short for ‘or’); ‘D’ (short for ‘if...then..."); ‘=’
(short for ‘equals’); ‘0O’ (the numeral representing the
number zero); ‘+’ (short for ‘plus’); ‘X’ (short for
‘times’); and three signs of punctuation, namely, the left

% There are actually many alternative ways of assigning Godel
numbers, and it is immaterial to the main argument which one is
adopted. To help the discussion, we give a concrete example of
how the numbers can be assigned, and in fact, the method of
numbering used in the text is essentially the method employed by
Godel in his 1931 paper.

""The number of constant signs depends on how the formal
calculus is set up. Gédel in his paper used only seven constant
signs. The text uses twelve in order to avoid certain complexities in
the exposition. Either way is fine.
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parenthesis ‘ (’, the right parenthesis *)’, and the comma
‘", In addition, two other signs will be used: the inverted
letter ‘3, which may be read as ‘there is’, and which oc-
curs in so-called “existential quantifiers”; and the lower-
case letter ‘s’, which is prefixed to numerical expres-
sions to designate the immediate successor of a number.

To illustrate: the formula ‘(3x) (x = sO)’ may be
read ‘There is an x such that x is the immediate succes-
sor of zero’. The table below displays the twelve con-
stant signs, states the Godel number associated with
each one, and indicates the usual meaning of the sign.

Constant Godel Usual
sign number meaning
o 1 not
or
i thenl o
there isan ...
equals
ZEro

i L) =

w O |
I O R W OR

the immediate
successor of

8 punctuation mark
) 9 punctuation mark
: 10 punctuation mark
+ 11 plus
X 12 times
TABLE 2
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In light of our statement in Chapter III that symbols
in formal calculi are “drained of all meaning” and are
merely “empty signs,” the reader might well wonder
what earthly sense it makes to devote a column to the
“meanings” of these supposedly meaningless symbols.
Are we not speaking out of both sides of our mouths?
The answer is that we are walking a subtle midway path
between truly empty signs and truly meaningful ones,
which we explain now.

In Table 2, the rightmost column gives each symbol’s
“usual meaning”—the concept that, through conven-
tion, people tend to associate with each symbol. The
symbols of PM are, however, fully devoid of meaning in
the sense that derivation of theorems depends only on
following the formal rules of PM, and never upon taking
into account what any of the symbols might stand for. In
this sense, PM contains exclusively empty signs. But Rus-
sell and Whitehead, given their goal of formalizing
mathematics and logic, wanted the symbols of their for-
mal calculus to act as consistently as possible with their
conventional interpretations, and so the rules of infer-
ence of PM were devised with the goal of making each
symbol merit its usual, conventional meaning.

To be specific, what makes the meaningless symbol
‘0’ merit the interpretation of “zero,” and the mean-
ingless symbol ‘+’ merit the interpretation of “plus”—
rather than, say, vice versa? And what would make us
feel convinced that the tilde ‘~’, merely a squiggly line
that obeys certain formal rules, genuinely represents
the abstract concept “not™
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The answer, in a nutshell, is that the interpretation
of a symbol hinges on how the symbol behaves inside
theorems of PM (and this, in turn, hinges on the axi-
oms and the rules of inference of PM). Thus, for in-
stance, if we can derive theorems such as ‘0 + 0 = 0’,
‘0 + s0 = s0’, and ‘sO + sO = ssO’ by following the
rules of the formal system, we may start to gain confi-
dence that ‘0’ is acting as one would hope a symbol for

El

zero would act, and that ‘=’ is acting as one would
hope a symbol for equality would act, and that “+’ is

acting as one would hope a symbol for addition would

act. Similarly, if the strings ‘~(0 = s0)’, ‘~~(0 = 0)’,
and ‘~ (ssO + ssO = sss0)’ are all theorems of PM, then
we will gain some confidence in ‘~’ as a symbol whose

natural interpretation is “not.” In this manner, theo-
rems collectively pin down their constituent symbols’
meanings (or more technically speaking, their symbols’
interpretations).

However, having merely a handful of theorems that
suggest probable or plausible interpretations for a set
of symbols is a far cry from being convinced beyond a
shadow of a doubt that these interpretations are abso-
lutely trustworthy. For that, one wants to see large fam-
ilies of truths that are captured by theorems.

In order to lock in the standard interpretations of
the symbols in the formal system PM, Gddel showed,
in Proposition V of his 1931 paper, that there is an
infinite class of theorems of PM, every one of which, if
interpreted according to the table of usual meanings
above, expresses an arithmetical truth, and conversely,
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that there is an infinite class of arithmetical truths (the
primitive recursive ones) every one of which, if it is con-
verted into a formal statement via the table above,
yields a theorem of PM.'® This highly systematic corre-
spondence of truths and interpreted theorems does
two things at once: not only does it confirm the power
of PM as an axiomatic system for number theory, but it
also pins down the conventional interpretations for
each and every symbol.

In short, Godel convincingly demonstrated that the
symbols of PM do indeed merit their “meanings” as
shown in the third column of Table 2. Today, Godel’s
key result is known as the “Correspondence Lemma,”
the name coming from the two-tier correspondence
that it confirms—firstly, that everly primitive recursive
truth, when encoded as a string of symbols of the for-
mal calculus, is a theorem, and secondly, that on a one-
by-one basis, the formal symbols merit their intended
interpretations. One sees hereby the way in which truth
and meaning are inextricably intertwined.

Besides the constant signs, three kinds of variables
appear in PM: the numerical variables ‘ot Sy, o, ek,
for which numerals (such as ‘ssO’) and numerical expres-

15 The infinite class of primitive recursive truths includes all
correct additions, all correct multiplications, and a vast variety of
statements such as “17 is the 7th prime,” “21 is not a prime num-
ber,” and so forth. The fact that all primitive recursive truths yield
theorems of PM guarantees that the meanings we have assigned to
the symbols of PM are merited.
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sions (such as ‘x + y') may be substituted; the sentential
variables ‘p’, ‘¢’, ‘r’, etc., for which formulas (sen-
tences) may be substituted; and the predicate variables
‘P’, ‘Q’, R’, etc., for which predicates, such as “is
prime”, or “is greater than,” may be substituted. The
variables are assigned Godel numbers in accordance
with the following rules: (i) with each distinct numeri-
cal variable, associate a distinct prime number greater
than 12; (ii) with each distinct sentential variable, as-
sociate the square of a prime number greater than 12;
(iii) with each distinct predicate variable, associate the
cube of a prime number greater than 12. The table
below illustrates these rules.

Numerical Godel A possible
variable number substitution instance
13 0
y 17 sO
= 19 y

Numerical variables are associated with prime numbers greater
than 12.

Sentential Godel A possible
variable number substitution instance
P 192 0=0
q €5 5 (Ix) (x = sy)
r 197 p24q

Sentential variables are associated with squares of primes greater
than 12.
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Predicate Godel A possible
variable number substitution instance
P 137 % =8y
Q T ~{x= s )
R 19° (32) (= 5+ 52

Predicate variables are associated with cubes of primes greater than
12.

TABLE g

Consider next a formula belonging to PM—for ex-
ample, ‘(3x) (x = sy)’. (Literally translated, this reads:
‘There is an x such that x is the immediate successor of
y, and it says, in effect, that whatever number the
variable y happens to stand for has an immediate suc-
cessor.) The numbers associated with its ten constitu-
ent elementary signs are, respectively: 8, 4, 13, 9, 8, 13,
5, 7, 17, 9. We show this schematically below:

po Beriad W Jipe [ 4= tE=ma 8 el )
e i il vt il e e il
8 i sl B 1 Gsin Bt BB gui ik T 5

It is of the essence, however, to assign a single num-
ber to the formula rather than a sequence of numbers.
Fortunately, this can be done easily. We agree to asso-
ciate with the formula the unique number that is the
product of the first ten primes in order of magnitude,
each prime being raised to a power equal to the Godel
number of the corresponding sign. The formula is ac-
cordingly associated with the number
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2SXS4X513X79><118X
1g1% X 145 X 197 X 2387 X 29 °.

Let us refer to this very large number as m. In a similar
fashion, a unique Godel number—the product of as
many successive primes as there are signs, each prime
being raised to a power equal to the Godel number of
the corresponding sign—can be assigned to every fi-
nite sequence of elementary signs, and, in particular,
to every formula."”

Consider, finally, a sequence of formulas, such as may
occur in some proof—e.g., the sequence:

(Ix) (x = sy)
(Ix) (x = s0)

19 Signs may occur in PM which do not appear in the fundamen-
tal vocabulary; these are introduced by defining them with the help
of the elementary signs. For example, the sign ', the sentential
connective used as an abbreviation for ‘and’, can be defined as
follows: ‘p - ¢ is short for ‘~(~p V ~¢)’. What Godel number is
assigned to such a defined sign? The answer is obvious if we notice
that expressions containing defined signs can be eliminated in
favor of their defining equivalents; and it is clear that a Godel
number can be determined for the transformed expressions. Ac-
cordingly, the Gédel number of the formula ‘p - ¢ will simply be
the Godel number of the formula ‘~(~p V ~g)’. Similarly, the
numerals of the decimal system can be introduced by definition as
follows: ‘1’ as short for ‘s0’, ‘2’ as short for ‘ss0’, ‘g’ as short for
‘sss0’, and so on. To obtain the Goddel number for the formula
‘~(2 = g)’, we eliminate the defined signs, thus obtaining the pure
PM formula ‘~(ssO = sss0)’, whereupon we determine its Godel
number pursuant to the rules stated in the text.
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The lower of these formulas, when translated, reads:
‘Zero has an immediate successor’; it is mechanically
derivable from the upper formula via one of the rules
of inference of PM, which states that it is valid to sub-
stitute any numerical expression (here, the numeral
‘0’) for a numerical variable (here, the variable ‘y’).2°
We have already determined the Godel number of
the upper formula: it is m; let us now suppose that # is
the Godel number of the lower formula. As before, it
is of the essence to have a single number, rather than
a sequence of numbers, as a tag for any given sequence
of formulas. We agree therefore to associate with this
particular sequence of formulas the number which is
the product of the first two primes in order of magni-
tude (i.e., the primes 2 and g), each prime being
raised to a power equal to the Godel number of the
corresponding number in the sequence. Thus, if we
call this number k, we can write k = 2™ X 3. By apply-
ing this simple procedure, we can obtain a number for
any sequence of formulas. In sum, every expression in

20 The reader will recall that we defined a proof as a finite
sequence of formulas, each of which either is an axiom or can be
derived from preceding formulas in the sequence with the help of
the Transformation Rules of PM. By this definition, the above se-
quence is not a proof, since the first formula is not an axiom and
its derivation from the axioms is not shown: the sequence is only a
short segment of a proof. It would take too long to write out a full
example of a proof, and for illustrative purposes the above example
will suffice.
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the formal system PM—whether it is an elementary
sign, a sequence of signs, or a sequence of such
sequences—can be assigned a unique Goédel number.

What has been done so far is to establish a method
for completely “arithmetizing” the formal calculus. The
method is essentially a set of directions for setting up a
one-to-one correspondence between the expressions in
the calculus and a certain subset of the positive inte-
gers.?! Once an expression is given, the Godel number
uniquely corresponding to it can be calculated.

But this is only half the story. Once a number is
given, we can determine whether it is a Gédel number,
and if it is, the precise expression that it represents can
be “retrieved” from it. If a given number is less than or
equal to 12, it is the Godel number of an elementary
constant sign. The sign can be identified using Table
2. If the number is greater than 12, it can be decom-

2 Not every positive integer is a Godel number. Consider, for
example, the number 100. Since 100 is greater than 12, it cannot
be the Godel number of an elementary constant sign, and since it
is neither a prime greater than 12, nor the square nor the cube of
such a prime, it cannot be the Gédel number of a variable of any
sort. On decomposing 100 into its prime factors, we find that it is
equal to 2? X 5% and we see that the prime number g does not
appear as a factor in the decomposition, but is skipped. According
to the rules laid down, however, the Goédel number of a formula
(or of a sequence of formulas) must be the product of successive
primes, each raised to some power. The number 100 does not
satisfy this condition, however. In short, 100 does not map, via the
rules of Godel numbering, onto any constant sign, variable sign, or
formula, and hence 100 is not a Godel number.
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posed into its prime factors in just one way (as we know
from a famous result of number theory).?? If it is a
prime greater than 12, or the second or third power of
such a prime, then it is the Gédel number of an iden-
tifiable variable. And finally, if it is the product of suc-
cessive primes, each raised to some power, it may be
the Godel number either of a formula or of a sequence
of formulas. In this case the expression to which it
corresponds can be exactly determined.

A 248,000,000
B 64 X 243 X 15,625
(i SO gy D
D 65 6
bded
0=0
E 0=0

”

The formula of PM that expresses the idea “zero equals zero”
has the Godel number 249 million. When read downwards
from A to E, the illustration shows how a number can be
translated into the expression for which it stands; when read
upwards, it shows how to calculate the number that stands
for a given formula.

TABLE 4

**This result is known as the fundamental theorem of arithmetic,
and it states that if an integer is composite (i.e., not a prime), it has
a unique decomposition into prime factors, with associated expo-
nents.
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Following this program, we can take any given num-
ber apart, as if it were a machine, discover how it is
constructed and what goes into it; and since each of its
elements corresponds to an element of the expression
it represents, we can reconstitute the expression, ana-
lyze its structure, and the like. Table 4 illustrates for a
sample positive integer how we can ascertain whether
it is a Godel number and if so, what expression it
symbolizes.

B The arithmetization of meta-mathematics

Godel’s next step is an ingenious application of map-
ping. He showed that all meta-mathematical statements
about the structural properties of expressions in the
formal calculus can be accurately mirrored within the
calculus itself. The basic idea underlying his procedure
is this: Since every expression in PM is associated with
a particular (Godel) number, a meta-mathematical
statement about formal expressions and their typograph-
ical relations to one another may be construed as a
statement about the corresponding (Godel) numbers
and their arithmetical relations to one another. In this-
way meta-mathematics becomes completely “arithme-
tized.” To take a trivial analogue: customers in a busy
supermarket are often given, when they enter, tickets
on which are printed numbers whose order determines
the order in which the customers are to be waited on
at the meat counter. By inspecting the numbers it is
easy to tell how many persons have been served, how
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many are waiting, who precedes whom, and by how
many customers, and so on. If, for example, Mr. Nagel
has number g7 and Mr. Newman has number 53, in-
stead of explaining to Mr. Newman that he has to wait
his turn after Mr. Nagel, it suffices to point out that g7
is less than 53.

As in the supermarket, so in meta-mathematics.
More concretely, the exploration of meta-mathematical
questions can be pursued alternatively (or indirectly)
by investigating certain arithmetical properties and re-
lations of (rather large) whole numbers. We shall see
that each meta-mathematical statement about strings
of symbols and how they are typographically related
(e.g., a sequence of three particular formulas consti-
tutes a proof of a fourth particular formula) corre-
sponds to a statement about the strings’ Gddel num-
bers and how those numbers are arithmetically related.

We illustrate these general remarks by a very
elementary example. Consider the simple formula
‘~(0 = 0)’, expressing the blatant falsity that zero does
not equal itself. We now make the true meta-mathe-
matical observation that the first symbol of this formula
is the tilde
mathematics can indeed be faithfully mapped into the

~’, If, thanks to Godel numbering, meta-

domain of integers and their properties, then surely
this true observation must map onto a true number-
theoretical assertion. The question is, which one? To
find the answer, we first need the G6del number of the
formula in question—namely, 2' X g% X 5% X 7° X 11°
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X 13°% which we shall call ‘@’. Clearly, the statement we
are seeking has to do with the decomposition of this
huge number into its prime factors—in particular, it is
the assertion that the exponent of the smallest prime
(namely, 2) in @’s prime factorization is 1. In other
words, the desired assertion about numbers is this: ‘2
is a factor of a, but 22 is not a factor of a.’

We have found the number-theoretical way of saying
that our formula’s first symbol is the tilde. That is a key
step, but the next step is equally important, and it
consists in converting this informal statement of En-
glish into a formal string of PM. How does one express
the predicate ‘x is a factor of y' in PM notation? That,
fortunately, is very easy: it is accomplished by restating
the target as ‘There is a number z such that y equals z
times x'—which carries over directly into the PM for-
mula ‘(3z) (y = z X x)’. In our case, we need to make
use of this predicate twice, once prefixed by a tilde:

(3z) (sss...sssO = z X ss0) -
~(3z) (sss...sss0 = z X (ss0 X ss0))

The long numeral that here occurs twice must of
course contain exactly a copies of ‘s’. Note the dot in
the middle, symbolizing the concept ‘and’ (see foot-
note 19). Thus our formula says, quite literally, ‘There
is a number z such that a equals z times 2, and there
is no number z such that a equals z times the quantity
S,

Although a bit ponderous, this formula constitutes
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PM’s way of expressing a simple meta-mathematical
assertion about the identity of the first symbol of an-
other one of its own formulas. Never mind that the
above formula, if it were written out in full, would be
unimaginably huge; despite its astronomic proportions,
it is conceptually a very simple formula. Furthermore,
since the arithmetical predicate ‘x is a factor of y’ is
primitive recursive (the reader must take this on faith),
the Correspondence Lemma guarantees that the string
above, expressing a truth about numbers, is a theorem
of PM.

In sum, there is a theorem of PM that is a translation
of the true meta-mathematical statement “The initial
symbol of ‘~(0 = 0) is the tilde.” We thus see our first
example of how PM is actually able to talk about itself
faithfully (i..e, with meta-mathematical truths being
mirrored by theorems of PM), thanks firstly to the
ingenious mapping device of Goédel numbering, and
secondly to the Correspondence Lemma, guaranteeing
that symbols merit their meanings.

The extremely simple case we have just given exem-
plifies a very general and deep insight that lies at the
heart of Godel’s discovery: typographical properties of
long chains of symbols can be talked about in an indi-
rect but perfectly accurate manner by instead talking
about the properties of prime factorizations of large
integers. This is what we mean by the phrase “the arith-
metization of meta-mathematics.” When we combine
this idea with that of the formalization of arithmetic
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(i.e., number theory) within PM, we arrive at the idea
of the formalization of meta-mathematics within PM.

Let us now turn our attention to a more complex
type of meta-mathematical statement: ‘The sequence
of formulas with Godel number x is a proof (in PM) of
the formula with Gédel number z'. Thanks to the arith-
metization of meta-mathematics, this statement about
typographical relations between certain strings is mir-
rored inside number theory by a statement about
purely numerical relationships between the two num-
bers x and z. (We can gain gain some notion of the
complexity of this numerical relationship by recalling
the example above, in which the Godel number k = 2~
X 3" was assigned to the (fragment of a) proof whose
conclusion—i.e., last line—has the Godel number n.
A little reflection shows that there is here a definite,
though by no means simple, arithmetical relation be-
tween k, the Godel number of the proof, and n,
the Godel number of the conclusion.) We shall de-
note this arithmetical relationship between the integers
x and z by the abbreviation ‘dem (x, z)’. The lower-
case letters ‘dem’ were chosen to remind us of the
meta-mathematical relationship to which this number-
theoretical relationship corresponds—namely, ‘The se-
quence of formulas with Gédel number x is a proof
(i.e., a demonstration) inside PM of the formula with
Godel number 2.

Note that the numerical relationship denoted by
‘dem’ depends implicitly on all the axioms and rules
of inference of PM. If we were to modify PM in some
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manner, then the notion of “proof” would be slightly
different, and accordingly it would map onto a slightly
different numerical relationship, but still very similar
to dem, which would play the same role for the
changed system as dem plays for PM.

Godel took great pains, in his paper, to convince his
readers that dem (x, z) is a primitive recursive relation-
ship between the numbers x and z, and from this fact
(which we shall accept on faith) it follows, via Godel’s
Correspondence Lemma, that there is a formula of PM
expressing this relationship in the formal notation.
We shall denote this formula by the abbreviation ‘Dem
(x, z)°, with a capital ‘D’, which signals its formality.

Note carefully that whereas ‘dem (2, 5)’ is 2 mean-
ingful statement about the integers 2 and 5 (meaning-
ful but patently false, since 2 is not the Godel number
of any proof, and 5 is not the Godel number of a full
formula), its formal counterpart— ‘Dem (ss0, sssssO)’—
is a mere string of PM, and hence, strictly speaking, is
neither true nor false but simply meaningless.*® Once

2 For a simpler example of this crucial distinction between the
formal and informal levels involved in our discussion, consider the
arithmetical assertion “two plus two does not equal five.” This is not
a string of PM but a statement in English, and it happens to be
true. It can be written more concisely as ‘2 + 2 # 5, but this is still
informal and its constituent symbols are taken as having meanings.
There is a formal counterpart, however—‘~(ss0 + ss0 = sssss0)’—
which, strictly speaking, is just a string of empty signs and is
therefore neither true nor false, but meaningless. On the other
hand, addition being primitive recursive, the Correspondence
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again, Godel’s Correspondence Lemma enters the pic-
ture and assures us that for any true instance of the
number-theoretical predicate dem (x, z) there is a the-
orem of the form ‘Dem (sss...sssO, sss...sssO)’,
where the first string of ‘s”’s is of length x, and the
second string of ‘s”’s is of length z.

The existence of the formula ‘Dem (x, z)’ inside PM
tells us something very crucial: that true meta-
mathematical assertions of the form “such-and-such
demonstrates so-and-so by the rules of PM” are faith-
fully reflected in theorems of PM. By the same token,

Lemma assures us that this formula is a theorem of PM. We some-
times loosely say of a PM formula such as this one that it is true (or
false), meaning that the arithmetical statement that it expresses is
true (or false). In that loose parlance, ‘~(ssO + ssO = sssss0)” would
be true.

A more complex example involves the concept of primeness.
Let us denote the number-theoretical predicate ‘x is prime’ by ‘pr
(x)’. The (false) statement claiming “nine is prime” would then be
‘pr (9)". This is not a string of PM but merely a convenient short-
ening of the English sentence. There is, however, a formal counter-
part to ‘pr (x)’ inside PM, and we can even exhibit it: ‘~ (Iy) (Iz)
(x = ssy X ssz)’. (To be sure, this is but one of many possible
ways of expressing primeness inside PM; readers should make sure
they understand why this particular formula works.) We can denote
this formula by “Pr (x)’, with a capital ‘P’. Then the false claim that
nine is prime would be expressed inside PM as ‘Pr (sssssssssQ)’.
Note that the full formula for which this stands, if written out,
would be ‘~(3y) (Jz) (sssssssssO = ssy X ssz)’. Since primeness
is primitive recursive, the Correspondence Lemma assures us that
the string ‘~Pr (sssssssssO)’—which is merely a shorthand for
‘=~ (Jy) (3x) (sssssssssO = ssy X ssz)’—is a theorem of PM,
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every true meta-mathematical statement of the form
“such-and-such does not demonstrate so-and-so by the
rules of PM” is faithfully mirrored by a PM theorem of
the form ‘~Dem (sss...sss0, sss...sssO)’, with, as
usual, the appropriate numbers of ‘s’’s. Once again,
then, thanks to Godel’s mapping, PM is seen to have
the capability of talking accurately about itself.

One final special concept and corresponding piece
of notation will be needed before we can state the crux
of Godel’s argument. Let us begin with an example.
The formula ‘(3x) (x = sy)” has the very large number
m for its Godel number, as we saw a few pages back,
and one of the variables inside it has the Godel num-
ber 17. Suppose we were to replace, in our formula,
the variable with Godel number 17 (i.e., the variable
9’) by the numeral for m itself. The result would be
the extremely long formula ‘(3x) (x = sss...sssO)’,
where the string of ‘s’”’s consists of m + 1 copies.
(Translated into English, this new string of PM asserts
that there is a number x such that x is the immediate
successor of m—or in short, that m has a successor.)

This very long formula itself has a Godel number,
and of course that number is very large, but no matter
how large it is, it can, in principle, be calculated per-
fectly straightforwardly. But instead of worrying about
the details of the calculation or its exact result, we can
simply characterize the resultant number in an unam-
biguous meta-mathematical fashion: it is the Godel
number of the formula that is obtained from the for-
mula with Godel number m, by substituting for the
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variable with Gédel number 17 the numeral for m it-
self. This characterization uniquely determines a spe-
cific positive integer as a function of the numbers m
and 1472

*This function is quite complex. Just how complex becomes
evident if we try to formulate it in greater detail. Let us attempt
such a formulation, without carrying it to the bitter end. We saw
earlier that m, the Godel number of *(3x) (x = sy)’, is

28 ¢ 34 5l 513 . 79 b'e 118 X 1315 b4 175 » 197 >4 2317 e’ 299_
To find the Goédel number of the modified formula, with the nu-
meral for m substituted for the variable %’ we must look at the
signs in that formula one by one and raise successive prime num-
bers to the corresponding powers. Recall that the formula of inter-
estis: *(Iw) (x = sss...sss0)’, with m + 1 copies of ‘s’. The Godel
numbers of the individual symbols are thus:

8413981357770 % - 177769
In this sequence, the number % occurs m + 1 times. We now raise
the appropriate primes to these powers, one by one:
25 ¢ g% X pl13 3 8 3¢ 118 X 398 X amb X
1" X 23" X 2g” X g17.X ... X'(P,10)°
(Here, p,., is the (m + 10)th prime in order of magnitude.)

Let us give this very enormous number the name ‘r’. Now com-
pare the two Godel numbers m and 7. The former contains a prime
factor raised to the factor 17 (because the initial formula contained
the variable ‘y’), while the latter contains all the prime factors of m
and many others besides, but none of them are raised to the 17th
power. The number r can thus be obtained from the number m by
replacing the prime factor in m that is raised to the 17th power by
other primes raised to various powers different from 15. To state
exactly and in full detail just how ris related to m is not possible
without introducing a great deal of additional notational apparatus;
this is done in Godel’s paper. But hopefully enough has been said
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This rather circular-seeming idea of substituting a
string’s own Godel number into the string itself (and
then taking the Godel number of the result) was one
of Godel’s key insights, as we shall see, and he again
took great pains to convince his readers that this func-
tion is sufficiently straightforwardly calculable as to be
primitive recursive, and thus to fall under the scope of
the Correspondence Lemma. We will designate the
new Godel number as a function of the old Godel
number x by the notation ‘sub (x, 17, x)’. Although to
do so involves a mouthful, we can pinpoint exactly what
this number is: it is the Godel number of the formula
obtained by taking the formula with Gédel number x
and, wherever there are occurrences of the variable %’
in that formula, replacing them by the numeral for x.**

to convince the reader that the number ris a well-defined number-
theoretical function of m and 17.

2 It may be asked why, in the meta-mathematical characteriza-
tion just mentioned, we say that it is “the numeral for x” which is to
be substituted for a certain variable, rather than “the number x”.
The answer depends on the distinction, already discussed, between
mathematics and meta-mathematics, and calls for a brief elucida-
tion of the difference between numbers and numerals. A numeral is
a sign, a linguistic expression, something which one can write down,
erase, copy, and so on. A number, on the other hand, is something
which a numeral names or designates, and which cannot literally be
written down, erased, copied, and so on. Thus, we say that ten is
the number of our fingers, and, in making this statement, we are
attributing a certain “property” to the class of our fingers; but it
would clearly be absurd to say that this property is a numeral.
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Given that Godel’s sub function is a primitive recur-
sive one, there exists some formal expression inside
PM that mirrors it exactly,® and we shall abbreviate
that expression by ‘Sub (x, 17, x)’, drawing the crucial
distinction between the informal arithmetical concept
and its formal typographical counterpart as we did
before—namely, by using lowercase and uppercase in-
itial letters, respectively. You should keep in mind that
whereas ‘sub (243,000,000, 17, 243,000,000)" desig-
nates a number (i.e., a magnitude or quantity),?” what

Again, the number ten is named by the Arabic numeral ‘10, as
well as by the Roman letter X’; these names are different, though
they name the same number. In short, when we make a substitution
for a numerical variable (which is a letter or sign), we are putting
one sign in place of another sign. We cannot literally substitute a
number for a sign, because a number is a concept (and is sometimes
said to be an abstract property of classes), rather than something
we can put on paper. It follows that, in substituting for a numerical
variable in a formula, we can insert only a numeral (or some other
numerical expression, such as ‘0 X 0’ or ‘ssO + sss0’), and not a
number. This explains why, in the meta-mathematical characteriza-
tion of the sub function, it was stated that we are to replace occur-
rences of the variable %’ by the numeral for (the number) x, rather
than by the number x itself. Despite striving for this kind of linguistic
precision, we can easily slip into speaking of substituting a number
for a variable in a formula; sometimes it is actually clearer to speak
in this loose manner.

# Strictly speaking, what the Correspondence Lemma applies to
is not the function sub, but the predicate ‘z = sub (x, 17, x)’; this
distinction, however, is such a minor detail as to merit no more
than a footmote. Incidentally, this detail is related to the point made
in footnote 28.
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the abbreviation ‘Sub (248,000,000, 17, 243,000,000)’
designates is a string inside PM. And although that
string is, strictly speaking, meaningless (as, of course,
are all strings in PM or in any other formal system),
it is convenient to think of it as having a meaning,
because it acts as the formal representative for a cer-
tain fairly involved arithmetical calculation, in much
the same way as the “meaningless” string ‘ssO +
ssO’ acts as the formal representative inside PM
for the very simple calculation “two plus two” (and
thus, although more indirectly, for the concept
Yourl)H

¥ Readers may wonder what number is designated by ‘sub (x,
17, %)’ if the formula whose Godel number is x happens not to
contain the variable with Godel number 17—that is, if the initial
formula does not contain the variable %’ anywhere. Thus, sub
(243,000,000, 17, 248,000,000) is the Godel number of the for-
mula made from the formula with Godel number 243,000,000 by
substituting for the variable %’the numeral ‘sss . . . sssO’ (containing
248,000,000 copies of ‘s’). But if you consult Table 4, you will see
that 243,000,000 is the Godel number of the string ‘0 = 0°, which
has no %’ What, then, is the formula obtained from ‘0 = 0’ by
substituting for %’ the given numeral? The answer is simple: since
the formula ‘0 = 0’ has no ¥’ no substitution can be made, and
hence the “modified” formula is just the formula itself, untouched.
Accordingly, the number designated by ‘sub (243,000,000, 17,
243,000,000)" is just 243,000,000.

2 The reader may be puzzled as to whether ‘Sub (x, 17, x)’ isa
formula of PM, in the sense that, for example, ‘sQ = sss0’, “(Ix) (x =
sy)’, and ‘Dem (x, z)’ are formulas. The answer is no, for the
following reason. The string ‘sO = sss0’ is a formula because it
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C The heart of Gédel's argument

At last we are equipped to follow in outline Godel’s
main argument. We shall begin by enumerating the
steps in a general way, so that the reader can get a
bird’s-eye view of the sequence.

Godel showed (i) how to construct a formula G of
PM that represents the meta-mathematical statement:
‘The formula G is not demonstrable using the rules of
PM’.# This formula thus ostensibly says of itself that it is
not demonstrable. Up to a point, G is constructed anal-
ogously to the Richard Paradox. In that paradox, the
expression ‘Richardian’ is associated with a certain
number 7, and the sentence ‘n is Richardian’ is con-
structed. In Godel’s argument, the formula G is like-
wise associated with a certain number g—namely, its
Godel number—and G is so constructed that it says

asserts a relation between two numbers and is thus capable of
having truth or falsity attributed to it. Similarly, when numerals are
substituted for the variables in the string ‘Dem (x, z)’, the resulting
formula expresses an arithmetical statement about two numbers,
and this statement is either true or false. Much the same holds for
‘(3x) (x = sy)’. On the other hand, when a numeral is substituted
for %’in the string ‘Sub (x, 1%, )’, the resulting string does not
assert anything and therefore cannot be assigned a truth value. For
this reason, ‘Sub (x, 1%, x)” is not a formula. Like the string ‘ssO X
sssssQ”, it merely designates or names a number, by describing it as a
certain function of other numbers.

* From now on, whenever we write “demonstrable” without any
further qualifier, it should always be taken as meaning “demonstra-
ble using the rules of PM” (and is synonymous with “is a theorem
of PM").
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‘The formula that has Gédel number g is not demon-
strable’.

But (ii) Godel also showed that G is demonstrable
if, and only if, its formal negation ~G is demonstrable.
This step in the argument is again analogous to the
step in the Richard Paradox in which it is proved that
n is Richardian if, and only if, »n is not Richardian.
However, if a formula and its own negation are both
formally demonstrable, then PM is not consistent. Ac-
cordingly, if PM is consistent, neither G nor ~G can
be formally derivable from the axioms. In short, if PM
is consistent, then G is a formally undecidable formula.*

Godel then showed (iii) that, though G is not for-
mally demonstrable, it nevertheless is a frue arithmeti-
cal formula (see the remarks about loose parlance in
footnote 23). G is true in the sense that it claims that a
certain arithmetical property defined by Godel is pos-
sessed by no integer—and indeed, no integer possesses
the property, as Godel shows.

Step (iv) is the realization that since G is both true
and formally undecidable (within PM), PM must be
incomplete. In other words, we cannot deduce all arith-
metical truths from the axioms and rules of PM. More-
over, Godel established that PM is essentially incom-

% To assert that some formula X is “formally undecidable,” as in
the title of Gddel's paper (or simply “undecidable” for short),
means that neither X nor its negation ~X is demonstrable inside
the formal calculus of interest—e.g., “PM or related systems” (as in
the article’s title).
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plete: even if PM were augmented by additional axioms
(or rules) so that the true formula G could be formally
derived within the enhanced calculus, then another
true formula G’ could be constructed in a precisely
analogous manner, and G’ would be formally undecid-
able inside the enhanced calculus. Needless to say, fur-
ther enhancement of the already-enhanced calculus,
so as to allow derivation of G’, would merely lead to
yet another formula G” undecidable within the doubly
augmented system—and so on, ad infinitum. This is
the meaning of “essentially incomplete.”

In step (v), Godel described how to construct a for-
mula A of PM that represents the meta-mathematical
statement: ‘PM is consistent’; and he showed that the
formula ‘A D G’ is formally demonstrable inside PM.
Finally, he showed that the formula A is not demonstra-
ble inside PM. From this it follows that the consistency
of PM cannot be established by any chain of logical
reasoning that can be mirrored within the formal rea-
soning system that PM itself constitutes.

It is worth adding that Goédel was crucially con-
cerned with the generality of his results, which is why
in the title of his paper he explicitly stated that his
results pertained not only to Russell and Whitehead’s
celebrated formal system but also to “related systems.”
He wrote at the end of his paper, “Throughout this
work we have virtually confined ourselves to the system
PM, and have merely indicated the applications to
other systems. The results will be stated and proved in
fuller generality in a forthcoming sequel.” Godel was
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in fact worried that because of the shock value of his
paper, many people would doubt its validity, and he
therefore intended to buttress his reasoning in the se-
quel. It turned out, however, that his paper was so
cogently written that its conclusions were quickly ac-
cepted, thus obviating any need for a sequel. The
point, then, is that Godel’s results are not due to some
odd defect in the specific system PM; they are applica-
ble to any system that incorporates the arithmetical
properties of the cardinal numbers, including addition
and multiplication.

Now we shall broach Godel’s argument more fully.

(i) The formula ‘Dem (x, z)’ has already been de-
fined. It represents within PM the meta-mathematical
statement: “The sequence of formulas with the Godel
number x is a proof for the formula with the Godel
number z'. Let us now prefix this formula with an
existential quantifier, as follows: ‘(3x) Dem (x, z)’. The
interpretation of this formula is straightforward:
‘There exists a sequence of formulas (with Gédel num-
ber x) that constitutes a demonstration of the for-
mula with Godel number z. More compactly: ‘The
formula with Gédel number z is demonstrable’. (We
remind readers that in this context, the terms ‘demon-
stration’ and ‘demonstrable’ always refer to the formal
system PM.)

If we prefix this formula with the tilde, thus con-
structing its formal negation, we get: ‘~(3x) Dem (x,
z)’. This formula constitutes a formal paraphrase,
within PM, of the meta-mathematical statement: ‘The
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formula with Godel number z is not demonstrable’ —
or, to put it another way, ‘No proof can be adduced
for the formula with Godel number z’.

What Go6del showed is that a certain special case of
this formula is not formally demonstrable. To construct
this special case, we begin with the formula displayed
as line (1):

(1) ~(3x) Dem (x, Sub (y, 17, y))

This formula belongs to PM, but it possesses a meta-
mathematical interpretation. The question is, which
one? The reader should recall that the expression ‘Sub
(y, 17, 9)’ designates a number. This number is the
Godel number of the formula obtained from the for-
mula with Gédel number y by substituting for the vari-
able with Godel number 17 (i.e., for all occurrences of
the letter %’) the numeral for y.*! It will then be evi-
dent that the formula on line (1) represents the meta-
mathematical statement: ‘The formula with Godel
number sub (y, 17, y) is not demonstrable’. Although
this is a tantalizing statement, it is still open-ended and
indefinite, since it still contains the variable %’ To

* 1t is crucial to recognize that *Sub (y, 17, y)’, though an ex-
pression of PM, is not a formula but a name-function for identifying
a number (see footnote 28). The number so identified will be the
Godel number of a specific formula. Or rather, it would be, were
‘y’ not a variable, Since 'y’ is a variable and not a numeral, the
expression ‘Sub (y, 17, y)” doesn’t represent a specific number any
more than does the string ‘y + sss0’. For that, the variable ‘y’ would
need to be replaced by a specific numeral.
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make it definite, we need a numeral in place of a
variable. What numeral should we choose? Here we
shall follow Godel.

Since the formula on line (1) belongs to PM, it has
a (very large) Godel number that could, in principle,
be calculated. Luckily, we shall not actually calculate it
(nor did Godel); we shall simply designate its value by
the letter n’. We now proceed to replace all occur-
rences of the variable %’in formula (1) by the number
n (more precisely, by the numeral for the number n,
which we will blithely write as ‘n’, just as we will write
‘17°, knowing that we really mean ‘sssssssssssssssssO’).
This will yield a new formula, which we shall call ‘G’:

(G) ~(3x) Dem (x, Sub (n, 17, n))

This is the formula we promised. As it is a specializa-
tion of the formula on line (1), its meta-mathematical
meaning is simply: ‘The formula with Gédel number
sub (7, 17, n) is not demonstrable’. And now, as there
are no (unquantified) variables left in it, G’s meaning is
definite.

The formula G occurs within PM, and therefore it
must have a Godel number, g What is the value of g7
A little reflection shows that g = sub (n, 17, n).** To

%2 Note the key distinction between the number itself and its
formal counterpart inside PM. The former is sub (7, 17, n), with
lowercase ‘s’, while the latter is the string we abbreviate as ‘Sub (n,
17, n)’, with uppercase ‘S’. Otherwise put, ‘sub (n, 17, n)" denotes
an actual quantity, much as, say, the informal arithmetical expres-
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see this, we need but recall that sub (n, 17, %) is the
Godel number of whatever formula results when we
substitute n (or rather, its numeral) for the variable
with Godel number 17 (i.e., for ‘y’) inside the formula
whose Gdodel number is that same n itself. But the
formula G was obtained in precisely that manner! That
is, we started with the formula having Godel number
n; then we replaced all copies of ‘y’ in it by copies of
the numeral for n. And so, sub (n, 17, n) is the Godel
number of G.

We must now recall that G is the mirror image with-
in PM of the meta-mathematical statement: ‘The for-
mula with Godel number g is not demonstrable’. It
follows, then, that G represents, inside PM, the meta-
mathematical statement: ‘The formula G is not demon-
strable’. In a word, the PM formula G can be construed
as asserting of itself that it is not a theorem of PM.

(i) We come to the second step—the proof that G
is not, in fact, a theorem of PM. Godel’s argument
showing this resembles the development of the Rich-
ard Paradox, but steers clear of its fallacious reason-
ing.*® The argument is relatively unencumbered. It pro-

sion ‘2 X 5’ denotes a gquantity (namely, ten), whereas ‘Sub (n, 17,
n)’ denotes a number-naming string inside PM, much like the num-
ber-naming string ‘ssQ * sssssO’.

¥ It may be useful to make explicit the resemblance as well as
the dissimilarity of the present argument to that of the Richard
Paradox. The crux is that G is not identical with the meta-
mathematical statement with which it is associated, but only repre-
sents (or mirrors) the latter within PM. In the Richard Paradox, the

s
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ceeds by showing that if the formula G were
demonstrable, then its formal negation (namely, the
formula ‘(3x) Dem (x, Sub (n, 17, n))’, whose interpre-
tation is ‘There exists a demonstration of G inside
PM’) would also be demonstrable; and, conversely, that
if the formal negation of G were demonstrable, then G
itself would also be demonstrable. Thus we have: G is
demonstrable if, and only if, ~G is demonstrable.** But

number 7 is the number associated with a certain meta-mathematical
expression. In Godel's construction, the number 7 is associated
with a certain formula belonging to PM, and it is merely by hap-
penstance, so to speak, that this formula represents a meta-
mathematical statement. In the development of the Richard Para-
dox, the question is whether the number n possesses the
meta-mathematical property of being Richardian. In the Gddel con-
struction, the question is whether the number g = sub (»n, 17, n)
possesses a certain arithmetical property—namely, the property that
the assertion ‘dem (x, g)’ holds for no cardinal number x whatso-
ever. There is therefore no confusion, in the Godel construction,
between statements within PM and statements about PM, such as
occurs in the Richard Paradox.

% This is not what Godel actually proved; the statement in the
text is an adaptation of a stronger result established by J. Barkley
Rosser in 1936, and it is used for the sake of simplicity in exposi-
tion. What Godel actually showed is that if G is demonstrable, then
~G is demonstrable (so that PM is inconsistent); while if ~G is
demonstrable, then PM is w-inconsistent.

What is w-inconsistency? Let ‘P’ represent an arithmetical pred-
icate. Then a formal calculus C is w-inconsistent if it is possible to
demonstrate inside C both the formula ‘(3x) P(x)" (i.e., “There is
some number that has property P’) and also each of the infinite set
of formulas ‘~P(0Q)’, ‘“~P(s0)’, ‘~P(ss0)’, etc. (i-e., ‘0 does not have
property P, ‘1 does not have property P’, ‘2 does not have property
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as we noted earlier, if a formula and its formal nega-
tion can both be derived in some formal calculus, then
the calculus is not consistent. Turning this around,
then, we reason that if PM is a consistent formal calcu-
lus, neither the formula G nor its negation can be
demonstrable. In short, if PM is consistent, then G is
necessarily formally undecidable.*

P’, and so on). A little reflection shows that if C is inconsistent, it is
also w-inconsistent (for all strings are theorems in an inconsistent
system); however, the converse does not necessarily hold: C may be
w-inconsistent without being inconsistent. In other words, not only
‘(dx) P(x)’ but also each of the family of formulas quoted above
might be theorems of C while ‘~(3x) P(x)’ is a non-theorem, in
which case C would be w-inconsistent without being inconsistent.

It may seem absurd for each member of the family ‘~P(0)’,
‘~P(s0)’, etc., to be a theorem if ‘~(3x) P(x)’ is a non-theorem.
After all, the family collectively asserts that no number has property
P, while ‘~(3x) P(x)’ singly asserts that no number has property P.
Does the latter not follow directly from the former? And how could
‘(3x) P(x)’, which asserts that some number has property P, be a
theorem? Does it not directly contradict the family? Both worries
seem justified if (like any human) you take meanings into account,
but C is merely a formal calculus—only rules of inference, not
meanings, are relevant. If some rule could take the whole family
into account in one swoop, the worries would be justified—but
although a rule can involve any finite number of formulas, no rule
can cite an infinite number of formulas. (Recall Hilbert's insistence
on finitistic procedures, in Chapter III.) And so this type of situa-
tion, queer though it is, can hold.

3 We shall outline the first half of Gddel’s argument: that if G is
demonstrable, then ~G is demonstrable. Suppose G were demon-
strable. This would mean that there exists a sequence of formulas of PM
constituting a proof for G. We proceed to translate this meta-
mathematical statement into a numerical one. Let the Godel num-

The Heart of Gidel’s Argument 101

(ii1) This conclusion may not appear at first sight to
be of capital importance. Why is it so remarkable, it
may be asked, that an undecidable formula can be
constructed within PM? There is a surprise in store that
illuminates the profound implications of this result.
For, although the formula G is undecidable if PM
is consistent, it can nevertheless be shown by meta-
mathematical reasoning that G is true. (Certainly either
G or its negation ~G must be true, since they make
two opposite claims about the world of numbers; one
of these claims has to be true and the other one has to

ber of this hypothetical proof of G be k. Since the relationship dem
(x, z) is the number-theoretical counterpart of “such-and-such is a
proof of so-and-so”, dem (x, z) must be true when the value of x
is k and the value of z is the Godel number of G. In other words,
dem (&, sub (n, 17, n)) must be a fact of arithmetic. But given that
dem (x, z) is a primitive recursive relationship (we agreed to take
this on faith), its formal counterpart inside PM behaves properly,
in the sense that ‘Dem (sss . .. sssO, Sub (sss. .. sssO, sss. . . sss0, sss
...ss80))" must be a theorem of PM, where the numbers of copies
of s” are, respectively, k, n, 17, and n. More concisely, ‘Dem (&,
Sub (7, 17, 7))’ must be a theorem. But, with the help of a rule
of inference of PM, which says that from a theorem having the
form ‘P(k)’ (‘The number k has property P’) one can derive the
theorem ‘(3x) P(x)’ (‘Some number has property P’), we can im-
mediately derive the formula ‘(3x) Dem (x, Sub (n, 17, n))’. But
this is the formal negation of G. We have therefore shown that if
the formula G is demonstrable, its formal negation is also demon-
strable. It follows that if PM is consistent, G cannot be demonstrable
within it.

A somewhat analogous but more complicated argument is
required to show that if ~G is demonstrable, then PM is
w-inconsistent. We shall not attempt to outline it.
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be false. The question is which one is right, and which
one is wrong.)

It is quite straightforward to see that what G says is
true. Indeed, as we observed earlier, G says: ‘There is
no PM demonstration of G’. (At least this is the meta-
mathematical interpretation of G; when read at the num-
ber-theoretical level, G merely says that there is no
number x that bears a certain relationship—namely,
the ‘dem’ relationship—to the number sub (n, 17, n).
To convince ourselves that G is true, it suffices to con-
sider only the former interpretation.) But we have just
shown that G is undecidable within PM, so in particular
G has no proof inside PM. But that, recall, is just what G
asserts! So G asserts the truth. The reader should
carefully note that we have established a number-
theoretical truth not by deducing it formally from the
axioms and rules of a formal system, but by a meta-
mathematical argument.

(iv) We now remind the reader of the notion of
“completeness” introduced in the discussion of the sen-
tential calculus. It was explained there that a deductive
system is said to be “complete” if every true statement
that can be expressed in the system is formally deduci-
ble from the axioms by the rules of inference. If this is
not the case—that is, if not every true statement ex-
pressible in the system is deducible—then the system
is said to be “incomplete.” But, since we have just estab-
lished that G is a true formula of PM that is not for-
mally deducible within PM, it follows that PM is an
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incomplete system—on the hypothesis, of course, that
it is consistent.?

Moreover, PM is in even greater trouble than one
might at first think, for it turns out to be not just
incomplete, but essentially incomplete: even if G were
added as a further axiom, the augmented system would
still not suffice to yield formally all arithmetical truths.
For, if the initial axioms were augmented in this
manner, another true but undecidable formula could
be constructed in the enlarged system. This form-
ula would involve a slightly more complex number-
theoretical relationship—dem’ (x, z), let us say—since
the notion of “demonstrability” in the new system
would be slightly more complex than it was in PM, as
the new system has one extra axiom. The undecidable
formula belonging to the new system is constructed
merely by imitating the recipe by which Godel speci-
fied a true but undecidable formula in PM itself. This
method for producing undecidable formulas can be

3 We could have reached this conclusion without going through
the reasoning in step (iii) —that is, without knowing which one of
G and ~G expresses a truth—since we had already concluded that
G is undecidable, meaning that neither G nor ~G is demonstrable
inside PM. Given that one of the two of these formulas must express
a truth, and given that neither of them is demonstrable in PM, this
in itself means that PM is incomplete, even if it leaves us unsure
which of G and ~G is the culprit. Perhaps it is more comforting to
know which of the two is the culprit, but it is not a necessary feature
of the argument.
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carried out no matter how often the initial system is
enlarged. Nor does it depend in any crucial manner

on peculiarities of Russell and Whitehead’s formal cal-.

culus PM. The trick works no matter what system is
taken as a starting point, as long as that system is totally
formal and as long as it contains axioms setting forth
the elementary properties of whole numbers, including
addition and multiplication.

We are thus compelled to recognize a fundamental
limitation concerning the power of formal axiomatic
reasoning. Contrary to all prior belief, the vast conti-
nent of arithmetical truth cannot be brought into sys-
tematic order by laying down for once and for all a
fixed set of axioms and rules of inference from which
every true arithmetical statement can be formally de-
rived. For anyone inclined to believe that the essence
of mathematics is purely formal axiomatic reasoning,
this must come as a shocking revelation.

(v) We come at last to the coda of Godel’s amazing
intellectual symphony. The steps have been traced by
which he grounded the meta-mathematical statement:
‘If PM is consistent, it is incomplete’. But it can also be
shown that this conditional statement taken as a whole
is represented by a demonstrable formula within PM.

This crucial formula can be easily constructed. As we
explained in Section V, the meta-mathematical state-
ment ‘PM is consistent’ is equivalent to the claim
‘There is at least one formula of PM that is not demon-

strable inside PM’. By Godel’s mapping of meta-
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mathematics into the world of numbers, this corre-
sponds to the number-theoretical claim ‘There is at
least one number y such that no x whatsoever bears the
relationship dem to y’. In other words, ‘Some number
y has the property that for no x does the relationship
dem (x, y) hold’. We can readily translate this into the
formal notation of PM:

(A) (3y) ~ (3x) Dem (x, y)

We can restate the meta-mathematical interpretation
of A as follows: ‘There is at least one formula [whose
Godel number is y] for which no proposed sequence
of formulas [whose Goddel number is x] constitutes a
proof inside PM’.

The formula A therefore represents the antecedent
clause of the meta-mathematical statement ‘If PM is
consistent, it is incomplete’. On the other hand, the
consequent clause in this statement—namely, ‘It [PM]
is incomplete’—is equivalent to saying, about any true
but non-demonstrable formula X, ‘X is not a theorem
of PM’. Luckily, we know of one such formula X—
namely, our old friend, the formula G. We can there-
fore translate the consequent clause into the formal
language of PM by writing the string that says ‘G is
not a theorem of PM’. And it is none other than G
itself that says this. And so G can be used as the conse-
quent clause of our conditional meta-mathematical
statement.

If we put it all together, then we arrive at the conclu-
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sion that the conditional sentence ‘If PM is consistent,
then it is incomplete’ is represented inside PM by the
formula:

(3y) ~ (3x) Dem (x, y) D
~(3x) Dem (x, Sub (n, 17, n))

which, for the sake of brevity, can by symbolized as
‘A D G’. (This formula can be shown to be formally
demonstrable inside PM, but we shall not in these
pages undertake the task.)

We now show that the formula A is not demonstra-
ble in PM. For suppose it were. Then, since the for-
mula ‘A D G’ is demonstrable, by use of the Rule of
Detachment (recall Chapter V), the formula G would
be demonstrable. But, unless PM is inconsistent, G is
formally undecidable—that is, it is not demonstrable.
Thus, if PM is consistent, the formula A is not demon-
strable in it.

Where does this lead us? The formula A is a formal
expression inside PM of the meta-mathematical claim
‘PM is consistent’. If, therefore, this meta-mathematical
claim could be informally established by some chain of
steps of reasoning, and if that chain of steps could be
mapped onto a sequence of formulas constituting a
proof in PM, then the formula A would itself be de-
monstrable inside PM. But this, as we have just seen, is
impossible, if PM is consistent. The grand final step is
thus before us: we are forced to conclude that if PM
is consistent, its consistency cannot be established by

The Heart of Godel’s Argument 107

any meta-mathematical reasoning that can be mirrored
within PM itself]

This imposing result of Godel’s analysis should not
be misunderstood: it does mnot exclude a meta-
mathematical proof of the consistency of PM. What it
excludes is a proof of consistency that can be mirrored
inside PM.%

Meta-mathematical arguments establishing the con-
sistency of formal systems such as PM have, in fact,
been devised, notably by Gerhard Gentzen, a member
of the Hilbert school, in 1936, and by others since
then.” These proofs are of great logical significance,

#" The reader may be helped on this point by the reminder that,
similarly, the proof that it is impossible to trisect an arbitrary angle
with compass and straight-edge does nof mean that an angle cannot
be trisected by any means whatsoever. To the contrary, an arbitrary
angle can be trisected if, for example, in addition to the use of
compass and straight-edge, one is permitted to employ a a fixed
distance marked on the straight-edge.

% Gentzen's proof depends on arranging all the demonstrations
inside PM in a linear order according to their degree of “simplicity”
(note the resemblance to the formal version of the Richard Para-
dox, alluded to in the previous chapter). The arrangement turns
out to have a pattern that is of a certain “transfinite ordinal” type.
(The theory of transfinite ordinal numbers was created by the
German mathematician Georg Cantor in the nineteenth century.)
The proof of consistency is obtained by applying to this linear order
a rule of inference called “the principle of transfinite induction.”
Gentzen’s argument cannot be mirrored within PM. Moreover, al-
though most specialists in mathematical logic do not question the
cogency of the proof, it is not finitistic in the sense of Hilbert’s
original stipulations for an absolute proof of consistency.
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among other reasons because they propose new forms
of meta-mathematical constructions, and because they
thereby help make clear how the class of rules of infer-
ence needs to be enlarged if the consistency of PM and
related systems is to be established. But these proofs
cannot be mirrored inside the systems that they con-
cern, and, since they are not finitistic, they do not
achieve the proclaimed objectives of Hilbert’s original
program.

apr—

VIII

Concluding Reflections

The import of Godel’s conclusions is far-reaching,
though it has not yet been fully fathomed. These con-
clusions show that the prospect of finding for every
deductive system (and, in particular, for a system in
which the whole of number theory can be expressed)
an absolute proof of consistency that satisfies the finitis-
tic requirements of Hilbert’s proposal, though not log-
ically impossible, is most unlikely.*® They show also that
there are an endless number of true arithmetical state-
ments which cannot be formally deduced from any
given set of axioms by a closed set of rules of inference.

* The possibility of constructing a finitistic absolute proof of
consistency for a formal system such as Principia Mathematica is not
excluded by Godel’s results. Godel showed that no such proof is
possible that can be mirrored inside Principia Mathematica. His ar-
gument does not eliminate the possibility of strictly finitistic proofs
that cannot be mirrored inside Principia Mathematica. But no one
today appears to have a clear idea of what a finitistic proof would
be like that is not capable of being mirrored inside Principia Mathe-

matica.

109
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It follows that an axiomatic approach to number theory
cannot fully characterize the nature of number-
theoretical truth. It follows, also, that what we under-
stand by the process of mathematical proof does not
coincide with the exploitation of a formalized axio-
matic method. A formalized axiomatic procedure is
based on an initially determined and fixed set of axi-
oms and transformation rules. As Godel’s own argu-
ments show, no antecedent limits can be placed on
the inventiveness of mathematicians in devising new
methods of proof. Consequently, no final account can
be given of the precise nature of valid mathematical
demonstrations. In the light of these circumstances,
whether an all-inclusive definition of mathematical or
logical truth can be devised, and whether, as Godel
himself appears to believe, only a thoroughgoing phil-
osophical “realism” of the ancient Platonic type can
supply an adequate definition, are problems still under
debate and too difficult for further consideration
here.®

* Platonic realism takes the view that mathematics does not
create or invent its “objects,” but discovers them as Columbus dis-
covered America. Now, if this is true, the objects must in some
sense “exist” prior to their discovery. According to Platonic doc-
trine, the objects of mathematical study are not found in the spatio-
temporal order. They are disembodied eternal Forms or Arche-
types, which dwell in a distinctive realm accessible only to the
intellect. On this view, the triangular or circular shapes of physical
bodies that can be perceived by the senses are not the proper
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Godel’s conclusions bear on the question whether a
calculating machine can be constructed that would
match the human brain in mathematical intelligence.
Today’s calculating machines have a fixed set of direc-
tives built into them; these directives correspond to the
fixed rules of inference of formalized axiomatic proce-
dure. The machines thus supply answers to problems
by operating in a step-by-step manner, each step being
controlled by the builtin directives. But, as Godel
showed in his incompleteness theorem, there are in-
numerable problems in elementary number theory
that fall outside the scope of a fixed axiomatic method,
and that such engines are incapable of answering, how-
ever intricate and ingenious their builtin mechanisms
may be and however rapid their operations. Given a
definite problem, a machine of this type might be built
for solving it; but no one such machine can be built
for solving every problem. The human brain may, to

objects of mathematics. These shapes are merely imperfect embod-
iments of an indivisible “perfect” Triangle or “perfect” Circle, which
is uncreated, is never fully manifested by material things, and can
be grasped solely by the exploring mind of the mathematician.
Godel appears to hold a similar view when he says, “Classes and
concepts may . . . be conceived as real objects . . . existing indepen-
dently of our definitions and constructions. It seems to me that the
assumption of such objects is quite as legitimate as the assumption
of physical bodies and there is quite as much reason to believe in
their existence” (Kurt Godel, “Russell’s Mathematical Logic,” in The
Philosophy of Bertrand Russell (ed. Paul A. Schilpp, Evanston and

Chicago, 1944), p. 137).
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be sure, have builtin limitations of its own, and there
may be mathematical problems it is incapable of solv-
ing. But, even so, the brain appears to embody a struc-
ture of rules of operation which is far more powerful
than the structure of currently conceived artificial ma-
chines. There is no immediate prospect of replacing
the human mind by robots.

Godel’s proof should not be construed as an invita-
tion to despair or as an excuse for mystery-mongering.
The discovery that there are number-theoretical truths
which cannot be demonstrated formally does not mean
that there are truths which are forever incapable of
becoming known, or that a “mystic” intuition (radically
different in kind and authority from what is generally
operative in intellectual advances) must replace cogent
proof. It does not mean, as a recent writer claims, that
there are “ineluctable limits to human reason.” It does
mean that the resources of the human intellect have
not been, and cannot be, fully formalized, and that
new principles of demonstration forever await inven-
tion and discovery. We have seen that mathematical
propositions which cannot be established by formal
deduction from a given set of axioms may, neverthe-
less, be established by “informal” meta-mathematical
reasoning. It would be irresponsible to claim that these
formally indemonstrable truths established by meta-
mathematical arguments are based on nothing better
than bare appeals to intuition.

Nor do the inherent limitations of calculating ma-
chines imply that we cannot hope to explain living
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matter and human reason in physical and chemical
terms. The possibility of such explanations is neither
precluded nor affirmed by Godel’s incompleteness the-
orem. The theorem does indicate that the structure
and power of the human mind are far more complex
and subtle than any non-living machine yet envisaged.
Godel’s own work is a remarkable example of such
complexity and subtlety. It is an occasion, not for dejec-
tion, but for a renewed appreciation of the powers of
creative reason.



Appendix
Notes

1. (page 10) It was not until 189g that the arith-
metic of cardinal numbers was axiomatized, by the Ital-
ian mathematician Giuseppe Peano. His axioms are
five in number. They are formulated with the help of
three undefined terms, acquaintance with the latter
being assumed. The terms are: ‘number’, zero’, and ‘im-
mediate successor of’. Peano’s axioms can be stated as
follows:

1. Zero is a number.

2. The immediate successor of a number is a
number.

3. Zero is not the immediate successor of a
number.

4. No two numbers have the same immediate
SUCCESSOor.

5. Any property belonging to zero, and also to
the immediate successor of every number that has
the property, belongs to all numbers.

The last axiom formulates what is often called the
“principle of mathematical induction.”
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2. (page 39) The reader may be interested in seeing
a fuller account than the text provides of the logical
principles and rules of inference tacitly employed even
in elementary mathematical demonstrations. We shall
first analyze the reasoning that yields line 6 in Euclid’s
proof, from lines g, 4, and 5.

We designate the letters ‘p’, ‘q’, and ‘r’ as “sentential
variables,” because sentences may be substituted for
them. Also, to economize space, we write conditional
statements of the form ‘if p then ¢ as ‘p D ¢ and we
call the expression to the left of the horseshoe sign ‘D’
the “antecedent,” and the expression to the right of it
the “consequent.” Similarly, we write ‘pV ¢ as short for
the alternative form ‘either p or ¢'.

There is a theorem in elementary logic which reads:

(P21 D[(gDdn D ((pVg D]

It can be shown that this formulates a necessary truth.
The reader will recognize that this formula states more
compactly what is conveyed by the following much
longer statement:

If (if p then 1), then [if (if ¢ then 7) then
(if (either p or ¢) then 7)]

As pointed out in the text, there is a rule of infer-
ence in logic called the Rule of Substitution for Senten-
tial Variables. According to this Rule, a sentence S,
follows logically from a sentence S, which contains sen-
tential variables, if the former is obtained from the
latter by uniformly substituting any sentences for the
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variables. If we apply this rule to the theorem just men-
tioned, substituting ‘y is prime’ for ‘p’, ‘y is composite’
for ‘¢, and ‘x is not the greatest prime’ for ‘r’, we
obtain the following:

(yis prime D xis not the greatest prime)
D [(yis composite D xis not the greatest prime)
2D ((yis prime V y is composite) D xis not the
greatest prime) |

The reader will readily note that the conditional
sentence within the first pair of parentheses (it occurs
on the first line of this instance of the theorem) simply
duplicates line g of Euclid’s proof. Similarly, the con-
ditional sentence within the first pair of parentheses
inside the square brackets (it occurs as the second line
of the instance of the theorem) duplicates line 4 of the
proof. Also, the alternative sentence inside the square
brackets duplicates line 5 of the proof.

We now make use of another rule of inference
known as the Rule of Detachment (or “Modus Po-
nens”). This rule permits us to infer a sentence S, and
from two other sentences, one of which is S, and the
other, §; D S,. We apply this Rule three times: first,
using line g of Euclid’s proof and the above instance
of the logical theorem; next, the result obtained by this
application and line 4 of the proof; and, finally, this
latest result of the application and line 5 of the proof.
The outcome is line 6 of the proof.

The derivation of line 6 from lines g, 4, and 5 thus
involves the tacit use of two rules of inference and a

Notes 1145

theorem of logic. The theorem and rules belong to the
elementary part of logical theory, the sentential calcu-
lus. This deals with the logical relations between state-
ments compounded out of other statements with the
help of sentential connective, of which ‘D’ and ‘V’ are
examples. Another such connective is the conjunction
‘and’, for which the dot ‘-’ is used as a shorthand form;
thus the conjunctive statement ‘p and ¢ is written as
‘p - q. The sign ‘~’ represents the negative particle
‘not’; thus ‘not-p’ is written as ‘~p’.

Let us examine the transition in Euclid’s proof from
line 6 to line 7. This step cannot be analyzed with the
help of the sentential calculus alone. A rule of infer-
ence is required which belongs to a more advanced
part of logical theory—namely, that which takes note
of the internal complexity of statements embodying
expressions such as ‘all’, ‘every’, ‘some’, and their syn-
onyms. These are traditionally called quantifiers, and
the branch of logical theory that discusses their role is
the theory of quantification.

It is necessary to explain some of the notation em-
ployed in this more advanced sector of logic, as a pre-
liminary to analyzing the transition in question. In ad-
dition to the sentential variables for which sentences
may be substituted, we must consider the category of
“individual variables,” such as ‘x’, ‘y’, ‘z’, etc., for which
the names of individuals can be substituted. Using
these variables, the universal statement °‘All primes
greater than 2 are odd’ can be rendered: ‘For every x,
if x is a prime greater than 2, then x is odd’. The
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expression ‘for every «’ is called the universal quantifier,
and in current logical notation is abbreviated by the
sign ‘(x)’. The universal statement may therefore be
written:

(x) (xis a prime greater than 2 D xis odd)

Furthermore, the “particular” (or “existential”) state-
ment ‘Some integers are composite’ can be rendered
by “There is at least one x such that x is an integer and

x is composite’. The expression ‘there is at least one x’

is called the existential quantifier, and is currently abbre-
viated by the notation ‘(3x)’. The existential statement
Jjust mentioned can be transcribed:

(3x) (xis an integer - x is composite)

It is now to be observed that many statements implic-
itly use more than one quantifier, so that in exhibiting
their true structure several quantifiers must appear.
Before iilustrating this point, let us adopt certain ab-
breviations for what are usually called predicate expres-
sions or, more simply, predicates. We shall use ‘Pr (x)’
as short for ‘x is a prime number’; and ‘Gr (. 2)] as
short for ‘x is greater than z’. Consider the statement:
‘x is the greatest prime’. Its meaning can be made
more explicit by the following locution: ‘x is a prime,
and, for every z which is a prime but different from x,
x is greater than z’. With the help of our various abbre-
viations, the statement ‘x is the greatest prime’ can be
written:

Notes 119
Pr(x) - (2) [(Pr (2) - — (a=2)) D Grx 2]

Literally, this says: ‘x is a prime and, for every z, if zis a
prime and z is not equal to x then x is greater than 2.
We recognize in the symbolic sequence a formal, pain-
fully explicit rendition of the content of line 1 in Eu-
clid’s proof.

Next, consider how to express in our notation the
statement ‘x is not the greatest prime’, which appears
as line 6 of the proof. This can be presented as:

Pr (x) + (3z) [Pr (2) - Gr (z, %)]

Literally, it says: ‘x is a prime and there is at least one z
such that z is a prime and z is greater than x'.

Finally, the conclusion of Euclid’s proof, line 7,
which asserts that there is no greatest prime, is symbol-
ically transcribed by:

(x) [Pr (x) D (32) (Pr (2) - Gr (z, x))]

which says: ‘For every x, if x is a prime, there is at least
one z such that z is a prime and z is greater than x".
The reader will observe that Euclid’s conclusion implic-
itly involves the use of more than one quantifier.

We are ready to discuss the step from Euclid’s line 6
to line 7. There is a theorem in logic which reads:

(P92 @PpD9

or when translated, ‘If both p and g, then (if p then ¢)’.
Using the Rule of Substitution, and substituting ‘Pr (x)
for ‘p’, and ‘(3z) [Pr (z) - Gr (z, x)]’ for ‘¢, we obtain:
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(Pr (&) (32)[Pr (2 - 'Gr'(z %)) D
(Pr () 2 (32) [Pr(z) ~Gr(z x)])

The antecedent (first line) of this instance of the the-
orem simply duplicates line 6 of Euclid’s proof; if we
apply the Rule of Detachment, we get

(Pr (x) D (32) [Pr (2) : Gr (2, x)])

According to a Rule of Inference in the logical theory
of quantification, a sentence S, having the form ‘(x)
(...x...)" can always be inferred from a sentence S,
having the form ‘(... x...)’. In other words, the sen-
tence having the quantifier ‘(x)’ as a prefix can be
derived from the sentence that does not contain the
prefix but is like the former in other respects. Applying
this rule to the sentence last displayed, we have line 7
of Euclid’s proof.

The moral of our story is that the proof of Euclid’s
theorem tacitly involves the use not only of theorems
and rules of inference belonging to the sentential cal-
culus, but also of a rule of inference in the theory of
quantification.

3. (page 54) The careful reader may demur at this
point, wondering something like this. The property
of being a tautology has been defined in notions of
truth and falsity. Yet these notions obviously involve a
reference to something outside the formal calculus.
Therefore, the procedure mentioned in the text in
effect offers an interpretation of the calculus, by supply-
ing a model for the system. This being so, the authors
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have not done what they promised, namely, to define
a property of formulas in terms of purely structural
features of the formulas themselves. It seems that the
difficulty noted in Section II of the text—that proofs
of consistency which are based on models, and which
argue from the truth of axioms to their consistency,
merely shift the problem—has not, after all, been suc-
cessfully outflanked. Why then call the proof “absolute”
rather than relative?

The objection is well taken when directed against
the exposition in the text. But we adopted this form so
as not to overwhelm the reader unaccustomed to a
highly abstract presentation resting on an intuitively
opaque proof. Because more venturesome readers may
wish to be exposed to the real thing, to see an unpret-
tified definition that is not open to the criticisms in
question, we shall supply it.

Remember that a formula of the calculus is either
one of the letters used as sentential variables (we will
call such formulas “elementary”) or a compound of
these letters, of the signs employed as sentential con-
nective, and of the parentheses. We agree to place each
elementary formula in one of two mutually exclusive
and exhaustive classes K, and K,. Formulas that are not
elementary are placed in these classes pursuant to the

following conventions:

i) A formula having the form S, V S, is placed
in class K, if both S, and S, are in K,; otherwise, it

is placed in K.
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ii) A formula having the form S, D S, is placed
in K,, if S, is in K, and S, is in K,; otherwise, it is
placed in K.

iii) A formula having the form S, - S, is placed
in K,, if both S, and S, are in K,; otherwise, it is
placed in K,.

iv) A formula having the form ~ 8§ is placed in
K,, if S is in K;; otherwise, it is placed in K.

We then define the property of being tautologous: a
formula is a tautology if, and only if, it falls in the class
K, no matter in which of the two classes its elementary
constituents are placed. It is clear that the property of
being a tautology has now been described without us-
ing any model or interpretation for the system. We can
discover whether or not a formula is a tautology simply
by testing its structure by the above conventions.

Such an examination shows that each of the four
axioms is a tautology. A convenient procedure is to
construct a table that lists all the possible ways in which
the elementary constituents of a given formula can be
placed in the two classes. From this list we can deter-
mine, for each possibility, to which class the nonele-
mentary component formulas of the given formula be-
long, and to which class the entire formula belongs.
Take the first axiom. The table for it consists of three
columns, each headed by one of the elementary or
nonelementary component formulas of the axiom, as
well as by the axiom itself. Under each heading is indi-
cated the class to which the particular item belongs,
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for each of the possible assignments of the elementary
constituents to the two classes. The table is as follows:

P (pVp) (pvp)DOp
K, K, K,
K, K, K,

The first column mentions the possible ways of classi-
fying the sole elementary constituent of the axiom. The
second column assigns the indicated non-elementary
component to a class, on the basis of convention (i).
The last column assigns the axiom itself to a class, on
the basis of convention (ii). The final column shows
that the first axiom falls in class K, irrespective of the
class in which its sole elementary constituent is placed.
The axiom is therefore a tautology.
For the second axiom, the table is:

p q VAR P2 (pVY
K, K, K, K,
K, K, K K,
K, K, K, K,
K, K, K, K,

The first two columns list the four possible ways of
classifying the two elementary constituents of the ax-
iom. The second column assigns the non-elementary
component to a class, on the basis of convention (i).
The last column does this for the axiom, on the basis
of convention (ii). The final column again shows that
the second axiom falls in class K, for each of the four
possible ways in which the elementary constituents can
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be classified. The axiom is therefore a tautology. In a
similar way the remaining two axioms can be shown to
be tautologies.

We shall also give the proof that the property of
being a tautology is hereditary under the Rule of De-
tachment. (The proof that it is hereditary under the
Rule of Substitution will be left to the reader.) Assume
that any two formulas S, and S; D S, are both tautolo-
gies; we must show that in this case S, is a tautology.
Suppose S, were not a tautology. Then, for at least one
classification of its elementary constituents, S, will fall
in K,. But, by hypothesis, S, is a tautology, so that it will
fall in K, for all classifications of its elementary
constituents—and, in particular, for the classification
which requires the placing of S, in K,. Accordingly, for
this latter classification, S; D S, must fall in K,, because
of the second convention. However, this contradicts
the hypothesis that S, D S, is a tautology. In conse-
quence, S, must be a tautology, on pain of this contra-
diction. The property of being a tautology is thus trans-
mitted by the Rule of Detachment from the premises
to the conclusion derivable from them by this rule.

One final comment on the definition of a tautology
given in the text. The two classes K, and K, used in the
present account may be construed as the classes of true
and of false statements, respectively. But the account,
as we have just seen, in no way depends on such an
interpretation, even if the exposition is more easily
grasped when the classes are understood in this way.
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