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1. Introduction

A multiset (mset, for short) is an unordered collection of objects (called the
elements) in which, unlike a standard (Cantorian) set, elements are allowed to
repeat. In other words, an mset is a set to which elements may belong more
than once, and hence it is a non-Cantorian set. In this paper, we endeavour to
present an overview of basics of multiset and applications.

The term multiset, as Knuth ([46], p. 36) notes, was first suggested by N.G.de
Bruijn in a private communication to him. Owing to its aptness, it has replaced
a variety of terms, viz. list, heap, bunch, bag, sample, weighted set, occurrence
set, and fireset (finitely repeated element set) used in different contexts but
conveying synonimity with mset.

As mentioned earlier, elements are allowed to repeat in an mset (finitely in
most of the known application areas, albeit in a theoretical development infinite
multiplicities of elements are also dealt with (see [11], [37], [51], [72] and [30],
in particular).

The number of copies (([17], P. 5) prefers to call it ‘multiples’) of an element
appearing in an mset is called its multiplicity. Moreover, multiple occurrences
of an element in an mset are treated without preference (perhaps to retain the
force of classical concept of identity). We mention [64] for an earliest extensive
treatment of indistinguishability of repeated elements without any preference,
and [85] for an alternative treatment.
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The number of distinct elements in an mset M (which need not be finite)
and their multiplicities jointly determine its cardinality, denoted by C(M). In
other words, the cardinality of an mset is the sum of multiplicities of all its
elements. An mset M is called finite if the number of distinct elements in M
and their multiplicities are both finite, it is infinite otherwise. Thus, an mset
M is infinite if either the number of elements in M is infinite or the multiplicity
of one or more of its elements is infinite, i.e. C(M) ≥ ℵ0.

The root or support or carrier of an mset M , denoted by M∗, is defined as
follows:

M∗ = {x ∈ M | M(x) > 0}.
The elements of the root set of an mset are called the generators of that

mset.
A considerable amount of efforts have also gone into the study of msets with

negative multiplicities (see [9], [36], [74], [72], [30], [84], [85], in particular).

2. Basics of Multiset

2.1. Representations of Multisets

2.1.1. Multiplicative form

Following Meyer and McRobbie [57], the use of square brackets to represent an
mset has become almost standard. Thus, an mset containing one occurrence
of a, two occurrences of b, and three occurrences of c is notationally written as
[[a, b, b, c, c, c]] or [a, b, b, c, c, c] or [a, b, c]1,2,3 or [a1, b2, c3] or [a1, b2, c3], depend-
ing on one’s taste and convenience.

2.1.2. Linear form

Wildberger [85] puts forward a linear notation for multisets, which seems quite
innovative, especially when negative multiplicities (integral as well as rational)
are to be dealt with. For example, the mset M = [a, b, c]1,2,3 can be written as

M = [a] + 2[b] + 3[c].
Similarly, a rational mset can be represented, for example,
N = 2

3 [5]− 1
2 [1 8].

In order to accommodate negative multiplicities round brackets are used:
(a) in an mset stands for negative of a; for example,

[2, 4, (5), (5), 4] = [2] + 2[4]− 2[5].
In the same place, the distinction between the terms ‘element’ and ‘object’

occurring in an mset is made explicit as fallows:
Each individual occurrence of an object x in an mset A is called an element

of A. Thus, in the linear notation of M above; b, for example, is an object
appearing twice, and every occurrence of b is an element of M . It follows that
the distinct elements of an mset are the objects. An object is an element if its
multiplicity is unity.

Further, the following notations used in ([85], pp. 5–6) to represent data
structures of set, ordered set, multiset and list, are quite instructive:
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A collection containing x, y, z, . . . is denoted by {xyz . . .} or {x y z . . .} if
it is a set; {x, y, z . . .} if it is an ordered set; [xyz . . . .] = [x y z ...] if it is a
multiset; and

[x, y, z, . . .] if it is a list.
Note that a list is an ordered sequence of elements with repetitions allowed,

whereas an mset is a sequence with its ordering stripped off.

2.1.3. Multiset as a Sequence

A multiset can also be represented as a sequence in which the multiplicity of an
element equals the number of times the element occurs in the sequence, which
is exactly Dedekind’s ‘frequency-number’. The idea is to construct an mset as
a sequence (a function with domain ℵ, the set of natural numbers) and ignore
the ordering of its elements, which can be done by taking all permutations of
the domain of the sequence.

2.1.4. Multiset as a Family of Sets

A multiset can also be represented as a family of sets, which is altogether a
generalization of the idea of a sequence described above. Thus, the family of
sets F = {Fi}, i ∈ I, where Fi = Fj , if i = j, which identifies a repeated element,
represents an mset. Clearly, such a family F is a function: I → {Fi| i ∈ I},
which in turn, is a sequence if I = ℵ.

2.1.5. Multiset as a Numeric-valued function

Representation of an mset as a numeric-valued or cardinal-valued function abo-
unds, especially in the application areas. Formally, an mset is just a mapping
from some ground or generic or universal set into some set of numbers. For
example, an mset

A = [x, y, z]1,2,3 is a mapping from a ground set S to ℵ, the set of natural
numbers with zero, defined by

α(t) =





1, if t = x
2, if t = y
3, if t = z
0, for all the remaining t ∈ S.

In general terms, for a given ground set S and a numeric set T , we call a
mapping

α : S −→ T ,




a set, if T = {0, 1} ;
a multiset, if T = ℵ, the set of natural numbers;

a signed multiset (or, hybrid/shadow set) if T = Z, the set of integers;
a fuzzy (or hazy) set if T = [0, 1] ⊆ R, a two-valued Boolean algebra.
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2.1.6. Multiset as a generalized characteristic function

Similar to the representation of a set by its characteristic function (function
whose range is {0, 1}), a multiset or hybrid set is determined by its generalized
characteristic function (whose range is the set of integers, positive, negative or
zero), see [84] for details.

2.2. Operations under Mset

The monograph [46] can be considered as the earliest reference describing
intuitively properties of msets in a sufficient detail. During the recent years, a
good number of papers ([51], [36] , [37], [8], [85], and others) have appeared.
We endeavour to present an overview of various approaches in this regard. We
will adhere to function-approach and use Dom(f), Ran(f) to denote the domain
and range respectively of a given function f.

Definition 1. Multiset

Let D = {x1, x2, . . . , xj , . . .} be a set. An mset A over D is a cardinal-valued
function, i.e. A : D → ℵ = {0, 1, 2, ...} such that for x ∈ Dom(A) implies A(x)
is a cardinal and A(x) = mA(x) > 0, where mA(x) denotes the number of times
an object x occurs in A, i.e. a counting function of A. The set D is called the
ground or generic set of the class of all msets containing objects from D.

An mset A can also be represented by the set of pairs as follows:
A = {〈mA(x1), x1〉 , ..., 〈mA(xj), xj〉 , . . .}

or, A = {mA(x1).x1, ..., mA(xj).xj , ...}.
Relatedly, an mset is called ‘regular’ or ‘constant’ if all its objects occur with

the same multiplicity. Also, an mset is called ‘simple’ if all its objects are the
same, for example, [x]3 is a simple mset containing x as its only object (see [8]).
Clearly, the root set of every simple mset contains a single object.

Definition 2. Dressed epsilon symbol,∈ +

The symbol ∈+ was first introduced by Singh and Singh [80]. For any object
x occurring as an element of an mset A, i.e. mA(x) > 0, we write x ∈+ A,
where ∈+ (dressed epsilon is a binary predicate intended to mean ‘belongs to at
least once’, as ∈ is ‘belongs to only once’ in the case of sets. Thus, mA(x) = 0
implies x /∈ A, and x ∈k

+ A implies ‘x belongs to A at least k times’, however
x ∈k A means ‘x belongs k times to A’. The mset for any ground set D is called
empty, denoted by ∅ or [ ], if m∅(x) = 0 for all x ∈ D. Further, in order to
make our presentation concise, we shall follow some terminologies introduced in
([37], pp. 212 – 213): (‘A(x) denotes the number of copies of x, including x itself,
belonging to Dom (A)’), which is exactly the Dedekind’s frequency number.

Definition 3. Multisubsets (or msubsets, for short)

Let A and B be two msets, A being an msubset or a submultiset of B,
written as A ⊆ B or B ⊇ A, if mA(x) ≤ mB(x) for all x ∈ D. Also, if A ⊆ B
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and A 6= B, then A is called a proper submset of B. An mset is called the
parent in relation to its msubsets.

It follows from the definition of multisets that A = B if and only if for x ∈ D,
mA(x) = mB(x). Also, A = B =⇒ A∗ = B∗, but the converse need not hold.
It is easy to see that ⊆ is antisymmetric, i.e. A ⊆ B and B ⊆ A =⇒ A = B,
and it is a partial ordering on the class of msets defined on a given generic
domain. Clearly, ∅ is a submset of every mset. Note that the terms ‘element’
and ‘object’ are being distinguished throughout, and coincide if a generic set is
in consideration. We wish to emphasize that introduction of ∈+ greatly enhance
the language of msets. For example, A ⊆ B stands for

∀z∀k(z ∈k A −→ z ∈k
+ B).

Relatedly, a ‘whole’ msubset of a given mset contains all multiplicities of
common elements; while a ‘full’ msubset contains all objects of the parent mset,
and accordingly, every mset contains a unique full msubset, its root set. Clearly,
for any two msets A and B, if A ⊆ B and Dom(A) = Dom(B), then A is a full
msubset of B.

Definition 4. Similar msets

Two msets A and B are said to be ‘cognate’ or ‘similar’ if ∀x(x ∈ A ⇐⇒
x ∈ B), where x is an object. Thus, similar msets have equal root sets but need
not be equal themselves.

Definition 5. Ordered pair of two mset terms

Ordered pair of two mset terms u and v, denoted by [u, v], can be defined
as follows:

[u, v] = {u, v} if u 6= v, and [u, v] = {[u]2} if u = v.
Here, [u] is written as {u}, and 〈u, v〉 is actually the ordered pair set, where

Set (u) stands for u = ∅∨ ∀x∀n (x ∈n u =⇒ n = 1), though x itself may be an
mset term, (see [8] pp. 42 – 44, for details).

Definition 6. Power multiset

In Cantorian spirit, the power multiset of a given mset A, denoted by
˜
℘(A)

to distinguish it from the symbol ℘(A) used for power set of A, is the multiset
of all submultisets of A. For example, let A = [x, y]2,1 = [x, x, y]. Then,

˜
℘(A) = [φ, {x}, {x}, [x]2, {y}, {x, y}, {x, y}, [x, y]2,1].

In this sense, C(
˜
℘(A)) = 2C(A), for any mset A. However, as has been

voiced by many researchers in the area of msets and their applications (see [37],
p. 213 and [8], p. 45, in particular), there is no ‘good’ reason for admitting
repeated elements into a power multiset. Hence, a power multiset needs to be
called a power set only and denoted by ℘(A). Accordingly, for A = [x, y]2,1;
℘(A) = [φ, {x} , [x]2, {y}, {x, y}, [x, y]2,1] and hence C(℘(A)) < 2C(A) which
implies that Cantor’s power set theorem: C(A) < C(℘(A)) fails. However, for
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finite msets, Cantor’s theorem holds for power mset (see [8], p. 45, for related
inherent difficulties if the mset in consideration is infinite).

Definition 7. Union (∪), Intersection (∩) and addition or sum or
merge

⊎
or (+)

Let A and B be two msets over a given domain set D.
1. A ∪ B is the mset defined by mA∪B(x) = mA(x) ∪ mB(x) =

maximum (mA(x), mB(x)), being the union of two numbers. That is, an object
z occurring a times in A and b times in B, occurs maximum (a, b) times in
A ∪ B, if such a maximum exists; otherwise the minimum of (a, b) is taken,
which always exists.

It follows that for any given mset x there exists an mset y which contains
elements of elements of x, where the multiplicity of an element z in y is the
maximum multiplicity of z as an element of elements of x along with the above
stipulation on the existence of such a maximum. We denote this fact by y = ∪x

Clearly, Dom(∪x) = ∪{Dom(A), A ∈ x} and that the multipliticity of z in
y is the maximum of its multiplicities as an element of elements of x, if it exists;
otherwise, the minimum is taken.

For example, if A = [2 3 4 4], B = [1 4 3 3] then A ∪B = [1 2 3 3 4 4].
Also, it follows that for a finite mset x, the maximum multiplicity of el-

ements of elements of x always exists. However, for certain infinite sets like
x = {{y}, [y]2, [y]3 . . .}, the maximum multiplicity of elements of elements of x
does not exist, and hence ∪x = {y}. It is obvious by definition of the union
that multiplicity of any y ∈ x 6= ∅ is irrelevant to ∪x, and hence ∪x = ∪x∗ (
see [8], pp. 48 – 49, for details).

2. A ∩B is the mset defined by m.A∩B(x) = mA(x) ∩mB(x)
= minimum(mA(x), mB(x)), being the intersection of two numbers.
That is, an object x occurring a times in A and b times in B, occurs minimum

(a, b) times in A ∩B, which always exists.
In general, for a given mset x, Dom(∩x) = ∩{Dom(A) : A ∈ x} and z ∈ ∩x

implies that the multiplicity of z is the minimum of its multiplicities as element
of elements of x.

For example, if A = [3 3 3 4 4], B = [1 4 3 3], then A ∩B = [3 3 4].
Note that for any mset x, we have ∩x ⊆ ∪x.

3. A
⊎

B is the mset defined by mA
⊎

B(x) = mA(x) + mB(x),
direct sum of two numbers.

That is, an object x occurring a times in A and b times in B, occurs a + b
times in A

⊎
B.

For example, if A = [1, 1, 2, 2, 4, 4, 4], B = [1, 2, 3, 3], then
A

⊎
B = [1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4].
Clearly, C(A

⊎
B) = C(A ∪B) + C(A ∩B).

Note that if x be an infinite mset, then the multiplicity of some mset z ∈⊎
x may not be finite. In that case, the multiplicity of z in ∪x is used. For

example,
if x = {{z}, [z]2, [z]3, ...} then

⊎
x = ∪x = {z} (see ([8], p. 51, for details).
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4. Some Properties holding for mset operations
(see [46] p. 636; [8], p. 53, in particular).

(i) Commutativity: A
⊎

B = B
⊎

A, A ∪B = B ∪A, A ∩B = B ∩A.
(ii) Associativity: A

⊎
(B

⊎
C) = (A

⊎
B)

⊎
C, A∪(B∪C) = (A∪B)∪C,

A ∩ (B ∩ C) = (A ∩B) ∩ C.
(iii) Idempotency: A ∪A = A, A ∩A = A, but A

⊎
A 6= A.

In fact, as it has been suggested recently (see [85], p. 9, in particular), in
order to obtain a linear combination of msets, kA may be interpreted to denote
the sum of k number of A’s, where k is a natural number.

(iv) Identity laws: A ∪ φ = A, A ∩ φ = φ, A
⊎

φ = A.
(v) Distributivity: A

⊎
(B ∪ C) = (A

⊎
B) ∪ (A

⊎
C),

A
⊎

(B ∩ C) = (A
⊎

B) ∩ (A
⊎

C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

The proof of all these identities follows from the interpretation of ∪, ∩ and
⊎

of two natural numbers as maximum, minimum and (direct) sum respectively.
It is easy to see that

⊎
is stronger than both ∪ and ∩ in the sense that neither

∪ nor ∩ distributes over
⊎

, whereas
⊎

distributes over both ∪ and ∩. Also,
∩x ⊆ ∪x ⊆ ⊎

x
It is promising to observe that multiset operations form a “realm” ([85], p.

9).

Definition 8. Difference and complementation

Let A and B be two msets over D, and B ⊆ A, then mA−B(x) = mA(x)−
mA∩B(x), for all x ∈ D. It is sometimes called the arithmetic difference of B
from A. Note that even if B is not contained in A, this definition holds good.
It can be seen quickly that some of the consequences of the aforesaid definition
are disturbing ([37], p. 214). For example, if A = [a, b]4,5; B = [a, b]2,3 then
A−B = [a b]2,2 ⊆ B, contradicting the classical law: (A−B) ∩B = φ.

In order to define the complement, we follow Petrovsky [67]:
Let = = {A1, A2, ...} be a family of multisets composed of the elements of

the generic set D. Then, the maximum multiset z is defined by mz(x) = max
A∈=

mA(x) for all x ∈ D and all
A ∈ =.
Now, the complement of an mset A, denoted by Ā, is defined as fallows:
Ā = Z −A = {mĀ(x).x/mĀ(x) = mz(x)−mA(x), for all x ε D}.
It is understood that some new operations like arithmetic multiplication,

raising to the arithmetic power, direct product, raising to the direct power,
defined by Petrovsky, can be gainfully exploited for further research.

Definition 9. Functions between msets

The underlying assumption in defining a function between msets has been
invariably not to allow mapping of identical elements to non-identical elements
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and hence, it amounts to defining the function between their root sets, which is
just the classical definition of a function.

The function f : A −→ B is an injection iff
(i) f : A∗ −→ B∗ is an injection, and
(ii) ∀z(z ∈ A∗ =⇒ mA(z) ≤ mB(f(z))).
The function f : A −→ B is a surjection iff
(i) f : A∗ −→ B∗ is a surjection, and
(ii) ∀z(z ∈ A∗ =⇒ mA(z) ≥ mB(f(z))).
The function f : A −→ B is a bijection iff
(i) f : A∗ −→ B∗is a bijection and
(ii) ∀z(z ∈ A∗ =⇒ mA(z) = mB(f(z))).
For example, f : [x]3 −→ [x]10 is an injection, f : [x]5 −→ [y]4 is a surjection,

and
f : [x, y]6,2 −→ [x, y]3,4 is neither an injection nor a surjection. For various

other details, see [8] and [37]. Note that some of the consequences of the above
definitions are conflicting with some fundamental theorems of the classical set
theory.

1. Having defined functions between msets as above, it can be proved
that Cantor’s theorem does not hold, there is no injection from

A −→ ℘(A), see ([37]) p. 215).
2. Msets of equal cardinality need not have a bijection between them.

For example, [a, b]1,2 and [a, b, c] both contain three elements, but there can
be no bijection between them because the objects and their multiplicities are
different in the domain and the range of any such function. In other words,
there is no bijection between their root sets, viz; f : {a, b} −→ {a, b, c} can not
be a bijection.

3. Schröder–Bernstein theorem fails (see [37]), p. 215] and ([8], p. 47).
Let A = [x1, x2, ...]2,4,6, ... and B = [y0, y1, y2, ...]1,3,5, ...

The function f : A∗ −→ B∗ defined as f(xn) = yn makes f : A −→ B an
injection so that A ≤ B. The function g : B∗ −→ A∗ defined byg(yn) = xn+1

makes g : B −→ A an injection so that B ≤ A. But there cannot be a bijection
h : A −→ B since all multiplications in A are even and that in B are odd. Note
that ≤ is the standard dominance relation.

Definition 10. Multiset Ordering

It seems really surprising that the seminal work of Knuth ([45], pp. 213 –
214, 241 – 242), related to multiset orderings and their applications, has escaped
the attention of most of us until quite recently. According to Knuth:

“Multiset µ1 dominates µ2 if both µ1 and µ2 contain the same number of
elements and the Kth largest element of µ1 is greater than or equal to the K
th largest element of µ2 for all K” (p. 214).

“If a and b are multisets of m numbers each, we say that a ¿ b iff a
Λ

Λb = a
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(equivalently, a
∨∨ b = b, the largest element of a is less than or equal to the

smallest of b). Thus a
Λ

Λb ¿ a
∨∨ b (p. 241).

“An nth level ‘cascade distribution’ is a multiset...” (p. 299).
However, [28] is the earliest reference known to introducing multiset ordering

and using it for proving termination of programs and term rewriting systems.
In fact, it has served as a basis for host of orderings introduced in this context.
We endeavour to outline the Dershowitz-Manna multiset ordering as follows:

Let S be a set equipped with a partial ordering < (irreflexive and transitive
relation or, equivalently, a transitive but not an equivalence relation). Let M(S)
be the set of all finite msets M on S, and let ¿ be the associated (induced by
<) mset ordering on M(S). It is easy to see that each M is an mset with a
finite carrier, viz; {x ∈ S : M(x) 6= 0}.

The Dershowtiz-Manna Ordering:
M ¿ N if there exist two msets X and Y in M(S) satisfying:

(i) {} 6= X ⊆ N,
(ii) M = (N −X) + Y,
(iii) (∀y ∈ Y ) (∃x ∈ X) [y < x].

In other words, M ¿ N if M is obtained from N by removing none or
at least one element (those in X) from N , and replacing each such element x
by zero or any finite number of elements (those in Y ), each of which is strictly
less than (in the ordering <) one of the elements x that have been removed.
Informally, we say that M is smaller than N in this case. Similarly, À on M(S)
with (S, >) can be defined. For example, let S = ({0, 1, 2, . . .} = ℵ), then under
the corresponding multiset ordering À over ℵ , the mset [3 3 4 0] is greater
than each of the following msets: [3 4], [3 2 2 1 1 1 4 0] and [3 3 3 3 2 2]. The
empty set {} is smaller than any multiset. It is also easy to observe that: [∀y
y ∈ N =⇒ ∃x x ∈ M ∧ x > y] =⇒ M À N.

For various ramifications of the Dershowitz-Manna Ordering, see [41] and
[56], in particular.

3. Applications

Over the years, besides sporadic evidence of the applications of mulisets in
philosophy, Logic, Linguistics and Physics, a good number of them witnessed
in mathematics and computer science, which have led to the formulation of a
comprehensive theory of multisets. In this section, a modest attempt is made
to present a comprehensive survey of various applications of multisets which
is arranged under two major headings: Mathematics (especially, combinatorial
and computational aspects) and computer science, along with some overlapping
results placed appropriately.

3.1. Applications in Mathematics

An early elaborate reference is ([46], pp. 441–466; 636-667). Some of the
Knuth’s findings are as follows: The prime factorization of an integer n > 0
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is a multiset N whose elements are primes, where π
P∈N

= N . Accordingly, as
every positive integer can be uniquely factored into primes, one can obtain a
bijection between the positive integers and the finite msets of prime numbers.
For example, if n = 22.33.17, the corresponding mset is N = [2, 2, 3, 3, 3, 17]. A
simple algebra of msets is also developed. The natural correspondence between
a monic polynomial over the complex numbers and the unique mset containing
its roots exists. That is, every monic polynomial f(z) over the complex numbers
corresponds in a natural way to the mset F of its roots. Hence, if f(z) and g
(z) are the polynomials corresponding to the finite msets F and G of complex
numbers, then F +G = f(z)g(z), F∪G = lcm (f(z), g(z)), and F∩G = gcd
(f(z), g(z)).

Zeros and poles of meromorphic functions, invariants of matrices in canonical
form and invariants of finite Abelian groups do correspond to multiset represen-
tations. Generating functions and nonnegative integer coefficients correspond
one-to-one with msets of nonnegative integers. Thus, if A and B are msets of
nonnegative integers, and if G(z) =

∑
n∈A

zn and H(z) =
∑

n∈B
zn be gen-

erating functions corresponding to A and B, then G(z) + H(z) corresponds to
A∝B, etc. Also, for msets A and B, the product of Dirichlet generating func-
tions g(z) =

∑
n∈A

1
nz and H(z) =

∑
n∈B

1
nz corresponds to the mset product

AB.
Not much is known about the history of permutations of an mset. Knuth

([45], pp. 22–34) in line with some early references cited by himself, expounds
the area of permutations of msets.

Goguen ([33], pp. 513–561), in course of developing a category – theoretic
foundation of fuzzy set theory, investigates properties of semiring sets, as in [30],
along with various applications to msets. He also discusses usefulness of msets
in the study of combinatorics and formal languages. Chapin ([19] pp. 619–634;
[20], pp. 255–267), while formalizing the theory of fuzzy sets and Boolean-lattice
– valued sets, seems to have mset-model in mind. The interpretation of the
atomic formula ∈ (x, y, z) as “x is an element of y with degree of membership
at least z” reflects seminality, (see section 3.3, definition 3, of this paper, cf. [80]
07]). Mathematics of multisets proves a potential tool to study computing of
Grobner Bases and straightening laws in polynomial rings (see [15] and [3], in
particular). Brink ([17], pp. 1–13) outlines an algebra of msets and shows that
it could model relevant structures to a great extent, yet falls short of DeMorgan
monoid.

Anderson [2] can be considered as the first sustained development of conbi-
natorics of msets, in particular. The area of concentration includes the study of
sizes, numbers and properties of ‘chains’ (collections of pairwise ⊆ comparable
subsets) and ‘antichains’ (collections of pairwise ⊆ comparable subsets) in the
subset and msubset lattices (see [83], [73], [5], [21, 22], [9], in particular). Martin
([56], pp. 37–54) observes that many well-founded partial orderings of the set
of finite msets on a given set have appeared that played significant roles in the
study of invariant theory (see [62] and [31] for early references), ring theory (see
[3], and [68] for some recent developments) and the theory of partitions (see[5],
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[54], [7] and [11] for various recent developments). It is also mentioned (p. 37)
that msets can be gainfully exploited in the study of measure theory which,
however, would require tools of functional analysis, especially when the msets
considered are infinite.

Singh and Singh [79] point out a fundamental problem. It is observed that
the best known efficient formula nHr =r+n−l Cr, designed to compute the
number of combinations of n distinct objects taken r at a time when objects
may occur with repetitions, includes terms of the type [ai]n, for each i, that
are also msubsets of an mset in which each distinct element occurs unlimited
number of times (hence, help determining the cardinality of the power set of
an mset), turns out to be unworkable and computationally inefficient even if
adjusted to be applicable, if the mset in consideration is finite or infinite, but
with finite multiplicities. For example, for a 6–element mset α = [x, y, z]1,2,3 the
number of all combinations of size −6 (repetitions allowed and consequently [x]6
– like combinations included which is not an msubset of α) is 3H6 =8 C6 = 28
whereas the number of 6−msubsets of α is only one and that is α itself. Also,
besides discussing computational inefficiency of Inclusion–Exclusion principle,
the paper puts forward a reasonably efficient and workable formula.

Petrovsky [66] outlines some very innovative mathematical applications of
msets. An axiomatic foundation for metrization of multiset spaces is developed.

Poplin [68] develops a multiset algebra (Chapter 8, pp. 58–129) in his Ph.D.
thesis. The thesis, titled “The semiring of multisets”, explicates that msets
provide a connection between eigen values/eigen vectors equations for the Max-
Plus and the nonnegative real number systems. It is shown that Max-Plus, Max-
Times and the nonnegative real numbers can be viewed as a special case of msets.
The guiding factors for undertaking research in the area of mathematics abound.
For example, the (Max, +) algebra has been extensively used in discrete event
systems, transportation networks, parallel computations, project management,
machine scheduling, to name a few (see [68], pp. 1–2).

The interest in multisets and subsets of commutative monoids has increased
in the recent years (see [24] for various deliberations).

Hegarty and Larson ([38], pp. 1–25) study permutations π of the natural
numbers for which the numbers π(n) − n belongs to a given (multi)subset M
of Z (the set of integers), for all n ∈ S (a given subset of the set of natural
numbers).

3.2. Applications in Computer Science

References [45] and [46] are the early known references to the applications
of msets in computer science. Knuth notes:

The terminal string of a non-circular context free grammar form an mset
that is a set if and only if the grammar is unambiguous ([45], p. 636).

He introduces multisets into algorithms that compute values of xn where x is
a real quantity and n is a large positive integer ([46], pp. 441-466). Multisets and
permutations of multisets are applied in a variety of search and sort procedures
([45], p. 717 for various page numbers).
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Eilenberg ([30], chapter vi) describes a general theory of msets and applies it
to automata. Various semiring structures are exploited and also, extensions to
the cases of msets and field structures are studied. Shoesmith and Smiley ([78],
pp. 66–69, 113–114, 164, 211, 224), while studying multiple–conclusion logic,
find the application of msets quite useful to account for “arrays” of formulae.
Dersowitz and Manna [28] introduce mset ordering and ingeniously exploit it
for proving termination of certain programs, which has served a basis for many
alternative and equivalent orderings subsequently proposed to date. The major
intent of this seminal work can be seen in the following: “. . . the mset ordering
. . . permits the use of relatively simple and intuitive termination functions in
otherwise difficult termination proofs” see [28].

Huet and Oppen [39], and Jouannuad and Lescanne [41] introduced signif-
icant refinements of Dersowitz-Manna mset ordering. In [41], it is shown that
the standard mset ordering is a maximal extension function. ([41], pp. 61–62)
also provides an efficient implementation of Dersowitz–Manna mset ordering.

Peterson ([65], pp. 237–240) shows that the very foundation of Petri net
theory, introduced by C.A. Petri in 1962, needs the use of msets (see also, [34]
and [69]).

Mayer and McRobbie [57] find use of msets quite appropriate to account
for how often a premise is repeated in characterizing relevance aspect of an
argument. Thistlewaite, McRobbie and Meyer [82] make use of algebra of msets
developed in [57] in explicating automated theorem proving for relevance logics,
especially in the implementation while using the program KRIPKE. They also
recognize that msets have been taken as datatypes in a number of programming
languages [82] p. 26).

Bundy ([16], Chapter 13, pp. 225–240) exploits mset of numbers to illustrate
the definition-and-conjecture-formation program of Lenat. The work of Manna
and Waldinger [61] can be considered as a sustained exposition to substantiate
the fact that mathematical logic plays a fundamental role in the realm of the-
oretical computer science. Chapter II, pp. 505–527 of [61] is solely devoted to
explicating fundamentals of msets. A theory of BAG is developed by way of
introducing a novel binary primitive operation, O· : if an atom u has multiplicity
n ≥ 0 in a bag x, then u has multiplicity n + 1 in the bag uO· x.

Reisig [74] uses msets to define “relation nets”. Interestingly, exploiting
mathematical intent of the definition of msets as generalized (integer-valued)
characteristic functions given in [84], the novel idea of “negative multiplicity”
in an mset is introduced ([74], p. 126; see [9] for a detailed exposition). Reisig
also outlines the concept of “multirelations” – an mset whose domain is the
Cartesian product of a set of sorts ([74], pp. 126–131).

Yager ([86], pp. 23–27; [87], pp. 441–446), after developing an algebra of
msets, introduces the notion of “fuzzy bag” as follows: “ . . . to each element x
in a fuzzy bag A is associated a multiset containing elements α (real number in
the interval [0, l]) with multiplicities n (non-negative integers). The number n
indicates the number of times the element x appears with membership grade α
in the fuzzy bag A” ([86], p. 33). Yager notes that Zadeh fuzzy sets are special
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cases of fuzzy bags ([86], p. 35).
Grzymala – Busse ([35], pp. 325–332) extends the notion of “rough” set

(introduced by Pawlak to rough mset (see also, [58, 59])).
Martin [55] constructs a number of extension functions for mset orderings.

Also, Martin [56] introduces various well-founded partial orderings of the set of
all finite msets whose elements are taken from a given set. Martin exploits the
notion of cone in Rn (n−dimensional real space) and provides a systematization
of the construction and classification of various well founded partial orderings
underlying in proofs of program termination (see [28], [39], [41], etc.), in term
rewriting systems (see [26], [42] , [63], [55], [23], etc.), and computer algebra
(see [30], [15], [29] , [68], etc.).

Pratt ([69], pp. 33–71), besides giving several arguments for the use of pom-
sets, specially showing how pomsets can be used to represent parallel processes.
He also describes how Petri nets can be modelled as pomsets.

Gischer ([32] pp. 199–224) exploits the notion of a partial string and a partial
language introduced in [34] to show how pomsets can be used as a model of
concurrency.

Applications of msets in Logic Programming languages is found to over-
come “computational inefficiency” inherent in otherwise situation, especially in
solving a sweep of real-life problems where multiple occurrences of an identical
element are persistent. In fact, both the usual options, viz. “attaching different
levels” or “assigning numbers” to account for multiplicity turn out to be compu-
tationally inefficient. Representation of msets in a logic programming language
can be effected, for example, by introducing a binary associative and commu-
tative function symbol o, which also admits a unit element. In a constraint
logic programming language, constraints are built up from mset operations and
relations. Kiziltan ([43], Chapter 7, pp. 165–202) has recently dealt with multi-
set and strict multiset ordering constraints. Rule-based multiset programming
paradigm is recently exploited to study synthetic biology (see [4], [24] and [47]
for details). Basically, multisets are interpreted to represent biological systems,
such as molecules in a biochemical system. A host of simulators for biological
systems has been developed and found useful to several fields of biology such
as biochemistry, microbiology, and evolutionary biology. For example, a system
could be a multiset [A, A, B, B, C], where A, B and C are elements that evolve
by means of the application of a set of rewriting rules (say, of the biological
systems) viz.:

{{A, B} −→ {C}, {C} −→ {A, B}}. If we choose the first rule to apply
to the multiset in the example, the multiset {A, B, C, C} is obtained (see
[12], for details). The interaction among elements in a multiset object space,
which includes the environment, are like chemical reactions and the evolution
of multiset can mimic the biological evolution leading to plausibility of DNA
computing and programmable living machines (see [47], for details).

The seminal work [28] has dominated research in termination, especially in
Term Rewrite Systems (TRS), during the last two decades or so. Full surveys,
particularly of division orderings on structures such as strings, partitions or
terms, given in [27] and [81] [52], provide a complete development of the topic
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with the help of Coq Proof Assistant.
As for the present, a typical method to prove termination of a particular

TRS involves finding a well-founded ordering or equivalently, finding a quantity
which decreases at each step of computation. A widely accepted outcome of
research undertaken in this direction dictates that the choice of ordering may
have a surprising effect on efficiency (see [55, 56], and endeavours of the research
group, University of St. Andrews, led by Martin et al, especially on classification
of orderings). In the course of time, Multiset Path Orderings (i.e. Recursive
Path Orders with mulitset status only) [25, 27], Simplification Orders [53] and
[81], Lexicographic Path Orders [13], Decomposition Orders [41], etc. including
Higher-order Path Orderings, have been experimented (see [18], [13], and [40]
for various details).

In [40], it is shown that a termination proof for a TRS using multiset path
orderings yields a primitive recursive bound on the length of derivations. The
striking point is that this result holds for a great variety of path orderings,
including AC– Path Orderings described in [14], [44], [49] and [48] if lexico-
graphic status is not incorporated. The reference [50] is a comprehensive work
on Termination, AC− Termination and Dependency Pairs (introduced in [1]).

The study around finding bounds on derivation length does have an an-
tecedent in associating ordinals to proofs that computations terminate e la Tur-
ing (1994). This is now generally known as Floyd’s method of analyzing program
correctness. An ordinal technique (including ordinal powers) was exploited to
prove termination of an example which calculates factorial by repeated addition.
Ordinals enable us to link termination proofs with classical proof and recursion
theory.

The specification of an abstract data type (ADT) for msets has been studied
in ([6], pp. 1–29). Dovier, Policriti and Rossi ([29], pp. 208–234), after devel-
oping mathematics of msets, substantiate that msets are the fundamental data
structures for P systems. In fact, in computational sense, an mset is just a
data structure, which differs from a set in permitting repetition of some of its
elements and that from a list in being unordered, and hence it turns out to
be a suitable modelling tool for a large class of real-life phenomena. Ross and
Stoyanovich [71], study cardinality bounded msets in Database systems to over-
come consistency and performance problems that conventional representations
in relational database suffered from.

Petrovsky ([67], pp. 174–184) explores a new dimension. He, after provid-
ing an extensive treatment of mset operations, discusses “Cluster” analysis in
mset spaces, and demonstrates their application in augmenting Decision Sup-
port System (DSS). It is shown that “a multi-aspect analysis of problem and
structuring alternatives allow us to gain an insight into the problem nature and
find better decisions. “ . . . suggested the tools for structuring a collection of
objects represented by many qualitative attributes when a lot of copies of ob-
jects or values of attributes describing them exist. . . . approach is based on
a theory of multiset metric spaces and indexes of difference/similarity between
multisets”.

A “rough” set approach to multi–attribute decision analysis of Pawlak and
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Slowinski ([70] , pp. 443–459) is a pioneering work in this direction.

4. Concluding remarks and some future directions

Multiset theory, owing to its multitudinal applications, has occupied a cen-
tral place among a number of non-classical (nonstandard) set theories developed
during the last few decades.

Category theory is emerging as a strong alternative: Epsilons are replaced
by “Arrows”, but that time is not yet ripe. Currently, all efforts seem to point
to discovering some primitive theory of structures (a pre-set theoretic) to which
all set theories can be alluded (see [10], pp. 321-322, for details).

4.1. Some future directions

1. Pursuing the techniques followed in [82], an extension of the program
KRIPKE can be achieved by interpreting a multiset of formulae viz., [A, Bm,
Cn, . . .] as an ‘Ordinal’ tree viz., [A.Bm.Cn. . . .], where A, B, C, . . . stand for
‘events’ and Ak for ‘A occurs k times’. ([76] , p. 114)

2. A reasonable expectation is that a set theory based on ω–valued logic
(“x ∈ y” can have a truth value n ∈ ω) and a multiset theory based on classical
2−valued logic (‘x ∈n y can have only two truth values) are equivalent theories
([10], pp. 337–338). See Skolem ([77], Chapter 18): “. . . it seems to be possible
to obtain a consistent set theory with an unrestricted axiom of comprehension
if all rational numbers ≥ 0 and ≤ 1 are allowed as truth values” (p. 69).

3. “Multiset as a model for Multi-Attribute objects” is expected to play a
significant role in the area of mathematical modelling, Discovery of Intelligent
systems, control of Non-linear mechanical systems, just to mention a few (see
[67]).

4. Discovering competing simulators for biological systems seems to dom-
inate the research in biotechnology for a foreseeable future (see [12], [47], [24]
and [4]).
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