A computational proof of Huang’s degree theorem

(Don Knuth, Stanford Computer Science Department, 28 July 2019)

Hao Huang recently posted his proof [1] of a beautiful combinatorial theorem that establishes Nisan and
Szegedy’s 30-year-old Sensitivity Conjecture for Boolean functions:

Theorem. Any set H of 21+ 1 vertices of the n-cube contains a vertex with at least \/n neighbors in H.

His proof used the interesting sequence of symmetric 2 x 2™ matrices A,, defined recursively by
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Ay = (0); A, = <I2n_1 _An1> , forn>0.

An easy induction proves that A2 = nly. for all n > 0. Furthermore, every row and column of A,, has
exactly n nonzero entries. Indeed, if we number the rows and columns in binary notation from 0...0 to
1...1, the entry in row o = a1 ...apn and column § = by ...b, is £1 when |a1 — b1| + -+ + |ap — bp| =1,
otherwise it is zero.

Now let B,, be the 2" x 2"~ ! matrix

B. = A, 1+ \/ﬁ[2n—1
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Then B, has rank 2"~!, and we have
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AnBrn = < i Tpn = N = vnBn.

If B* denotes the 2" ! — 1 rows of B,, that do not belong to H, we can find a unit 2" ! x 1 vector  such
that B*z = 0. [That’s 2"~ — 1 homogenous linear equations in 2"! variables.] Then y = B,z is a 2" x 1
vector that’s zero outside of H; and A,y = /ny.

Let « be an index such that |y, | = max{|yo|,-..,|y2n—1|}. Then
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In other words, a has at least v/n neighbors 8 in H. QED.

Notes. This proof essentially fleshes out the idea that Shalev Ben-David contributed on July 3 to Scott
Aaronson’s blog [2]. Another basis for the “positive” eigenvectors is
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I thought at first that a tricky combination of the columns of B,, and C), might make the proof really simple;
but that idea didn’t pan out.

If o =a;...a, is adjacent to B = b; ... b, by complementing coordinate j, the sign of 4,3 is + if and
only if a1 +---+a;_; is even.

Vitor Bosshard has pointed out in [2] that Huang’s matrices are rather like the skew-symmetric adjacency
matrices of the Klee—Minty cube:
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Ao = (0); Y , forn >0.
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The corresponding eigenvectors for eigenvalue y/ni have similar bases En and én A Klee-Minty arc is
directed from « to 3 if and only if a; + --- 4 a; is even.
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