
Illustrating Group Theory
A Coloring Book

Math is about more than just numbers. In this "book" the story of
math is visual, told in shapes and patterns.

Group theory is a mathematical study with which we can explore
symmetry.
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ABOUT

This coloring book is both digital and on paper.

The paper copy is where the coloring is done - color through the concepts to explore symmetry and the beauty of math.

The digital copy brings the concepts and illustrations to life in interactive animations.

Print a copy: coloring-book.co/book.pdf
Digital copy: coloring-book.co

The illustrations in this book are drawn by algorithms that follow the symmetry rules of the groups each illustration represents.
Many of these algorithms also add components of randomness so that each set of illustrations is unique.

Give feedback // Get Updates: coloring-book.co/form
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ROAD MAP

We'll color through the concepts of groups,

such as the FRIEZE PATTERNS

They start with a single shape that transforms and then repeats forever in opposite directions.

WALLPAPER PATTERNS repeat in!nitely in even more directions.

But !rst we’ll start with the basics of SHAPES & SYMMETRIES.
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WHO THIS BOOK IS FOR

This book is for children and adults alike. It is for math nerds or experts, as well as people who avoid the subject. It is for
coloring enthusiasts as well those who would prefer to simply read through or play with patterns. It is for educators and

their students, parents and their children, and casual readers just looking to have a good time.

This book is for you.

WHAT THIS “BOOK” IS AND IS ABOUT

This is a “coloring book about math” that is both digital and on paper.

It is a playful book. The mathematical concepts it presents show themselves in illustrations that can be colored on paper
or animated and regenerated by interacting with them on the web version. Throughout the book there are thought

challenges and coloring challenges to further engage the reader in puzzling over the content.

The book is about symmetry. It uses group theory as the mathematical foundation to discuss its content while heavily
relying on visuals to communicate the concepts.

Group theory and other mathematical studies of symmetry are traditionally covered in college level or higher courses.
This is unfortunate because these are the most exciting parts of mathematics and they can be introduced with language

that is visual, and with words that avoid jargon. Such an introduction is the intention of this “book”.

HOW TO USE THIS “BOOK”

This “book” has two publically available formats.

On paper: http://coloring-book.co/book.pdf
Online: http://coloring-book.co

The two formats are designed to complement each other, and many may wish to use them both at once. The content
can be viewed on either, but the di"erent formats provide di"erent ways to more deeply engage or play with it:

The illustrations can be colored on paper. Only on paper can the coloring challenges be fully completed and realized in
color.

The illustrations come to life on the web version, where the symmetries they illustrate are animated and interactive in
order to further deepen the reader’s intuition of their mathematical concepts.

This book can be used as a playful educational tool to serve as an extra resource in the classroom or home. For
educators, the challenges within the pages of the book can be used as “problem sets”.

This book can be used as a relaxing coloring book.
This book can be used to entertain your mathematical intuition or interests.
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WHY A COLORING BOOK

A coloring book serves as the medium to present this content for multiple reasons:

To make "higher level math" more approachable and less intimidating.

Many people feel comfortable picking up a coloring book and getting to work on it with colored pencils. Fewer people
feel comfortable approaching a book about “higher level” concepts in math, such as group theory. This need not be the

case. There are “higher level” math concepts that do not require background knowledge or expertise and can be
presented with illustrations instead of numbers. This book intends to guide its reader through such mathematical
concepts by using the experience of coloring mathematical illustrations, as their underlying concepts are gently

described alongside them.

To capture the necessary attention from the audience.

Mathematical concepts of depth and beauty take time to understand and appreciate - but who is ready to give that time
in our modern age of distractions? Coloring books are an anomaly in society’s sea of short form mediums in that they
attract extended amounts of attention from adults who want to relax, and children who want to be amused. This is the
type of attention - dedicated attention to slowly working through one page at a time - that is ideal for absorbing math.

To make math more playful for those left out of the fun.

Many stereotypical “math whizzes” will tell you they have fun doing math problem sets. Problem sets are a means to
actively engage with concepts learned through challenges; they are a tool for learning, and completing them can be a

fun game. Problem sets need not be about solving equations! This book’s form of “problem sets” are “coloring
challenges”: these challenges actively engage readers with the concepts presented by challenging them to color in the

illustrations that represent those concepts with a speci!c goal or set of mathematical requirements.

To make math more relaxing for those who !nd it stressful.

Many people !nd math books stressful. At the same time, many people resort to coloring books as a means to relaxation.
This “book” provides a relaxing path to mathematical learning by melding the two mediums.

To welcome mathematical thinkers of all kinds.

There are many ways to teach, and there are many ways to learn. Traditional curriculums focus on the manipulation of
numbers and arithmetic, and may make some learners feel that math is not for them. This “coloring book” was

developed to provide a di"erent mechanism to engage with math, one that is more visual and tactile. Ideally it can reach
those learners who may have previously been alienated or left behind by traditional math pedagogy.
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SHAPES & SYMMETRIES

Symmetry presents itself in nature,

Landscape re"ection in water

But often with imperfections.

Moth Acorn Star!sh

Math creates a space where perfect symmetry can be considered.
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Some shapes have more symmetry than others.

If while you blinked, a square was #ipped,

or turned a quarter of the way around,

you would then still see the same square and not know.

This is not the case for a rectangle...

Challenge: Which of these shapes can be rotated by a ¼ turn without changing in appearance?

flip

1/4 turn

1/4 turn
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shapes with ½ turns and shapes with ¼ turns
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Our intuitive ideas of symmetry let us see that a square is "more symmetric" than
a rectangle because it can be #ipped and turned in more ways.

But this can change once color is added...

With color we will explore the world of perfect lines and symmetry.

Coloring Challenge: Can you color the shapes to make them "less symmetric"?
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ROTATIONS

A regular triangle can be rotated 
1
3 of the way around a circle and appear

unchanged.

→

If the triangle is instead rotated by an arbitrary amount, like 
1
4 of the way around a

circle, it will then appear changed, since it is oriented di"erently.

→

1/3 turn

1/4 turn 2/4 turn 3/4 turn
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circular pattern of order 9
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We can !nd ways to color the triangle so that a 
1
3 turn still does not change it.

→

While this will not work for other ways.

→

→

Coloring Challenge: Can you color the shapes so that a ⅓ turn continues to leave their appearance
unchanged?

1/3 turn

1/3 turn

1/3 turn
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shapes with ⅓ turns and sierpinski triangles
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Our triangle can also rotate by more than a 
1
3 turn without changing.

It can rotate by twice that much - 
2
3 of the way around the circle - or by 3 times

that much, which is all the way around the circle.

We can keep rotating - by 4 times that much, 5 times that much, 6 times... and
keep going. The triangle seems to have an in!nite number of rotations, but after 3
they become repetitive.

Challenge: How many ways can a square rotate without changing before the ways become repetitive?

0 turn / full turn

0 turn

3/3 turn

1/3 turn 2/3 turn

1/3 turn 2/3 turn

4/3 turn 5/3 turn
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circular pattern of order 12
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The triangle has only 3 unique rotations. We'll talk about rotations that are less
than a full turn.

Other shapes have these same 3 rotations. For this reason, we can say they all
share the same symmetry group.

However, their rotational symmetry can be removed by adding color.

Now when our shape is rotated, its color shows it.

Coloring Challenge: Can you color the shapes to remove their rotational symmetry?

0 turn / full turn

0 turn / full turn

1/3 turn 2/3 turn

1/3 turn 2/3 turn

0 turn / full turn 1/3 turn 2/3 turn

0 turn / full turn 1/3 turn 2/3 turn

19



shapes with 3 rotations, and a shape with 6 rotations
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Now that we can count rotations, we can be more precise when we say a square
has more symmetry than a rectangle.

We can also see that a square has more rotational symmetry than a triangle,
which in turn has more than a rectangle:

A rectangle has only 2 unique rotations, while a triangle has 3, and a square has
4.

Challenge: Can you !nd all the shapes with 4 rotations?

Coloring challenge: Color the shapes with 4 rotations so that they have only 2 rotations.

0 turn 1/2 turn

0 turn 1/4 turn 2/4 turn 3/4 turn
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shapes with 2, 3, 4 rotations
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We don't need to stop at 4 rotations. We can !nd shapes with 5 rotations, 6
rotations, 7, 8, ... and keep going towards in!nity.

...

These shapes don't need to be so simple.

...

...

Challenge: Can you !nd all of the shapes with 7 rotations?

5 6 7 8

5 6 7 8

5 6 7 8
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shapes with 5, 6, 7 rotations
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When shapes have the same number of rotations, they share a symmetry group.

We can call the group with 2 rotations C2, and call the the group with 3 rotations
C3, call the group with 4 rotations C4, and so on...

C2:

C3:

C4:

C5:

...

These groups are called the cyclic groups.

Challenge: Can you !nd all of the C5 and C6 shapes?
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C3, C4, C5, C6, C7 shapes
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Our shapes help us see our groups, but the members of the groups are the
rotations, not the shapes.

C2: 

{ }  =  { }

C3: 

{ } = { }

The rotations within each group are related to each other...

0 turn 1/2 turn

0 turn

0 turn 1/2 turn

1/3 turn 2/3 turn 0 turn 1/3 turn 2/3 turn
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C9 shape (circular pattern)
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C4: 

{ }

Another way to think about rotating a C4 shape by a 
3
4 turn is to rotate it by a 

1
4 turn

and then rotate it again by a 
2
4 turn.

C4:     
1
4 turn ✷

2
4 turn ➞ 

3
4 turn

Notice that the order in which these rotations are combined does not matter. The
cyclic groups are commutative.

C4:       
1
4 turn ✷

2
4 turn = 

2
4 turn ✷

1
4 turn

0 turn

0 turn

1/4

1/4 turn

2/4

3/4 turn

0 turn

1/4

1/4 turn

2/4

3/4 turn

0 turn

2/4

2/4 turn

1/4

3/4 turn

1/4 turn 2/4 turn 3/4 turn
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C2 and C4 shapes

30



Similarly, for our C3 group, a 
2
3 turn is the same as combining a 

1
3 turn with another

1
3 turn.

C3:        
1
3 turn ✷

1
3 turn ➞ 

2
3 turn

Adding another 
1
3 turn brings the shape back to its starting position - the 0 turn.

C3:         
1
3 turn ✷

1
3 turn ✷

1
3 turn ➞ 0 turn

See, the 
1
3 turn can generate all of the rotations of C3 - it is a generator for our C3

group.

1
3 turn→

1
3 turn ✷

1
3 turn→

1
3 turn ✷

1
3 turn ✷

1
3 turn→

0 turn

1/3 1/3

0 turn

1/3 1/3 1/3

0 turn

0 turn

1/3 turn 2/3 turn

1/3 turn 2/3 turn

1/3 turn

2/3 turn

31



C27 shape (circular pattern)
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The 
1
3 turn is a generator for our C3 group, and similarly, the 

1
4 turn is a generator

for our C4, because it can generate all of the rotations of our C4.

C3:    
1
3 turn ➞   { }

C4:    
1
4 turn ➞   { }

We could even choose di"erent generators.

0 turn

0 turn

1/3 turn 2/3 turn

1/4 turn 2/4 turn 3/4 turn
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C2, C4, C8 shapes
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2
3 turn→

2
3 turn ✷

2
3 turn→

2
3 turn ✷

2
3 turn ✷

2
3 turn→

We could have just as easily used a 
2
3 turn as our generator for C3 and ended up

with the same result.

C3:    
2
3 turn ➞   { }

However, not all rotations are generators.

6/3 = 0 turn

0 turn

2/3 turn

4/3 = 1/3 turn

1/3 turn 2/3 turn
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C9 shape (circular pattern)
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A 
2
4 turn does not generate all of the rotations of our C4 group.

Instead a 
2
4 turn generates a smaller group -- our C2 group.

2
4 turn ➞   { }  =  { }

Another way to see this is with color...

Challenge: Find all the generators for C4 and C8.

Challenge: Which rotations of C8 reduce C8 to C4 when used as generators?

0/4 turn 2/4 turn

0/4 turn 2/4 turn 0/2 turn 1/2 turn
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C8 shape (circular pattern)

38



We can transform a C4 shape into a C2 shape by coloring it.

➞

The only rotations that leave this colored shape unchanged are those of C2.

C2: { }

Not all colorings of our C4 shapes will transform them into C2 shapes.

➞

Coloring Challenge: Use color to transform the uncolored shapes into C2 shapes.

C4 C2

0 turn 1/4 turn 2/4 turn 3/4 turn

0 turn 2/4 = 1/2 turn

C4 C1 C1 C1
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C4 and C8 shapes
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Color can reduce C4 shapes to C2 or C1 shapes because our C2 and C1 are
subgroups of our C4 group. A subgroup is a group contained within a group.

C4: { }

C2: { }

C1: { }

Similarly, our C1, C2, and C3 groups are all subgroups of our C6 group.

Coloring Challenge: Can you color the C6 shapes to reduce them to C1, C2, or C3 shapes?

0 turn 1/4 turn 2/4 turn 3/4 turn

0 turn 2/4 turn

0 turn
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C2, C4, C6 shapes
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Notice that a group has all of the rotations of its subgroups.

C6: { }

C3: { }

C2: { }

Try to color a C6 shape so that it has the rotations of C4.

It can't be done. C4 is not a subgroup of C6.

There is more to it than that.

0 turn 1/6 turn 2/6 turn 3/6 turn 4/6 turn 5/6 turn

0 turn 2/6 turn 4/6 turn

0 turn 3/6 turn
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When we use color to reduce our shapes to represent smaller groups, we give
them a new set of rotations.

C4: { }

C2: { }

Not all sets of rotations are groups, and therefore cannot be subgroups. Try to

color a shape in a way so that it has only a 0 turn and a 
1
4 turn.

It's impossible without also giving the shape a 
2
4 turn and a 

3
4 turn. That's because

{0 turn, 
1
4 turn } is not a group, but {0 turn, 

1
4 turn, 

2
4 turn, 

3
4 turn } is.

Why? This brings us back to combining rotations.

0 turn 1/4 turn 2/4 turn 3/4 turn

0 turn 2/4 turn
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C2 and C4 shapes
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In order for a set of rotations to be a group, any combination of rotations in the
set must also be in the set. This rule is called group closure, and you can see it.

Take the set {0 turn, 
1
3 turn}.

{ }

This is not a group because it's missing the 
2
3 turn, which is created by combining

a 
1
3 with another 

1
3 turn.

1
3 turn ✷

1
3 turn →

Can you color a shape to have the {0 turn, 
1
3 turn} rotations without a 

2
3 turn?

No, but adding the 
2
3 turn to the set gives us our C3 group again.

{ }

Coloring Challenge: Color the shapes to make them all C2 shapes.

0 turn

0 turn

1/3 turn

2/3 turn

1/3 turn 2/3 turn
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So far we've only been talking about groups of rotations.

These groups are cyclic. They can be created by combining just one rotation -
the generator - multiple times with itself.

C3:    
1
3 turn ➞   { }

For our next groups, we have more generators, such as re#ections.

0 turn 1/3 turn 2/3 turn
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shapes with re"ection
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REFLECTIONS

Even when two shapes have the same number of rotations, one can still have
more symmetry than the other.

Some shapes have mirrors - they can re#ect across internal, invisible lines
without changing in appearance

While others cannot.

We'll see how these mirrors can be removed when color is added.

reflect

reflect

reflect

51



shapes with re"ection
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We saw that a single generator, the 
1
3 turn, could generate the entire group of

rotations of a regular triangle, C3.

C3:  { }

We can also re#ect this triangle across a vertical mirror through its center.

By coupling this mirror with a rotation, we can generate even larger groups.

0 turn 1/3 turn 2/3 turn

53



shapes with vertical mirrors
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Re#ections are easier to see with color.

:

More mirror re#ections can be generated by simply combining this vertical mirror
with rotations.

:

:

In total, a regular triangle has 3 unique mirrors.

Coloring Challenge: Use color to show what happens to our triangle when it is re"ected and then
rotated. Is this di%erent than rotating and then re"ecting?

reflect

1/3 turn

1/3 turn

reflect

1/3 turn reflect
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shapes with 3 rotations and 3 mirrors
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With just a rotation and a mirror as generators, we generated a new, larger group
of symmetries for a regular triangle.

We can do the same for other shapes.
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shapes with 3 rotations and 3 mirrors
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Our triangle has 3 unique rotations and 3 unique re#ections, a square has 4, and
we can !nd shapes with 5, 6, 7, and keep going...

...

Shapes that are not regular polygons can have these same symmetries.

...

When shapes have the same set of symmetries, they share a symmetry group.

Challenge: Can you !nd the shapes that have the same rotations and re"ections of a square?

3 4 5 6 7

3 4 5 6 7
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shapes with 3, 4, 5, 6, 7, 8 rotations and re"ections
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The symmetry group of a regular triangle and all the shapes that have its same
symmetries, is called D3, while the symmetry group of a square is called D4, and
so on...

D3:

D4:

D5:

D6:

...

This series of groups is called the dihedral groups.
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D3, D4, D5, D6, D7, D8 shapes

62



These shapes that share a symmetry group may look di"erent, but when viewed
through the lens of group theory, they look the same. Only their symmetries -
the rotations and re#ections that leave them unchanged - are seen.

D3:

D4:

D5:

D6:

...

Challenge: Which dihedral group does each uncolored shape belong to?
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D3, D4, D5, D6, D7, D8 shapes
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By looking for rotations and re#ections, we can see when shapes share a
symmetry group.

And when they do not.

Coloring Challenge: Can you color the shapes so that none of them share a symmetry group?

D4 D4

D2 C4

D4

D4
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Again, color can reduce the amount of symmetry a shape has.

➞

For example, a D6 shape has 6 mirrors and 6 rotations, but color can transform it
into a shape with only 3 mirrors and 3 rotations - a D3 shape.

➞

Color can reduce a D6 shape to a D3 shape because D3 is a subgroup of D6.
Similarly, D4 is a subgroup of D8.

→

Coloring Challenge: Can you use color to reduce the D10 shapes to D5 shapes?

D6 D3

D6 D3

D8 D4
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What happens when color is added to remove only mirrors and not rotations?

➞

The dihedral groups have mirror re#ections, while the cyclic groups do not.
When these mirrors are removed, we can see the cyclic groups are subgroups of
the dihedral groups.

➞

➞

➞

Coloring Challenge: Color the D6 shapes to transform them into C6 shapes.

D4 C4

D3 C3

D4 C4

D5 C5
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Color can also take away a shape's rotations.

→

Coloring in this way leads to !nding subgroups with only mirror re#ections.

:

:

:

:

Coloring Challenge: Use color to reduce D6 shapes to D3 shapes. Then add more color to remove
their rotations so that they only have re"ection.
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There's something about these mirrors that you may have already noticed.

Re#ecting a shape across the same mirror twice in a row is the same as not
re#ecting it at all.

:

The second re#ection reverses the work of the !rst re#ection.

The same can be said for the other mirrors we found.

:

:

reflect

reflect

reflect reflect

reflect

reflect
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You may have also noticed that our rotations can be reversed as well.

When a square is rotated by a 
1
4 turn, rotating again by a 

3
4 turn brings it back to

the position it started in. The result is the same as a 0 turn.

1
4 turn ✷

3
4 turn = 0 turn

The same can be said the other way around.

3
4 turn ✷

1
4 turn = 0 turn

Challenge: Which rotation in C4 is the reverse of the 
22

44 turn?

0 turn

1/4 turn

1/4 turn

3/4 turn

0 turn

0 turn

3/4 turn

3/4 turn

1/4 turn

0 turn
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When one transformation, like a 
1
4 turn, reverses the work of another

transformation, it's called an inverse.

The 
1
4 turn is the inverse of the 

3
4 turn in C4, and vise-versa.

Similarly, the 
1
3 turn and 

2
3 turn are inverses in C3.

C3: 
1
3 turn ✷

2
3 turn = 0 turn = 

2
3 turn ✷

1
3 turn

Challenge: What is the inverse of a vertical re"ection? What is the inverse of any re"ection?

0 turn

1/3 turn

0 turn

2/3 turn 1/3 turn

1/3 turn

2/3 turn

0 turn

2/3 turn 0 turn
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D2, D4, D9 shapes
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All of the transformations in our cyclic and dihedral groups have inverses.

Even when a shape undergoes a combination of re#ections and rotations,

The transformations can be reversed and the shape can end back in the position
it started.

This is a rule in group theory: Any member of a group has an inverse that is also
in the group. And remember, the members of our groups are the re#ections and
rotations that transform our shapes.

Coloring Challenge: Color the squares to show the result of rotating by a 3/4 turn and then re"ecting
across a vertical mirror. Then !nd the combination of transformations that brings the square back to
its starting position.

0 turn

1/4 turn 2/4 turn

reflect

0 turn

reflect

2/4 turn 3/4 turn
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D12 (circular pattern)
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There are bigger groups to see and more types of symmetry to talk about. There
are even transformations that take our illustrations beyond shapes and generate
patterns that repeat forever.

... ...

Challenge: What would happen if you re"ected a shape across a mirror that sat next to the shape
rather than through its center?
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patterns of repeated shapes with mirror re"ection
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FRIEZE GROUPS

The Frieze Groups can be seen in patterns that repeat in!nitely in opposite
directions.

... ...

A page cannot do these patterns justice. It cuts them o" when really they
continue repeating forever...

Challenge: Can you see how the patterns repeat across the page? Can you extend your imagination to
see these as in!nitely repeating patterns?

Coloring Challenge: Color the patterns in a way that maintains their repetition.
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frieze patterns
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Consider the smallest repeating piece of this pattern as a unit.

The entire pattern can shift over by this unit and there is always more behind it to
replace what was shifted

... ...

... ...

... ...

so that the shift leaves the entire pattern unchanged. Such is the nature of in!nite
repetition...

This shift is a symmetry called translation.

Coloring Challenge: Color the patterns to make them less repetitive.
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frieze patterns with triangles in their fundamental domains
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p1
Translation

The simplest frieze group has translation as its only symmetry - it is generated
by translation alone.

We can see this by starting with a single piece

that is copied and then translated

again and again... ...an in!nite number of times...

...

to result in a pattern with translation as a symmetry that leaves the entire
pattern unchanged.

... ...

Challenge: Is the frieze group with just translation and example of a cyclic group?
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p1 frieze patterns: translation
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A translation can be composed with another translation so that in the same
way a pattern can shift over by 1 unit and remain unchanged, it can also shift over
by 2 units and remain unchanged.

... ...

... ...

We can keep composing translations to see larger and larger shifts...

... ...

... ...

Or we can use color to take them away...

Coloring Challenge: Color the pattern so that it is not possible to translate it by 1 triangle unit without
changing it in appearance.
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p1 frieze patterns: translation
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... ...

By coloring every other unit in this pattern, we can double the shortest possible
distance of translation in the pattern from 1 unit to 2.

... ...

Now only translating by an even number of units leaves the pattern unchanged
in appearance.

The pattern still repeats in!nitely, and there are still an in!nite number of
translations that will leave it unchanged. By adding color, we took away ½ of its
translations, but ½ of in!nity is still in!nity.

Coloring Challenge: Can you color the patterns so that the shortest possible translation distance
triples?
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p1 frieze patterns: translation
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p11m
Horizontal Re!ection & Translation

Our patterns can have more symmetry than just translation.

Re#ecting a piece across a horizontal mirror before translating it,

→

generates a new pattern, with more symmetry than the one before.

It still has translation - it can still shift over without changing.

But it also has a horizontal re!ection: The whole pattern can re#ect across the
same mirror that transformed our !rst piece, and appear unchanged.

Challenge: Can you !nd the mirrors in the following patterns?
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p11m frieze patterns: horizontal re"ection, translation
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p1m1
Vertical Re!ection & Translation

Patterns can have vertical mirrors as well.

These mirrors shift over with each repeated translation, so once a pattern has
one vertical mirror, it has an in!nite number of vertical mirrors.

Twice that many, really.

Even though we start with a vertical mirror on one side of each piece, as the
pattern repeats, another di"erent vertical mirror shows itself.

Challenge: Can you !nd the mirrors in the following patterns?

Coloring Challenge: Can you color the patterns to remove the mirrors?
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p1m1 frieze patterns: vertical re"ection, translation
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All of these mirrors can be removed with color.

With color, we can reduce the patterns so that translation is their only symmetry.

Why can we do this?

This brings us back to subgroups.

Coloring Challenge: Color the patterns to remove any mirrors so that translation is their only
symmetry.
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p1m1 frieze patterns: vertical re"ection, translation
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Our patterns with vertical re#ection belong to a symmetry group with translation
and vertical re#ection.

{vertical reflection, translation}:

Naturally, the group with only translation is a subgroup.

{vertical reflection, translation}:

{translation}:

The same goes for our patterns with horizontal re#ection. Color can remove their
mirrors as well, and reduce them to patterns with only translation.

→

Coloring Challenge: Can you !nd all of the mirrors in these patterns and use color to remove them?
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frieze patterns with re"ections and translation
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p2
Rotation & Translation

Frieze patterns can also have 
1
2 turns.

They can be generated by a single piece,

that rotates by a 
1
2 turn around a point,

→

before translating.

...

Challenge: Can you !nd the ½ turns in the following patterns?

♦

♦ ♦ ♦

♦ ♦ ♦ ♦ ♦
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p2 frieze patterns: ½ turn rotation, translation
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p11g
Glide Re!ection & Translation

There is another type of symmetry called glide re!ection.

A glide re"ection is a transformation that re#ects across a mirror line at the same
time as translating along it.

→

By continuing to translate or glide, a pattern with glide re#ection is generated.

Challenge: Can you see the glide re"ections in the following patterns?
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p11g frieze patterns: glide re"ection, translation

104



Glide re"ections show themselves in other patterns as well. The patterns we
generated with horizontal re"ection have glide re"ection too,

and color can reduce them

→

to patterns with glide re"ection only.

Coloring Challenge: Use color to reduce the patterns with horizontal re"ection so that they only have
glide re"ection.

Coloring Challenge: Can you add more color to then remove the glide re"ections?
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frieze patterns with glide re"ections and mirror re"ections
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We have now seen patterns with each of the frieze group symmetries:

{translation}:

{horizontal re"ection, translation}:

{vertical re"ection, translation}:

{glide re"ection, translation}:

{½ turn rotation, translation}:

They all have translation, and all but the simplest have an additional generator
of either horizontal re!ection, vertical re!ection, glide re!ection, or rotation.

Let’s clarify what we’ve been talking about and coloring...
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The frieze patterns illustrate the frieze groups. These groups contain
symmetries, not patterns - the patterns just help us see them.

For example, {vertical re!ection, translation} are symmetries in a group that
can be seen with the patterns:

And we can come up with in!nitely more pattern designs to illustrate it.
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p1m1 frieze patterns: vertical re"ection, translation
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As long as the pattern has units

where applying the same symmetries to any unit leaves the entire pattern
unchanged

→

then the pattern illustrates the same group as any others with the same
symmetries:

{½ turn rotation, translation}

111



p2 frieze patterns: ½ turn rotation, translation
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p2mg
Glide Re!ection & Vertical Re!ection & Rotation & Translation

Combining the frieze group symmetries yields even more groups of patterns.
Take the group with

{glide re"ection, vertical re"ection, rotation, translation}.

Color can again reduce this pattern to have the same symmetries as the simpler
patterns we already colored.

{rotation, translation}:

{glide re"ection, translation}:

Coloring Challenge: Use color to reduce the amount of symmetry in the patterns so that they only
have vertical re"ection and translation.
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p2mg frieze patterns: glide re"ection, horizontal re"ection, ½ turn rotation, translation
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p2mm
Horizontal Re!ection & Vertical Re!ection & Rotation & Glide Re!ection &
Translation

Patterns illustrating the group with all of our symmetries,

{horizontal re"ection, vertical re"ection, rotation, glide re"ection, translation},

can be reduced to each of the pattern groups we have already seen.

{rotation, translation}:

{horizontal re"ection, translation}:

You can !nd the rest.

Coloring Challenge: Use color to transform the patterns of the group {horizontal re"ection, vertical
re"ection, rotation, glide re"ection, translation} into each of the simpler pattern groups we have
seen.
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p2mm frieze patterns: horizontal re"ection, vertical re"ection, glide re"ection, ½ turn rotation, translation
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We have now colored all 7 Frieze Groups. There are no other groups of patterns
that repeat forever in one direction.

Surprised? Then try to generate more by again starting with a single piece.

Or use color to reduce a pattern to one with combinations of symmetries that we
did not yet see, like {horizontal re!ection, vertical re!ection, translation}.

You will have to give up.

Combining horizontal re!ection and vertical re!ection brings about rotation.
This is just one example of how combining symmetries brings us back to
patterns we already have.

Challenge: What happens when you combine glide re"ection with rotation?
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patterns from each of the 7 frieze groups
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Frieze patterns are limited to repetition along one dimension, but Wallpaper
patterns do not have that limit.

When that limit is removed for the Wallpaper Groups, the number of possible
patterns and amount of symmetry within them grows beyond what we have
colored.

Challenge: Can you !nd all of the directions in which the pattern repeats?
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wallpaper pattern with ¼ turn rotation, ½ turn rotation, and translation
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WALLPAPER GROUPS

Wallpaper patterns repeat along 2 dimensions, and with more dimensions
come more symmetries.

All of these 2-dimensional patterns can be classi!ed by their symmetries into the
17 wallpaper groups, and we will color through each of them.

But !rst, again see how a page cuts o" our patterns when really they continue
repeating in!nitely beyond the page borders...

Challenge: Can you see the repetitions in the pattern?

Challenge: Can you extend your imagination to see the pattern repeat in!nitely beyond the page
borders?
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wallpaper pattern
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Like the frieze patterns, all wallpaper patterns have an in!nite number of
translations that can be seen by focusing on a single piece that shifts over.

But this time the translations are not just in one direction.

...

... → ...

... ↓ ...

... ...

... ...
...

Again we can see how we can shift the entire pattern with these translations, and
because each piece is followed by in!nitely more pieces, the entire pattern is left
unchanged.
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wallpaper pattern
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These translations in di"erent directions are symmetries of our wallpaper
patterns and we can combine them to see such translations in even more
directions.

→ ✷ ↓ = ↘
...

... ...

... ↘ ...

... ...

... ...
...

Any 2 di"erent directions of translation can be combined with each other or with
themselves, in any number of ways, again and again, to produce more,

→ ✷ → ✷ ↓ ✷ ↓ ✷ ↓ ...

and in this way these 2 translations can be the generators for a group of
translations that span across all directions of the wallpaper patterns.

Challenge: Can you see all of the directions of translation in the pattern?
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wallpaper pattern
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We can again use color to alter our patterns

...

... ...

... ...

... ...

... ...

... ...
...

such as doubling the shortest distance a pattern can translate vertically.

...

... ...

... ...

... ...

... ...

... ...
...

Coloring Challenge: Color the pattern so that the shortest possible distance of horizontal translation is
tripled.
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wallpaper pattern
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p1
The simplest group of wallpaper patterns has translation as the only symmetry.

All wallpaper patterns have many directions of translation - they get more
interesting when we consider groups of more complex symmetries...

Coloring Challenge: Color the pattern so that the shortest possible translation is in a diagonal
direction.
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p1 wallpaper pattern: translation
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pm
This pattern group has mirror re#ections.

We can see a single piece of the pattern re#ect across any one of its mirrors

or see the entire pattern re#ect across them.

Challenge: Can you see the pattern’s di%erent parallel vertical mirrors?

Coloring challenge: Color the pattern to remove its mirrors.
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pm wallpaper pattern: mirror re"ection, translation
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pg

This pattern group has glide re#ections

along parallel axes.

These axes shift over with its translations, because the combination of the glide
re#ection and translation symmetries in this pattern group must also be in the
group.

Challenge: Can you see the di%erent parallel axes of the glide re"ections?

Coloring Challenge: Color the pattern to remove the glide re"ection so the only symmetry is
translation.
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pg wallpaper pattern: glide re"ection, translation
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cm
This pattern has parallel axes of both glide and mirror re#ections,

and we can again use color to reduce it to simpler patterns we previously saw

such as by coloring away its glide re#ections while keeping its mirror re#ections.

Challenge: Can you see the di%erent parallel axes of glide re"ection?

Coloring Challenge: Color the pattern to remove some glide re"ections while keeping others.
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cm wallpaper pattern: mirror re"ection, glide re"ection, translation
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p2

This pattern has ½ turn rotations. There are points that we can see a single piece
make a ½ turn around

and that the entire pattern can turn around.

Challenge: Can you see the many points of rotation in the pattern?

Coloring Challenge: Color the pattern to remove some points of rotation while keeping others.

♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦
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p2 wallpaper pattern: ½ turn rotation, translation
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pmm

This pattern has perpendicular axes of mirror re#ection

with ½ turn rotations where the axes intersect.

This is about to get more complicated...

Challenge: Is it possible to have a pattern with perpendicular axes of mirror re"ection that does not
also have ½ turns? Hint: What is the result of combining perpendicular re"ections?

Coloring Challenge: Color the pattern to remove its mirrors while maintaining its ½ turns.

♦ ♦ ♦ ♦ ♦
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pmm wallpaper pattern: mirror re"ection, ½ turn rotation, translation
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pgg
This pattern group has glide re#ections and ½ turn rotations, but no mirror
re#ections. The glide re#ections have perpendicular axes, and the rotation
centers do not lie on their intersection.

We can shift these axes and yet have a pattern with the same symmetries, and
so it’s in the same wallpaper group.

Challenge: Can you see the many di%erent axes of glide re"ection?

Coloring Challenge: Color the pattern to remove the horizontal axes of glide re"ection while
maintaining the vertical glide re"ections.
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pgg wallpaper pattern: glide re"ection, ½ turn rotation, translation
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pmg
This pattern group contains both mirror and glide re#ections where the axes of
the glide re#ections are perpendicular to those of the mirror re#ections. It also
has ½ turn rotations on the glide re#ection axes, halfway between the mirror
re#ections.

We can again shift the axes to see a pattern with the same symmetries.

Challenge: Can you see glide re"ections and the points of rotation?

Coloring Challenge: Color the pattern to remove the glide re"ections while maintaining the mirror
re"ections. What happens to the rotations?
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pmg wallpaper pattern: mirror re"ection, glide re"ection, ½ turn rotation, translation
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cmm
Like another pattern group we already colored, this one has perpendicular
re#ection axes with ½ turn rotations at their intersections.

However it also has additional rotations that do not lie on the intersection of the
re#ections.

Challenge: Can you see the points of ½ turn rotations that lie on the mirror re"ection axes as well as
those that do not?

Coloring Challenge: Color the pattern to remove all mirror re"ections.
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cmm wallpaper pattern: mirror re"ection, glide re"ection, ½ turn rotation, translation
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p4
Wallpaper patterns can also have ¼ turn rotations. In the same way a single
piece can rotate 4 times around a point,

an entire pattern can as well.

This pattern group has ¼ turn and ½ turn rotations.

Challenge: Can you see the many ¼ turn rotation points in the pattern?

Coloring challenge: Color the pattern to reduce the ¼ turns to ½ turns.

■

■
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p4 wallpaper pattern: ¼ turn rotation, ½ turn rotation, translation

148



p4m
This pattern group has ½ turn and ¼ turn rotations, as well as re#ections with
axes that intersect in ways that are both perpendicular and diagonal.

Each of its rotation centers lie on multiple re#ection axes:
The centers of the ¼ turns are at the intersection of 4 mirror re#ection axes. The
centers of the ½ turns sit on the intersection of 2 mirror re#ection axes and 2
glide re#ection axes.

Challenge: Can you see the ½ turns as well as the ¼ turns? Can you !nd the many di%erent axes of
re"ection?

Coloring challenge: Color the pattern to remove its re"ections so that rotations are its only symmetries.
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p4m wallpaper pattern: mirror re"ection, glide re"ection, ¼ turn rotation, ½ turn rotation, translation
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p4g
This pattern group again contains ½ turn and ¼ turn rotations as well as both
mirror and glide re#ections, but this time with more glide re#ections - there are 4
directions of glide re#ection.

Each ½ turn rotation sits on the intersection of 2 perpendicular mirror re#ection
axes and the ¼ turn rotations do not sit on any re#ection axes.

Challenge: Can you see the many di%erent axes of glide re"ection?

Coloring Challenge: Color the pattern to remove the ¼ turns while keeping the ½ turns.
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p4g wallpaper pattern: mirror re"ection, glide re"ection, ¼ turn rotation, ½ turn rotation, translation
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p3
Wallpaper patterns can have ⅓ turn rotations too.

This is the simplest wallpaper pattern group that contains a ⅓ turn rotation. It has
no re#ections, but others can...

Challenge: Can you see the points of ⅓ turn rotation?

Coloring Challenge: Color the pattern to remove its rotations so that translation is its only symmetry.
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p3 wallpaper pattern: ⅓ turn rotation, translation
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p31m
This pattern group contains mirror re#ections, glide re#ections, and ⅓ turn
rotations.

Some of the centers of rotation lie on the re#ection axes, and some do not.

Challenge: Can you see the rotation centers that are both on and o% the re"ection axes?

Coloring Challenge: Color the pattern to remove the re"ections while keeping the ⅓ turns.
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p31m wallpaper pattern: mirror re"ection, glide re"ection, ⅓ turn rotation, translation
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p3m1
This pattern group also has mirror re#ections, glide re#ections, and ⅓ turn
rotations,

and this time all of the centers of rotation lie on the re#ection axes.

Challenge: Can you see the glide re"ections?

Coloring Challenge: Color the pattern to again remove the re"ections while keeping the ⅓ turns.
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p3m1 wallpaper pattern: mirror re"ection, glide re"ection, ⅓ turn rotation, translation
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p6
Any group with both ½ turns and ⅓ turns must have all of their combinations,
including ⅙ turns...

This pattern group has ½ turn, ⅓ turn, and ⅙ turn rotations but no re#ections.

Challenge: Can you see the ⅙ turns? Can you see the ½ turns?

Coloring Challenge: Color the pattern to remove the ½ turn and ⅙ turn rotations while maintaining the
⅓ turns.
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p6 wallpaper pattern: ⅙ turn rotation, ⅓ turn rotation, ½ turn rotation, translation
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p6m
This pattern group has ⅙ turn, ⅓ turn, and ½ turn rotations, as well as mirror and
glide re#ections.

Challenge: How many axes of mirror re"ection intersect at the centers of the ⅙ turn rotations?

Challenge: Can you see the glide re"ections?

Coloring Challenge: Color the pattern to remove its ⅙ turns while keeping its re"ections and ⅓ turns.
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p6m wallpaper pattern: mirror re"ection, glide re"ection, ⅙ turn rotation, ⅓ turn rotation, ½ turn rotation, translation
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There are 17 wallpaper pattern groups and we have now colored all of them.

There are no other ways to combine the symmetries in patterns that repeat
along 2 dimensions.

↖ ↑ ↗
← →
↙ ↓ ↘

Yet each wallpaper group has in!nitely many more patterns that could represent
it...
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p4g wallpaper pattern: mirror re"ection, glide re"ection, ¼ turn rotation, ½ turn rotation, translation
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Like we saw before, it doesn’t matter what the starting piece of a pattern is.

as long as we can see the symmetries in the patterns between those pieces.

Challenge: Can you see the ½ turns in the pattern?

Coloring Challenge: Color the pattern so that translation is its only symmetry.
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We can see these symmetries in the patterns of the physical world around us,

Sand Coral

O&ce building Basket Bricks

or stay in the world of perfect mathematics.
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p4 wallpaper pattern: ¼ turn rotation, ½ turn rotation, translation
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This project is a work in progress - your help and feedback is appreciated!

http://coloring-book.co/form

Here are some wallpaper patterns to play with: http://coloring-book.co/wallpaper
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THEORY REFERENCE

Group theory helps de!ne abstract structures discussed in algebra. The groups in this coloring book are only a
window into the groups explored in other realms of mathematics.

There are some rules and de!nitions that pertain to all groups, not just ours.

Group

A group G is a set coupled with a binary operator ✷ that satis!es 4 requirements:
See the details of each rule for examples.

Closure: G is closed under ✷; i.e., if a and b are in G, then a✷b is in G.

Identity element: There exists an identity element e in G; i.e., for all a in G we have a ✷ e = e ✷ a = a.

Inverse element: Every element in G has an inverse in G; i.e., for all a in G, there exists an element -a in G such
that a✷(-a) = (-a)✷a = e.

Associativity: The operator ✷ acts associatively; i.e., for all a,b,c in G, a ✷ (b ✷ c) = (a ✷ b) ✷ c.

Associative Property

When an operator ✷ for a group G is associative, the way elements in G are grouped when the operator is applied
does not matter. I.e., for all a,b,c in G, a ✷ (b ✷ c) = (a ✷ b) ✷ c.

One example of this is adding numbers: 1 + (2 + 3) = (1 + 2) + 3.

Notice that subtraction of numbers is not associative: 1 − (2 − 3) does not equal (1 − 2) − 3.

Our groups of rotations have an associative operator: Our operator here is combining rotations.

For C3, (
1
3 turn ✷ 

1
3 turn) ✷ 

2
3 turn = 

1
3 turn ✷ (

1
3 turn ✷ 

2
3 turn). That is, rotating twice by a 

1
3 turn and then rotating the result

by a 
2
3 turn is the same as combining a 

1
3 turn with the result of rotating by a 

1
3 turn and then by a 

2
3 turn.

Binary Operator

A binary operator ✷ combines 2 elements, a and b, from a set S to give a third element: a ✷ b.

An example is addition over the set of counting numbers: + is a binary operator that combines 2 numbers to create
their sum: 1 + 2 = 3.

Our binary operator combines the transformations that act on our symmetry groups. For symmetry elements a and

b, a ✷ b says "do a, and then do b". For example, if transformation a is "rotate by a 
1
4 turn" and b is "re#ect horizontally",

then a ✷ b is "rotate by a 
1
4 turn and then re#ect horizontally”.

Closure

A set S is closed under an operator ✷ if combining any 2 elements in S with ✷ results in an element that is also in S;
i.e, for any a and b in S, a✷b is also in S.

For example, the set of all counting numbers 0,1,2,3,... is closed under the addition operator + because adding any
two counting numbers results in another counting number.
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Coming back to our sets of rotations, the set { 
1
4 turn, 

2
4 turn } is not closed because combining the 

1
4 turn with the 

2
4 turn

results in the 
3
4 turn which is not in this set.

Commutative Property

A binary operator ✷ is commutative if the order in which it combines elements does not matter.
I.e., for any 2 elements a & b, a✷b = b✷a.

For example, addition is commutative because 1 + 2 = 2 + 1, but subtraction is not commutative because 1 − 2 ≠ 2 − 1.

Cyclic Group

A group G is called cyclic if it can be generated by a single element.

Our groups of rotations are cyclic groups because they can be generated by their smallest nonzero element. For

example, our C2 group was {0 turn, 
1
2 turn}, and it was generated by the 

1
2 turn.

There are many other cyclic groups out there. Another C2 group that may look di"erent, is the group {1, −1} where the
members of the group are the numbers 1 and −1 and the way of combining these members is with multiplication. It
can be generated by −1.

The term cyclic may be misleading. Our cyclic groups had a !nite number of elements, and combining them again and
again created cycles. However, there are cyclic groups with in!nite elements, such as the integers under addition.

Generator

Generators of a group are a set of elements that when combined with themselves, or each other, can produce all
the other elements of the group.

For example, −2 and 2 are generators that when combined with addition, generate the entire group of even integers.

Identity Element

An identity element is a neutral element - when it’s combined with other members in the group, it does not change
them.

For our groups of rotations, the identity element is the 0 turn: rotating by the 0 turn is the same as doing nothing at
all.

For the group of integers under addition, the identity element is 0: 0 + 2 = 2.

For the group of integers under multiplication, the identity element is 1: 1 x 2 = 2.

Inverse Element

An inverse element is the reverse of another element.
More formally, for a set, S with a binary operator, ✷, and a and b in S: a is the inverse of b if a✷b = b✷a = e, where e is
the identity element.

For our groups of rotations, each rotation’s inverse element is the rotation that undoes it. For example, the inverse of

the 
1
3 turn is the 

2
3 turn because 

1
3 turn ✷ 

2
3 turn → full turn. The full turn is the same as the 0 turn which is our identity

element.

For addition on the integers, each integer’s inverse element is it’s negative: −1 is the inverse of 1 because −1 + 1 = 0.

Order

The order of a group G is the number of elements in G. The order of G is sometimes written as |G|.

For example, the order of our C3 group of rotations is 3 because C3 has 3 elements: {0 turn, 
1
3 turn, 

2
3 turn}

Set
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A set is a collection of distinct elements.

For example, the set {blue, red, blue} is the same set as the set {blue, red}.

For our sets of rotations, the set {0 turn, 
1
3 turn, 

4
3 turn} is the same as the set {0 turn, 

1
3 turn} because a 

1
3 turn means the

same thing as a 
4
3 turn - they are not distinct.

Subgroup

Given a group G, a subgroup of G is a group with the same binary operator as G and whose members are all also in
G.

For example, the group of even integers under addition {... −2, 0, 2, 4,...}, + is a subgroup of the group of all integers
under addition {... −2, −1, 0, 1, 2,...}, +.

However, the same cannot be said for odd integers. The set of odd integers under addition {... −3, −1, 1, 3, 5,...}, + is not
closed and therefore cannot be a group: Combining odd integers with addition produces even integers (e.g. 1 + 3 = 4),
which are clearly not in the set of odd integers.

Notice that a group and its subgroups always have the same identity element.
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SYMMETRIES
OF PATTERNS IN THE PLANE

Translation is a shift in a given direction.

... ...

... ...

An in!nitely repeating pattern has translation as a symmetry - the entire pattern can be shifted
over without changing in appearance:

Mirror Re!ection is a re#ection across an imaginary line.

A pattern has mirror re#ection as a symmetry if the entire pattern can re#ect across a line yet
remain unchanged:

Glide Re!ection composes translation and mirror re#ection: A glide re!ection re#ects
across a mirror line at the same time as translating along it.

In!nitely repeating patterns can have glide re#ections:

Rotation is a symmetry that turns a pattern around a point.
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½ turn rotation:

¼ turn rotation:

⅓ turn rotation:
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⅙ turn rotation:

These symmetries can be combined in patterns that repeat in!nitely. Play with their
combinations: http://coloring-book.co/wallpaper.
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SHARE

Follow on instagram: @colorByMath

Share what you've colored on Facebook: facebook.com/colorByMath.
Or post to Instagram and Twitter with the #colorByMath hashtag.

Tweet

CONTACT

If you are an educator I want to hear from you.

If you want to collaborate or host an event with this material, please reach out.

If you just read/colored/played with the content in this book, I want to know what you think.

Contact me directly at colorbymath@gmail.com.
Or submit feedback in this form: coloring-book.co/form

CODE

The code for this project is open source and welcomes contributions:
https://github.com/aberke/coloring-book

Share
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ABOUT THE AUTHOR & PROJECT

Alex Berke received degrees in mathematics and computer science from Brown University. After graduating college, she
lived in New York City working as a technologist, with a focus on social impact. Most recently she worked as a software
engineer at Google on the Search team's news credibility e"ort to !ght disinformation, before entering graduate school

at MIT.

She has bene!ted from her education in computer science, but only found computer science in college by pursuing her
passion for mathematical thinking. She was only aware of this passion due to all the time she spent as a kid staring at

mathematical designs and playing with logic puzzles, and then having a few adults around to suggest that the concepts
she loved in these images and games were what math was all about. She feels lucky she had those resources and

adults around her.

This project was produced to provide a resource for others to discover the beauty of mathematics. It intends to show that
the best parts of math are not about numbers, and make those parts more accessible.
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