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Some issues on Goldbach Conjecture 
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Summary 
This paper presents a deterministic process of finding all pairs (p, q) of odd numbers (composites and primes) 

of natural numbers ≥ 3  whose sum (p + q) is equal to a given even natural number 2n ≥ 6. Subsequently, based on 
the above procedure and also relying on the distribution of primes in the set   of natural numbers, we propose a 
closed analytical formula, which estimates the number of primes which satisfy Goldbach’s conjecture for positive 
integers ≥ 6. 

 
1. Introduction 
As is known, on June 7, 1742, Christian Goldbach in a letter to Leonhard Euler [1] argued, 

inter alia that “every even natural number > 4 can be written as a sum of two primes”, namely: 

2n p q= +    where  n>2, and  p , q are prime numbers.     (1) 

To save space we do not mention the precise wording of that old time, but we focus our 
attention on a modified formula (1) which is inextricably linked with the newest definition of 
all primes { }2,3,5,7,11,=  , so as to exclude the unit. 

On August 8, 1900, David Hilbert gave a famous speech during the second International 
Congress of Mathematics in Paris, in which he proposed 23 problems for mathematicians of the 
20th century, including the conjecture of Goldbach [2]. Later, in 1912, Landau sorted four main 
problems for the first few numbers including the conjecture Goldbach [3,4]. The first scientific 
work on the Goldbach conjecture was made in the 1920’s. Note that in 1921, Hardy said that 
the Goldbach conjecture is not only the most famous and difficult problem in number theory, 
but the whole of mathematics. 

It is known that the most difficult so-called strong Goldbach conjecture was preceded by 
important work in the so-called weak Goldbach conjecture. The weak conjecture Goldbach, 
which is known as the odd Goldbach conjecture or ternary Goldbach problem or 3-primes 
problem, stated that: any number greater than 7 can be expressed as a sum of three primes (one 
prime number can be used more than once in the same sum). The above assumption is called 
“weak” because if the strong conjecture Goldbach (which concerns sums of two primes) is 
proved, then the weak will be true. 

The weak formulation of the conjecture has not been yet proven, but there have been some 
useful although somewhat failed attempts. The first of these works was in 1923 when, using the 
‘circle method’ and assuming the validity of the hypothesis of a generalized Riemann, Hardy 
and Littlewood [5] proved that every sufficiently large odd integer is sum of three odd primes 
and almost all the even number is the sum of two primes. In 1919, Brun [6], using the method 
of his sieve proved that every large even number is the sum of two numbers each of whom has 
at least nine factors of primes. Then in 1930, using the Brun’s method along with his own idea 
of “density” of a sequence of integers, Schnirelman [7] proved that every sufficiently large 
integer is the sum of maximum c primes for a given number c. Then in 1937, Vinogradov [8], 
using the circle method and his own method to estimate the exponential sum in a variable prime 
number, was able to overcome the dependence of the great Riemann hypothesis and thus 
provide the evidence of the findings of Hardy and Littlewood now without conditions. In other 
words, he directly proved (theorem of Vinogradov’s theorem) that all sufficiently large odd 
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number can be expressed as the sum of three primes. The original proof of Vinogradov, based 
on inefficient theorem of Siegel-Walfisz, did not put a limit for the term “sufficiently large”, 
while his student K. Borozdkin [9] showed in 1956 that ότι 

153
0 3n = =314348907 is sufficiently 

large (has 6,846,169 digits). Later, after improvements in the method of Brun, in 1966 Chen 
Jing-Run [10] managed to prove that every large integer is the sum of a prime and a product of 
at most two primes. In 2002, Liu and Wang [11] lowered the threshold around 

3100 13462 10n e> ≈ × . The exponent is too large to allow control of all smaller numbers with the 
assistance of a digital computer. According to Internet reports [12,13], the computer assisted 
search arrived for the strong Goldbach conjecture up to order 1018 
(http://www.ieeta.pt/~tos/goldbach.html) and, for the weak Goldbach conjecture not much 
more. In 1997, Deshouillers et al. [14] showed that the generalized Riemann hypothesis implies 
the weak Goldbach's conjecture for all numbers. Also, Kaniecki [15] showed that every odd 
number is the sum of at most five primes, provided the validity of Riemann Hypothesis. 

Most of these classic works have been included in a collective volume by Wang [16]. 
Specifically, in this volume the first section includes the representation of an odd number as a 
sum of three primes with six papers (Hardy and Littlewood; Vinogradov; Linnik; Pan; 
Vaughan; Deshouillers, Effinger, Riele & Zinoviev), the second section includes the 
representation of an even number as a sum of two nearly primes in six other works of (Brun; 
Buchstab; Kuhn; Selberg; Wang; Selberg) and finally the third section includes the 
representation of an even number as a sum of a prime and an almost prime in nine works 
(Renyi; Wang; Pan; Barban Til; Buchstab; Vinogradov; Bombieri; Chen Jing-Run; Pan). 
Finally, apart from the individual reports of certain articles, the collective volume includes 234 
additional citations arranged by author, referring to the period 1901-2001. 

The strong formulation of Goldbach conjecture, which is the subject of this paper, is much 
more difficult than the above weak one. Using the above method of Vinogradov [8], in separate 
works Chudakov [17], van der Corput [18] and Estermann [19] showed that almost all even 
number can be written as a sum of two primes (in the sense that the fraction of even number 
tends to the unit). As mentioned above, in 1930, Schnirelman [7] showed that every even 
number n ≥ 4 can be written as a sum of at most 20 primes. This result in turn enriched by other 
authors; the most well-known result due to Ramaré [20] who in 1995 showed that every even 
number n ≥ 4 is indeed a maximum sum of 6 primes. Indeed, resolving the weak Goldbach 
conjecture will come through that every even number n ≥ 4 is the sum of at most 4 primes [21]. 
In 1973, using sieve theory methods (sieve theory) Chen Jing-run showed that every 
(sufficiently large even number can be written as a sum either of two primes or of one prime 
and one semiprime (i.e. a product of two primes) [22], e.g. 100 = 23 + 7·11. In 1975, 
Montgomery and Vaughan [23] showed that “most” even number is a sum of two primes. In 
fact, they showed that there was a positive constants c and C such that for all sufficiently large 
numbers N, every even number less than N is the sum of two primes with CN1-c exceptions at 
the most. In particular, all the even integers that are not sum of two primes have zero density. 
Linnet [24] proved, in 1951, the existence of a constant K such that every sufficiently large 
even number is the sum of two primes and a maximum of K powers of 2. Heath-Brown and 
Puchta [25] in 2002 found that the value K = 13 works well. The latter improved to K = 8 by 
Pintz and Ruzsa [26] in 2003.  

It is noteworthy that in 2000 the relation (1) was verified using computers for even numbers 
up to 4×1016 [27], and the attempt was repeated by T. Oliveira e Silva with the help of 
distributed computing network to n ≤ 1.609×1018 and in selected areas up to 4×1018 [13]. 
However, mathematically these checks do not constitute conclusive evidence of validity of (1), 
and the effort continues today [28]. 



3 
 

It is noteworthy that in addition to the above papers, the interested reader can consult 
internet sources [29-32]. Finally, the object of the Goldbach conjecture has been the subject of 
statistical approach [33], education [34], narrative storytelling and popular books [35-37]. 

In this paper we present a theoretical framework that provides an estimate of the number of 
prime numbers satisfying the relation (1). 

 
 
2. A deterministic procedure for the decomposition of an even number as 

sum of two odds 
From the definition of prime numbers, { }2,3,5,7,11,=  , in which they are divisible only 

by themselves and the unit, it follows immediately that “the only even prime number is 2”. If 
for a moment we assume that p = 2, then the only case satisfying the relation (1) is when q = 2, 
otherwise the resulting sum would be equal to an odd number. Because the resulting even 
number 4 (i.e. n = 2) is outside the scope of interest because we care only for n> 2, it is obvious 
that the relation (1) makes sense only for the odd primes, i.e. for all primes greater than 2, 
comprising the set { }2− . 

Here in general, we quote the successive steps that led us to develop this work and then 
develop a series of theorems which lead directly to the desired result. 

 
2.1 Equivalence classes 

As known, an equivalence relation on the set A, such as e.g. Κ(α) = {x/x∈Α  and xRα} 
divides the set Α into subsets, named equivalence classes, which are disjoint to each other and 
their union gives A. 

Suppose   is the set of integer numbers, 2
  is its Cartesian (tensor) product and R is the 

binary relation on the set 2
 , which is defined as follows: 

R = {(α,β)/(α,β) ∈ 2
  and (α – β) is divisible by n∈ },     (2) 

that is (α – β) = λn  or  α = λn + β (the identity of division) and   is the set of natural numbers. 
R is an equivalence relation because, as can be proven, it is reflexive, symmetric and 

transitive. The natural number n is that which determines the number of equivalence classes.  
If we take the set of natural numbers   and define n = 6, then   is divided into six 

equivalence classes, those of elements 0, 1, 2, 3, 4 and 5, namely: 
 

Κ(0) = {x/x = 6λ + 0   λ∈ }          (3a) 
Κ(1) = {x/x = 6λ + 1,  λ∈ }          (3b) 
Κ(2) = {x/x = 6λ + 2,  λ∈ }          (3c) 
Κ(3) = {x/x = 6λ + 3,  λ∈ }          (3d) 
Κ(4) = {x/x = 6λ + 4,  λ∈ }          (3e) 
Κ(5) = {x/x = 6λ + 5,  λ∈ }          (3f) 

 
The above classes are disjoint each other and their union gives the set  : 

Κ(0)∪Κ(1)∪Κ(2)∪Κ(3)∪Κ(4)∪Κ(5) =         (4) 
 

At the same time, the equivalence class of any other element except of 0, 1, 2, 3, 4, 5, 
coincides with one of the above formulas.  
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The set of natural numbers corresponding to the equivalence classes K(2) and K(4), which 
can be written as K(2) = 2(3n+1) and K(4) = 2(3n+2) are divisible by 2; K(3) which can be 
written as K(3) = 3(2n+1) is divisible by 3, and K(0) = 6n is divisible by both 2 and 3. 

Therefore the set of natural numbers contained in the equivalence classes K(0), K(2), K(3) 
and K(4) are composite numbers as multiples of 2 and 3. Therefore, the remaining equivalence 
classes K(1) and K(5) contain all primes (except of 2 and 3) and the multiples of primes being > 
3.  

It is understood the class K(0), which equals 6n+0, is followed (higher by 1) by the class 
K(1) and follows (lower by 1) the class K(5), so both of these equivalence classes can be 
combined in the formula:  

6λ ± 1 = Primes + Multiples of Primes > 3       (5) 

In this representation of odd numbers we managed to condense the prime numbers in the set 
of natural numbers by a factor of 3 and make more likely the coincidence of two primes in the 
sums we will generate in the sequence, when we decompose an even number in two odd ones.  

For the sake of uniformity, which will be useful in the sequence, the multiples of 3 will be 
denoted, as appropriate, either as a 6λ–3 for λ = 1,2,3…Ν,  or like 6λ+3 for λ = 0,1,2…Ν: 

6λ ± 3 = Multiples of 3           (5a)  
 
2.2 Even numbers 
The even numbers are usually denoted by 2n. From the number theory we know that in any 

three consecutive even numbers one of them is a multiple of 3, so this even number can be 
written as 3·2n = 6n. The former number even of this can be written as 6n-2, while the next as 
6n+2. 

The triple of numbers (6n-2, 6n, 6n+2) are consecutive even numbers, since they differ by 2 
units. This implies that the subsets of even numbers  ={x/x  6n-2, 6n, 6n+2} for n = 1,2,3 ... 
and n∈  are disjoint and their union is the set 2  of all even numbers ≥ 4. 

So, the set of even numbers ≥ 4 can be denoted with: 
 2 = {x/x  6n-2, 6n, 6n+2}  where  n ≥ 1.      (6) 

The above triple of even numbers will be the basic cell to create the even numbers, for n ≥ 1, 
in the sequence of our work. 

If we replace n in the formula (6) with two natural numbers λi and λj where (λi, λj)∈ , such 
as: 

n = λi + λj ,            (7) 

the triple of the successive even numbers is transformed to  

                                                           6(λi + λj) - 2            (8a) 
                                                           6(λi + λj)            (8b) 
                                                           6(λi + λj) + 2.          (8c) 

Relations (8) may be further transformed as follows:                                             
                                        6(λi + λj) - 2 = (6λi – 1) + (6λj –1),    (9a) 
                                        6(λi + λj) = (6λi – 1) + (6λj +1),     (9b) 

                                         6(λi + λj) = (6λi + 1) + (6λj –1),     (9b΄) 
                                        6(λi + λj) + 2 = (6λi +1) + (6λj +1).    (9c) 
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Thus symbolizing the even numbers, we managed to transform all the even numbers into a 
sum of 2 odd numbers of the form 6λi±1, which, as proved, either are primes or multiples of 
primes ≥ 5. 

Of course the even numbers can be created also as a sum of two odd numbers of which 
either one or both be multiples of 3. In this case however the even numbers of the form 6n-2 are 
generated solely as a sum: 

6n – 2 = (6λi + 1) + (6λj – 3) = 6(λi + λj) – 2 where λi + λj = n      (10a)  

The even numbers of the form 6n can be created only as a sum of two odd multiples of 3: 

6n = (6λi + 3) +(6λj – 3) = 6(λi + λj)  where λi + λj = n       (10b) 

Finally, the even numbers of the form 6n+2 are generated solely as a sum  

6n + 2 = (6λi – 1) + (6λj + 3) = 6(λi + λj) + 2 where λi + λj = n      (10c) 

Equations (10) imply that for each even number the pairs of odd numbers, which are created 
on the basis of these equations, can give either zero or at most only one pair prime-to-prime. 

More specifically, given that the set of odd numbers being multiples of 3, (6λ ± 3), from 
which the even numbers of the form 6n are formed, only the number 3 is prime, this implies 
that under (10b), the only pair which verifies the Goldbach conjecture, is the “3+3=6”. 

Based on (10a), the even numbers of the form 6n-2 verify the Goldbach conjecture only if 
(6λj–3)=3 while (6λi+1) = prime. 

Finally, the even numbers of the form 6n+2 verify the Goldbach conjecture, by virtue of 
(10c), only if (6λj–3)=3 while (6λi–1) = prime.  

 
2.3 Three basic theorems 
In the following we describe a deterministic procedure in which every even natural number 

can be decomposed into all possible sums of odd integers, primes or composites. 
 
Theorem-1: Every even natural number 2n  (independently of the specific form 6n–2, 6n, 

6n+2, it has) can be decomposed into a sum of two odd natural numbers (primes or composites) 
in so many different ways, sn , as the integer part (floor) of the rational number ( )1 2n − , that 

is ( )1 2sn n= −   . The index ‘s’ results from the word ‘sample’, thus referring to sample of sn  
odd numbers from which will be later choose the prime numbers.  

PROOF 
We distinguish two cases. 
1) When n is odd, we form the sets: 
Α = {3, 5, …, n} and  B = {2n-3, 2n-5, …, n}. Since the order of items is not important in 

the sets, in order to maintain the desired sequence (in the form of rows or columns) we form the 
vectors [ ]3,5, ,a n=



  και [ ]2 3,2 5, ,b n n n= − −


 . It is obvious that all elements of the vector 

c a b= +


   are strictly defined and are equal to 2n as opposed to probabilistic pairs that can be 
derived from the sets A and B. Also, it is evident that any enhancement of the vector a  will 
give terms contained in the vector b



, displayed from right to left, so it makes no sense. Finally, 
it is obvious that the cardinality of two sets is the same, ie cardΑ = cardΒ = (n-1)/2.  

2) When n is even, we form the sets: 
Α = {3, 5, …, n-1} and B = {2n-3, 2n-5, …, n+1}. As previously, we consider the new 

vectors [ ]3,5, , 1a n′ = −


  and [ ]2 3,2 5, , 1b n n n′ = − − +


 . It is obvious that all elements of the 

vector c a b′ ′ ′= +


   are again equal to 2n. As previously, any enhancement of the vector a  will 
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give terms included into the vector b


, displayed from right to left. Finally, it is obvious that the 
cardinality of two sets is the same, i.e. cardΑ = cardΒ = n/2-1.  

Summarizing the results of the two above cases, it is easily concluded that: 
( )1

2
n

cardA cardB
− 

= =  
 

      (11) ■ 

Conclusion-1: The higher an even number 2n is, the higher the number of pairs of odd numbers sn .   
 
 
Theorem-2: If the sn  pairs of odd numbers ( ,s sp q ) of Theorem-1, whose sum is equal to 

the even number 2n , are plotted in orthocanonical system of axes sp sq , they belong to a 
straight line which forms 45 degrees to both axes sp  and sq . 

PROOF 
From Analytical Geometry we know that in a x-y system, every straight line intersecting the 

x axis at the point Α(α,0) and the y axis at the point Β(0,β) satisfies the equation: 
1x yα β+ = . In our specific case, if we select the x axis to represent the term 0sp ∈ , while 

y axis to represent the term 0sq ∈ , then obviously it holds α = β = 2n (see Figure 1). It is also 
obvious that the (2n+1) integers of the interval [0,α] and the corresponding (2n+1) integers of 
the interval [0,β], of which sum equals to 2n, correspond to (2n+1) discrete points along the 
straight segment ΑΒ. Given that we are interested in only the odd numbers , 3s sp q >  which 
satisfy the relation (1), without necessarily being prime numbers, we must leave out the three 
pairs being closest to the x axis: (2n,0), (2n-1,1), (2n-2,2), as well as the three pairs closest to 
the y axis: (0,2n), (1,2n-1), (2,2n-2). These six points are denoted into Figure 1 by the symbol 
(×). Therefore, the number of candidate points for further examination is ( )1 2sn n= −   , two 
of which coincide with the ends C and D (note that the set of all discrete points/pairs that 
correspond to even and odd integers is 2n-5).  

A better representation, especially for various small numbers is detailed in Table 1. In full 
agreement with the immediately above, we observe that the middle M appears to be among the 
candidate pairs only when the number n is odd, i.e. for the even numbers: 6, 10, 14, ..., 50, and 
so on. But if we consider the middle M of segment CD, each pair P( ,s sp q ) has a corresponding 
equivalent pair being represented by the symmetric point P'( ,s sq p ) of P with respect to M. If 
we want to exclude the repetition of a pair ( ,s sp q ), then we can restrict our attention only to 
half of CD, e.g. the segment DM. Concerning the point M, it satisfies the relation 2s sp q n+ =  
only when the number n is odd. ■ 
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Figure 1: Diagram showing the interval CD on which lie the arranged pairs ( ,s sp q ) which satisfy the 

relationship 2 , 2s sp q n n+ = > . To avoid repeated pairs, we work only on the part DM, where M denotes the 
common mid-point of the straight line segments AB and CD. 

 
 
Table  1: Representative way of decomposing even numbers in a sum of two odd ones. Every even integer has 

been put in the form 2n ≡ 2(ν+2), and is produced by the sum of red odd numbers (2ν+1) of the horizontal axis and 
the corresponding red values in the vertical axis. The colors displayed in the order green, blue and magenta 
correspond to the even numbers of the form 6n, 6n+2 and 6n-2, respectively ( n∈ ).  

 
2ν+1  ν 

25 12 28 30 32 34 36 38 40 42 44 46 48 50  
23 11 26 28 30 32 34 36 38 40 42 44 46 48  
21 10 24 26 28 30 32 34 36 38 40 42 44 46  
19   9 22 24 26 28 30 32 34 36 38 40 42 44  
17   8 20 22 24 26 28 30 32 34 36 38 40 42  
15   7  18 20 22 24 26 28 30 32 34 36 38 40  
13   6 16 18 20 22 24 26 28 30 32 34 36 38  
11   5 14 16 18 20 22 24 26 28 30 32 34 36  
  9   4 12 14 16 18 20 22 24 26 28 30 32 34  
  7   3 10 12 14 16 18 20 22 24 26 28 30 32  
  5   2   8 10 12 14 16 18 20 22 24 26 28 30  
  3   1   6   8 10 12 14 16 18 20 22 24 26 28  
    0  1 2 3 4 5 6 7 8 9 10 11 12   ν 
  3 5 7 9 11 13 15 17 19 21 23 25 2ν+1 
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Theorem-3: Suppose the point P in Figure 1 starts from point D and moves towards M 
traversing all distinct pairs ( ,s sp q ) on the straight segment DM with s sp q≤ . In this 
movement, two sets A and B of odd natural numbers are created, of which the first (A) is 
formed by the values of sp  while the second (B) from the values of sq . Both these two sets 

have the same cardinality: ( )1 2sn n= −   , which equals the number of distinct pairs that 

satisfy the relationship 2s sp q n+ = . Assuming that the number of prime numbers in sets A and 
B are α1 and β1, respectively, and that the distribution of primes along the arithmetic line is 
completely random, show that the number of pairs of primes ( ,p q ) that satisfy the relation (1), 
is approximated by: 

( )1 1p sn nα β=            (12). 
PROOF 
According to the theory of probability, in each pair (ps,qs) selected from the set of 

( )1 2sn n= −    elements, there are four possible events as shown in Table 2.  
 
 
Table 2: All possible combinations for the formation of a pair ( ,s sp q ) from the columns Α and Β. 
 

Column Α Column Β Number of pairs  
Prime Prime ( )1 1pp sn nα β=                     (13a) 

Prime Composite ( )1 1pc s sn n nα β= −          ( 13b) 

Composite Prime ( )1 1cp s sn n nα β= −            (13c) 

Composite Composite ( )( )1 1cc s s sn n n nα β= − −    (13d) 

Sum of pairs sn   
 

If we select a random pair ( ,s sp q ), where s sp A q B∈ ∧ ∈ , the probability sp  be prime is 

1A sP nα= , while the probability sq  be prime is 1B sP nβ= . Since the first event ( sp =prime) 
is entirely independent on the second event ( sq =prime), the probability primeP  of the 
intersection of these two independent events equals to the product of their probabilities, that is: 

( ) ( ) ( ) 2
1 1 1 1prime A B s s sP P P n n nα β α β= ⋅ = ⋅ =    (14) 

Since the probability primeP  on the sample of sn  pairs is known, the number of pairs of prime 
numbers ( ,p q ) will be also known and will be approximated by the relationship:  

( ) ( )2
1 1 1 1p prime s s s sn P n n n nα β α β = ⋅ = ⋅ =      (15) 

The relationship (15) completes the proof of Theorem-3. ■ 
 
It is noted that generally, probabilistic analyzes are conducted under conditions of 

uncertainty. When talking about probability, we refer to the realization of one event in relation to 
other possible events. Obviously, the possibility to verify the Goldbach conjecture on the number 
of pn  pairs, belongs to the first category (13a). 
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Remark 

The distribution of prime numbers on the numerical line is not accidental but strictly 
predetermined. It is therefore a purely deterministic phenomenon. The prime numbers are in a 
predetermined position, waiting to be discovered. 

Today, we know the number and distribution of prime numbers for a very large number of 
natural numbers. Therefore, we know the number of primes, both in column A (α1) and in column B 
(β1), arranged in (ns) pairs in which the even numbers are decomposed on the basis of equations (9) 
and (10). So, we are able to rigorously examine whether the predetermined distribution of prime 
numbers is such as to ensure the validity of probabilistic relationship (13a), “prime-to-prime” in a 
representative sample (e.g. the 12,000 numbers) the delicate area of small even numbers, where the 
number of pairs  sn  is small. 

As an example, Table 3 represents the way in which we decompose a triple (triad) of even 
numbers (6n-2, 6n, 6n+2), where n=15, in the sample of 12,000.  

To facilitate discrimination of pairs “prime-to-prime” we encode the composite numbers with 
gray color, the odd (prime numbers) of the form 6λ-1 with turquoise color, the odd (prime numbers) 
of the form 6λ+1 with tile color, and finally the first number 3 with yellow color.  

Since even numbers of the form 6n are formed on the basis of equation (9b) and (9b΄), while the 
even numbers of both the form 6n-2 and the form 6n+2 are formed only by an equation [(9a) and (9c), 
respectively], an asymmetry appears in the number of ordered pairs that verify (13a), as shown in 
Table 3. 
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Table 3: Example for the decomposition of a triad of numbers (6n-2, 6n, 6n+2), for n=15, in sum of two odd 
numbers.                   

        
          6n-2 = 88            6n = 90          6n+2 = 92 
         
          COLUMN           COLUMN           COLUMN 
      Α      Β       Α      Β       Α      Β 

1 3 85 1 3 87 1 3 89 
2 5 83 2 5 85 2 5 87 
3 7 81 3 7 83 3 7 85 
4 9 79 4 9 81 4 9 83 
5 11 77 5 11 79 5 11 81 
6 13 75 6 13 77 6 13 79 
7 15 73 7 15 75 7 15 77 
8 17 71 8 17 73 8 17 75 
9 19 69 9 19 71 9 19 73 

10 21 67 10 21 69 10 21 71 
11 23 65 11 23 67 11 23 69 
12 25 63 12 25 65 12 25 67 
13 27 61 13 27 63 13 27 65 
14 29 59 14 29 61 14 29 63 
15 31 57 15 31 59 15 31 61 
16 33 55 16 33 57 16 33 59 
17 35 53 17 35 55 17 35 57 
18 37 51 18 37 53 18 37 55 
19 39 49 19 39 51 19 39 53 
20 41 47 20 41 49 20 41 51 
21 43 45 21 43 47 21 43 49 

   22 45 45 22 45 47 
         
         
 Sum of pairs that 
fulfill Goldbach 
conjecture: 4 

 Sum of pairs that 
fulfill Goldbach 
conjecture: 9 

 Sum of pairs that 
fulfill Goldbach 
conjecture: 4 

      
 Sum of Pairs: 21  Sum of Pairs: 22  Sum of Pairs: 22 
 (Equation 9a)  (Equations 9b and 

9b΄) 
 (Equation 9c) 

Composite number 
Odd prime in the form (6λ-1) 
Odd prime in the form (6λ+1) 
Prime number 3 

(Sum of pairs fulfilling Golbach conjecture for the entire triad: 4+9+4 = 17) 
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Figure 2 shows, with a remarkable correlation, the expected ‘coincidence’ of the curve which 
represents the number of cases that verify the Goldbach conjecture, only for the even numbers of the 
form 6n (on one hand) and the sum of cases for the even numbers in the form 6n-2 and 6n+2 (on the 
other hand).  

 

 
Figure 2: Number of pairs (dyads) of prime numbers that fulfill Goldbach Conjecture for the lowest 6000 

numbers, in two characteristic categories [magenta line: dyads 6n, red line: dyads (6n-2) and (6n+2)]. 
 

 
Figure 3 shows, separately for each form of the triad of even numbers (6n, 6n-2, 6n+2), the 

number of pairs (dyads) of prime numbers that verify the Goldbach conjecture. As previously 
observed, even in this case the anticipated ‘coincidence’ by equations (9a) and (9c) occurs.  

To remove the above asymmetry, due to the four relations (9), which in turn reflect the three 
types of even numbers, we transform (13a) by introducing three weights whose sum is equal to 3 (the 
weight of 6n is twice the others), and therefore adapt in more detail as follows: 

For  6n-2 :     npp=3/4(α1β1/ns)   (14a) 

 For  6n :    npp=3/2(α1β1/ns)    (14b) 

For  6n+2 :    npp=3/4(α1β1/ns)   (14c) 

Therefore, if we assume that the Goldbach conjecture is not verified for some even numbers, 
these cases should be essentially searched within the even numbers of the form 6n-2 and 6n+2, which 
have the smallest values of verification, (14a) and (14c ). 
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Figure 3: Number of dyads of prime numbers that fulfill Goldbach Conjecture for the smallest 6000 numbers, in 

three characteristic categories according to the cell (6n-2, 6n, 6n+2). 
 

 
3. The distribution of prime numbers 
It is known, by virtue of the Prime Number Theorem (PNT) [see Appendix A] that, as we move 

to larger numbers N, the density of primes 1/logN gradually decreases. In the following, the symbol 
logx [or log (x)] is equivalent to the symbol lnx [or ln (x)] corresponding to the Neperian (natural) 
logarithm of base e. 

Here we should clarify that, despite the gradual decrease in the density of the primes (see 
percentage in the fifth column of Table 4), the odd numbers starting from the number 3 (from which 
we start the column A) until the even number of 6n+2 = 92 (see right column of Table 3) is 44. Within 
these 44 odd numbers, 23 of primes are contained. Thus the percentage of primes in the ordered pairs 
of odd number in which the number 92 is analyzed will be 23×44/100 = 52.3%. This implies that in 
any distribution of prime and composite numbers, in the ordered in pairs in which the even numbers 
between 6 and 92 are analyzed, the value of any prime-to-prime event will be larger than 1. This 
means that the Goldbach Conjecture is a priori verified for the even numbers with n ≤ 15. 

Based on the default deterministic creation of ordered pairs, to ensure the sum of all dyads be 
6n-2, and given the distribution of prime numbers in between 3 and 6×15-2 = 88, the number npp of 
verifications is illustrated in Table 4, where we present the data α1, β1 and ns, involved in (14a) to 
calculate npp, for even numbers of the form 6n-2 with n varying from 2 to 15. 

A first observation arising from the data of Table 4 is that the density and distribution of primes 
in that interval is such as to ensure in a great approach, the coincidence of the values derived from 
(14a) with actual checks. 

The density and distribution of prime numbers also ensure that α1 and β1 increase in such a way 
that the product (α1β1) to increase at a faster rate than the rate at which increases the number of 
ordered pairs ns. Direct result of the distribution of prime numbers is that as we move to larger even 
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numbers, the verification of conjecture Goldbach, is constantly increasing, and is increasingly 
removed from the value 1 required by the conjecture. 

 
 

Table 4: Estimation of the number of verifications npp concerning Goldbach Conjecture based on Eq(14a) 
compared with reality 

 
 
n 

Number 
 

(6n-2) 

 
α1 

 
β1 

 
Percentage 

% 

 
ns 

Number of 
verifications npp  

of Goldbach Conjecture 
Equation (14a) 

 
Real npp  

2 10 2 2 100 2 1.5 2 
3 16 3 2 80 3 1.5 2 
4 22 4 4 80 5 2.4 3 
5 28 5 3 67 6 1.9 2 
6 34 6 5 69 8 2.8 4 
7 40 7 4 61 9 2.3 3 
8 46 8 6 64 11 3.3 4 
9 52 8 6 58 12 3.0 3 
10 58 9 7 57 14 3.4 4 
11 64 10 7 57 15 3.5 5 
12 70 10 8 53 17 3.5 5 
13 76 11 9 55 18 4.1 5 
14 82 12 10 55 20 4.5 5 
15 88 13 9 52 21 4.2 4 

 
 
Therefore, besides the percentage (%) which, in the test sample, ensures a priori verification of 

Goldbach conjecture, it is also the distribution of prime numbers, and more especially the distribution 
of the primes, which ensures the appropriate values in α1 and β1 so that the results derived from (14) to 
be in a much closed agreement with the actual verification. This fact urges us to investigate whether 
the distribution of prime numbers, in a larger and more representative sample of even numbers, where 
the percentage (%) of the primes with its continuous reduction, goes down below 50%, shall ensure, 
by itself, the values for α1 and β1 which are also in agreement with the actual verifications. 

Due to the reduced space, in Table 5 the following quantities are randomly recorded; 
-the values of α1 and β1,  
-the number of columns ns  
-and the verifications npp based on equations (14),  

for several values of the even numbers in the form 6n-2, 6n and 6n+2 for n=20 until n=2000, which 
correspond to the even numbers 118, 120, 122 until 11998, 12000 and 12002. 

The even number 12002 includes 6001 odd numbers and 1437 primes. Therefore, the percentage 
(in %) of the primes included in the 6001 odd numbers by which we create the ordered pairs, will be 
1437/6001×100=23.9% Obviously, this percentage does not ensure the a-priori verification of 
Goldbach Conjecture. 
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Table 5: Estimation of the number of verifications npp of Goldbach Conjecture based on relations (14) for several 
values of even numbers in the form 6n-2, 6n, and 6n+2 

 
For n=20 α1 β1 ns npp [Eq(14)] 
6n-2=118    16 14 29     3/4α1β1/ns = 3/4*16*14/29 =   5.8 
6n=120 16 13 29 3/2α1β1/ns = 3/4*16*13/29 = 10.7 
6n+2=122 17 13 30 3/4α1β1/ns = 3/4*17*13/30 =   5.5 
             Sum of triad        =     21.9 
For n=40 α1 β1 ns  
6n-2=238 29 21 59 3/4α1β1/ns = 3/4*29*21/59 = 7.7 
6n=240 29 21 59 3/2α1β1/ns = 3/2*29*21/59 = 15.5 
6n+2=242 29 21 60 3/4α1β1/ns = 3/4*29*21/60 = 7.6 
             Sum of triad      =      30.8 
For n=60 α1 β1 ns  
6n-2=358 40 31 89 3/4α1β1/ns = 3/4*40*31/89 = 10.4 
6n=360    40 30 89     3/2α1β1/ns = 3/2*40*30/89 = 20.2 
6n+2=362    41 30 90     3/4α1β1/ns = 3/4*41*30/90 = 10.2 
             Sum of triad      =      40.8 
For n=80 α1 β1 ns  
6n-2=478    51 40 119     3/4α1β1/ns  = 3/4*51*40/119 = 12.9 
6n=480    51 39 119     3/2α1β1/ns = 3/2*51*39/119 =  25.1 
6n+2=482    52 39 120     3/4α1β1/ns = 3/4*54*41/120 =  12.7 
             Sum of triad              =  50.7 
For n=100 α1 β1 ns  
6n-2=598    61 46 149 3/4α1β1/ns =3/4*61*46/149=14.1 
6n=600    61 46 149 3/2α1β1/ns =3/2*61*46/149=28.2 
6n+2=602    61 47 150     3/4α1β1/ns =3/4*61*47/150=14.3 
             Sum of triad            = 56.6 
For n=200 α1 β1 ns  
6n-2=1198   108 88 299    3/4α1β1/ns = 3/4*108*88/299 = 23.8 
6n=1200   108 87 299    3/2α1β1/ns = 3/2*108*87/299 = 47.1 
6n+2=1202   109 87 300    3/4α1β1/ns = 3/4*109*87/300 = 23.7 
              Sum of triad           =     94.6 
For n=300 α1 β1 ns  
6n-2=1798   153 124 449 3/4α1β1/ns =3/4*153*124/449=31.7 
6n=1800   153 124 449   3/2α1β1/ns =3/2*153*124/449=63.4 
6n+2=1802   153 124 450   3/4α1β1/ns =3/4*153*124/450=31.6 
              Sum of triad            =  126.7 
For n=400 α1 β1 ns  
6n-2=2398   195 160 599    3/4α1β1/ns = 3/4*195*160/599  = 39.0 
6n=2400   195 160 599    3/2α1β1/ns = 3/2*195*160/599  = 78.1 
6n+2=2402   196 161 600    3/4α1β1/ns = 3/4*196*161/600  = 39.4 
             Sum of triad              =    156.5 
For n=500 α1 β1 ns  
6n-2=2998   238 191 749    3/4α1β1/ns = 3/4*238*191/749 = 45.5 
6n=3000   238 190 749    3/2α1β1/ns = 3/2*238*191/749 = 91.0 
6n+2=3002   238 191 750    3/4α1β1/ns = 3/4*238*191/450 = 45.4 
             Sum of triad                = 181.9 
For n=750 α1 β1 ns  
6n-2=4498   333 276 1124   3/4α1β1/ns = 3/4*333*276/1124   =    61.3 
6n=4500   333 276 1124   3/2α1β1/ns = 3/2*333*276/1124    = 126.6 
6n+2=4502   334 276 1125   3/4α1β1/ns = 3/4*334*276/1122   =    61.3 
              Sum of triad          =   249.2 
For n=1000 α1 β1 ns  
6n-2=5998 429 354 1499   3/4α1β1/ns  = 3/4*429*354/1499  = 76 
6n=6000   429 354 1499   3/2α1β1/ns = 3/2*429*354/1499 = 152 
6n+2=6002 430 354 1500   3/4α1β1/ns = 3/4*430*354/1500  =  76 
                Sum of triad             =     304 
For n=1500 α1 β1 ns  
6n-2=8998   609 506 2249   3/4α1β1/ns = 3/4*609*506/2249 = 102.8 
6n=9000   609 506 2249   3/2α1β1/ns = 3/2*609*506/2249 = 205.5 
6n+2=9002   609 507 2250   3/4α1β1/ns = 3/4*609*507/2250 = 102.7 
                 Sum of triad               =   411 
For n=2000 α1 β1 ns  
6n-2=11998   782 655 2999   3/4α1β1/ns = 3/4*782*655/2999 = 128.1 
6n=12000     782 655 2999   3/2α1β1/ns = 3/2*782*655/2999 = 256.2 
6n+2=12002   782 655 3000   3/4α1β1/ns = 3/4*782*655/3000 = 128.0 
                 Sum of triad             =    512.3 
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The following Table 6 includes both the actual verifications of conjecture Goldbach, in red, and 
the verifications based on the formula (14); the latter are due to the distribution of prime numbers 
(α1,β1), in columns A and B, in which each even number is decomposed according to (9) and (10), in 
blue (already included in Table 5). From the results in Table 6, we can notice that the distribution of 
prime numbers is enough to ensure the values of the verification under (14) to be in close accordance 
with the reality, as clearly shown in Figure 4 (for these particular results only). 

 
Table 6: Real verifications of Goldbach Conjecture-CG (in red colour) compared with the verifications based on relation (14) (in blue colour). 
 

 n n=20 
Type of even number   6n-2    6n 6n+2 Sum 
Even number      118     120 122  
Verifications of GC (Facts)     6   12     4 22 
Verifications using Eq(14)       5.8  10.7   5.5 21.9 
n n=40 
Type of even number   6n-2    6n 6n+2 Sum 
Even number     238    240 242  
Verifications of GC (Facts)        9     18   7 34 
Verifications using Eq(14)         7.7    15.5    7.6 30.8 
n n=60 
Type of even number   6n-2    6n 6n+2 Sum 
Even number    358    360    362  
Verifications of GC (Facts)      10     22     7 39 
Verifications using Eq(14)       10.4    20.2   10.2 40.8 
n n=80 
Type of even number   6n-2    6n 6n+2 Sum 
Even number     478     480   482  
Verifications of GC (Facts)      11     29     10 50 
Verifications using Eq(14)       12.9     25.1    12.7 50.7 
n n=100 
Type of even number   6n-2    6n 6n+2 Sum 
Even number    598   600  602  
Verifications of GC (Facts)     15   32    11    58 
Verifications using Eq(14)       14.1   28.2   14.3 56.8 
n n=200 
Type of even number   6n-2    6n 6n+2 Sum 
Even number  1198 1200 1202  
Verifications of GC (Facts)     24    54    19 97 
Verifications using Eq(14)      23.8   47.1          23.7 94.6 
n n=300 
Type of even number   6n-2    6n 6n+2 Sum 
Even number  1798 1800 1802  
Verifications of GC (Facts)     27   74    31 132 
Verifications using Eq(14)      31.7   63.4   31.6 126.7 
n n=400 
Type of even number   6n-2    6n 6n+2 Sum 
Even number  2398  2400  2402  
Verifications of GC (Facts)    37   90    37 164 
Verifications using Eq(14)     39.0  78.1   39.4 156.5 
n n=500 
Type of even number   6n-2    6n 6n+2 Sum 
Even number   2998  3000  3002  
Verifications of GC (Facts)     46   103    39 188 
Verifications using Eq(14)      45.5    91.0   45.4 181.9 
n n=750 
Type of even number   6n-2    6n 6n+2 Sum 
Even number   4498  4500  4502  
Verifications of GC (Facts)    64   138    52 254 
Verifications using Eq(14)      61.3  126.6   61.3 249.2 
n n=1000 
Type of even number   6n-2    6n 6n+2 Sum 
Even number   5998 6000 6002  
Verifications of GC (Facts)     72   179    62 313 
Verifications using Eq(14)     76.0  152.0    76.0 304.0 
n n=1500 
Type of even number   6n-2    6n 6n+2 Sum 
Even number   8998  9000  9002  
Verifications of GC (Facts)    101   243   110 454 
Verifications using Eq(14)     102.8  205.5   102.7 411.0 
n n=2000 
Type of even number   6n-2    6n 6n+2 Sum 
Even number  11998 12000 12002  
Verifications of GC (Facts)    144   303    115 562 
Verifications using Eq(14)     128.1  256.2   128.0 512.3 
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Figure 4: Number of pairs (dyads) of primes that fulfill Goldbach Conjecture for the smallest 12000 numbers (the 

red line represents the real number of dyads of primes that fulfill Goldbach Conjecture, while the blue 
line corresponds to the relation (14)). The graph is based on Table 6 only.  

. 
 
Also in this second sample of 12,000 numbers (6 × 2000 = 12000) the growth rate of α1 and β1 is 

greater than the growth rate of the ordered pairs ns, so the number of verifications npp of (14) increases 
continuously and removes from the unity ("1"), as is the case with actual verifications. 

 
Comment: Among a probabilistic experiment and the creation of ordered pairs when decomposing an even 

number in the sum of two odd numbers, there is a substantial difference. In a probabilistic experiment, the 
likelihood that one out of the four possibilities of Table 2 occurs is a matter of coincidence, or luck. The order in 
which the various possibilities they appear in the potential space is completely random. There is no rule which 
specifies the type of possibility in a particular test. Completely different is the case of an even number’s 
decomposition in a sum of two odd numbers with the creation of ordered pairs, where the potential for each of the 
pairs are arranged, is strictly predetermined. Therefore the analysis of an even number in sum of two odd numbers 
with the creation of ordered pairs is purely deterministic. 

 
4. The Critical Question 
4.1 General 

A very important process in mathematics is the generalization. We take a problem and examine 
its behavior in a limited area, and then the conclusions arising from the study of this sample, we try to 
expand to cover larger areas. 
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We studied the behavior of a sample of all the even numbers up to 12,000 and found that the 
number of pairs that verify the conjecture of Goldbach, have a clear upward trend, which has a close 
relationship with the probabilistic equation (14a). 

Equation (14a) imposes no restriction on the size of the sample. 
 

Neither the deterministic decomposition of an even number in odd pairs, based on equations 
(9) and (10), has a similar problem. 

The crucial question that arises here is, whether for sufficiently large even numbers the 
distribution of primes in the arithmetic line continues to be such as to ensure similar behavior 
in deterministic ordered pairs in which sufficiently large even numbers are analyzed, to that 
even numbers of the relatively small sample that we previously looked, so as to legitimize to 
generalize to all the even numbers. 

Our belief is strongly 'YES', since, as we explain below, the creation of composite numbers 
on the numeric (arithmetic) line, determined by strictly defined rules, uniform for the whole 
crowd of natural numbers. Hence the distribution of prime numbers, which is formed by the 
relationship 

Prime numbers = Natural numbers – Composite numbers 
to follow the same inevitability and it is strictly prescribed.  
The view that the distribution of primes along the arithmetic line is random and chaotic is wrong 

and misleading. 
 

4.2  Basic rule for the creation of Composite numbers 

As the prime numbers (except 2) are odd, we will seek the prime numbers in the set of odd 
numbers 1 = {χ/χ = 2n+1, n∈ }. This set which can be written as 1 = {α1, α2, α3,…αn,…} is a 
countable set equivalent to  .  

The two factors in the product (β.υ) in which every odd composite is analyzed, should be odd, 
because only the product of odd numbers results in an odd number. Therefore, the complex 
numbers can be partitioned into subsets of the form: 

Εi ={χ/χ = (2n+1) × [(2n+1), (2n+3),  (2n+5), (2n+7),… (2n+2k+1) …]}       (15) 

Such composite odd numbers are those of Table 7, where we see that the smallest of the 
infinite odd composite numbers generated in each row is the product of the first number in the 
series, by itself, i.e. 3×3, 5×5, 7×7, 9×9, 11×11, …  

 
Table 7: Decomposition of Composite Numbers (CN) in a product of two odd numbers 

E3 =   3 × 3 5 7 9 11 13 15 17 19 21 … 2n+1 … 
Ε5 =  5 × 5 7 9 11 13 15 17 19 21 23 … 2n+1 … 
Ε7 =  7 × 7 9 11 13 15 17 19 21 23 25 … 2n+1 … 
Ε9 =  9 × 9 11 13 15 17 19 21 23 25 27 … 2n+1 … 
Ε11 = 11× 11 13 15 17 19 21 23 25 27 29 … 2n+1 … 
Ε13 = 13× 13 15 17 19 21 23 25 27 29 31 … 2n+1 … 

 
In each of the above infinite series of composite odds, which are multiples of 3, 5, 7, 9, etc., 

we have the first number to be a “square” (32, 52, 72, …), whereas everyone else is a 
“rectangular”. From these squares, the ‘squares’ of prime numbers cannot be transformed into 
‘rectangles’.  
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These squares will be called the “original squares”. Unlike the squares of prime numbers, 
squares of composite numbers, such as the 9×9, can be also transformed into rectangles 3×27, 
which we will call “abusive squares”. 

Easily see that the elements of the set Ε3=3×(3,5,7,…2n+1) in the first row of Table 7, 
which are multiples of 3, is a periodic phenomenon in the set of integer numbers and may be 
derived from formula (16a): 

Ε3:     (CN)3 = x = 9 + 6μ = 32 +2×3μ,  μ=0,1,2,…             (16a) 

                                                              For   μ = 0:     x =   9   =  3×3 
                                                             For   μ = 1:    x = 15   = 3×5 
                                                              For   μ = 2:     x = 21    = 3×7 
                                                             For   μ = 3:     x = 27  = 3×9,    e.t.c.  

As a periodic phenomenon, it can also be represented as a transverse wave, as follows. In a 
rectangular system of axes xOy, we identify the straight line that represents the set of natural numbers, 
with the axis Ox. For the sake of clarity of shape, we ignore the even numbers, and we indicate only the 
odd ones. If you construct a transverse wave that starts at the number 9, of wavelength λ=12 units of 
length in the set of natural numbers   or λ' = 12/2 = 6 units of length in the set of odd numbers 1 , the 
Composite Numbers (CN)3 described by equation (16a) coincide with the intersections of the transverse 
wave and the axis Ox (zero point deviation from the axis Ox in the direction of y axis, as shown in 
Figure 5b). The appearance of composite numbers that are multiples of 3 on the arithmetic line is the 
most common of any other odd number; it divides the sum of odd pairs 1  in infinite pairs of 
consecutive odd numbers, starting with the square of 3 and reaching the utmost ends of the arithmetic 
line of Figure 5a. These successive pairs, of which, as we have explained, their first number is of the 
form (6λ-1) while the second form (6λ+1), will be either primes or multiple of primes > 3. All these 
pairs are candidates to become the Twin Primes2

But also the elements of the set Ε5 = 5×(5, 7, 9, 11, 13, 15, 17, 19, 21 …, 2κ+1…) constitute a 
periodic phenomenon in the set of numbers starting from 25, with a wavelength λ = 45-25 = 20 or λ' = 
20/2 = 10 in the set 

, as long as none of the two numbers of the pair is 
crossed by a subsequent wave, thus remain to be primes, as shown in Figure 5b. 

1 . The formula (16b) gives the multiples of 5 that are transverse sections of the 
wave with the axis Ox, which apparently are composite numbers 

Ε5:        (CN)5 = 25 + 10μ =  52 +2×5μ,    μ=0,1,2,…     (16b)  

Quite similarly, The elements of Ε7 = 7×(7, 9, 11,13, 15, 17, 19, 21, 23…,2κ+1…) are also 
periodic at a frequency 14μ, where 1µ∈ . The first term is 49 and the formula that gives the multiples 
of 7 is 

Ε7:        (CN)7 = 49 + 14μ   = 72 +2*7μ ,    μ=0,1,2,…    (16c) 

                                                 
2 A twin prime is a prime number that differs from another prime number by two, for example the twin prime pair 
(3, 5). 
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(b) 
Figure 5: Formation of composite numbers starting with the square of 3 until (a) 1000 and (b) detail until 91.  

 
 
Generalizing, we get a similar rationale in the calculation of the formula which gives us all the 

multiples of the odd number (2n+1): 

Ε(2n+1):        (CN)(2n +1) = (2n + 1)2  + 2(2n + 1)μ ,    μ=0,1,2,…      (16d) 

From (16d) we conclude that, as we move to increasingly odd numbers, so the composite numbers 
(CN) set up by their respective primes are ever fewer because, firstly the start of a wave is shifted to the 
right of the numerical line, and secondly the wavelength increases. 

Through a set of thousands, millions, (even for infinite remote parts of arithmetic line) waves with 
different wavelengths and the phase difference, some numbers of the numerical line, which is located in 
the heart of the package, are left untouched by all this multitude of waves. This means that there are 
some ΝΡ natural numbers which remain primes, because apparently the following relationship is 
satisfied: 

(ΝΡ – Ρi
2

 )/2Piμi ∉       (16e)   
where Ρi  consecutive primes ≤ √Ν.  That means all the conditions are fulfilled: 

(ΝΡ-25)/10μi,  (ΝΡ-49)/14μi, (ΝΡ-121)/22μi,… (ΝΡ – Ρi
2

 )/2Piμi  ∉  

 
These numbers, being infinite and endless, as Euclid proved using the “Reductio ad absurdum” method, 
are the Prime Numbers (PN) that appear in Figure 6. 

 



20 
 

 

 
(a) 

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91

W
av

es
 fr

om
 p

ri
m

es

n

3^2 5^2 7^2 9^2

 
(b) 

Figure 6: (a) Waves proceeding from the primes (3, 5, 7, 11, 13, 17) as well as the composites (9,15). 
                  (b) Detail for the primes (3, 5, 7) and the composite number 9.  

 
As we can see from Figure 6, only the waves starting at the squares of primes (original 

squares) create composite numbers. In contrast, the waves starting from composite numbers (abusive 
squares), having a growing density as we move to larger numbers, do not create new composite 
numbers. That's why we call them “sterile waves”. 

If therefore from the set 1  of odd numbers we create subsets Αi, having as first term of each 
successive subset the squares of all odd numbers and last term the odd number which is the next 
smallest square of the next odd, namely: 

Αi = { x / x: (2i+1)2 ≤  x < (2i+3)2,  x=odd},         (17) 
Such a subset will include (2i+3)2 - (2i+1)2 = 8(i+1) terms that belong to the set of natural 

numbers  . Therefore, the number of terms in the set 1  of odd ones will be:                        

Ν1 = 8(i+1) /2 = 4(i +1)  όπου i∈ .        (18) 
Due to the way of their creation (from the square of the odd 2i+1 up to the previous odd 

number than the square of 2i+3), the subsets Ai are disjoint, and the union of all these subsets equals 
the set of the odd numbers 1 : 

A0∪Α1∪Α2∪Α3∪… = 1          (19)  
where (card = cardinality) 

cardA0 = 4,   and   cardAi+1 - cardAi = 4,  i = 1,2,…   (20) 
In Table 8 we present these subsets of the odd numbers Αi from 1 to 1087 (for n=0 to n=15), 

which correspond to the squares of the odd numbers that are smaller or equal to √1087, that is 31. 
In these subsets for easier distinction, the composites are encoded in ‘turquoise’ while the primes 
in ‘black’ colour. 

By the term “wave number” we mention in the following subsets we mean the number of 
waves which propagate through the particular subset. The first subset, 1 to 7 (n = 0), is not 
traversed by any wave. The second, 9 to 23, (n = 1), is traversed by a wave that gives us the 
multiples of 3. The third, 25 to 47 (n = 2), by two waves that give us the multiples of 3 and 5, and 
so on. 
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According to the above, the conversion of some of the natural numbers to composites and the 
distribution of the arithmetic line is governed by specific rules that are uniform for all natural 
numbers. The procedure is deterministic and therefore independent of sample size. 

 
Table 8: Subsets of odd numbers Αi (from n = 0 to n = 15), the composites encoded in turquoise colour while the primes 
in black. The vertical bar (|) appears only for visual purposes, every five numbers.   

  
For n = 0 => A0 : Sum of odd terms = 4(n +1) = 4 => Number of waves n = 0: {001  003 005 007} 

For  n = 1 => A1 : Sum of odd terms = 4(n +1) = 8 => Number of waves n = 1: {009  011  013  015  017 | 
019  021  023} 
For  n = 2  => A2: Sum of odd terms = 4(n +1) =12 => Number of waves  n = 2 
{025 027 029 031 033 | 035 037 039 041 043 | 045 047} 
For  n = 3  => A3: Sum of odd terms = 4(n +1) =16  Number of waves  n = 3 
{049 051 053 055 057 | 059 061 063 065 067 | 069 071 073 075 077 | 079 
For  n =  4  => A4: Sum of odd terms = 4(n +1) =20   Number of waves   n = 4 
{081 083 085 087 089 | 091 093 095 097 099 | 101 103 105 107 109 | 111 113 115 117 119} 
For  n =  5  =>A5: Sum of odd terms = 4(n +1) =24   Number of waves  n = 5 
{121 123 125 127 129 | 131 133 135 137 139 | 141 143 145 147 149 | 151 153 155 157 159 | 
161 163 165 167} 
For  n =  6  =>A6: Sum of odd terms = 4(n +1) =28  Number of waves  n = 6 
{169 171 173 175 177 | 179 181 183 185 187 | 189 191 193 195 197 | 199 201 203 205 207 
209 211 213 215 217 |  219 221 223} 
 
For  n =  7  => A7: Sum of odd terms = 4(n +1) =32  Number of waves  n = 7 
{225 227 229 231 233 |235 237 239 241 243 | 245 247 249 251 253 | 255 257 259 261 263 | 
265 267 269 271 273 | 275 277 279 281 283| 285 287 } 
For  n =  8  => A8: Sum of odd terms = 4(n +1) =36  Number of waves  n = 8 
{289 291 293 295 297| 299 301 303 305 307| 309 311 313 315 317|319 321 323 325 327 
329  331 333 335 337 | 339 341 343 345 347 | 349 351 353 355 357 | 359} 
 
For  n = 9  => A8: Sum of odd terms = 4(n +1) =40    Number of waves  n = 9 
{361 363 365 367 369 | 371 373 375 377 379 | 381 383 385 387 391 | 389 393 395 397 399 | 
401 403 405 407 409 |  411 413 415 417 419 | 421 423 425 427 429 | 431 433 435 437 439} 
For  n = 10 =>A10: Sum of odd terms = 4(n +1) =44  Number of waves  n = 10 
{441 443 445 447 449 | 451 453 455 457 459 | 461 463 465 467 469 | 471 473 475 477 479 | 
481 483 485 487 489| 491 493 495 497 499 | 501 503 505 507 509| 511 513 515 517 519 | 
521 523 525 527} 
For  n = 11 =>A11: Sum of odd terms = 4(n +1) =48  Number of waves  n = 11 
{529 531 533 535 537| 539 541 543 545 547| 549 551 553 555 557|559 561 563 565 567 | 
569 571 573 575 577| 579 581 583 585 587| 589 591 593 595 597| 599 601 603 605 607| 
609 611 613 615 617* 619 621 623 } 
For  n =  12=>A12: Sum of odd terms = 4(n +1) =52 Number of waves  n = 12 
{625 627 629 631 633| 635 637 639 641 643| 645 647 649 651 653| 655 657 659 661 663| 
665 667 669 671 673| 675 677 679 681 683|685 687 689 691 693 | 695 697 699 701 703| 
705 707 709 711 713* 715 717 719 721 723* 725 727} 
For  n =13 => A13: Sum of odd terms = 4(n +1) =56 Number of waves  n = 13 
{729 731 733 735 737| 739 741 743 745 747| 749 751 753 755 757|759 761 763 765 767| 
769 771 773 775 777| 779 781 783 785 787| 789 791 793 795 797| 799 801 803 805 807| 
809 811 813 815 817| 819 821 823 825 827| 829 831 833 835 837| 839 } 
For  n =14 => A14: Sum of odd terms = 4(n +1) =60 Number of waves  n = 14 
{841 843 845 847 849| 851 853 855 857 859| 861 863 865 867 869|871 873 875 877 879| 
881 883 885 887 889| 891 893 895 897 899| 901 903 905 907 909| 911 913 915 917 919| 
921 923 925 927 929|931 933 935 937 939| 941 943 945 947 949| 951 953 955 957 959| } 
For n =15 => A15: Sum of odd terms = 4(n +1) =64  Number of waves  n = 15 
{961 963 965 967 969|   971 973 975 977 979| 981 983 985 987 989| 991 993 995 997 999| 
1001 003 005 007 009| 011 013 015 017 019| 021 023 025 027 029|   031 033 035 037 039| 
041 043 045 047 049| 051 053 055 057 059| 061 063 065 067 069|  071 073 075 077 079| 
081 083 085 087} 
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From what we have presented here the validity of the statements below is obvious. 
 
Sentence-1 
The relation between the first term χ0 of every subset An and its ascending number n is: χ0 = 
(2n+1)2. At the same time, the symbol n represents also the number of waves that transverse the 
concrete subset (An).  

 
Sentence-2 
Every new subset Αi has 4 terms (odd numbers) more than its previous subset, Αi-1. See also 
Eq(20).  

 
Sentence-3 

In every new subset Αi only one new wave acts, starting from (2n + 1)2 and step (half wave) 
2(2n + 1). Since the term (2n + 1) is a prime number, every new wave creates composite numbers 
using the formula (16d), that is, (CN)(2n +1) = (2n + 1)2  + 2(2n + 1)μ.   

 
Sentence-4 

Easily proved that for any n, in the concrete wave μ may take only the values  μ = 0, 1 and 2 
(three intersections of the transverse wave with the axis Ox for each new subset). Since the term 
(2n + 1) is a composite number, it does not create new composites based on the formula: 

 (CN)(2n +1) = (2n + 1)2  + 2(2n + 1)μ.  
 
Sentence-6 
In this way the complex numbers are created, each new wave will form 0, 1, or at most 2 new 
composite numbers, in the first subset it acts. The value of μ=2 coincides with the values that are 
multiples of 3. 

 
Sentence-7 
From the above analysis, it is showed that the creation of composite numbers follows a uniform 
determinism, from the first up to the last subset Ai we created, using the formula Αi = {χ /χ= 
(2n+1)2 , χ < (2n+3)2}  (17) . Therefore, both the crowd and the distribution of prime numbers 
will also be deterministically defined and uniform throughout the set of natural numbers. 

 
Finding 

As long as therefore the distribution of prime numbers, in the extended sample that we 
examined, (and which we can expand indefinitely) is such that it follows very closely the 
probabilistic relationship (14a) and this distribution is strictly deterministically defined for all of 
natural numbers, we have the right to extend the validity of (14a) for the entire set of natural 
numbers. 

 

5 Extension of equation (14α) for the set of natural numbers 
Theorem-4: If we call ( )p N  the function that counts the number of ordered pairs of primes that 

fulfill Goldbach Conjecture for a natural number Ν, this crowd is approximated by the formula:  
( )p N = Ν/[log(Ν/2)]2            (21) 

PROOF 

Let us consider a sufficiently large even number Ν. According to the Prime Number Theorem 
(PNT), the primes that exist in the set from 1 to Ν, are approximated by: 
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π(Ν)=Ν/log(Ν)               (22) 
If we decompose this even number in ordered pairs of odd numbers according to equations (9) 

and (10), the odd numbers that correspond to the column Α, and are in increasing order, will be all less 
than Ν/2. Therefore, the primes α1, which exist in column Α, will be given by: 

α1= π(Ν/2)=Ν/2/[log(N/2)]              (22a) 

Therefore the primes β1 that exist in the column Β, will be the subtraction of (22a) from (22) 

β1= Ν/log(Ν)- (Ν/2)/log(Ν/2)              (23) 
But Ν/log(Ν) can be written as Ν/log[2×(N/2)]  or  Ν/[log(N/2) + log2], and for a sufficiently 

large Ν, is approximated by 

Ν/log(N/2)            ( 23a)  

Substituting (23a) into (23) we obtain:  

β1= Ν/log(N/2) - (Ν/2)/log(Ν/2)= Ν/2/[log(N/2)]              (24) 
Thus we notice that, for very large even numbers N, the primes α1 in column Α and the primes β1 

in column Β, tend to become equal (α1 ≅ β1). 
From what we have mentioned for the crowd ns of ordered pairs in which the even number Ν is 

decomposed, if it is set in the form 6n-2 and 6n it is (N/4)-1, while if it is in the form 6n+2 it is Ν/4. 
For very large Ν, we can consider all three cases with ns=N/4, without inserting any serious mistake. 

Substituting the values of α1, β1 and ns in eq(13a), we have: 

npp = (Ν/2)/[log(N/2)]2/( N/4)  or 

P(N) = N/[ log(N/2)]2         (21) 

The above relation completes the proof of theorem 4.■ 
 
The graphical representation of (21) is illustrated by the green line in Figure 7.  
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Figure 7: Comparison between the real number of pairs of prime numbers that fulfill Goldbach conjecture and the 
approximation using eq(13a) and eq(21). 

 
In Figure 7 we observe that, the graph representing the equation (21) and representing the 

number of verifications of the Goldbach conjecture, is below the number of verifications using (13a) 
and is located just below the average line of actual verifications (red line). Note that the red line of 
Figure 7 does not correspond to the red line in Figure 2, but the union of sets of values corresponding 
together to the purple and red line in Fig.2, which corresponds to the sum of real pairs. 

This is a natural consequence of the fact that the number of prime numbers calculated from 
(PNT), is below the actual number of primes π(Ν), as shown in Figure 8. 
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Figure 8: Prime Number Theorem  

[red line: according to the function Li(x),  
Blue line: true number,  

Green line: according to x/log(x)] 
 

 

6. Monotonically increasing function ( )p N  

Theorem-5 
We shall prove that the estimator of the verifications P(Ν) of Goldbach conjecture is a 

monotonically increasing function of Ν. 
PROOF 
We consider the continuous function ( )p x = x/[log(x/2)]2. The first and second derivatives are 

given by:  

( )
( ) ( )

( )
( )2 3 3

log 2 21 2
log 2 log 2 log 2

x
p x

x x x

−
′ = − ≡

          
    (25) 

( )
( ) ( )

( )
( )4 3 4

log 2 36 2 2
log 2 log 2 log 2

x
p x

x x x x x x

−
′′ = − ≡ −

          
   (26) 

 
Since for the first derivative it obviously holds that: 

( ) 20, 2p x x e′ > ∀ >  ,      (27) 

while the second derivative never becomes zero : 
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( ) 30, 2p x x e′′ > ∀ > ,       (29) 

it is finally concluded that the function ( )p x  is monotonically increasing and convex.■ 

Note: The proof of Theorem-5 can be also achieved on the basis of elementary argumentation, 
which is cited in Appendix B.  

 

7. Conclusion 
We proved a stronger sentence than the original Goldbach conjecture, which can be formulated 

as follows: 
 
Final sentence 
The strictly predetermined distribution of primes along the arithmetic line is such as to ensure 

that as we move towards larger and larger even numbers N, the growth of the product (α1β1) is greater 
than the growth rate of the number of ordered pairs of odd numbers ns in which the even number 
under question is analyzed using equations (9) and (10), where α1 is the number of prime numbers in 
column A and β1 is the number of prime numbers in column B of ordered pairs. 

The direct result of this property of prime numbers is that: 
Not only the Goldbach conjecture is true, but the number of verifications has a clearly 

increasing trend, as we move to larger even numbers, which is determined by the relation (21). 
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APPENDIX Α 
 

Prime number theorem 

Let π(x) be the prime-counting function that gives the number of primes less than or equal to 
x, for any real number x. The prime number theorem then states that the limit of the quotient of 
the two functions π(x) and ( ) ( )ln logx x x x≡  as x approaches infinity is 1, which is expressed 
by the formula 

( )lim 1
logx

x
x x
π

→∞
= ,      (Α-1) 

known as the asymptotic law of distribution of prime numbers. Using asymptotic 
notation this result can be restated as 

( ) ( )log
xx

x
π        (Α-2) 

This theorem does not say anything about the limit of the difference of the two functions as x 
approaches infinity. Instead, the theorem states that x/ln(x) approximates π(x) in the sense that 
the relative error of this approximation approaches 0 as x approaches infinity. 

The prime number theorem is equivalent to the statement that the nth prime number pn is 
approximately equal to n ln(n), again with the relative error of this approximation approaching 
0 as n approaches infinity. 

For analytical proofs we refer to [38,39] among others.  
 

Corrolary: The average density of primes is given by: ( ) 1
log

N
N

π  . Obviously, it decreases 

by increasing Ν. As a result, the density of primes in the column Α is greater than that of 
column Β and at the same time the density of primes in the two columns is different. 
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APPENDIX Β 
 

The function log Ν 
 The logarithmic function logN  that interferes in the formula π(Ν)=Ν/log(N) for the calculation 

of the primes (shown in Figure 9), has the property to increase very slowly. The latter property plays 
a significant role in our study. 

 
Figure 9: The logarithmic function (natural logarithm, with base e) 

 
In Figure 10 we see the graphs of xα for small values of α, such as α = 0.1, 0.2, 0.3, 0.4, 0.5 and 

the logarithmic function with the sign (×) in thick red, for a comparison. As we can notice, the smaller 
α is the more the graph of xα approaches the horizontal line passing through 1 (for α0, xαx0≡1). 
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Figure 10: Graphical representation of the powers of x (xα) for small positive values of α, in comparison with the 

logarithmic function. 
 
For values α <0.3 (concretely for α < 1/e) the logarithmic curve intersects the curves xα near the 

left part of the figure from down to upwards. However, when we go sufficiently right, we shall see 
that the curve log(x) intersects again xα and remains underneath forever. In more detail, the 
logarithmic curve intersects for the first time x0.3 at x ≅ 5.1107 and again the same curve (i.e. x0.3) at 
the value x≅379.0962 (where logx ≅ x0.3 ≅ 5.9378), the curve x0.2 close to x ≅ 3.3211e+05 (where logx 
≅ x0.2 ≅ 12.7132) and the function x0.1 close to x=3.4306e+015 (where logx ≅ x0.1 ≅ 35.7715).  

In other words, the function logx is as to try to “coincide” with x0 of course without being able to 
achieve it. However, despite the fact that logx never equals to x0, it achieves to sink below xε and to 
remain underneath, for every positive number ε, no matter how small it is, when x becomes 
sufficiently large. In brief, when x becomes sufficiently large the function logx increases slower than 
every power of x. Obviously, in some manner, since logx increases slower than every power of x, the 
same happens for every power of logx, such as  (logx)2, (logx)3, (logx)4, and so on. This property of the 
function logx has the result that the verifications of Goldbach conjecture P(Ν) in eq (21), increase as 
Ν increase, because the nominator increase faster than the denominator. 
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