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Abstract

Deep learning is the mainstream technique for many machine learning tasks, including image recog-
nition, machine translation, speech recognition, and so on. It has outperformed conventional methods in
various fields and achieved great successes. Unfortunately, the understanding on how it works remains
unclear. It has the central importance to lay down the theoretic foundation for deep learning.

In this work, we give a geometric view to understand deep learning: we show that the fundamental
principle attributing to the success is the manifold structure in data, namely natural high dimensional data
concentrates close to a low-dimensional manifold, deep learning learns the manifold and the probability
distribution on it.

We further introduce the concepts of rectified linear complexity for deep neural network measuring
its learning capability, rectified linear complexity of an embedding manifold describing the difficulty to
be learned. Then we show for any deep neural network with fixed architecture, there exists a manifold
that cannot be learned by the network. Finally, we propose to apply optimal mass transportation theory
to control the probability distribution in the latent space.
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1 Introduction

Deep learning is the mainstream technique for many machine learning tasks, including image recognition,
machine translation, speech recognition, and so on [12]. It has outperformed conventional methods in
various fields and achieved great successes. Unfortunately, the understanding on how it works remains
unclear. It has the central importance to lay down the theoretic foundation for deep learning.

We believe that the main fundamental principle to explain the success of deep learning is the manifold
structure in the data, there exists a well accepted manifold assumption: natural high dimensional data
concentrates close to a non-linear low-dimensional manifold.

Manifold Representation The main focus of various deep learn methods is to learn the manifold structure
from the real data and obtain a parametric representation of the manifold. In general, there is a probability
distribution µ in the ambient space X , the support of µ is a low dimensional manifold Σ ⊂ X . For example,
an autoencoder learns the encoding map ϕθ : X → F and the decoding map ψθ : F → X , where F
is the latent space. The parametric representation of the input manifold Σ is given by the decoding map
ψθ. The reconstructed manifold Σ̃ = ψθ ◦ ϕθ(Σ) approximates input manifold. Furthermore, the DNN
also learns and controls the distribution induced by the encoder (ϕθ)∗µ defined on the latent space. Once
the parametric manifold structure is obtained, it can be applied for various application, such as randomly
generating a sample on Σ̃ as a generative model. Image denoising can be reinterpreted geometrically as
projecting a noisy sample onto Σ̃ representing the clean image manifold, the closest point on Σ̃ gives the
denoised image.

Learning Capability An autoencoder implemented by a ReLU DNN offers a piecewise functional space,
the manifold structure can be learned by optimizing special loss functions. We introduce the concept of
Rectified Linear Complexity of a DNN, which represents the upper bound of the number of pieces of all
the functions representable by the DNN, and gives a measurement for the learning capability of the DNN.
On the other hand, the piecewise linear encoding map ϕθ defined on the ambient space is required to be
homemorphic from Σ to a domain on F . This requirement induces strong topological constraints of the
input manifold Σ. We introduce another concept Rectified linear Complexity of an embedded manifold
(Σ,X ), which describes the minimal number of pieces for a PL encoding map, and measures the difficulty
to be encoded by a DNN. By comparing the complexities of the DNN and the manifold, we can verify if the
DNN can learn the manifold in principle. Furthermore, we show for any DNN with fixed architecture, there
exists an embedding manifold that can not be encoded by the DNN.

Latent Probability Distribution Control The distribution (ϕθ)∗µ induced by the encoding map can be
controlled by designing special loss functions to modify the encoding map ϕθ. We also propose to use
optimal mass transportation theory to find the optimal transportation map defined on the latent space, which
transforms simple distributions, such as Gaussian or uniform, to (ϕθ)∗µ. Comparing to the conventional
WGAN model, this method replaces the blackbox by explicit mathematical construction, and avoids the
competition between the generator and the discriminator.

1.1 Contributions

This work proposes a geometric framework to understand autoencoder and general deep neural networks and
explains the main theoretic reason for the great success of deep learning - the manifold structure hidden in
data. The work introduces the concept of rectified linear complexity of a ReLU DNN to measure the learning
capability, and rectified linear complexity of an embedded manifold to describe the encoding difficulty.
By applying the concept of complexities, it is shown that for any DNN with fixed architecture, there is a
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manifold too complicated to be encoded by the DNN. Finally, the work proposes to apply optimal mass
transportation map to control the distribution on the latent space.

1.2 Organization

The current work is organized in the following way: section 2 briefly reviews the literature of autoencoders;
section 3 explains the manifold representation; section 4 quantifies the learning capability of a DNN and
the learning difficulty for a manifold; section 5 proposes to control the probability measure induced by the
encoder using optimal mass transportation theory. Experimental results are demonstrated in the appendix 6.

2 Previous Works

The literature of autoencoders is vast, in the following we only briefly review the most related ones as
representatives.

Traditional Autoencoders (AE) The traditional autoencoder (AE) framework first appeared in [2], which
was initially proposed to achieve dimensionality reduction. [2] use linear autoencoder to compare with
PCA. With the same purpose, [14] proposed a deep autoencoder architecture, where the encoder and the
decoder are multi-layer deep networks. Due to non-convexity of deep networks, they are easy to converge
to poor local optima with random initialized weights. To solve this problem, [14] used restricted Boltzmann
machines (RBMs) to pre-train the model layer by layer before fine-tuning. Later [4] used traditional AEs to
pre-train each layer and got similar results.

Sparse Encoders The traditional AE uses bottleneck structure, the width of the middle later is less than
that of the input layer. The sparse autoencoder (SAE) was introduced in [10], which uses over-complete
latent space, that is the middle layer is wider than the input layer. Sparse autoencoders [19, 21, 20] were
proposed.

Extra regularizations for sparsity was added in the object function, such as the KL divergence between
the bottle neck layer output distribution and the desired distribution [18]. SAEs are used in a lot of classifi-
cation tasks [31, 26], and feature tranfer learning [8].

Denoising Autoencoder (DAE) [30, 29] proposed denoising autoencoder (DAE) in order to improve the
robustness from the corrupted input. DAEs add regularizations on inputs to reconstruct a “repaired” input
from a corrupted version. Stacked denoising autoencoders (SDAEs) is constructed by stacking multiple
layers of DAEs, where each layer is pre-trained by DAEs. The DAE/SDAE is suitable for denosing purposes,
such as speech recognition [9, 9], and removing musics from speeches [33], medical image denoising [11]
and super-resolutions [7].

Contractive Autoencoders (CAEs) [24] proposed contractive autoencoders (CAEs) to achieve robustness
by minimizing the first order variation, the Jacobian. The concept of contraction ratio is introduced, which
is similar to the Lipschitz constants. In order to learn the low-dimensional structure of the input data, the
panelty of construction error encourages the contraction ratios on the tangential directions of the manifold
to be close to 1, and on the orthogonal directions to the manifold close to 0. Their experiments showed that
the learned representations performed as good as DAEs on classification problems and showed that their
contraction properties are similar. Following this work, [23] proposed the higher-order CAE which adds an
additional penalty on all higher derivatives.

3



Generative Model Autoencoders can be transformed into a generative model by sampling in the latent
space and then decode the samples to obtain new data. [30] used Bernoulli sampling to AEs and DAEs to
first implement this idea. [5] used Gibbs sampling to alternatively sample between the input space and the
latent space, and transfered DAEs into generative models. They also proved that the generated distribution
is consistent with the distribution of the dataset. [22] proposed a generative model by sampling from CADs.
They used the information of the Jacobian to sample around the latent space.

The Variational autoencoder (VAE) [15] use probability perspective to interprete autoencoders. Suppose
the real data distribution is µ in X , the encoding map ϕθ : X → F pushes µ forward to a distribution in the
latent space (ϕθ)∗µ. VAE optimizes ϕθ, such that (ϕθ)∗µ is normal distributed (ϕθ)∗µ ∼ N (0, 1) in the
latent space.

Followed by the big success of GANs, [17] proposed adversarial autoencoders (AAEs), which use GANs
to minimize the discrepancy between the push forward distribution (ϕθ)∗µ and the desired distribution in
the latent space.

3 Manifold Structure

Deep learning is the mainstream technique for many machine learning tasks, including image recognition,
machine translation, speech recognition, and so on [12]. It has outperformed conventional methods in
various fields and achieved great successes. Unfortunately, the understanding on how it works remains
unclear. It has the central importance to lay down the theoretic foundation for deep learning.

We believe that the main fundamental principle to explain the success of deep learning is the mani-
fold structure in the data, namely natural high dimensional data concentrates close to a non-linear low-
dimensional manifold.

The goal of deep learning is to learn the manifold structure in data and the probability distribution
associated with the manifold.

3.1 Concepts and Notations

The concepts related to manifold are from differential geometry, and have been translated to the machine
learning language.

ϕβ
ϕα

ϕαβ

Uα
Uβ

X

F

Σ(µ)

Figure 1: A manifold structure in the data.
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Definition 3.1 (Manifold). An n-dimensional manifold Σ is a topological space, covered by a set of open
sets Σ ⊂ ⋃α Uα. For each open set Uα, there is a homeomorphism ϕα : Uα → Rn, the pair (Uα, ϕα) form
a chart. The union of charts form an atlas A = {(Uα, ϕα)}. If Uα ∩ Uβ 6= ∅, then the chart transition map
is given by ϕαβ : ϕα(Uα ∩ Uβ)→ ϕβ(Uα ∩ Uβ),

ϕαβ := ϕβ ◦ ϕ−1
α .

a. Input manifold b. latent representation c. reconstructed manifold
M ⊂ X D = ϕθ(M) M̃ = ψθ(D)

Figure 2: Auto-encoder pipeline.

As shown in Fig. 1, suppose X is the ambient space, µ is a probability distribution defined on X ,
represented as a density function µ : X → R≥0. The support of µ,

Σ(µ) := {x ∈ X |µ(x) > 0}

is a low-dimensional manifold. (Uα, ϕβ) is a local chart, ϕα : Uα → F is called an encoding map, the
parameter domain F is called the latent space or feature space. A point x ∈ Σ is called a sample, its
parameter ϕα(x) is called the code or feature of x. The inverse map ψα := ϕ−1

α : F → Σ is called the
decoding map. Locally, ψα : F → Σ gives a local parametric representation of the manifold.

Furthermore, the encoding map ϕα : Uα → F induces a push-forward probability measure (ϕα)∗µ
defined on the latent space F : for any measurable set B ⊂ F ,

(ϕα)∗µ(B) := µ(ϕα(B)).

The goal for deep learning is to learn the encoding map ϕα, decoding map ψα, the parametric represen-
tation of the manifold ψα : F → Σ, furthermore the push-forward probability (ϕα)∗µ and so on. In the
following, we explain how an autoencoder learns the manifold and the distribution.

3.2 Manifold Learned by an Autoencoder

Autoencoders are commonly used for unsupervised learning [3], they have been applied for compression,
denoising, pre-training and so on. In abstract level, autoencoder learns the low-dimensional structure of data
and represent it as a parametric polyhedral manifold, namely a piecewise linear (PL) map from latent space
(parameter domain) to the ambient space, the image of the PL mapping is a manifold. Then autoencoder
utilizes the polyhedral manifold as the approximation of the manifold in data for various applications. In
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implementation level, an autoencoder partition the manifold into pieces (by decomposing the ambient space
into cells) and approximate each piece by a hyperplane as shown in Fig. 2.

Architecturally, an autoencoder is a feedforward, non-recurrent neural network with the output layer
having the same number of nodes as the input layer, and with the purpose of reconstructing its own inputs.
In general, a bottleneck layer is added for the purpose of dimensionality reduction. The input space X is the
ambient space, the output space is also the ambient space. The output space of the bottle neck layer F is the
latent space.

{(X ,x), µ,Σ} ϕ
- {(F , z), D}

{(X , x̃), Σ̃}

ψ

?

ψ ◦ ϕ
-

An autoencoder always consists of two parts, the encoder and the decoder. The encoder takes a sample
x ∈ X and maps it to z ∈ F , z = ϕ(x), the image z is usually referred to as latent representation of
x. The encoder ϕ : X → F maps Σ to its latent representation D = ϕ(Σ) homemorphically. After that,
the decoder ψ : F → X maps z to the reconstruction x̃ of the same shape as x, x̃ = ψ(z) = ψ ◦ ϕ(x).
Autoencoders are also trained to minimise reconstruction errors:

ϕ,ψ = argminϕ,ψ

∫
X
L(x, ψ ◦ ϕ(x))dµ(x),

where L(·, ·) is the loss function, such as squared errors. The reconstructed manifold Σ̃ = ψ ◦ ϕ(Σ) is used
as an approximation of Σ.

In practice, both encoder and decoder are implemented as ReLU DNNs, parameterized by θ. Let X =
{x(1),x(2), . . . ,xk} be the training data set, X ⊂ Σ, the autoencoder optimizes the following loss function:

min
θ
L(θ) = min

θ

1

k

k∑
i=1

‖x(i) − ψθ ◦ ϕθ(x(i))‖2.

Both the encoder ϕθ and the decoder ψθ are piecewise linear mappings. The encoder ϕθ induces a cell
decomposition D(ϕθ) of the ambient space

D(ϕθ) : X =
⋃
α

Uαθ ,

where Uαθ is a convex polyhedron, the restriction of ϕθ on it is an affine map. Similarly, the piecewise
linear map ψθ ◦ ϕθ induces a polyhedral cell decomposition D(ψθ, ϕθ), which is a refinement (subdivision)
of D(ϕθ). The reconstructed polyhedral manifold has a parametric representation ψθ : F → X , which
approximates the manifold M in the data.

Fig. 2 shows an example to demonstrate the learning results of an autoencoder. The ambient space X is
R3, the manifold Σ is the buddha surface as shown in frame (a). The latent space is R2, the encoding map
ϕθ : X → D parameterizes the input manifold to a domain on D ⊂ F as shown in frame (b). The decoding
map ψθ : D → X reconstructs the surface into a piecewise linear surface Σ̃ = ψθ ◦ ϕθ(Σ), as shown in
frame (c). In ideal situation, the composition of the encoder and decoder ψθ ◦ ϕθ ∼ id should equal to the
identity map, the reconstruction Σ̃ should coincide with the input Σ. In reality, the reconstruction Σ̃ is only
a piecewise linear approximation of Σ.

Fig. 3 shows the cell decompositions induced by the encoding mapD(ϕθ) and that by the reconstruction
map D(ψθ ◦ ϕθ) for another autoencoder. It is obvious that D(ψθ ◦ ϕθ) subdivides D(ϕθ).
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d. cell decomposition e. cut view of f. cell decomposition
D(ϕθ) D(ϕθ) D(ψθ ◦ ϕθ)

Figure 3: Cell decomposition induced by the encoding, decoding maps.

3.3 Direct Applications

Once the neural network has learned a manifold Σ, it can be utilized for many applications.

Generative Model Suppose X is the space of all n × n color images, where each point represents an
image. We can define a probability measure µ, which represents the probability for an image to represent
a human face. The shape of a human face is determined by a finite number of genes. The facial photo is
determined by the geometry of the face, the lightings, the camera parameters and so on. Therefore, it is
sensible to assume all the human facial photos are concentrated around a finite dimensional manifold, we
call it as human facial photo manifold Σ.

By using many real human facial photos, we can train an autoendoer to learn the human facial photo
manifold. The learning process produces a decoding map ψθ : F → Σ̃, namely a parametric representation
of the reconstructed manifold. We randomly generate a parameter z ∈ F (white noise), ϕθ(z) ∈ Σ̃ gives a
human facial image. This can be applied as a generative model for generating human facial photos.

Denoising Tradition image denoising performs Fourier transformation of the input noisy image, then fil-
tering out the high frequency components, inverse Fourier transformation to get the denoised image. This
method is general and independent of the content of the image.

In deep learning, image denoising can be re-interpreted as geometric projection as shown in Fig. 4.
Suppose we perform human facial image denoising. The clean human facial photo manifold is Σ, the noisy
facial image p̃ is not in Σ but close to Σ. We project p̃ to Σ, the closest point to p̃ on Σ is p, then p is the
denoised image.

In practice, suppose an noisy facial image is given x, we train an autoencoder to obtain a manifold of
clean facial images represented as ψθ : F → X and an encoding map ϕθ : X → F , then we encode the
noisy image z = ϕ(x), then maps z to the reconstructed manifold x̃ = ψθ(z). The result x̃ is the denoised
image. Fig. 5 shows the projection of several outliers onto the buddha surface using an autoencoder.

We apply this method for human facial image denoising as shown in Fig. 6, in frame (a) we project the
noisy image to the human facial image manifold and obtain good denoising result; in frame (b) we use the
cat facial image manifold, the results are meaningless. This shows deep learning method heavily depends
on the underlying manifold, which is specific to the problem. Hence the deep learning based method is not
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Σ
Rn

p

p̃

Figure 4: Geometric interpretation of image denoising.

a. input manifold b. reconstructed manifold

Figure 5: Geometric projection.

as universal as the conventional ones.

4 Learning Capability

4.1 Main Ideas

Fig. 7 shows another example, an Archimedean spiral curve embedded in R2, the curve equation is given
by ρ(θ) = (a + bθ)eiwθ, a, b, w > 0 are constants, θ ∈ (0, T ]. For relatively small range T , the encoder
successfully maps it onto a straight line segment, and the decoder reconstructs a piecewise linear curve with
good approximation quality. When we extend the spiral curve by enlarging T , then at some threshold, the
autoencoder with the same architecture fails to encode it.

The central problems we want to answer are as follows:

1. How to decide the bound of the encoding or representation capability for an autoencoder with a fixed
ReLU DNN architecture?

2. How to describe and compute the complexity of a manifold embedded in the ambient space to be
encoded ?
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(a) project to the human facial (b) project to the cat facial
image manifold image manifold

Figure 6: Image denoising.

a. Input manifold b. latent representation c. reconstructed manifold
M ⊂ X D = ϕθ(M) M̃ = ψθ(D)

d. cell decomposition e. cell decomposition f. level set
D(ϕθ) D(ψθ ◦ ϕθ)

Figure 7: Encode/decode a spiral curve.

3. How to verify whether a embedded manifold can be encoded by a ReLU DNN autoencoder?
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For the first problem, our solutions are based on the geometric intuition of the piecewise linear nature of
encoder/decoder maps. By examining fig. 3 and fig. 7, we can see the mapping ϕθ and ψθ induces polyhedral
cell decompositions of the ambient space X ,D(ϕθ) andD(ψθ ◦ϕθ) respectively. The number of cells offers
a measurement to describing the representation capabilities of these maps, the upper bound of the number
of cells maxθ |D(ϕθ)| describes the limit of the encoding capability of ϕθ. We call this upper bound as
the rectified linear complexity of the autoencoder. The rectified linear complexity can be deduced from the
architecture of the encoder network, as claimed in our theorem 4.5.

For the second problem, we introduce the similar concept to the embedded manifold. The encoder map
ϕθ has a very strong geometric requirement: suppose Uk is a cell in D(ϕθ), then ϕθ : Uk → F is an affine
map to the latent space, its restriction on Uk ∩Σ is a homeomorphism ϕθ : Uk ∩Σ→ ϕθ(Uk ∩Σ). In order
to satisfy the two stringent requirements for the encoding map: the piecewise ambient linearity and the local
homeomorphism, the number of cells of the decomposition of Σ (and of X ) must be greater than a lower
bound. Similarly, we call this lower bound the rectified linear complexity of the pair of the manifold and
the ambient space (X ,Σ). The rectified linear complexity can be derived from the geometry of Σ and its
embedding in X . Our theorem 4.12 gives a criteria to verify if a manifold can be rectified by a linear map.

For the third problem, we can compare the rectified linear complexity of the manifold and the autoen-
coder. If the RL complexity of the autoencoder is less than that of the manifold, then the autoencoder can
not encode the manifold. Specifically, we show that for any autoencoder with a fixed architecture, there
exists an embedded manifold, which can not be encoded by it.

4.2 ReLU Deep Neuron Networks

We extend the ReLU activation function to vectors x ∈ Rn through entry-wise operation:

σ(x) = (max{0, x1},max{0, x2}, . . . ,max{0, xn}).

For any (m,n) ∈ N, let Anm and Lnm denote the class of affine and linear transformations from Rm → Rn,
respectively.

Definition 4.1 (ReLU DNN). For any number of hidden layers k ∈ N, input and output dimensions
w0, wk+1 ∈ N, a Rw0 → Rwk+1 ReLU DNN is given by specifying a sequence of k natural numbers
w1, w2, . . . , wk representing widths of the hidden layers, a set of k affine transformations Ti : Rwi−1 → Rwi

for i = 1, . . . , k and a linear transformation Tk+1 : Rwk → Rwk+1 corresponding to weights of hidden lay-
ers. Such a ReLU DNN is called a (k + 1)-layer ReLU DNN, and is said to have k hidden layers, denoted
as N(w0, w1, . . . , wk, wk+1).

The mapping ϕθ : Rw0 → Rwk+1 represented by this ReLU DNN is

ϕθ = Tk+1 ◦ σ ◦ Tk ◦ · · · ◦ T2 ◦ σ ◦ T1, (1)

where ◦ denotes mapping composition, θ represent all the weight and bias parameters. The depth of the
ReLU DNN is k + 1, the width is max{w1, . . . , wk}, the size w1 + w2 + · · ·+ wk.

Definition 4.2 (PL Mapping). A mapping ϕ : Rn → Rm is a piecewise linear mapping if there exists a finite
set of polyhedra whose union is Rn, and ϕ is affine linear over each polyhedron. The number of pieces of ϕ
is the number of maximal connected subsets of Rn over which ϕ is affine linear, denoted as N (ϕ). We call
N (ϕ) as the rectified linear complexity of ϕ.

Definition 4.3 (Rectified Linear Complexity of a ReLU DNN). Given a ReLU DNN N(w0, . . . , wk+1),
its rectified linear complexity is the upper bound of the rectified linear complexities of all PL functions ϕθ
represented by N ,

N (N) := max
θ
N (ϕθ).

10



Lemma 4.4. The maximum number of parts one can get when cutting d-dimensional space Rd with n
hyperplanes is denoted as C(d, n), then

C(d, n) =

(
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
d

)
. (2)

Proof. Suppose n hyperplanes cut Rd into C(d, n) cells, each cell is a convex polyhedron. The (n + 1)-th
hyperplane is π, then the first n hyperplanes intersection π and partition π into C(d − 1, n) cells, each cell
on π partitions a polyhedron in Rd into 2 cells, hence we get the formula

C(d, n+ 1) = C(d, n) + C(d− 1, n).

It is obvious that C(2, 1) = 2, the formula (2) can be easily obtained by induction.

Theorem 4.5 (Rectified Linear Complexity of a ReLU DNN). Given a ReLU DNN N(w0, . . . , wk+1),
representing PL mappings ϕθ : Rw0 → Rwk+1 with k hidden layers of widths {wi}ki=1, then the linear
rectified complexity of N has an upper bound,

N (N) ≤ Πk+1
i=1 C(wi−1, wi). (3)

Proof. The i-th hidden layer computes the mapping Ti : Rwi−1 → Rwi . Each neuron represents a hyper-
plane in Rwi−1 , the wi hyperplanes partition the whole space into C(wi−1, wi) polyhedra.

The first layer partitions Rw0 into at most C(w0, w1) cells; the second layer further subdivides the cell
decomposition, each cell is at most subdivides into C(w1, w2) polyhedra, hence two layers partition the
source space into at most C(w0, w1)C(w1, w2). By induction, one can obtain the upper bound of N (N) as
described by the inequality (2).

4.3 Cell Decomposition

The PL mappings induces cell decompositions of both the ambient space X and the latent space F . The
number of cells is closely related to the rectified linear complexity.

Fix the encoding map ϕθ , let the set of all neurons in the network is denoted as S , all the subsets is
denoted as 2S .

Definition 4.6 (Activated Path). Given a point x ∈ X , the activated path of x consists all the activated
neurons when ϕθ(x) is evaluated, and denoted as ρ(x). Then the activated path defines a set-valued function
ρ : X → 2S .

Definition 4.7 (Cell Decomposition). Fix an encoding map ϕθ represented by a ReLU RNN, two data points
x1,x2 ∈ X are equivalent, denoted as x1 ∼ x2, if they share the same activated path, ρ(x1) = ρ(x2). Then
each equivalence relation partitions the ambient space X into cells,

D(ϕθ) : X =
⋃
α

Uα,

each equivalence class corresponds to a cell: x1,x2 ∈ Uα if and only if x1 ∼ x2. D(ϕθ) is called the cell
decomposition induced by the encoding map ϕθ.

Furthermore, ϕθ maps the cell decomposition in the ambient spaceD(ϕθ) to a cell decomposition in the
latent space. Similarly, the composition of the encoding and decoding maps also produces a cell decompo-
sition, denoted asD(ψθ ◦ϕθ), which subdivisesD(ϕθ). Fig. 2 bottom row shows these cell decompositions.
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4.4 Learning Difficulty

Definition 4.8 (Linear Rectifiable Manifold). Suppose Σ is a m-dimensional manifold, embedded in Rn,
we say Σ is linear rectifiable, if there exists an affine map ϕ : Rn → Rm, such that the restriction of ϕ on
Σ, ϕ|Σ : Σ→ ϕ(Σ) ⊂ Rm, is homeomorphic. ϕ is called the corresponding rectified linear map of M .

Definition 4.9 (Linear Rectifiable Atlas). Suppose Σ is a m-dimensional manifold, embedded in Rn, A =
{(Uα, ϕα} is an atlas of M . If each chart (Uα, ϕα) is linear rectifiable, ϕα : Uα → Rm is the rectified
linear map of Uα, then the atlas is called a linear rectifiable atlas of Σ.

Given a compact manifold Σ and its atlas A, one can select a finite number of local charts Ã =
{(Ui, ϕi)}ni=1, Ã still covers Σ. The number of charts of an atlas A is denoted as |A|.
Definition 4.10 (Rectified Linear Complexity of a Manifold). Suppose Σ is a m-dimensional manifold
embedded in Rn, the rectified linear complexity of Σ is denoted as N (Rn,Σ) and defined as,

N (Rn,Σ) := min {|A| |A is a linear rectifiable altas of Σ} . (4)

4.5 Learnable Condition

Definition 4.11 (Encoding Map). Suppose M is a m-dimensional manifold, embedded in Rn, a continuous
mapping ϕ : Rn → Rm is called an encoding map of (Rn,Σ), if restricted on Σ, ϕ|Σ : Σ→ ϕ(Σ) ⊂ Rm is
homeomorphic.

Theorem 4.12. Suppose a ReLU DNN N(w0, . . . , wk+1) represents a PL mapping ϕθ : Rn → Rm, Σ is a
m-dimensional manifold embedded in Rn. If ϕθ is an encoding mapping of (Rn,Σ), then the rectified linear
complexity of N is no less that the rectified linear complexity of (Rn,Σ),

N (Rn,Σ) ≤ N (ϕθ) ≤ N (N).

Proof. The ReLU DNN computes the PL mapping ϕθ, suppose the corresponding cell decomposition of Rn
is

D(ϕθ) : Rn =

k⋃
i=1

Ui,

where each Ui is a convex polyhedron, k ≤ N (ϕθ). If ϕθ is an encoding map of Σ, then

A := {(Di, ϕθ|Di)|Di ∩ Σ 6= ∅}

form a linear rectifiable atlas of Σ. Hence from the definition of rectified linear complexity of an ReLU
DNN and the manifold, we obtain

N (Rn,Σ) ≤ N (ϕθ) ≤ N (ϕ).

The encoding map ϕθ : X → F is required to be homeomorphic, this adds strong topological constraints
to the manifold Σ. For example, if Σ is a surface, F is R2, then Σ must be a genus zero surface with
boundaries. In general, assume ϕθ(Σ) is a simply connected domain in F = Rm, then Σ must be a m-
dimensional topological disk. The topological constraint implies that autoencoder can only learn manifolds
with simple topologies, or a local chart of the whole manifold.

On the other hand, the geometry and the embedding of Σ determines the linear rectifiability of (Σ,Rn).
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Lemma 4.13. Suppose a n dimensional manifold Σ is embedded in Rn+1,

M
G

- Sn
p

- RPn

where G : Σ → Sn is the Gauss map, RPn is the real projective space, the projection p : Sn → RPn maps
antipodal points to the same point, if p ◦G(Σ) covers the whole RPn, then Σ is not linear rectifiable.

Proof. Given any unit vector v ∈ Rn+1, all the unit vectors orthogonal to v form a sphere Sn−2(v), then
p(Sn−2(v))∩RPn 6= ∅, therefore there is a point q ∈ Σ, v is in the tangent space at q. Line q+ tv is tangent
to Σ, by shifting the line by an infinitesimal amount, the line intersects Σ at two points. This shows there is
no linear mapping, which projects Σ onto Rn along v. Because v is arbitrary, Σ is not linear rectifiable.

a. linear rectifiable b. non-linear-rectifiable c. C1 Peano curve d. C2 Peano curve

Figure 8: Linear rectifiable and non-linear-rectifiable curves.

Theorem 4.14. Given any ReLU deep neural network N(w0, w1, . . . , wk, wk+1), there is a manifold Σ
embedded in Rw0 , such that Σ can not be encoded by N .

Proof. First, we prove the simplest case. When (w0, wk+1) = (2, 1), we can construct space filling Peano
curves, as shown in Fig. 8. Suppose C1 is shown in the left frame, we make 4 copies of C1, by translation,
rotation, reconnection and scaling to construct C2, as shown in the right frame. Similarly, we can construct
all Ck’s. The red square shows one unit, C1 has 16 units, Cn has 4n+1 units. Each unit is not rectifiable,
therefore

N (R2, Cn) ≥ 4n+1.

We can choose n big enough, such that 4n+1 > N (N), then Cn can not be encoded by N .
Similarly, for any w0 and wk+1 = 1, we can construct Peano curves to fill Rw0 , which can not be

encoded by N . The Peano curve construction can be generalized to higher dimensional manifolds by direct
product with unit intervals.

5 Control Induced Measure

In generative models, such as VAE [15] or GAN [1], the probability measure in the latent space induced by
the encoding mapping (ϕθ)∗µ is controlled to be simple distributions, such as Gaussian or uniform, then in
the generating process, we can sample from the simple distribution in the latent space, and use the decoding
map to produce a sample in the ambient space.

The buddha surface Σ is conformally mapped onto the planar unit disk ϕ : Σ→ D using the Ricci flow
method [32], the uniform distribution on the parameter domain induces a non-uniform distribution on the
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Figure 9: Control distributions by optimal mass transportation.

surface, as shown in the top row of Fig. 9. Then by composing with an optimal mass transportation map
ψ : D→ D using the algorithm in [25], one obtain an area-preserving mapping ψ ◦ϕ : Σ→ D, the image is
shown in the bottom row of Fig. 9 left frame. Then we uniformly sample the planar disk to get the samples
Z = {z1, . . . , zk}, then pull them back on to Σ by ψ ◦ ϕ, X = {x1, . . . ,xk}, xi = (ψ ◦ ϕ)−1(zi). Because
ψ ◦ ϕ is area-preserving, Z is uniformly distributed on the disk, X is uniformly distributed on Σ as shown
in the bottom row of Fig. 9 right frame.

Optimal Mass Transportation The optimal transportation theory can be found in Villani’s classical books
[27][28]. Suppose ν = (ϕθ)∗µ is the induced probability in the latent space with a convex support Ω ⊂ F , ζ
is the simple distribution, e.g. the uniform distribution on Ω. A mapping T : Ω→ Ω is measure-preserving
if T∗ν = ζ. Given the transportation cost between two points c : Ω × Ω → R, the transportation cost of T
is defined as

E(T ) :=

∫
Ω
c(x, T (x))dν(x).

The Wasserstein distance between ν and ζ is defined as

W(ν, ζ) := inf
T∗ν=ζ

E(T ).
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The measure-preserving map T that minimizes the transportation cost is called the optimal mass transporta-
tion map.

Kantorovich proved that the Wasserstein distance can be represented as

W(ν, ζ) := max
f

∫
Ω
fdν +

∫
Ω
f cdζ

where f : Ω→ R is called the Kontarovhich potential, its c-transform

f c(y) := inf
x∈Ω

c(x,y)− f(x).

In WGAN, the discriminator computes the generator computes the decoding map ψθ : F → X , the
discriminator computes the Wasserstein distance between (ψθ)∗ζ and µ. If the cost function is chosen to be
the L1 norm, c(x,y) = |x− y|, f is 1-Lipsitz, then f c = −f , the discriminator computes the Kontarovich
potential, the generator computes the optimal mass transportation map, hence WGAN can be modeled as an
optimization

min
θ

max
f

∫
Ω
f ◦ ψθ(z)dζ(z)−

∫
X
f(x)dµ(x).

The competition between the discriminator and the generator leads to the solution.
If we choose the cost function to be the L2 norm, c(x,y) = 1

2 |x − y|2, then the computation can be
greatly simplified. Briener’s theorem [6] claims that there exists a convex function u : Ω→ R, the so-called
Brenier’s potential, such that its gradient map∇u : Ω→ Ω gives the optimal mass transportation map. The
Brenier’s potential satisfies the Monge-Ampere equation

det
(

∂2u

∂xi∂xj

)
=

ν(x)

ζ(∇u(x))
.

Geometrically, the Monge-Ampere equation can be understood as solving Alexandroff problem: finding a
convex surface with prescribed Gaussian curvature. A practical algorithm based on variational principle can
be found in [13]. The Brenier’s potential and the Kontarovich’s potential are related by the closed form

u(x) =
1

2
|x|2 − f(x). (5)

Eqn.(5) shows that: the generator computes the optimal transportation map∇u, the discriminator computes
the Wasserstein distance by finding Kontarovich’s potential f ; u and f can be converted to each other, hence
the competition between the generator and the discriminator is unnecessary, the two deep neural networks
for the generator and the discriminator are redundant.

Autoencoder-OMT model As shown in Fig. 10, we can use autoencoder to realize encoder ϕθ : X → F
and decoder ψθ : F → X , use OMT in the latent space to realize probability transformation T : F → F ,
such that

T∗ζ = (ϕθ)∗µ.

We call this model as OMT-autoencoder.
Fig. 5 shows the experiments on the MNIST data set. The digits generates by OMT-AE have better

qualities than those generated by VAE and WGAN. Fig.(5) shows the human facial images on CelebA data
set. The images generated by OMT-AE look better than those produced by VAE.
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Σ
X

F F

ζ

ϕθ

µ

T

ν = (ϕθ)∗µ

ψθ

Figure 10: Autoencoder combined with a optimal transportation map.

(a) real digits (b) VAE

(c) WGAN (d) AE-OMT
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(a) VAE (d) AE-OMT

6 Conclusion

This work gives a geometric understanding of autoencoders and general deep neural networks. The underly-
ing principle is the manifold structure hidden in data, which attributes to the great success of deep learning.
The autoencoders learn the manifold structure and construct a parametric representation. The concepts of
rectified linear complexities are introduced to both DNN and manifold, which describes the fundamental
learning limitation of the DNN and the difficulty to be learned of the manifold. By applying the concept of
complexities, it is shown that for any DNN with fixed architecture, there is a manifold too complicated to
be encoded by the DNN. Experiments on surfaces show the approximation accuracy can be improved. By
applying L2 optimal mass transportation theory, the probability distribution in the latent space can be fully
controlled in a more understandable and more efficient way.

In the future, we will develop refiner estimates for the complexities of the deep neural networks and the
embedding manifolds, generalize the geometric framework to other deep learning models.

Appendix

Here we illustrate some examples and explain the implementation details.

Facial Surface Fig. 11 shows a human facial surface Σ is encoded/decoded by an autoencoder. From
the image, it can be seen that the encoding/decoding maps are homeomorphic. The Hausdorff distance
between the input surface and the reconstructed surface is relatively small, but the normal deviation is big.
The geometric details around the mouth area are lost during the process. There are a lot of local curvature
fluctuations. Furthermore, the shape of the encoding image (parameter image) in the latent space is highly
irregular, this creates difficulty for generating random samples on the reconstructed manifold.

Buddha Model Fig. 12 shows the buddha model, the top row shows the three views of the input surface,
the bottom row shows the reconstructed surface. The encoder network architecture is {3, 768, 384, 192, 96, 48, 2},
the decoder network is {2, 48, 96, 192, 384, 768, 3}. The input and output spaces are R3, the latent space is
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input manifold latent representation reconstructed manifold reconstructed manifold

Figure 11: A human facial surface is encoded/decoded by an autoencoder.

a. front view b. left view c. back view

d. right view e. front view f. back view

Figure 12: top row: input manifold;bottom row, reconstructed manifold.

R2. We use ReLU as the activation function in hidden layers except the latent space layer. The loss function
is the mean squared error between the input and the target. Adam optimizer is used in this autoencoder and
the weight decay is set to 0 in the optimizer. From the figure, we can see the reconstruction approximates
the original surface with high accuracy, all the subtle geometric features are well preserved. We uniformly
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sample the surface, there are 235, 771 samples in total. The number of cells in the cell decomposition in-
duced by the reconstruction map is 230051. We see that the autoencoder produces a highly refined cell
decomposition to capture all the geometric details of the input surface. The source code and the data set can
be found in [34]. If we reduce the number of neurons and add regularize the output surface, then the recon-
structed surface loses geometric details, and preserves the major shape as shown in Fig. 13. Furthermore,
the mapping is not homeomorphic either, near the mouth and finger areas, the mapping is degenerated.

a. right view b. front view back view

Figure 13: Reconstructed manifold with cell decomposition produced by an autoencoder with half of the
neurons.
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[16] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares conformal maps for automatic texture
generation. ACM Trans. on Graphics (SIGGRAPH), 21(2):362–371, 2002.

20



[17] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian Goodfellow. Adversarial autoencoders.
In International Conference on Learning Representations, 2016.

[18] Andrew Ng. Sparse autoencoder. CS294A Lecture Notes, December 2011.

[19] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision Research, 37(23):3311 – 3325, 1997.

[20] Marc’ Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse feature learning for deep belief
networks. In Proceedings of the 20th International Conference on Neural Information Processing
Systems, NIPS’07, pages 1185–1192, USA, 2007. Curran Associates Inc.

[21] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun. Efficient learning of
sparse representations with an energy-based model. In Proceedings of the 19th International Confer-
ence on Neural Information Processing Systems, NIPS’06, pages 1137–1144, Cambridge, MA, USA,
2006. MIT Press.

[22] Salah Rifai, Yoshua Bengio, Yann N. Dauphin, and Pascal Vincent. A generative process for sam-
pling contractive auto-encoders. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, ICML’12, pages 1811–1818, USA, 2012. Omnipress.
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