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In recognition of the 2003 Mathematics Awareness
Month theme “Mathematics and Art”, this article
brings together three different pieces about inter-
sections between mathematics and the artwork of 
M. C. Escher. For more information about Mathe-
matics Awareness Month, visit the website http://
mathforum.org/mam/03/. The site contains materials
for organizing local celebrations of Mathematics
Awareness Month.

The Mathematical
Structure of Escher’s
Print Gallery
B. de Smit and H. W. Lenstra Jr.

In 1956 the Dutch graphic artist Maurits Cornelis
Escher (1898–1972) made an unusual lithograph
with the title Prentententoonstelling. It shows a young
man standing in an exhibition gallery, viewing a print
of a Mediterranean seaport. As his eyes follow the
quayside buildings shown on the print from left to
right and then down, he discovers among them the
very same gallery in which he is standing. A circular
white patch in the middle of the lithograph contains 
Escher’s monogram and signature.

What is the mathematics behind Prententen-
toonstelling? Is there a more satisfactory way of fill-
ing in the central white hole? We shall see that the
lithograph can be viewed as drawn on a certain el-
liptic curve over the field of complex numbers and

deduce that an idealized version of the picture re-
peats itself in the middle. More precisely, it con-
tains a copy of itself, rotated clockwise by
157.6255960832 . . . degrees and scaled down by a
factor of 22.5836845286 . . . .

Escher’s Method
The best explanation of how Prentententoonstelling
was made is found in The Magic Mirror of M. C. Es-
cher by Bruno Ernst [1], from which the following
quotations and all illustrations in this section are
taken. Escher started “from the idea that it
must…be possible to make an annular bulge,” “a
cyclic expansion…without beginning or end.” The
realization of this idea caused him “some almighty
headaches.” At first, he “tried to put his idea into

B. de Smit and H. W. Lenstra Jr. are at the Mathematisch
Instituut, Universiteit Leiden, the Netherlands. H. W. Lenstra
also holds a position at the University of California, Berke-
ley. Their email addresses are desmit@math.
leidenuniv.nl and hwl@math.leidenuniv.nl.

Figure 1. Escher’s lithograph
“Prentententoonstelling” (1956).
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practice using straight lines [Figure 2], but then he
intuitively adopted the curved lines shown in Fig-
ure [3]. In this way the original small squares could
better retain their square appearance.”

After a number of successive improvements
Escher arrived at the grid shown in Figure 4. As one
travels from A to D, the squares making up the grid 
expand by a factor of 4 in each direction. As one
goes clockwise around the center, the grid folds 
onto itself, but expanded by a factor of 44 = 256.

The second ingredient Escher needed was a nor-
mal, undistorted drawing depicting the same scene:
a gallery in which a print exhibition is held, one of
the prints showing a seaport with quayside build-
ings, and one of the buildings being the original

print gallery but reduced by a factor of 256. In order
to do justice to the varying amount of detail that
he needed, Escher actually made four studies in-
stead of a single one (see [3]), one for each of the
four corners of the lithograph. Figure 5 shows the
study for the lower right corner. Each of these
studies shows a portion of the previous one (mod-
ulo 4) but blown up by a factor of 4. Mathemati-
cally we may as well view Escher’s four studies as
a single drawing that is invariant under scaling by
a factor of 256. Square by square, Escher then 
fitted the straight square grid of his four studies
onto the curved grid, and in this way he obtained
Prentententoonstelling. This is illustrated in
Figure 6.

Figure 2. A cyclic expansion expressed using
straight lines.

Figure 3. A cyclic expansion expressed using
curved lines.

Figure 4. Escher’s grid.

Figure 5. One of Escher’s studies.

Figure 6. Fitting the straight squares onto the
curved grid.
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Below, we shall imagine the undistorted picture
to be drawn on the complex plane C, with 0 in the
middle. We shall think of it as a function
f : C→ {black, white} that assigns to each z ∈ C its
color f (z) . The invariance condition then expresses
itself as f (256z) = f (z) , for all z ∈ C.

A Complex Multiplicative Period
Escher’s procedure gives a very precise way of
going back and forth between the straight world
and the curved world. Let us make a number of
walks on his curved grid and keep track of the cor-
responding walks in the straight world. First, con-
sider the path that follows the grid lines from A
to B to C to D and back to A . In the curved world
this is a closed loop. The corresponding path,
shown in Figure 7, in the straight world takes three
left turns, each time travelling four times as far as
the previous time before making the next turn. It
is not a closed loop; rather, if the origin is prop-

erly chosen, the end point is 256 times the start-
ing point. The same happens, with the same choice
of origin, whenever one transforms a single closed
loop, counterclockwise around the center, from
the curved world to the straight world. It reflects
the invariance of the straight picture under a blow-
up by a factor of 256.

No such phenomenon takes place if we do not
walk around the center. For example, start again
at A and travel 5 units, heading up; turn left and
travel 5 units; and do this two more times. This
gives rise to a closed loop in the curved world

depicted in Figure 8, and in the straight world it
corresponds to walking along the edges of a 5× 5
square, another closed loop. But now do the same
thing with 7 units instead of 5: in the straight
world we again get a closed loop, along the edges
of a 7× 7 square, but in the curved world the path
does not end up at A but at a vertex A′ of the small
square in the middle. This is illustrated in
Figure 9. Since A and A′ evidently correspond to
the same point in the straight world, any picture
made by Escher’s procedure should, ideally, re-
ceive the same color at A and A′. We write ideally,
since in Escher’s actual lithograph A′ ends up in
the circular area in the middle.

We now identify the plane in which Escher’s
curved grid, or his lithograph, is drawn, also with
C, the origin being placed in the middle. Define
γ ∈ C by γ = A/A′. A coarse measurement indi-
cates that |γ| is somewhat smaller than 20 and 
that the argument of γ is almost 3.

Replacing A in the procedure above by any point
P lying on one of the grid lines AB, BC, CD, DA,
we find a corresponding point P ′ lying on the
boundary of the small square in the middle, and
P ′ will ideally receive the same color as P. Within
the limits of accuracy, it appears that the quotient

New Escher Museum
In November 2002 a new museum devoted to Escher's works
opened in The Hague, Netherlands. The museum, housed in the
Palace Lange Voorhout, a royal palace built in 1764, contains a
nearly complete collection of Escher's wood engravings, etchings,
mezzotints, and lithographs. The initial exhibition includes major
works such as Day and Night, Ascending and Descending, and
Belvedere, as well as the Metamorphoses and self-portraits. The mu-
seum also includes a virtual reality tour that allows visitors to “ride
through” the strange worlds created in Escher's works.

Further information may be found on the Web at http://
www.escherinhetpaleis.nl/.

Allyn Jackson

Figure 7. The square ABCD transformed to the
straight world.

Figure 8. A 5 x 5 square transformed to the
curved world.

Figure 9. A 7 x 7 square transformed to the
curved world.

http://www.escherinhetpaleis.nl/
http://www.escherinhetpaleis.nl/
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P/P ′ is independent of P ′ and therefore also equal
to γ. That is what we shall assume. Thus, when the
“square” ABCD is rotated clockwise over an angle
of about 160◦ and shrunk by a factor of almost 20,
it will coincide with the small central square.

Let the function g, defined on an appropriate
subset of C and taking values in {black, white}, as-
sign to each w its color g(w ) in Escher’s lithograph.
If Escher had used his entire grid—which, towards
the middle, he did not—then, as we just argued, one
would necessarily have g(P ′) = g(γP ′) for all P ′ as
above, and therefore we would be able to extend
his picture to all of C∗ = C\{0} by requiring
g(w ) = g(γw ) for all w . This would not just fill in
the hole inside Escher’s lithograph but also the im-
mense area that finds itself outside its boundaries.

Elliptic Curves
While the straight picture is periodic with a multi-
plicative period 256, an idealized version of the dis-
torted picture is periodic with a complex period γ:

f (256z) = f (z), g(γw ) = g(w ).

What is the connection between 256 and γ? Can
one determine γ other than by measuring it in 
Escher’s grid?

We start by reformulating what we know. For
convenience, we remove 0 from C and consider
functions on C∗ rather than on C. This leaves a hole
that, unlike Escher’s, is too small to notice. Next,
instead of considering the function f with period
256, we may as well consider the induced function
f̄ : C∗/〈256〉 → {black, white}, where 〈256〉 de-
notes the subgroup of C∗ generated by 256. Like-
wise, instead of g we shall consider
ḡ: C∗/〈γ〉 → {black, white}. Escher’s grid provides
the dictionary for going back and forth between f
and g. A moment’s reflection shows that all it does
is provide a bijection h: C∗/〈γ〉 ∼−→ C∗/〈256〉 such
that g is deduced from f by means of composition:
ḡ = f̄ ◦ h.

The key property of the map h is elucidated by
the quotation from Bruno Ernst, “…the original
squares could better retain their square appear-
ance”: Escher wished the map h to be a conformal
isomorphism, in other words, an isomorphism of
one-dimensional complex analytic varieties.

The structure of C∗/〈δ〉, for any δ ∈ C∗ with
|δ| �= 1, is easy to understand. The exponential
map C→ C∗ induces a surjective conformal map
C→ C∗/〈δ〉 that identifies C with the universal cov-
ering space of C∗/〈δ〉 and whose kernel
Lδ = Z2πi + Z logδ may be identified with the fun-
damental group of C∗/〈δ〉. Also, we recognize
C∗/〈δ〉 as a thinly disguised version of the elliptic
curve C/Lδ.

With this information we investigate what the
map h: C∗/〈γ〉 ∼−→ C∗/〈256〉 can be. Choosing co-
ordinates properly, we may assume that h(1) = 1.

By algebraic topology, h lifts to a unique confor-
mal isomorphism C→ C that maps 0 to 0 and in-
duces an isomorphism C/Lγ → C/L256. A standard
result on complex tori (see [2, Ch. VI, Theorem
4.1]) now implies that the map C→ C is a multi-
plication by a certain scalar α ∈ C that satisfies
αLγ = L256 . Altogether we obtain an isomorphism
between two short exact sequences:

0 −→ Lγ −→ C
exp−→ C∗/〈γ〉 −→ 0



�α



�α



�h

0 −→ L256 −→ C
exp−→ C∗/〈256〉 −→ 0.

Figure 10 illustrates the right commutative square.
In order to compute α, we use that the multi-

plication-by-α map Lγ → L256 may be thought of
as a map between fundamental groups; indeed, it
is nothing but the isomorphism between the fun-
damental groups of C∗/〈γ〉 and C∗/〈256〉 induced

exp exp

h

α

Figure 10. The picture on the lower left, drawn on
C∗, is invariant under multiplication by i and by 4.
Pulled back to C by the exponential map it gives rise
to a picture that is invariant under translation by the
lattice 14L256 = Zπi/2+ Z log 4 . Pulling this picture
back by a scalar multiplication by
α = (2πi + log 256)/(2πi) changes the period lattice
into 14Lγ = Zπi/2+ Z(πi log 4)/(πi + 2 log 4) . Since
the latter lattice contains 2πi, the picture can now
be pushed forward by the exponential map. This
produces the picture on the lower right, which is
invariant under multiplication by all fourth
roots of γ.
The bottom horizontal arrow represents the
multivalued map w � h(w ) = wα = exp(α logw ) ; it is
only modulo the scaling symmetry that it is well-
defined.



450 NOTICES OF THE AMS VOLUME 50, NUMBER 4

by h. The element 2πi in the fundamental group
Lγ of C∗/〈γ〉 corresponds to a single counter-
clockwise loop around the origin in C∗ . Up to 
homotopy, it is the same as the path ABCDA along
grid lines that we considered earlier. As we saw, 
Escher’s procedure transforms it into a path in C∗
that goes once around the origin and at the same
time multiplies by 256; in C∗/〈256〉 , this path be-
comes a closed loop that represents the element
2πi + log 256 of L256 . Thus, our isomorphism
Lγ → L256 maps 2πi to 2πi + log 256, and there-
fore α = (2πi + log 256)/(2πi) . The lattice Lγ is
now given by Lγ = α−1L256, and from |γ| > 1 we
deduce

γ = exp(2πi(log 256)/(2πi + log 256))
.
= exp(3.1172277221 + 2.7510856371i).

The map h is given by the easy formula
h(w ) = wα = w (2πi+log 256)/(2πi) .

The grid obtained from our formula is given in
Figure 11. It is strikingly similar to Escher’s grid.
Our small central square is smaller than Escher’s;
this reflects the fact that our value |γ| .= 22.58 is
larger than the one measured in Escher’s grid. The
reader may notice some other differences, all of
which indicate that Escher did not perfectly achieve
his stated purpose of drawing a conformal grid, but
it is remarkable how close he got by his own
headache-causing process.

Filling in the Hole
In order to fill in the hole in Prentententoonstelling,
we first reconstructed Escher’s studies from the
grid and the lithograph by reversing his own pro-
cedure. For this purpose we used software specially
written by Joost Batenburg, a mathematics student

at Leiden. As one can see in Figure 12, the blank
spot in the middle gave rise to an empty spiral in
the reconstructed studies, and there were other im-
perfections as well. Next, the Dutch artists Hans
Richter and Jacqueline Hofstra completed and ad-
justed the pictures obtained; see Figure 13.

When it came to adding the necessary grayscale,
we ran into problems of discontinuous resolution
and changing line widths. We decided that the 
natural way of overcoming these problems was by
requiring the pixel density on our elliptic curve to

be uniform in the Haar measure. In practical terms,
we pulled the sketches back by the exponential
function, obtaining a doubly periodic picture on C;
it was in that picture that the grayscale was added,
by Jacqueline Hofstra, which resulted in the dou-
bly periodic picture in Figure 14. The completed ver-
sion of Escher’s lithograph, shown in Figure 15, was
then easy to produce. 

Other complex analytic maps h: C∗/〈δ〉 →
C∗/〈256〉 for various δ give rise to interesting
variants of Prentententoonstelling. To see these

Figure 11. The perfectly conformal grid.

Figure 12. Escher’s lithograph rectified, by
means of his own grid.

Figure 13.  A detail of the drawing made by
Hans Richter and Jacqueline Hofstra.
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and to view animations zooming in to the center
of the pictures, the reader is encouraged to visit the
website escherdroste.math.leidenuniv.nl.
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Creating Repeating
Hyperbolic
Patterns—Old and
New
Douglas Dunham

For more than a hundred years, mathematicians
have drawn triangle tessellations in the Poincaré
disk model of the hyperbolic plane, and some artists
have found inspiration in these patterns. The Dutch
graphic artist M. C. Escher (1898–1972) was most
likely the first one to be so inspired. He used “clas-
sical” straightedge and compass constructions to
create his hyperbolic patterns. More recently others
have used computer graphics to create hyperbolic
patterns. We will first explain how Escher drew the

underlying tessellations for
his patterns; then we will
describe versions of the
computer program that
generated the design for the
2003 Mathematics Aware-
ness Month poster.

Escher’s Methods
In 1958 H. S. M. Coxeter
sent Escher a copy of his
paper “Crystal symmetry
and its generalizations”
[Coxeter1]. In his reply
Escher wrote, “…some of
the text-illustrations and
especially Figure 7, page
11, gave me quite a shock”
[Coxeter2].

Escher was shocked be-
cause that figure showed him the long-desired so-
lution to his problem of designing repeating pat-
terns in which the motifs become ever smaller
toward a circular limit. Coxeter’s Figure 7 con-
tained the pattern of curvilinear triangles shown in
Figure 1 (but without the scaffolding). Of course,
that pattern can be interpreted as a triangle tes-
sellation in the Poincaré disk model of the hyper-
bolic plane, although Escher was probably more
interested in its pattern-making implications.

The points of the Poincaré disk model are inte-
rior points of a bounding circle in the Euclidean

plane. Hyperbolic lines are represented by diame-
ters and circular arcs that are orthogonal to the
bounding circle [Greenberg]. The Poincaré disk
model is attractive to artists because it is confor-
mal (angles have their Euclidean measure) and it
is displayed in a bounded region of the Euclidean
plane so that it can be viewed in its entirety. Escher
was able to reconstruct the circular arcs in Coxeter’s
figure and then use them to create his first circle
limit pattern, Circle Limit I (Figure 2a), which he in-
cluded with his letter to Coxeter. Figure 2b shows
a rough computer rendition of the Circle Limit I de-
sign. Escher’s markings on the reprint that Coxeter
sent to him show that the artist had found the
centers of some of the circular arcs and drew lines
through collinear centers [Schattschneider1].

The center of an orthogonal circular arc is ex-
ternal to the disk and is called its pole. The locus
of all poles of arcs through a point in the disk is a
line called the polar of that point [Goodman-
Strauss]. The external dots in Figure 1 are the poles
of the larger arcs, and the external line segments
connecting them are parts of polars of the points
of intersection of those arcs. Figure 1 shows one
interior point and its polar as a large dot and a thick
line on the left; a circular arc and its pole are sim-
ilarly emphasized on the right.The external web of
poles and polar segments is sometimes called the
scaffolding for the tessellation. The fact that the po-
lars are lines can be used to speed up the straight-
edge and compass construction of triangle tessel-
lations. For example, given two points in the disk,
the center of the orthogonal arc through them is
the intersection of their polars.

Coxeter explained the basics of these techniques
in his return letter to Escher [Roosevelt], although
by that time Escher had figured out most of 
this, as evidenced by Circle Limit I. Like Escher,
mathematicians have traditionally drawn triangle
tessellations in the Poincaré disk model using
straightedge and compass techniques, occasionally
showing the scaffolding. This technique was some-
thing of a geometric “folk art” until the recent
paper by Chaim Goodman-Strauss [Goodman-
Strauss], in which the construction methods were
finally written down.

For positive integers p and q , with 1/p+
1/q < 1/2, there exist tessellations of the hyperbolic
plane by right triangles with acute angles π/p and
π/q . A regular p-sided polygon, or p-gon, can be
formed from the 2p triangles about each
p-fold rotation point in the tessellation. These
p-gons form the regular tessellation {p, q} by
p-sided polygons, with q of them meeting at each
vertex. Figure 4 shows the tessellation {6,4} (with a
central group of fish on top of it). As can be seen,
Escher essentially used the {6,4} tessellation in
Circle Limit I.

Figure 1: The triangle tessellation
of the Poincaré disk that inspired

Escher, along with the
“scaffolding” for creating it.

Douglas Dunham is professor of computer science at the
University of Minnesota, Duluth. His email address is
ddunham@d.umn.edu. Dunham designed the Mathemat-
ics Awareness Month poster, which is available at
http://mathforum.org/mam/03/poster.html.

http://mathforum.org/mam/03/poster.html
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Goodman-Strauss constructs the tessellation
{p, q} in two steps. The first step is to construct
the central p-gon. To do this, he starts by con-
structing a regular Euclidean p-sided polygon P
with center O that forms the outer edges of the 
scaffolding. Then he constructs the hyperbolic
right triangle with a vertex angle of π/p at O
and its hypotenuse along a radius of P from O to
one of the vertices A of P. The side of the right
triangle through O is part of a perpendicular
bisector of an edge of P containing A . The bound-
ing circle is easily determined from the right tri-
angle. The vertices of the entire central p-gon can
then be constructed by successive (Euclidean) re-
flections across the radii and perpendicular bisec-
tors of edges of P. The second step is to construct
all the other p-gons of the tessellation. This could
be done by first inverting all the vertices in the cir-
cular arcs that form the sides of the central p-gon,
forming new p-gons, and then inverting vertices in
the sides of the new p-gons iteratively as many
times as desired. But Goodman-Strauss describes
a more efficient alternative method using facts
about the geometry of circles.

Our First Method
In 1980 I decided to try to use computer graphics
to recreate the designs in each of Escher’s four
Circle Limit prints (catalog numbers 429, 432, 434,
and 436 in [Bool]). The main challenge seemed to
be finding a replication algorithm that would draw
each copy of a motif exactly once. There were two
reasons for this. First, we were using pen-plotter
technology then, so multiple redrawings of the
same motif could tear through the paper. Effi-
ciency was a second reason: the number of motifs
increases exponentially from the center, and inef-
ficient algorithms might produce an exponential
number of duplications.

Moreover, I wanted the replication algorithm to
build the pattern outward evenly in “layers” so
that there would be no jagged edges. At that time
my colleague Joe Gallian had some undergraduate
research students who were working on finding
Hamiltonian paths in the Cayley graphs of finite
groups [Gallian]. I thought that their techniques
could also be applied to the infinite symmetry
groups of Escher’s Circle Limit designs. This turned
out to be the case, although we found the desired
paths in two steps.

The first step involved finding a Hamiltonian
path in the Cayley graph of the symmetry group
of the tessellation {p, q} . This was done by David
Witte, one of Gallian’s research students. John
Lindgren, a University of Minnesota Duluth student,
implemented the computer algorithm, with me
translating Witte’s path into pseudo-FORTRAN
[Dunham1].

The Cayley graph
of a group G with a
set of generators S is
defined as follows:
the vertices are just
the elements of G ,
and there is an edge
from x to y if y = sx
for some s in S . Tech-
nically, this defines a
directed graph, but in
our constructions  the
inverse of every ele-
ment of s will also be
in S , so for simplicity
we may assume that
our Cayley graphs are
undirected. As an ex-
ample, the symmetry
group of the tessella-
tion {p, q} is denoted
[p, q]. That symmetry
group is the same as
that of the tessella-
tion by right triangles
with angles π/p and
π/q . The standard
set of generators for
the group [p, q] is
{P,Q,R} , where P,
Q , and R are reflec-
tions across the tri-
angle sides opposite
the angles π/p, π/q ,
and π/2 , respec-
tively, in one such tri-
angle.

There can be one-
way or two-way
Hamiltonian paths in
the Cayley graphs of
symmetry groups of
hyperbolic patterns
[Dunham3]. However,
one-way paths are
sufficient for our al-
gorithms, so in this
article “Hamiltonian
path” will always de-
note a one-way Ham-
iltonian path.

There is a useful
visual representation
for the Cayley graphs
of the groups [p, q] and thus for their Hamiltonian
paths. A fundamental region for the tessellation
{p, q} is a triangle that when acted on by the sym-
metry group [p, q] has that tessellation as its orbit.
This fundamental region can be taken to be a right

Figure 3: The Cayley graph of the group
[6,4] with a Hamiltonian path.

Figure 2b: A computer rendition of
the design in Escher’s print Circle
Limit I.

Figure 2a: The original Escher print
Circle Limit I.
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triangle lying on the hori-
zontal diameter to the
right of center, with its
π/p vertex at the center of
the disk. This triangle is
labeled by the identity of
[p, q]. Each triangle of the
tessellation is then labeled
by the group element that
transforms the funda-
mental region to that tri-
angle. Thus each triangle
represents a group ele-
ment. To represent an
edge in the Cayley graph,
we draw a line segment
connecting the centers of
any two triangles sharing
a side. Thus, there are
three line segments out
of each triangle, each rep-
resenting the reflection
across one side.

Figure 3 shows a
Hamiltonian path in the
Cayley graph of the group
[6,4] with the standard
set of generators. The
heavy line segments, both
black and gray, represent
the Cayley graph; the light
lines show the triangle tes-
sellation. The Hamilton-
ian path consists of the
heavy black line seg-
ments. Essentially the
same path works for [p, q]
in general, though slight
“detours” must be taken if
p = 3 or q = 3 [Dunham3].

Better Methods
A natural second step
would have been to find
Hamiltonian paths in the
Cayley graphs of the sym-
metry groups of Escher’s
Circle Limit designs,
which seemed possible
since those symmetry
groups were all subgroups
of either [6,4] or [8,3].
However, we took a

slightly bigger step instead, which also works for
any symmetry group that is a subgroup of [p, q].
This is the method used in the Mathematics Aware-
ness Month poster. We first built up a supermotif
(called the p-gon pattern in [Dunham1]) consisting
of all the motifs adjacent to the center of the disk.

The supermotif for the Circle Limit I design is
shown in Figure 4, superimposed on top of the
{6,4} tessellation.

The second step then consisted of finding Hamil-
tonian paths in “Cayley coset graphs”. Conceptu-
ally, we form the cosets of a symmetry group by
the stabilizer H of its supermotif. Then, by anal-
ogy with ordinary Cayley graphs, we define the
vertices to be the cosets and say that there is an
edge from xH to yH if yH = sxH for some s in S .

Again, there is a useful visual representation
for these coset graphs. The vertices correspond to
the p-gons in the tessellation {p, q} . The central
p-gon is labeled by H, and any other p-gon is la-
beled by xH, where x is any element of the sym-
metry group that maps the central p-gon to the
other p-gon. In this case the generating set S is com-
posed of words in the generators of the symmetry
group. For each side of the central p-gon, there is at
least one word that maps the central p-gon across
that side. Much as before, we represent edges of the
graph as line segments between the centers of the
p-gons. Figures 5 and 6 show the coset graph of a
subgroup of [6,4]. Again, the graph edges are the
heavy lines, either black or gray, and the light lines
show the {6,4} tessellation. The black graph edges
in Figure 5 show a Hamiltonian path.

One shortcoming of this method is that the
Hamiltonian path must be stored in computer
memory. This is not a serious problem, since the
path can be encoded by small integers. That method
essentially works by forming ever-longer words in
the generators from the edges of the Hamiltonian
path. The transformations were represented by
real matrices, which led to roundoff error after
too many of them had been multiplied together to
form the current transformation matrix. This was
a more serious problem.

Both problems were cured by using recursion.
What was required was to find a “Hamiltonian
tree”—or more accurately, a spanning tree—in the
coset graph. The tree is traversed on the fly by re-
cursively transforming across certain sides of the
current p-gon. Those sides are determined by fairly
simple combinatorics [Dunham2] (there is an error
in the recursive algorithm in [Dunham1]). With this
method the path from the root (central p-gon) to
the current p-gon is stored automatically in the re-
cursion stack. Also, the recursion depth never gets
deeper than a few dozen, so there is no noticeable
roundoff error from multiplying transformations.
The black graph edges in Figure 6 show a spanning
tree in the coset graph of [6,4].

Other researchers have used different methods
to generate a set of words in the generators of hy-
perbolic symmetry groups in order to replicate re-
peating hyperbolic designs. One method is to keep
track of the transformations generated so far and
iteratively add new transformations by multiplying

Figure 4: The central “supermotif ”
for Circle Limit I.

Figure 5: A Hamiltonian path in a
coset graph of [6,4].

Figure 6: A spanning tree in a coset
graph of [6,4].
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all the previous transformations by the group gen-
erators, discarding duplicates. Then the desired
pattern is generated by applying the final set of
transformations to the motif. The techniques of au-
tomatic groups have been used to efficiently gen-
erate nonredundant sets of words. Silvio Levy has
used this technique to create a computer rendition
of Escher’s Circle Limit III [Levy].

Like many mathematicians, I was immediately
enthralled by M. C. Escher’s intriguing designs
when I first saw them more than thirty years ago.
Several years later I started working in the field of
computer graphics, and that medium seemed like
an obvious one to use to produce Escher-like de-
signs. When discussing the symmetry groups of
Escher’s hyperbolic patterns with Joe Gallian, it
occurred to me that Hamiltonian paths could be
used as a basis for an algorithm to generate such
patterns. At this point everything had come to-
gether, and I could not resist the temptation to re-
generate Escher’s hyperbolic patterns with a graph-
ics program. As described above, the students and
I achieved this goal.

Having gone to the trouble of implementing a
hyperbolic pattern program, I could not resist the
further temptation of creating more hyperbolic
patterns. I found inspiration in Escher’s Euclidean
repeating patterns. In constructing my patterns, I
noticed I was paying attention to aesthetic issues
such as shape and color. More of these hyperbolic
designs can be seen in my chapter in the recent
book Escher’s Legacy [Schattschneider2]. When 
designing these patterns, I think of myself as 
working in the intersection of interesting mathe-
matics, clever algorithms, and pleasing art.
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In the introduction of the book M. C. Escher, The
Graphic Work, Escher describes himself: “The ideas
that are basic to [my works] often bear witness to
my amazement and wonder at the laws of nature
which operate in the world around us. He who
wonders discovers that this is in itself a wonder.
By keenly confronting the enigmas that surround
us, and by considering and analyzing the obser-
vations that I had made, I ended up in the domain
of mathematics. Although I am absolutely without
training or knowledge in the exact
sciences, I often seem to have more
in common with mathematicians than
with my fellow artists.” This de-
scription may very well explain why
an international congress held in June
of 1998 in Rome and Ravello, Italy, to
celebrate the centennial of the birth
of Escher was organized by two math-
ematicians, Michele Emmer and Doris
Schattschneider. This conference re-
sulted in an immensely interesting
collection of articles presented in the
book M. C. Escher’s Legacy, A Cen-
tennial Celebration.

Emmer and Schattschneider, who
also edited the book, are well known
to mathematicians, scientists, and
artists who seek aesthetic connec-
tions among disciplines. Schattschneider, a math-
ematics professor at Moravian College, has written
numerous articles about tessellations and Escher’s
works as well as the book Visions of Symmetry
(W. H. Freeman and Co., 1992), which describes
Escher’s struggles with the problem of dividing the
plane, and his achievements. Emmer, a mathemat-
ics professor at the University of Rome, is one of
the first in our time to call for a gathering of math-
ematicians and artists under one roof. He edited the
book The Visual Mind (MIT Press, 1993) and created
in the 1970s a series of videos about connections
between mathematics and art. Several prominent
scientists, such as geometer H. S. M. Coxeter and
physicist and mathematician Roger Penrose, ap-
peared in those videos. One of the videos, The
Fantastic World of M. C. Escher, is still currently avail-
able.

This book is divided into three parts. The first
part, “Escher’s World”, includes articles by authors
with vast records of intellectual activities in con-
nections among disciplines and in Escher’s works.
To mention a few, I should name Bruno Ernst, who
wrote The Magic Mirror of M. C. Escher in 1976, and
Douglas Hofstadter, who wrote Gödel, Escher, Bach:
An Eternal Golden Braid in 1979. The book comes
with a CD-ROM that complements many of the
forty articles. The CD-ROM contains illustrations
of artwork by contemporary artists who made con-
tributions to the book, as well as several videos, a

video-essay based on an Escher letter, some ani-
mations, and a puzzle.

Some articles in the first part of the book demon-
strate dimensions of Escher that are mainly un-
known to the public and therefore have not been
extensively investigated. “Escher’s Sense of Won-
der” by Anne Hughes and “In Search of M. C. Es-
cher’s Metaphysical Unconscious” by Claude Lam-
ontagne are two notable examples.

We also read about an Escher admirer and avid
collector of his works, Cornelius Roo-
sevelt, a grandson of American pres-
ident Theodore Roosevelt. The arti-
cle, by J. Taylor Hollist and Doris
Schattschneider, illustrates a deep
relationship between the artist and
the art collector and describes how
Roosevelt on many occasions played
an advisory role for Escher in regard
to the exhibitions and publications of
the artist’s works in the U.S. Cor-
nelius Roosevelt donated his collec-
tion to the National Gallery of Art in
Washington, DC. The collection is ac-
cessible to researchers, educators,
and other interested individuals.

The second part, “Escher’s Artistic
Legacy”, includes works of artists and

authors such as S. Jan Abas, Victor Acevedo, Robert
Fathauer, and Eva Knoll. There are also contribu-
tions by the artist-mathematician Helaman Fergu-
son and by Marjorie Rice, a homemaker without
mathematical background who was inspired by the
idea of pentagonal tessellations of the plane and
who discovered four tilings unknown to the mathe-
matics community at the time.

Not all the artists contributing to this part of the
book were inspired by Escher; it is not a collection
of papers written by the artist’s disciples. Rather,
the papers illustrate how the same sources for
Escher’s inspiration inspired these artists in a par-
allel way. Ferguson expressed that both he and
Escher responded aesthetically to the same source:
mathematics. Abas in a similar manner pointed to
Islamic patterns as a common source. The reader
not only becomes more familiar with the sources
of inspiration but also has the chance to observe
how the same sources resulted in different ap-
proaches and expressions in the final products of
different artists. This helps the reader to reach a
deeper understanding of Escher’s works.

The third part, “Escher’s Scientific and Educa-
tional Legacy”, presents articles by the computer 
scientist Douglas Dunham, who is famous for per-
forming tilings of the hyperbolic disk; the geometer
H. S. M. Coxeter; the author and editor István Hargittai;
Kevin Lee, who created the software utility Tessel-
lation Exploration; and more.
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Even though the majority of the articles in the
book are accessible to a reader with little back-
ground in mathematics, there are works in part
three that require familiarity with such concepts
as geodesic, hyperbolic geometry; symmetry
groups; and densest packing. These articles may be
considered as a resource for research in under-
graduate or graduate mathematics and mathe-
matics education.

Escher is especially well known for two types of
works: impossible structures (an idea borrowed
from Penrose) and the regular division of the plane
(influenced by Moorish artists of the Alhambra in
Granada, Spain). Through impossible structures
Escher challenges our concepts of the real world
by tweaking our perception of dimensions. And
through Escher’s other trademark, the regular
division of space and tessellations, he expresses
ideas such as duality, symmetry, transformations,
metamorphosis, and underlying relations among
seemingly unrelated objects. The book presents
several articles that address these two categories.
However, some authors go further and study ex-
amples of Escher’s works that go beyond these
categories.

Bruno Ernst correctly suggests that the attrac-
tion of people to impossible structures and regu-
lar divisions of the plane has given a one-sided and
incorrect image of Escher that ignores what he
wanted to convey through his prints. Ernst notes
that Escher was not a depicter of optical illusions,
which are very different from the impossible con-
structions; this is a misconception on the part of
the public. An example Ernst presents shows how
the intention of the artist may be very different
from the perception of the spectator.

Hofstadter writes about the first time he saw an
Escher print. He was twenty years old in January
1966, and the print was in the office of Otto Frisch,
who played a major role in unraveling the secrets
of nuclear fission. Hofstadter was mesmerized by
Escher’s work Day and Night, showing two flocks
of birds, one in white and one in black, flying in
opposite directions. He asked Frisch, “What is this?”
and Frisch replied, “It is a woodcut by a Dutch
artist, and I call it ‘Field Theory’. . . .”

The young man ponders the relationship to
physics that this artwork may have sparked in
Frisch’s mind: “I knew that one of the key princi-
ples at the heart of field theory is the so-called CPT
theorem, which says that the laws of relativistic
quantum mechanics are invariant when three ‘flips’
are all made in concert: space is reflected in a mir-
ror, time is reversed, and all particles are inter-
changed with their antiparticles. This beautiful
and profound principle of physics seemed deeply
in resonance with Frisch’s Escher print . . . .”

The above example and more throughout the
book illustrate the role of the artist Escher: a precise

observer and a tireless and deep thinker whose prints
not only bring us a sense of fascination and admi-
ration but also provoke our intelligence to discover
more relations beyond the scope and the knowledge
of the artist through the meticulous and detailed pre-
sentations of symmetry, duality, paradox, harmony,
and proportion. It is, then, not unrelated that Albert
Falcon, a professor at the École des Beaux Arts in Paris,
in a 1965 paper classified Escher among the “think-
ing artists”, along with Da Vinci, Dürer, and Piero della
Francesca.

I would like to end this review with the same
poem that Emmer included at the end of one of his
articles in this book. It is a Rubaiyat stanza by the
Persian mathematician and poet of the eleventh 
century, Omar Khayyám.

Ah, moon of my delight, that knows no wane
The moon of Heaven is rising again,
How oft hereafter rising shall she look
Through this same garden after us in vain!

Although Escher himself is no longer among us,
M. C. Escher’s Legacy, like a garden of continually
blooming flowers, allows us to appreciate his her-
itage anew.

About the Cover
This month’s cover exhibits the recently

constructed extension, described in the article
by Lenstra and de Smit, of M. C. Escher’s ex-
traordinary lithograph Print Gallery.

—Bill Casselman
(notices-covers@ams.org)


