
ar
X

iv
:1

71
1.

10
07

8v
1

 [
cs

.P
L

]
 2

8
N

ov
 2

01
7

Encoding Turing Machines

into the Deterministic λ-Calculus

Ugo Dal Lago1 and Beniamino Accattoli2

1Universitá di Bologna & INRIA Sophia Antipolis, Italy
2INRIA, UMR 7161, LIX, École Polytechnique, France

1 Introduction

This note is about encoding Turing machines into the λ-calculus. The encoding
we show is interesting for two reasons:

1. Weakly strategy independent : the image of the encoding is a very small
fragment of the λ-calculus, that we call the deterministic λ-calculus Λdet.
Essentially, it is the CPS (continuation-passing style) λ-calculus restricted
to weak evaluation (i.e., not under abstractions). In Λdet every term
has at most one redex, and so all weak strategies collapse into a single
deterministic evaluation strategy, because there are no choices between
redexes to be made. The important consequence of this property is that
every weak evaluation strategy then allows to simulate Turing machines,
as well as any strong strategy reducing weak head redexes (or even only
weak head redexes) first.

2. Linear overhead : the simulation is very efficient, when taking the number
of β-steps as the time cost model for the deterministic λ-calculus. The
simulation in Λdet indeed requires a number of β-steps that is linear in the
number of transitions of the encoded Turing machine, which is the best
possible overhead. Therefore, not only all weak strategies simulate Turing
machines, but they all do it efficiently.

The encoding has been conceived by Ugo Dal Lago in order to provide a
simulation of Turing machines by head evaluation, that was part of the results
of Accattoli and Dal Lago’s [ADL12]. The encoding itself appeared only in the
technical report associated to [ADL12] and it did not receive much attention.

This note is due to Beniamino Accattoli. Essentially, it is a commented and
smoothed presentation of Dal Lago’s development whose aims are:

1. to stress the relevance of the weak-strategy-independent property of the
encoding,

2. to make the proof accessible to a wider public.

The results of this note, and their consequences, are discussed and put in context
in Accattoli’s paper (In)Efficiency and Reasonable Cost Models [Acc17].

1

http://arxiv.org/abs/1711.10078v1

2 Deterministic λ-Calculus

The language and the evaluation contexts of the deterministic λ-calculus Λdet

are given by:

Terms t, s, u, r ::= v | tv
Values v, v′, v′′ ::= λx.t | x

Evaluation Contexts E ::= 〈·〉 | Ev

Note that

• Arguments are values : the right subterm of an application has to be a
value, in contrast to what happens in the ordinary λ-calculus.

• Weak evaluation: evaluation contexts are weak, i.e. they do not enter
inside abstractions.

Evaluation is then defined by:

Rule at top level Contextual closure

(λx.t)s 7→β t{x�s} E〈t〉 →det E〈s〉 if t 7→β s

Convention: to improve readability we omit some parenthesis, giving prece-
dence to application with respect to abstraction. Therefore λx.ts stands for
λx.(ts) and not for (λx.t)s, that instead requires parenthesis.

The name of this calculus is motivated by the following immediate lemma.

Lemma 2.1. Let t ∈ Λdet. There is at most one s ∈ Λdet such that t →β s,
and in that case t is an application.

Proof. By induction on t. If t is a value then it does not reduce. Then assume
that t is an application t = sv. Let’s apply the i.h. to s. Two cases:

1. s reduces and it is an application: then t has one redex, the one given by s

(because 〈·〉v is an evaluation context), and no other one, because v does
not reduce and s is not an abstraction by the i.h.

2. s does not reduce: if s is not an abstraction then t is normal, otherwise
s = λx.u and t = (λx.u)v has exactly one redex.

Fixpoint operator. The encoding of Turing machines requires a general form
of recursion, that is usually implemented via a fixpoint combinator. We use
Turing’s fixpoint combinator, in its call-by-value variant, that fits into Λdet and
that returns a fixpoint up to η-equivalence. It is defined as follows: let θ the
term tt, where t := λx.λy.y(λz.xxyz). Now, given a term s let us show that θs
is a fixpoint of s up to η-equivalence.

θs = (λx.λy.y(λz.xxyz))ts
→det (λy.y(λz.ttyz))s
→det s(λz.ttsz)
= s(λz.θsz)
=η s(θs)

2

It is well-known that η-equivalent terms are indistinguishable in the λ-
calculus (this is Bohm theorem). Therefore, we will simply use the fact that
θs→2

det s(λz.θsz) wihtout dealing with η-equivalence. This fact will not induce
any complication.

Let us a point out a subtlety. The evaluation of the fixpoint operator θ

terminates because evaluation is weak, indeed θ →det λy.y(λz.θyz) and the
new occurrence of θ is under abstraction, so that the reduct is a Λdet normal
form. This fact explains why the encoding is not strategy independent with
respect to strong strategies: the fixpoint operator is used to implement the
repeated application of the transition function of a Turing machine, then a
(strong) perpetual strategy always diverges on the image of our encoding.

Last, in the encodings of the next sections the only point where duplication
will take place will be in the use of the fixpoint combinator, all other construc-
tions will be linear (affine, to be precise).

3 Overview of the Encoding

The encoding of a Turing machine M into the Deterministic λ-Calculus Λdet

is built in a few steps. There are various points worth stressing, some of them
further organized in sub-points.

1. Complexity parameters : the complexity of the encoding will be measured
with respect to the size |s| of the input string s on whichM is executed.
The cost model considered on Λdet is the number of β-steps. In general,
the number of β-steps taken by the simulation will also depend on the
size of the alphabet Σ and the size of the set of states Q of M. These
quantities, however, will be considered as fixed parameters of the problem,
that is, as constants.

2. Encoding and converting strings :

(a) Alphabets and strings : The encoding relies on Scott’s encoding of
alphabets and strings, that fits into Λdet. Strings will be used to
encode the input, the output, and the tape. The encoding of a string
s will depend (linearly) on the cardinality of the underlying alphabet
Σ, so that encodings of the same string with respect to different
alphabets will be different. Note, however, that the size |Σ| of the
alphabet is considered as a fixed parameter, so that the encoding
of an element of Σ takes constant space in our analysis. The set of
states of a Turing machine will also be looked at as an alphabet.

(b) Appending on strings : the encoding repeatedly uses a term appendaΣ
that takes as input the encoding sΣ

∗

of a string with respect to Σ and
appends the encoding of the element a of Σ, returning the encoding

(as)
Σ∗

of the compound string as. This will be needed for various
reasons, but mainly to simulate the movement of the machine head,
since we will have to append a character to the string on the left or
on the right of the head. The appending operation will take constant
time.

3

(c) Converting encodings of a string with respect to different alphabets : A
turing machineM receives and produces strings in a given alphabet
Σ butM actually works on the alphabet Σ extended with the blank
symbol �. Since the encoding of strings depends on the alphabet we
have to show that there are terms liftΣ and flatΣ�

that can effi-

ciently switch between sΣ
∗

and s(Σ⊎{�})∗ . The conversion operations
will be linear in the size |s| of the converted string s, and of course
they will rely on the appending operation of the previous point.

3. Encoding Turing machines :

(a) Encoding configurations : a configuration C of M is encoded as a

tuple C
M

of characters and strings depending on the alphabet Σ
and the set of states Q of M. Actually, the strings of C appear in

C
M

encoded with respect to the extended alphabet Σ ⊎ {�}. The

encoding C
M

of a configuration C requires space linear in |C| (again,
it is also linear in |Σ| and |Q| but these quantities are considered as
constants).

(b) Turning the input string into the initial configuration: we will build a
term CM

in
(s) that takes in input the encoding sΣ

∗

of the input string
s and builds the initial configuration CM

in
(s) of M with respect to

s. Note that initM has to convert the representation of s from
the one with respect to Σ to the one with respect to Σ ⊎ {�}, and
thus will use the conversion operation liftΣ. Building the initial
configuration CM

in
(s) from sΣ

∗

will take time linear in |s|.

(c) Simulation of a machine transition: we will build a term transM

that encodes the transition function δ of M and that it will take a
constant number of β-steps to simulate every single transition. Up
to the many technicalities of the encoding, transM simply encodes
δ as a table. To show that transM properly simulates δ is the most
involved point of the proof.

(d) Extracting the output from the final configuration: the simulation of
the transition function produces an encoding of the final configuration
CM
fin

(s) with respect to an output string s. Note that, as for the
initial configuration, in CM

fin
(s) the string s is encoded with respect to

Σ⊎{�} while the output is expected to be encoded with respect to Σ.
We then apply a term finalM that extracts s(Σ⊎{�})∗ from CM

fin
(s)

and then converts it to sΣ
∗

by means of the flattening operations
flatΣ�

. Such an extracting operation will take time linear in |s|.

4. Continuation passing style: to stick to Λdet the encoding will actually
be in continuation-passing style. Concretely, the terms appendaΣ, liftΣ,
flatΣ�

, initM, transM, and finalM will all take as first argument a
continuation term k.

5. The image of the encoding. The encoding will produce a closed λ-term
t ∈ Λdet. The fact that it is closed is natural but it does not play any role.
The fact that it falls into the deterministic λ-calculus instead is essential,
not for the proof itself, but for the significance of the result for the study
of reasonable cost models, explained in [Acc17].

4

4 Encoding and Converting Strings

Encoding alphabets. Let Σ = {a1, . . . , an} be a finite alphabet. Elements
of Σ are encoded as follows:

ai
Σ := λx1.λxn.xi .

When the alphabet will be clear from the context we will simply write ai. Note
that

1. the representation fixes a total order on Σ such that ai ≤ aj iff i ≤ j;

2. the representation of an element ai
Σ requires space linear (and not loga-

rithmic) in |Σ|. But, since Σ is fixed, it actually requires constant space.

Encoding strings. A string in s ∈ Σ∗ is represented by a term sΣ
∗

, defined
by induction on the structure of s as follows:

εΣ
∗

:= λx1.λxn.λy.y ,

air
Σ∗

:= λx1.λxn.λy.xir
Σ∗

.

Note that the representation depends on the cardinality of Σ. In other words,
if s ∈ Σ∗ and Σ ⊂ ∆, sΣ

∗

6= s∆
∗

. In particular, |sΣ
∗

| = Θ(|s| · |Σ|). The size of
the alphabet is however considered as a fixed parameter, and so we rather have
|sΣ

∗

| = Θ(|s|).

Appending a character at the beginning of a string. We now show that,
for any given alphabet Σ, there is a term appendΣ that appends a character at
the beginning of a string. The number of steps taken by appendΣ to produce
the compound string is linear in |Σ|, and thus it is constant. Moreover, it takes
a continuation k as first parameter. Last, since here there is a single alphabet
in use, we write append, a, and s rather than appendΣ, a

Σ, and aΣ
∗

.

Lemma 4.1 (Appending a character in constant time). Let Σ be an alphabet
and a ∈ Σ one of its characters. There is a term appendaΣ such that for every
continuation k and every string s ∈ Σ∗,

appendaΣks→
O(1)
det k(as).

Proof. Define the term appendaΣ := λs.λk.k(λx1.λx|Σ|.λy.xias) where ia is
the index of a in the ordering of Σ fixed by its encoding, that appends the
character a to the string s relatively to the alphabet Σ. We have:

appendaΣsk = (λs.λk.k(λx1.λx|Σ|.λy.xias))sk
→2

det k(λx1.λx|Σ|.λy.xias)

= k(as).

5

Lifting the encoding of a string to the alphabet extended with the

blank symbol. We will have to convert the encoding sΣ to the encoding
sΣ⊎{�} with respect to the same alphabet Σ but extended with the blank symbol
�, and viceversa. We use the notation Σ� := Σ∪{�} and we use the convention
that the encoding with respect to Σ� uses the same order on the elements of Σ
extended by adding the blank symbol � as the last element.

The underlying idea is very simple, and as expected: the encoding of every
character aΣ is sent to aΣ� and appended to the portion of the string already
lifted so far, iterating over the string. Concretely, however, the transforma-
tion looks quite technical because the iteration is implemented via the fixpoint
operator.

Lemma 4.2 (Lifting the string encoding). Let Σ be a finite alphabet. There is
a term liftΣ such that

liftΣks
Σ∗

→
θ(|s|)
det ksΣ

∗

� .

Proof. Let:
liftauxΣ := λx.λk.λs.sN1 . . .N|Σ|Nk,

where N := λy.yεΣ
∗

� and Ni := λr.λk.x(λp.appendai

Σ�
kp)r for any i. Finally,

define liftΣ := θliftauxΣ.
We prove a more precise statement. By L.4.1 there is a constant c such that

appendΣ�
kaΣ�sΣ� →c

det kas
Σ� . Now, we prove that

liftΣks
Σ∗

→n
det ks

Σ∗

� .

where |s| ≤ n ≤ fΣ(|s|) := |s|(|Σ|+ c+ 10) + |Σ|+ 6. The fact that |s| ≤ n will
be evident, so that we rather prove the other inequality. By induction on |s|.

Define the abbreviations Pi := Ni{x�λz.liftΣz}.

liftΣks
∆∗

= θliftauxΣks
∆∗

→2
det liftauxΣ(λz.θliftauxΣz)ks

∆∗

= liftauxΣ(λz.liftΣz)ks
∆∗

= (λx.λk.λs.sN1 . . . N|Σ|Nk)(λz.liftΣz)ks
Σ∗

→det (λk.λs.sN1 . . . N|Σ|Nk){x�(λz.liftΣz)}ks
Σ∗

= (λk.λs.sP1 . . . P|Σ|Nk)ksΣ
∗

→2
det sΣ

∗

P1 . . . P|Σ|Nk

Two cases, depending on the nature of s.

• s is the empty string ε. Then:

εΣ
∗

P1 . . . P|Σ|Nk = (λx1.λx|Σ|.I)P1 . . . P|Σ|Nk

→
|Σ|
det INk

→det Nk

= (λy.yεΣ
∗

�)k

→det kεΣ
∗

�

So we have liftΣks
Σ∗

→n
det kε

Σ∗

� with |s| = 0 ≤ n = |Σ| + 6 = fΣ(0) =
fΣ(|s|).

6

• s is a compound string air. Then:

air
Σ∗

P1 . . . P|Σ|Nk = (λx1.λx|Σ|.λy.xir
Σ∗

)P1 . . . P|Σ|Nk

→
|Σ|
det (λy.Pir

Σ∗

)Nk

→det Pir
Σ∗

k

by i.h. there is m such that |r| ≤ m ≤ fΣ(|r|) and

Pir
Σ∗

k = (λr.λk.(λz.liftΣz)(λp.append
ai

Σ�
kp)r)rΣ

∗

k

→3
det liftΣ(λp.append

ai

Σ�
kp)rΣ

∗

(by i.h.) →m
det (λp.appendai

Σ�
kp)rΣ

∗

�

→det append
ai

Σ�
krΣ

∗

�

(by L.4.1) →c
det k(air)

Σ∗

�

= ksΣ
∗

�

Summing up, liftΣks
Σ∗

→n
det ks

Σ∗

� with n = m+ c+ |Σ|+10. Note that
fΣ(|s|) = fΣ(|r| + 1) = fΣ(|r|) + |Σ|+ c+ 10 and since |r| ≤ m ≤ fΣ(|r|)
we obtain |s| = |r|+ 1 ≤ n ≤ fΣ(|s|).

Flattening the encoding of a string to the alphabet without the blank

symbol. The following lemma shows that also the opposite operation on
strings, namely converting the encoding of a string with respect to Σ� to the
enconding with respect to Σ, is implementable in Λdet in constant time. The
operation is very similar to the lifting one, the proof only has an additional
subcase for �.

Lemma 4.3 (Flattening the string encoding). Let Σ be a finite alphabet. There
is a term flatΣ�

such that

flatΣ�
ksΣ

∗

� →
θ(|s|)
det ksΣ

∗

.

Proof. Let:
flatauxΣ�

:= λx.λk.λs.sN1 . . .N|Σ|N�Nk,

where

• N := λy.yεΣ
∗

• Ni := λr.λk.x(λp.appendai

Σ kp)r for any i

• N� := λr.λk.xkr

Finally, define flatΣ�
:= θflatauxΣ�

.
We prove a more precise statement. By L.4.1 there is a constant c such that

appendΣka
ΣsΣ →c

det kas
Σ. Now, we prove that

flatΣ�
ksΣ

∗

� →n
det ks

Σ∗

.

7

where |s| ≤ n ≤ fΣ�
(|s|) := |s|(|Σ�|+ c+ 10) + |Σ�|+ 6. The fact that |s| ≤ n

will be evident, so that we rather prove the other inequality. By induction on
|s|. The structure of the proof is exactly as for the lifting case, but for the last
subcase handling the blank element �.

Define the abbreviations Pi := Ni{x�λz.flatΣ�
z} and P� := N�{x�λz.flatΣ�

z} =
λr.λk.(λz.flatΣ�

z)kr.

flatΣ�
ksΣ

∗

= θflatauxΣ�
ksΣ

∗

→2
det flatauxΣ�

(λz.θflatauxΣ�
z)ksΣ

∗

= flatauxΣ�
(λz.flatΣ�

z)ksΣ
∗

= (λx.λk.λs.sN1 . . . N|Σ|N�Nk)(λz.flatΣ�
z)ksΣ

∗

�

→det (λk.λs.sN1 . . . N|Σ|N�Nk){x�(λz.flatΣ�
z)}ksΣ

∗

�

= (λk.λs.sP1 . . . P|Σ|P�Nk)ksΣ
∗

�

→2
det sΣ

∗

�P1 . . . P|Σ|P�Nk

Two cases, depending on the nature of s.

• s is the empty string ε. Then:

εΣ
∗

�P1 . . . P|Σ|P�Nk = (λx1.λx|Σ|.λx�.I)P1 . . . P|Σ|P�Nk

→
|Σ�|
det INk

→det Nk

= (λy.yεΣ
∗

)k

→det kεΣ
∗

So we have flatΣ�
ksΣ

∗

� →n
det kεΣ

∗

with |s| = 0 ≤ n = |Σ�| + 6 =
fΣ�

(0) = fΣ�
(|s|).

• s is a compound string air. Two sub-cases:

1. ai is an element of Σ: then the reasoning goes exactly has in the
lifting case.

2. ai is �:

�r
Σ∗

�P1 . . . P|Σ|P�Nk = (λx1.λx|Σ|.λx�.λy.x�r
Σ∗

�)P1 . . . P|Σ|P�Nk

→
|Σ�|
det (λy.P�r

Σ∗

�)Nk

→det N�r
Σ∗

�k

by i.h. there is m such that |r| ≤ m ≤ fΣ�
(|r|) and

P�r
∆∗

k = (λr.λk.(λz.flatΣ�
z)kr)r∆

∗

k

→2
det flatΣ�

krΣ
∗

�

(i.h.) →m
det krΣ

∗

Summing up, flatΣ�
ks∆

∗

→n
det ks

Σ∗

with n = m+ |Σ�| + 8. Note
that fΣ�

(|s|) = fΣ�
(|r| + 1) = fΣ�

(|r|) + |∆| + c + 10 and since
|r| ≤ m ≤ fΣ�

(|r|) we obtain |s| = |r|+ 1 ≤ n ≤ fΣ�
(|s|).

8

5 Encoding Turing Machines

Turing Machines. A deterministic Turing machineM is a tuple (Σ�, Q, qin , qfin , δ)
consisting of:

• A finite alphabet Σ = {a1, . . . , an} plus a distinguished symbol �, called
the blank symbol ;

• A finite set Q = {q1, . . . , qm} of states ;

• A distinguished state qin ∈ Q, called the initial state;

• A distinguished state qfin ∈ Q, called the final state;

• A partial transition function δ : Q × Σ ⇀ Q × Σ × {←,→, ↓} such that
δ(qi, aj) is defined iff qi 6= qfin .

A configuration forM is a quadruple (s, a, r, q) ∈ Σ∗ × Σ× Σ∗ ×Q where:

• s is the tape on the left of the head;

• a is the element on the cell read by the head;

• r is the tape on the right of the head;

• q is the state of the machine.

Given a string s ∈ Σ∗ we define:

• the initial configuration Cin(s) for s is Cin(s) := (ε,�, s, qin),

• the final configuration Cfin(s) for s is Cfin(s) := (ε,�, s, qfin)

An example of transition: if δ(qi, aj) = (ql, ak,←), then M evolves from
C = (sap, aj , r, qi) to D = (s, ap, akr, ql) and if the tape on the left of the head
is empty, i.e. if C = (ε, aj , r, qi), then the content of the new head cell is a blank
symbol, that is D := (ε,�, akr, ql). IfM has a transition from C to D we write
C M D. A configuration whose state is the final state qfin is final and cannot
evolve.

A Turing machine (Σ�, Q, qin , qfin , δ) computes the function f : Σ∗ → Σ∗ in
time g : N → N iff for every s ∈ Σ∗, the initial configuration for s evolves to a
final configuration for f(s) in g(|s|) steps.

Notation. From now on, we fix a Turing machine M = (Σ�, Q, qin , qfin , δ)
and encode it. To ease the notation we remove the superscripts to the encoding
of strings and elements, unless when necessary to disambiguate. The terms
encoding configurations and those building the initial configuration, representing
the transition function, and extracting the output are also relative to M but
we avoid addingM as a superscript, to ease the notation.

9

Encoding configurations. A configuration (s, a, r, q) of a machine M =
(Σ�, Q, qin , qfin , δ) is represented by the term

(s, a, r, q)
M

:= λx.(xsr
Σ∗

� aΣ� rΣ
∗

� qQ).

where sr is the string s with the elements in reverse order. We will often rather
write

(s, a, r, q) := λx.(xsr a r q).

letting the superscripts implicit. To ease the reading, we sometimes use the
following notation for tuples 〈t, s, u, r〉 := λx.(xtsur), so that (s, a, r, q) =
〈sr, a, r, q〉.

Turning the input string into the initial configuration. The following
lemma provides the term init that builds the initial configuration.

Lemma 5.1 (Turning the input string into the initial configuration). LetM =
(Σ�, Q, qin , qfin , δ) be a Turing machine. There is a term initM, or simply
init, such that for every s ∈ Σ∗

initksΣ
∗

→
Θ(|s|)
det kCin(s)

where Cin(s) is the initial configuration of M for s.

Proof. Define

init := λk.liftΣ(λr.k〈ε
Σ∗

� ,�
Σ�

, r, qin
Q〉).

Then

initksΣ
∗

= (λk.liftΣ(λr.k〈ε
Σ∗

� ,�
Σ� , r, qin

Q〉))ksΣ
∗

→det liftΣ(λr.(k〈ε
Σ∗

� ,�
Σ� , r, qin

Q〉))sΣ
∗

(by L.4.2) →
Θ(|s|)
det (λr.(k〈εΣ

∗

� ,�
Σ� , r, qin

Q〉))sΣ
∗

�

→det k〈εΣ
∗

� ,�
Σ�

, sΣ
∗

� , qin
Q〉

= k(ε,�, s, qin)

= kCin(s)

Extracting the output from the final configuration.

Lemma 5.2 (Extracting the output from the final configuration). Let M =
(Σ�, Q, qin , qfin , δ) be a Turing machine. There is a term finalM, or simply
final, such that for every final configuration C for s ∈ Σ∗

finalkC →
Θ(|s|)
det ksΣ

∗

.

Proof. Define

final := λk.λy.y(λv.λa.λs.λq.flatΣ�
ks)

10

Then:

finalkC = (λk.λy.y(λv.λa.λs.λq.flatΣ�
ks))kC

→2
det C(λv.λa.λs.λq.flatΣ�

ks)

= (p, a, s, qfin)(λv.λa.λs.λq.flatΣ�
ks)

= (λx.xpr
Σ∗

� aΣ� sΣ
∗

� qfin
Q)(λv.λa.λs.λq.flatΣ�

ks)

→det (λv.λa.λs.λq.flatΣ�
ks)pr

Σ∗

� aΣ� sΣ
∗

� qfin
Q

→4
det flatΣ�

ksΣ
∗

�

(by L.4.3) →
Θ(|s|)
det ksΣ

∗

Simulation of a machine transition. Now we show how to encode the
transition function δ of a Turing machine as a λ-term in such a way to simulate
every single transition in constant time. This is the heart of the encoding, and
the most involved proof.

Lemma 5.3 (Simulation of a machine transition). LetM = (Σ�, Q, qin , qfin , δ)
be a Turing machine. There is a term transM, or simply trans, such that for
every configuration C

• Final configuration: if C is a final configuration then transkC →
O(1)
det kC;

• Non-final configuration: If C M D then transkC →
O(1)
det transkD.

Proof. Define

transaux := (λx.λk.λy.y(λu.λa.λv.λq.qM1 . . .M|Q|aukv)),
trans := θtransaux,

where, for any i and j:

Mi := λa.aN1
i . . .N

|Σ|
i ;

N
j
i :=



















λu.λk.λv.k〈u, aj , v, qi〉 if qi = qfin
λu.λk.λv.xk〈u, ah, v, ql〉 if δ(qi, aj) = (ql, ah, ↓)

λu.uP
l,h
1 . . . P

l,h

|Σ|P
l,h if δ(qi, aj) = (ql, ah,←)

λu.λv.vR
l,h
1 . . . R

l,h

|Σ|R
l,hu if δ(qi, aj) = (ql, ah,→);

P
l,h
i := λu.λk.appendah(λw.xk〈u, ai, w, ql〉)

P l,h := λk.appendah(λw.xk〈ε,�, w, ql〉)

R
l,h
i := λu.λk.appendah(λw.xk〈w, ai, u, ql〉)

Rl,h := λk.appendah(λw.xk〈w,�, ε, ql〉)

Let C = (s, aj , r, qi) First, we need some abbreviations. For every i and j

define:

Qi := Mi{x�λz.transz};

T
j
i := N

j
i {x�λz.transz}.

Then:

11

transkC = θtransauxkC

→det transaux(λz.θtransauxz)kC
= transaux(λz.transz)kC

= (λx.λk.λy.y(λu.λa.λv.λq.qM1 . . .M|Q|aukv))(λz.transz)kC
→3

det C(λu.λa.λv.λq.((qM1 . . .M|Q|){x�λz.transz}aukv))
= C(λu.λa.λv.λq.qQ1 . . . Q|Q|aukv)

= (s, aj, r, qi)(λu.λa.λv.λq.qQ1 . . . Q|Q|aukv)
= (λx.(xsr aj r qi))(λu.λa.λv.λq.qQ1 . . . Q|Q|aukv)
→det (λu.λa.λv.λq.qQ1 . . . Q|Q|aukv)sr aj r qi
→det qiQ1 . . . Q|Q|ajs

rkr

= (λx1.λx|Q|.xi)Q1 . . . Q|Q|ajs
rkr

→
|Q|
det Qiajsrkr

= (λa.aT 1
i . . . T

|Σ|
i u)ajsrkr

→det ajT
1
i . . . T

|Σ|
i srkr

= (λx1.λx|Σ|.xj)T
1
i . . . T

|Σ|
i srkr

→
|Σ|
det T

j
i s

rkr

Now, consider the following four cases, depending on the value of δ(qi, aj):

1. Final state: if δ(qi, aj) is undefined, then qi = qfin and T
j
i := λu.λk.λv.k〈u, aj , v, qi〉,

by definition. Then:

T
j
i s

rkr = (λu.λk.λv.k〈u, aj , v, qi〉)srkr
→3

det k〈sr, aj , r, qi〉

= k(s, aj , r, qi)
= kC

2. The head does not move: If δ(qi, aj) = (ql, ah, ↓), then D = (s, ah, r, ql)
and

T
j
i := N

j
i {x�λz.transz}

= (λu.λk.λv.xk〈u, ah, vql〉){x�λz.transz}
= λu.λk.λv.(λz.transz)k〈u, ah, vql〉

Then:

T
j
i s

rrk = (λu.λk.λv.(λz.transz)k〈u, ah, v, ql〉)srkr
→3

det (λz.transz)k〈sr, ah, r, ql〉
→det transk〈sr, ah, r, ql〉

= transk(s, ah, r, ql)
= transkD

3. The head moves left : the hypothesis of this sub-cases is that δ(qi, aj) =

(ql, ah,←). So T
j
i is going to depend on P

l,h
i and P l,h defined at the

beginning of the proof. Since l and h are now fixed we lighten the notation,
using Pi and P for P l,h

i and P l,h. Moreover, we define the following further

12

abbreviations

Ui := Pi{x�λz.transz}
= (λu.λk.appendah(λw.xk〈u, ai, w, ql〉)){x�λz.transz}
= λu.λk.appendah(λw.(λz.transz)k〈u, ai, w, ql〉)

U := P{x�λz.transz}
= (λk.appendah(λw.xk〈ε,�, w, ql〉)){x�λz.transz}
= λk.appendah(λw.(λz.transz)k〈ε,�, w, ql〉)

With these conventions we have

T
j
i = N

j
i {x�λz.transz}

= (λu.uP1 . . . P|Σ|P){x�λz.transz}
= λu.uU1 . . . U|Σ|U

Then
T

j
i s

rkr = (λu.uU1 . . . U|Σ|U)srkr
→det srU1 . . . U|Σ|Ukr

Two sub-cases, depending on whether s is an empty or a compound string.

(a) s is the empty string ε. Then D = (ǫ,�, ahr, ql) and

ǫU1 . . . U|Σ|Ukr =

(λx1.λx|Σ|.λy.y)U1 . . . U|Σ|Ukr →
|Σ|+1
det

Ukr =
(λk.appendah(λw.(λz.transz)k〈ε,�, w, ql〉))kr →det

appendah(λw.(λz.transz)k〈ε,�, w, ql〉)r →
O(1)
det L.4.1

(λw.(λz.transz)k〈ε,�, w, ql〉)(ahr) →det

(λz.transz)k〈ε,�, (ahr), ql〉 =

(λz.transz)k(ε,�, ahr, ql) =
(λz.transz)kD →det

transkD

(b) s is a compound string pap. Then D = (p, ap, ahr, ql) and

srU1 . . . U|Σ|Ukr =
apprU1 . . . U|Σ|Ukr =

(λx1.λx|Σ|.λy.xppr)U1 . . . U|Σ|Ukr →
|Σ|+1
det

Upprkr =
(λu.λk.appendah(λw.(λz.transz)k〈u, ap, w, ql〉))prkr →2

det

appendah(λw.(λz.transz)k〈pr, ap, w, ql〉)r →
O(1)
det L.4.1

(λw.(λz.transz)k〈pr, ap, w, ql〉)(ahr) →det

(λz.transz)k(〈pr, ap, (ahr), ql〉 =

(λz.transz)k(p, ap, ahr, ql) =
(λz.transz)kD →det

transkD

4. The head moves right : the hypothesis of this sub-cases is that δ(qi, aj) =

(ql, ah,→). So T
j
i is going to depend on R

l,h
i and Rl,h defined at the

13

beginning of the proof. Since l and h are now fixed we lighten the notation,
using Ri and R for Rl,h

i and Rl,h. Moreover, we define the following further
abbreviations

Vi := Ri{x�λz.transz}
= (λu.λk.λv.appendah(λw.xk〈w, ai, u, ql〉)v){x�λz.transz}
= λu.λk.appendah(λw.(λz.transz)k〈w, ai, u, ql〉)

V := R{x�λz.transz}
= (λk.λv.appendah(λw.xk〈w,�, ε, ql〉)v){x�λz.transz}
= λk.appendah(λw.(λz.transz)k〈w,�, ε, ql〉)

With these conventions we have

T
j
i = N

j
i {x�λz.transz}

= (λu.λk.λv.vR1 . . . R|Σ|Rku){x�λz.transz}
= λu.λk.λv.vV1 . . . V|Σ|V ku

Then
T

j
i s

rkr = (λu.λk.λv.vV1 . . . V|Σ|Uku)srkr
→3

det rV1 . . . V|Σ|V ksr

Two sub-cases, depending on whether r is an empty or a compound string.

(a) r is the empty string ε. Then D = (ah,�, ǫ, ql) and

ǫV1 . . . V|Σ|V ksr =

(λx1.λx|Σ|.λy.y)V1 . . . V|Σ|V ksr →
|Σ|+1
det

V ksr =
(λk.appendah(λw.(λz.transz)k〈w,�, ε, ql〉))ksr →det

appendah(λw.(λz.transz)k〈w,�, ε, ql〉)sr →
O(1)
det L.4.1

(λw.(λz.transz)k〈w,�, ε, ql〉)(ahsr) →det

(λz.transz)k〈(ahsr),�, ε, ql〉 →det

transk〈(ahsr),�, ε, ql〉 =

transk(sah,�, ε, ql) =
transkD

(b) r is a compound string app. Then D = (sah, ap, p, ql) and

rV1 . . . V|Σ|V ksr =
appV1 . . . V|Σ|V ksr =

(λx1.λx|Σ|.λy.xpp)V1 . . . V|Σ|V ksr →
|Σ|+1
det

Vppksr =
(λu.λk.appendah(λw.(λz.transz)k〈w, ap, u, ql〉))pksr →2

det

appendah(λw.(λz.transz)k〈w, ap, p, ql〉)sr →
O(1)
det L.4.1

(λw.(λz.transz)k〈w, ap, p, ql〉)(ahsr) →det

(λz.transz)k〈(ahsr), ap, p, ql〉 →det

transk〈(ahsr), ap, p, ql〉 =

transk(sah, ap, p, ql) =

transkD

14

Straightforward inductions on the length of executions provide the following
corollaries.

Corollary 5.4 (Executions). Let M be a Turing machine. The term trans

encodingM as given by Lemma 5.3 is such that for every configuration C

1. Finite computation: if D is a final configuration reachable from C in n

transition steps then transkC →
O(n)
det kD;

2. Diverging computation: if there is no final configuration reachable from
C then transkC diverges.

The simulation theorem. We now have all the ingredients for the final
theorem of this note.

Theorem 5.5 (Linear simulation). Let Σ be an alphabet and f : Σ∗ → Σ∗ a
function computed by a Turing machineM in time g. Then there is an encoding
· into Λdet of Σ, strings, and Turing machines over Σ such that for every s ∈ Σ∗,
Ms→n

det f(s) where n = Θ(g(|s|) + |s|).

Proof. Morally, the term is simply

M := init(trans(final(λw.w))

where λw.w plays the role of the initial continuation.
Such a term however does not belong to the deterministic λ-calculus, because

the right subterms of applications are not always values. The solution is simple,
it is enough to η-expand the arguments. Thus, define

M := init(λy.trans(λx.final(λw.w)x)y)

Then

Ms =

init(λy.trans(λx.final(λw.w)x)y)s →
Θ(|s|)
det (by L.5.1)

(λy.trans(λx.final(λw.w)x)y)CM
in

(s) →det

trans(λx.final(λw.w)x)CM
in

(s) →
Θ(|g(s)|)
det (by Cor. 5.4)

(λx.final(λw.w)x)Cfin(f(s)) →det

final(λw.w)Cfin(f(s)) →
Θ(|s|)
det (by L.5.2)

(λw.w)f(s) →det

f(s)

References

[Acc17] Beniamino Accattoli. (In)Efficiency and Reasonable Cost Models. In
LSFA 2017, 2017.

[ADL12] Beniamino Accattoli and Ugo Dal Lago. On the invariance of the
unitary cost model for head reduction. In RTA, pages 22–37, 2012.

15

	1 Introduction
	2 Deterministic -Calculus
	3 Overview of the Encoding
	4 Encoding and Converting Strings
	5 Encoding Turing Machines

