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It is usual to identify initial conditions of classical dynamical systems with mathematical real
numbers. However, almost all real numbers contain an infinite amount of information. Since a
finite volume of space can’t contain more than a finite amount of information, I argue that the
mathematical real numbers are not physically relevant. Moreover, a better terminology for the
so-called real numbers is “random numbers”, as their series of bits are truly random. I propose an
alternative classical mechanics, which is empirically equivalent to classical mechanics, but uses only
finite-information numbers. This alternative classical mechanics is non-deterministic, despite the
use of deterministic equations, in a way similar to quantum theory. Interestingly, both alternative
classical mechanics and quantum theories can be supplemented by additional variables in such a
way that the supplemented theory is deterministic. Most physicists straightforwardly supplement
classical theory with real numbers to which they attribute physical existence, while most physicists
reject Bohmian mechanics as supplemented quantum theory, arguing that Bohmian positions have
no physical reality. I argue that it is more economical and natural to accept non-determinism with
potentialities as a real mode of existence, both for classical and quantum physics.

I. INTRODUCTION

Physics is often presented as the example of a deter-
ministic explanation of our world. Furthermore, it is of-
ten claimed that all good explanations must follow that
structure. This is usually illustrated by classical physics,
a theory whose explanatory power is truly impressive,
despite (or because?) the fact that its limits are well
understood. Indeed, the domain of validity of classical
mechanics is limited by relativity and quantum theory
whose predictions are more accurate when speed and size
(or action) get close to critical values determined by the
universal constants c and h̄, respectively.

Classical mechanics is a set of dynamical equations,
with initial conditions - typically position and momentum
of point particles - given by real numbers. Except for par-
ticular cases1, these dynamical equations together with
the initial conditions determine completely and uniquely
the solutions at all future and past times. Hence, the
conclusion that classical physics is deterministic.

This has huge consequences. First, as said, this is of-
ten taken as the goal of all good scientific explanations.
For example, many philosophers and physicists try to
formulate quantum physics in such a way as to recover
something like classical determinism, despite quantum
randomness; in sections VII and VIII I discuss Bohmian
mechanics in this context. Second, if scientific determin-
ism would be the only good scientific explanation, then
it would be highly tempting to conclude that everything
covered - at least in principle - by science happens by
necessity, i.e. is determined since the big-bang, including
all physiological processes.

1 like, e.g., Norton’s dome [1] and frontal collisions of point parti-
cles.

In my opinion - but this paper is independent of this
opinion - this has dreadful consequences: time and free-
will would be mere illusions, our world would be like a
movie in a closed box without any spectator. Even life
would be just an accident due to peculiar initial (or fi-
nal?) conditions of the world. If this paper is valid, then
there is a greater harmony between physics and our ex-
perience [2].

In the first part of this paper I argue that there is an-
other theory, similar but different from classical mechan-
ics, with precisely the same set of predictions, though
this alternative theory is indeterministic2. In a nutshell,
this alternative theory keeps the same dynamical equa-
tions as classical mechanics, but all parameters, includ-
ing the initial conditions are given by numbers contain-
ing only a finite amount of information. I do not make
any metaphysical claims about space, time nor numbers,
but notice that the mathematics used in practice is al-
ways finite. In sections III-V I argue that this alternative
classical mechanics is more natural because it doesn’t as-
sume the existence of inaccessible information. One way
to argue in favour of limiting physics to numbers with
finite information is that any finite volume of space can
contain only a finite amount of information (see section
IV). Consequently, the huge empirical evidence for clas-
sical mechanics equally applies to the alternative inde-
terministic theory. The alternative theory has the same
(enormous) explanatory power, section VI. It is thus not
correct to claim that the empirical evidence and the ex-
planatory power of classical mechanics supports a de-
terministic world view, since the same body of evidence

2 Here indeterministic is merely the negation of deterministic, i.e.
synonymous to non-deterministic: there is more than one possi-
ble future.
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equally supports an empirically equivalent but indeter-
ministic alternative classical mechanics theory.

In the second part of this paper I argue that every in-
deterministic theory can be supplemented by additional
variables in such a way to render it deterministic (in much
the same way as is done by Bohmian mechanics). In brief,
it suffices to assume that all the indeterminism that is
required at some point in time when, according to the
indeterministic theory, God plays dice, i.e. when poten-
tialities becoming actual, could be hidden as supplemen-
tary variables in the initial condition of the equivalent
deterministic theory, i.e. God played all dice at the big-
bang. This closes the circle: deterministic theories are
equivalent to indeterministic alternative theories in which
real numbers are replaced by finite-information numbers,
and indeterministic theories can be supplemented by ad-
ditional hidden variables in such a way that the supple-
mented theories are deterministic. Moreover, it seems
that applying our rule twice one may recover the initial
theory.

In sections VII and VIII the above rule to supplement
indeterministic theories is illustrated on the alternative
classical mechanics theory and on standard quantum
theory, leading to standard classical mechanics and to
Bohmian mechanics, respectively. Admittedly, in these
two examples, the supplemented deterministic theories
have, in addition to determinism, some elegance which
speaks in their favour. However, I conclude that deter-
minism is too high a price to pay to accept these sup-
plementary hidden variables. Indeed, indeterminism ex-
plains nicely, among other things, why probabilistic tools
are so powerful in statistical mechanics [3]. Moreover, in-
determinism opens the future, makes potentialities a real
mode of existence and describes the passage of time when
potentialities become actual [4, 5].

II. CLASSICAL DYNAMICAL SYSTEMS

The simplest and thus best known classical dynamical
systems are clocks, harmonic oscillators, two bodies in-
teracting via gravity (e.g. one lonely planet orbiting its
sun) and similar systems. For such systems, the trajecto-
ries are ellipses3 (in ordinary or in configuration space),
including the cases of degenerate ellipses, i.e. circles and
straight lines4. Such simple dynamical systems are called
integrable. They are characterized by their stability: the
solution at any time depends only on the leading digits
of the initial condition. More precisely, the solution up
to any precision ǫ depends only on the initial condition
up to a precision ǫ. Hence, for such simple systems, the

3 trajectories whose coordinates are sinuses and cosins, functions
that every computer “knows” how to calculate efficiently.

4 or the trajectories escape to infinity following parabolas or hy-
perbolas.

far away digits, let’s say from the billionth digits on, are
physically irrelevant, i.e. don’t represent anything phys-
ical; rhetorically, I sometimes write that these far away
digits have no physical existence or are not physically
real.
However, the fact is that almost all classical dynami-

cal systems are not integrable, they are not simple, but
on the contrary are chaotic. In this paper, for clarity, I
consider one typical chaotic dynamical system, but it is
important to realize that all non-simple classical dynam-
ical systems share the essential features of our example.
In this example, we don’t consider the solution at all
times, but only at a discrete set of times, let’s say ev-
ery microsecond. Furthermore, we assume the system is
constrained to remain within the unit interval [0..1], i.e.
its coordinate x lies between 0 and 1. Accordingly, its
coordinate can be written in binary form as a number
like:

x = 0.b1b2b3...bn... (1)

where the bj’s are the bits of x in binary representation
(equivalent to the digits in base 10). The dynamics for
each time step of this example is given by the following
map:

x→
{

2x if x < 1

2

2x− 1 if x ≥ 1

2

(2)

Such a dynamical map is very simple to represent when
the coordinate x is represented in binary form:

x = 0.b1b2b3...bn...

→ 0.b2b3...bn... (3)

At each time-step the bits merely get shifted to the left
by one place and the initial leading bit b1 drops out. Af-
ter n time-steps, the bits shift by n steps to the left.
This example of a generic chaotic system is inspired by
the baker’s map [6], though in our example there is a dis-
continuity at x = 1

2
. Note however, that the continuous

baker’s map shares all features of our map essential for
our arguments.
Notice that whether the x in eq. (1) lies in the first

half of the unit interval or in the second half is entirely
determined by the leading bit b1. This has the following
important consequence: whether the system lies within
the first half or the second half of the unit interval af-
ter n time-steps is determined by the first bit after n
time-steps, hence it depends on the nth bit of the initial
condition.
Such a chaotic system illustrates, for example, the chal-

lenge of weather predictions. Let’s say that when the
system’s coordinate x lies on the left of the unit interval,
this represents rainy weather, while an x on the right-
hand side represents sunny weather. Then, the weather
in a week’s time depends on infinitesimal bits, e.g. the
billionth bit, of the initial condition.
The question here is not whether this billionth bit can

be measured, but rather whether this billionth bit has
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any physical relevance. Clearly, if the initial condition is
defined by a real number, then this billionth bit is math-
ematically well defined. Hence the question is whether
mathematical real numbers are physically real.

III. REAL NUMBERS ARE ARE NOT REALLY

REAL

The set of all real numbers is equivalent (isomorphic)
to the set of real numbers within the unit interval. Hence,
all relevant numbers can be written as in (1), with in-
finitely many bits bj. This way of writing down real
numbers already illustrates the fact that real numbers
do, in general, contain an unlimited amount of (Shan-
non) information, i.e. infinitely many bits. The only
exceptions are when the series of bits bj terminates, or
more precisely when all bits after a finite coordinate m
are nil: bj = 0 for all j > m, or when after a finite
position m the series of bits repeats itself forever, like,
e.g., 0.0111011001010101010101010101... which contin-
ues with an endless repetition of the pattern 01, or more
generally when there is a finite formula (algorithm) to
compute all bits.

Another nice way to illustrate the infinite amount of
information in typical real numbers is due to Emile Borel,
as nicely told by Gregory Chaitin [7]. They emphasize
that one single real number can contain the answers to all
(binary) questions one can formulate in any human lan-
guage. To see this it suffices to realize that there are only
finitely many languages, each with finitely many symbols.
Hence, one can binarize this list of symbols (as routinely
done in today’s computers) and list all sequences of sym-
bols, first the sequences containing only a single symbol,
next those containing two symbols, and so on. This huge
list of symbols can then be considered as the bits of a
real number. Let’s leave 2 bits, b1nb

2

n, in-between each
sequence Sn of symbols:

0.S1b
1

1
b2
1
S2b

1

2
b2
2
S3b

1

3
b2
3
...Snb

1

nb
2

n... (4)

When the sequence Sn of symbols doesn’t represent a bi-
nary question, we set these two bits to 0 (b1nb

2
n = 00).

When they represent a question whose answer is yes, we
set these bits to 01 and if the answer is no we set them to
10. This procedure is not efficient at all, but who cares5:
since a real number has infinitely many bits, there is no
need to save space! Hence, one can really code the an-
swers to all possibly (binary) questions in one single real
number. This illustrates the absurdly unlimited amount
of information that real numbers contain. Real numbers
are monsters!

5 An already more economical coding would be to ignore all se-
quences of symbols that do not represent any question and add
after each meaningful question a single bit coding for the answer.

In the next section I argue that a finite volume of space
can contain no more than a finite amount of information.
Following this reasonable assumption, I argue that the so-
called real numbers are not really real. More precisely, I
argue that the mathematical real numbers are not phys-
ically real, by which I mean that they do not represent
anything physical. Indeed, the thesis of this paper is that
all of physics can be done with only finite-information,
or computable, numbers. All other numbers, i.e. num-
bers containing an infinite amount of information, cannot
represent physical entities. Specifically, they cannot be
used, and in fact are not used, to describe initial con-
ditions6, see also [8]. Moreover, in practice, one never
uses real numbers, except to prove some general abstract
non-constructive existence theorems. The fact that one
doesn’t need real numbers in practice is quite obvious,
as one never accesses an infinite amount of information.
Furthermore, today all predictions can be - and most
of the time are - encoded in computers, computers that
obviously hold at most a finite amount of bits, as em-
phasized in the next section. Consequently, physics is
actually done using only finite-information numbers and,
as we’ll see in section VI, classical physics with finite-
information initial condition is a well defined indeter-
ministic alternative theory to classical mechanics. Ad-
mittedly, one may prefer to postulate that real numbers
are physically significant, as I discuss in section VIII.

IV. A FINITE VOLUME IN SPACE CONTAINS

AT MOST FINITE INFORMATION

Here I present an argument supporting the claim that
real numbers cannot represent anything physical. This
argument is based on the assumption that no finite vol-
ume of space can contain an infinite amount of informa-
tion. This is a well accepted result that follows from the
holographic principle, known as the Bekenstein bound
[9, 10]. In brief, any storage of a bit of information
requires some energy and large enough energy densities
trigger black holes. However, for the purpose of my ar-
gument, I believe much more down to earth arguments
suffice to convince oneself that every bit of information
occupies some space, hence that information density is
limited. Let me now present one such argument.
The enormous progress in information storage over the

last few decades profoundly impacts our society7. Today,

6 To be clear - I am not making claims pertaining to the nature of
numbers, or making assumptions regarding the reality or unreal-
ity of numbers. My concern is with distinguishing numbers that
have physical significance from those that do not. Nor am I at all
concerned with the well known and daunting task of accounting
for the applicability of math in science. Finally, I am not argu-
ing against the use of real numbers as a useful tool for calculus,
simply only finite-information number can represent something
physical.

7 Allow me a side remark. The enormous progress in information
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everyone knows that they hold gigabytes of information
in their pockets and that companies like Google and agen-
cies like the NSA store everything that transits through
the internet. Furthermore, everyone knows also that each
stored bit requires some space. Not much, possibly soon
only a few cubic nanometre (10−18 mm3), but defini-
tively some finite volume. Consequently, assuming that
information has always to be encoded in some physical
stuff, a finite volume of space cannot contain more than
a finite amount of information. At least, this is a very
reasonable assumption.

Here I like to explore the deep conceptual consequences
of this fact, a fact easy to formulate and defend in our
information-based society, but a fact hardly conceivable a
century ago. Remember indeed, that the modern concept
of information was formalized by Shannon only in the
1940’s, forming with relativity and quantum theory the
three main scientific revolutions of the first half of the
20th century.

Consider a small volume, a cubic centimetre let’s say,
containing a marble ball. This small volume can contain
but a finite amount of information. Hence, the centre
of mass of this marble ball can’t be a real number (and
even less 3 real numbers), since real numbers contain -
with probability one - an infinite amount of information.
Classical physics describes the centre of mass of the ball
by 3 real numbers; and this is an extremely efficient de-
scription. But the fact that a finite volume of space can’t
contain more but a finite amount of information implies
that the centre of mass of any object cannot be identi-
fied with mathematical real numbers. Real numbers are
useful tools, but are only tools. They do not represent
physical reality.

Admittedly, according to today’s physics the above ar-
gument is a bit misleading, since we know that, ulti-
mately, the marble ball and its centre of mass should be
described by quantum physics, including quantum inde-
terminacy (often called uncertainty). This is correct, of
course. But let’s continue with classical physics because,
first, it remains extremely useful today, and, secondly,
it is often presented as the archetype of deterministic
theories. The main point of this paper is that classical
physics is deterministic only if one erroneously attributes
to the tool of real numbers physical significance. As soon
as one realizes that the mathematical real numbers are
“not really real”, i.e. have no physical significance, then
one concludes that classical physics is not deterministic,
as we elaborate in section VI. Actually, things are even
worse, as we explain in the next section.

storage and the relatively poor progress in energy storage ex-
plains why the science fiction of half a century ago completely
missed the “internet revolution”. In the science fiction of those
days no one could hold an encyclopedia in his pocket, but every-
one was flying thanks to small backpacks.

V. MATHEMATICAL REAL NUMBERS ARE

PHYSICAL RANDOM NUMBERS

Some real numbers can be computed up to arbitrary
precision with a computer, like for example all rational
numbers and numbers like

√
2 and π. Such computable

numbers contain only finite information, the length in
bits of the shortest program that outputs their bits. Note
that since there are only countably many programs, the
set of real numbers that can be calculated by a computer
is infinitely smaller than the set of all real numbers. More
precisely, the set of computable numbers is countably-
infinite, like the integers, while the set of real numbers is
continuously-infinite, like the mathematical points on a
line. Consequently, real numbers are uncomputable with
probability one. Or, equivalently, the set of computable
numbers has measure zero among the set of all real num-
bers. For more see [7].

The above simple observation has the following impor-
tant consequence: after the first bits, the next bits of
almost all real numbers are random: they don’t follow
any structure. These bits are as random as the outcome
of quantum measurements (on half a singlet, let’s say),
i.e. they are as random as possible8 [7]. Actually, one
can’t even name or characterize real numbers, as there
are only countably many names and characterizations.
Hence, almost all real numbers are totally outside our
grasp: we can’t say anything about them, except that
their digits are random, have no structure. Indeed, if
the digits of a real number had some structure, this very
structure would allow one to characterise and name that
number.

Accordingly, to name them “real number” is seriously
confusing. A better terminology would be to call them
“random numbers”. Unfortunately, Descartes named
them “real” to contrast them with the complex num-
bers, those numbers that include the square root of −1,
traditionally denote i. Hence:

Mathematical real numbers are physical ran-
dom numbers.

I think it can be speculated that had we learned in
school to name such numbers ”random” rather than
”real”, we would be less inclined to adopt a determin-
istic outlook on the basis of the science they figure in.

8 Some caution is due here, as not all bits of all real numbers are
random, as illustrated by the following example. Define a num-
ber with all bits at even positions identical to the corresponding
bits of the computable number π and all bits at odd positions
determined by the successive outcomes of a given (infinite) se-
quence of “true coin tosses”, e.g. the outcomes of a quantum
random number generator. In such an artificial case, every sec-
ond bit is predictable, but all others are truly random.
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VI. NON-DETERMINISTIC CLASSICAL

PHYSICS

In this section we return to physics, now that we
have established that the “mathematical real numbers
are physical random numbers”, i.e. most mathemati-
cal real numbers are physically immaterial. We define
alternative classical mechanics as the same set of dy-
namical equations as standard classical mechanics, but
all parameters, notably the initial conditions, are given
by finite-information numbers. Note that for integrable
dynamical systems, the coordinates at all times given
by a finite-information parameter t are themselves de-
scribed by finite-information numbers. Hence, all predic-
tions about integrable systems remain unchanged.
However, looking back to the example of the typical

classical chaotic dynamical system of section II, we recall
that the leading bit describing the system, i.e. the bit
that determines whether the system lies of the left half
(rainy weather) or on the right half of the unit interval
(sunny weather) after n time-steps, depends on the nth
bit of the initial condition, bn. But, if n is large enough,
this nth bit of the initial condition had, at the time corre-
sponding to the initial condition, no physical significance.
Hence, according to our alternative classical mechanics,
chaotic dynamic systems are truly random. Let me em-
phasize that they are not merely random for all practical
purposes, but that they are truly random, as random
as quantum measurement results. This randomness has
nothing to do with technological limitations, it is intrinsic
pure randomness.
The view I am suggesting is that the first bits in the

expression of x are “really real” (e.g., at present, it is
really rather sunny or rather rainy), while the very far
away bits are totally random. As time passes they get
shifted to the left, one position at each time-step9. Hence,
step by step they acquire some definite value. As time
passes they have a changing disposition (or propensity)
to hold their eventual value. This propensity changes at
each time-step, similarly to the quantum probability of
physical quantities of quantum systems that also evolve
as time passes. I suggest that this is similar to the Brow-
nian motion of some particle that evolves in-between two
sticky plates (that code for the bit values 0 and 1) until
it eventually sticks either on the left plate or on the right
plate10. Accordingly, the openness of the future enters
gradually, sometimes on millisecond scales and for other
systems on scales of millions of years.
One may object that this view is arbitrary as there is

no natural bit number where the transition from deter-

9 The time-steps are used here only as illustration. Time could
pass much smoother, with the propensities of all bits varying
slowly.

10 Note that this is similar to the quantum state of a quantum-
bit (qubit) in spontaneous localization models described with
stochastic Schrödinger equations [11].

mined to random bits takes place. This is correct, though
not important in practice as long as this transition is far
away down the bit series. The lack of a natural tran-
sition is due to the fact that, in classical physics, there
is no equivalent to the Plank constant of quantum the-
ory. But this is quite natural, as the fact is that when
one looks for this transition in the physical description
of classical systems, one hits quantum physics.
Admittedly, Newton’s equations, as well as Maxwell’s

equations, are deterministic: given initial conditions in
the form of real numbers, all the future and past are
fixed11. But the fact that these equations are mathemat-
ically deterministic doesn’t imply that physics is deter-
ministic. For example, this is definitively not the case
when the initial conditions of chaotic systems are not
identifiable with mathematical real numbers, as in our al-
ternative classical mechanics. Consequently, whether
classical physics is deterministic or not is not a
scientific question, but depends on the physical
significance one associates with mathematical real
numbers.
As the philosopher Elizabeth Anscombe emphasized

[12], “the high success of Newtons astronomy was in one
way an intellectual disaster: it produced an illusion (...)
for this gave the impression that we had here an ideal of
scientific explanation; whereas the truth was, it was mere
obligingness on the part of the solar system, by having had
so peaceful a history in recorded time, to provide such a
model”.

VII. SUPPLEMENTARY VARIABLES...

So far we have seen that physics is non-deterministic
and that this is true both of quantum [13] and alternative
classical mechanics. In this section we turn to the nat-
ural question of whether one could add supplementary
variables to quantum and to classical mechanics in order
to restore determinism.
That it is possible to do so in the case of classical me-

chanics is well known. It suffices to add the mathematical
real numbers, as is usually done without even mention-
ing that these are supplementary variables. Once these
real numbers are added and postulated to be part of the
ontology of the theory, the so extended theory is deter-
ministic. Somehow, all the randomness has been pushed
back to the (unattainable) initial conditions, as discussed
in the next section.
For physicists this may look like a joke: we first ar-

gued at length that ”‘real numbers are not really real”’
just to next introduce them again. But notice what is
achieved by viewing things in this way. The real num-
bers are certainly not necessarily part of the ontology of
classical physics, it is not the experimental facts that

11 Up to exceptional cases, see footnote 1.
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force physics to include real numbers in the ontology
of classical physics. Hence, at first, classical physics is
non-deterministic. However, all non-deterministic theo-
ries can be turned deterministic by adding supplemen-
tary variables. In full generality, it suffices to add, for
example, as supplementary variables all results of all fu-
ture measurements, while making sure that these sup-
plementary variables remain hidden as long as the corre-
sponding measurements haven’t happen. In fact, that’s
exactly how classical mechanics is done: postulating that
the initial condition of all classical dynamical systems are
faithfully described by real numbers is an elegant way of
adding all future results, while making sure that they re-
main inaccessible for long enough a time. Admittedly,
just adding future results and postulating that there are
inaccessible won’t convince any scientist. Adding the real
numbers to classical physics is much more convincing, be-
cause it is elegant. But is it truly different?
And what about quantum physics? Here there is a

well known way to add supplementary variables in such
a way as to turn quantum mechanics deterministic. This
is known as Bohmian mechanics (or the de Broglie-Bohm
pilot wave) [14–16]. Essentially, one postulates that all
particles always have well defined - though inaccessible
- positions and that, at the end of the day, all mea-
surements are positions measurements (position of some
pointer, position of some electrons that turn on/off some
LEDs, etc). These particle positions, which I name
Bohmian positions, are guided by the solution of the
usual Schrödinger equation in a clever way such that
if the initial positions are assumed to be statistically
distributed according to the usual quantum probabili-
ties, i.e. |ψ(~x)|2, then the statistical distribution of the
Bohmian positions remain in accordance with quantum
probabilities at all times. This is very elegant and, like for
the real numbers for classical physics, adding Bohmian
positions to the ontology of the theory turns quantum
physics into a deterministic theory. Note that it requires
also to “trust” real numbers, as the Bohmian positions
and the quantum state vector use them.
Two points of cautions are due for the non-specialists:

1. In case of systems composed of more than one parti-
cle, one should realize that the evolution of any par-
ticle, let’s say the first one, depends on the entire
wave-function. Hence, it depends also on what hap-
pens at the location of the other particles, i.e. each
particle is guided in a non-local way. This is neces-
sary because quantum predictions violate the Bell
inequality, hence all alternative (or supplemented)
theories that reproduce quantum predictions must
contains some non-local features [13, 17, 18].

2. The intuition that position measurements merely
reveal the Bohmian positions is generally correct,
but there are cases where a particle may leave a
trace (e.g. excite an atom) where, according to
its Bohmian position, it wasn’t [19]. This is not
a logical contradiction, Bohmian mechanics is self-

consistent12, but it takes away a significant part of
its intuitive value and elegance [21].

VIII. ... PUSH RANDOMNESS BACK TO THE

INITIAL CONDITION

As we saw in the previous section, both alternative
classical and quantum non-determinism can be turned
deterministic by adding supplementary variables. In
both cases, the complemented deterministic theory is
rather elegant. In both cases, the original randomness
is pushed back to the initial conditions. Indeed, as time
passes, instead of new bits in the series (1) gain-
ing determined values, new bits from the initial
condition gain relevance. Hence, we face a choice: ei-
ther the fact that at present certain things happen and
others do not is interpreted as revealing, retroactively,
information about long past initial conditions, or else,
we understand the present as the result of indeterminate
reality, and the future as open. If we care about how we
experience reality, the later option is obviously superior.
Noteworthy, it is a fact that almost all physicists

do complement alternative classical mechanics with the
mathematical real numbers; they do so even without
thinking about it. At the same time, almost all physicist
reject Bohmian mechanics arguing that it is unnecessar-
ily complicated and doesn’t lead to new physics. How-
ever, one may argue that the real numbers accepted in
classical physics are also unnecessarily complicated (re-
member, they contain an infinite amount of information.
Isn’t that hugely complex?). Furthermore, one can ask
which new physics the real numbers produced.

IX. CONCLUSION

In our society the concept of information is ubiquitous.
Today, it is quite natural to assume that no finite volume
of space can hold more but a finite amount of (Shannon)
information, as measured by bits. Consequently, I ar-
gue that one should not attribute to real numbers, i.e.
to numbers that contain an infinite amount of informa-
tion, any physical significance. This observation implies
that there is a simple alternative to standard classical
mechanics, based on finite-information numbers, which
is a non-deterministic theory although it has exactly the
same predictive and explanatory powers.
At the time of Laplace the concept of information,

in particular its quantization in terms of bits, was non-
existing. Hence, it was natural to identify initial con-
ditions of classical dynamical systems with the math-

12 at least as consistent as a deterministic theory can be [20], re-
calling that in deterministic “theories of everything” no internal
observer has the freedom to perform experiments.
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ematical real numbers. But today that we know that
“real numbers” contain an infinite amount of informa-
tion and, as suggested above, that they would be better
called “random numbers”, we should realize that such
numbers can’t be the basis for determinism.
Accordingly, both alternative classical and quantum

theories can and, I claim, ought to be regarded as non-
deterministic. This opens interesting new perspectives.
First, one may want to complement these theories with
supplementary variables in such a way that the comple-
mented theory is deterministic. This can be done both
for quantum and for classical physics, as seen in sections
VII and VIII. The fact is that most physicists easily com-
plement classical physics, but are reluctant to make the
similar move for quantum physics.
Taking non-determinism seriously implies accepting

Res Potentia, i.e. accepting potentiality as a real mode
of existence. I find this very natural: objects have some
dispositions, or propensities, to behave in various ways
under different circumstances. These reactions to cir-
cumstances are, most of the time, not predetermined, but
can often be characterized by likelihoods or propensities.
In the quantum case these propensities are merely the so-
called quantum probabilities, i.e the squares of the abso-
lute values of some quantum amplitudes. In the classical
case, one may imagine that the bits very far down the
series of bits of numbers in binary format are totally ran-
dom, i.e. have propensities 1

2
for both values 0 and 1, in

full accordance with the fact that these number are finite-
information numbers. As time passes, these propensities
fluctuate to gradually and eventually settle to a deter-
mined bit value, as is the case for all leading bits. Never-
theless, there are clear differences between quantum and

classical indeterminism. Given maximal knowledge, clas-
sical indeterminism doesn’t affects the very near future,
while quantum indeterminism may show up in the next
measurement result. Furthermore, quantum and classical
propensities differ deeply; according to [22] one may even
argue that the quantum propensities are closer to deter-
minism than the propensities of our alternative classical
mechanics.

In summary, physics with all its predictive and ex-
planatory powers can well be presented as intrinsically
non-deterministic. The dominant view according to
which classical physics is deterministic is due, first, to
a false impression generated by it’s huge success in as-
tronomy and in the design of clocks and other simple
mechanical (integrable) systems, and second to a lack of
appreciation of its implication for (infinite) information
density.

Finally, given that an indeterministic world is hos-
pitable to Res Potentia and to the passage of time
[23, 24, 26], the view presented here invites a renewed
assessment of the debate on free-will and its compati-
bility/incompatibility with determinism/indeterminism
should be revisited [27].
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