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The Fundamental Theorem of Algebra
 

There is a Russian emissary here whose two young and intellectually gifted daughters I was supposed
to instruct in mathematics and astronomy. I was, however, too late, and a French émigré obtained the
position.                   C. F. Gauss, 1798

 
Gauss’s doctoral dissertation, published in 1799, provided the first genuine proof of the fact
that every polynomial (in one variable) with real coefficients can be factored into linear
and/or quadratic factors. Imaginary and complex numbers were not widely accepted at that
time, but today this proposition – traditionally called the fundamental theorem of algebra -
is usually expressed by saying that every polynomial of degree n possesses n complex roots,
counting multiplicities. Although Gauss’s 1799 proof focused on polynomials with real
coefficients, it isn’t difficult to extend the result to polynomials with complex coefficients
as well. By modern standards, Gauss’s proof was not rigorously complete, since he relied
on the continuity of certain curves, but it was a major improvement over all previous
attempts at a proof.
 
Only about a third of Gauss’s dissertation was actually taken up by the proof. The rest
consisted of a rather frank assessment of the previously claimed proofs of this proposition
by D’Alembert, Euler, Legendre, Lagrange, and others. Gauss explained that all their
attempts were fallacious, and indeed that they didn’t even address the real problem. They all
implicitly assumed the existence of the roots, and just sought to determine the form of those
roots. Gauss pointed out that the real task was to prove the existence of the roots in the first
place, and only then to establish their form. (He complained in a letter to his friend Bolyai
about “the shallowness of contemporary mathematics”.) It’s clear that Gauss attached great
importance to this theorem, since he returned to it repeatedly, publishing four proofs of it
during his lifetime. The fourth of these was in the last paper he ever wrote, which appeared
in 1849, exactly 50 years after his dissertation on the same subject.
 
The phrase “fundamental theorem of algebra” may be considered somewhat inaccurate,
because the proposition is actually part of complex analysis. (It might even be regarded as
an example of Gödel’s incompleteness theorem, i.e., a meaningful and true proposition that
cannot be proven within the context in which it is formulated.) A huge number of proofs
have been devised, making use of a wide range of mathematical concepts. In general a
polynomial of degree n is defined as a function of the form
 

 
where z is a complex variable and c0, c1, …, cn-1 are complex constants.  Of course, it
suffices to prove that every polynomial has at least one complex root, because by ordinary
algebraic division we can divide by the corresponding linear factor to give another
polynomial whose degree is reduced by 1. Repeating this process, we get all n of the roots.
 
For the case of real-valued coefficients and odd degree n, it’s easy to see that a real root
exists, because in that case the value of f(z) is positive for sufficiently large positive values
of z, and negative for sufficiently large negative values of z, and since the function is
continuous, it must pass through zero at some point in between. (We accept the intuitive
aspects of continuous curves without rigorous proof.) If the degree n is even, the function
may still cross zero, and each such crossing corresponds to a real root. Hence the only non-
trivial task is to prove that a real polynomial of even degree, and that does not cross zero
(for real arguments), is divisible by a quadratic factor, i.e., a polynomial of the form z2 +
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a1z + a0 for some real values of a0 and a1. Hence the first case in doubt is the quartic, i.e., a
polynomial of degree n = 4, which can be written as
 

 
We will focus on just the case n = 4, but the arguments are completely general, and apply to
any higher degree. Assume this function does not equal zero for real values of z (because if
it does, we can divide by the corresponding linear factors to arrive at a polynomial of lower
degree). As mentioned above, Gauss’s 1799 proof dealt only with polynomials with real
coefficients, and avoided any explicit use of complex numbers, but his proof is clearly
based on the behavior of complex numbers. Instead of claiming that this polynomial is
divisible by each of the linear factors (z-z1) and (z-z2) where z1 and z2 are complex
conjugate roots
 

 
he simply asserts that f(z) is divisible by the product of these two factors, i.e., by the
quadratic with real coefficients
 

 
To prove this, he essentially inserts one of the individual roots into f(z) = 0, and then splits
the result into two equations, one consisting of just the real terms and the other consisting of
the imaginary terms. Of course, he doesn’t proceed explicitly in this way, but clearly
substitution of the exponential form of either z1 or z2 into f(z) = 0 leads to the two
equations
 

 
Gauss stated that these equations are “usually given with the aid of imaginaries (cf. Euler),
but I found it worthwhile to show that it can be demonstrated in the same easy way without
their aid”. Each of these equations described a locus of points on the (r,j) plane. The
necessary and sufficient condition for f(z) to be divisible by the specified quadratic factor is
that there be some point of intersection between these two loci.
 
To prove the existence of such an intersection, Gauss first observes that we can regard the
left hand sides of those equations (with arbitrary r and j) as altitudes above the (r,j) plane,
so they each define a continuous surface. For sufficiently large r (which he takes to always
be positive, since negative values of z are given by a suitable angle j), the leading terms are
larger than the sum of all the other terms, and so the surface clearly lies above the plane in
some locations and below the plane in others. Since it is a continuous surface, it must pass
through the plane, and the intersection of the surface with the plane gives the two loci
represented by the two equations above. He then divides through the equations by r4 and
writes them in the form
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Hence (he says), at an infinite distance from the origin (i.e., as r increases to infinity), these
curves coincide with (or rather, are asymptotic to) the loci represented by
 

 
where n = 4 for our example. The solutions of these equations are j = (p/2n)(2k+1) and j =
(p/2n)(2k) respectively. These solutions are independent of r, so they represent radial lines
on the (r,j) plane. Therefore, the original two loci are asymptotic to the radial lines shown
below.
 

 
As a concession to “readers less familiar with general and abstract investigations”, Gauss
included a plot of the curves for a specific example, namely the quartic polynomial
 

 
These curves are shown in the figure below.
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The four complex roots corresponds to the four points of intersection between the red and
blue curves. (The roots come in conjugate pairs, as can be seen from the symmetry about
the horizontal axis.) Gauss then explains why, in general, we are guaranteed an intersection.
He argues that each branch must be continuous, and therefore the curve on each branch
must pass from one asymptote to another. Furthermore, the asymptotes occur alternately, so
no matter how they are paired, they must cross at some point. He showed this by pointing
out that, if we are to avoid any crossings, then any two connected red asymptotes must
completely enclose an even number of blue asymptotes (so they can be connected in pairs
without crossing the red connection), and likewise any two connected blue asymptotes must
enclose an even number of red asymptotes, and so on. But eventually we must arrive at a
single enclosed asymptote, so it must intersect the enclosing curve. This completes the
proof.
 
For a streamlined version of Gauss’s proof, making free use of complex numbers (but
taking the properties of continuity for granted), consider again the general polynomial of
degree n with complex coefficients
 

 
and again put z = reij, so we have
 

 
For sufficiently large r the first terms is larger than all the others combined, so if we move
the point z around a circle of radius r (on the complex plane) centered on the origin, the
corresponding points f(z) trace out a closed curve that loops around the origin n times. A
rough illustration of this is shown in the left-hand figure below.
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Now, as r goes zero, the value of f(z) goes to c0, and when r is exactly zero, the locus of z
values is just a single point at the origin, and the corresponding locus of f(z) values is the
single point at c0.  Assuming c0 is not equal to zero, these are two different points. It
follows that as r is varied continuously from large values (as in the left-hand figure) to small
values (as in the right-hand figure), the blue locus of f(z) values must be dragged across the
origin. In fact, all n of the loops must cross the origin, and the z values for which this occurs
are the n complex roots of the polynomial. This completes the proof.
 
Another well-known proof is based on the properties of analytic function. Recall that a
function F(z) is analytic in some region if it can be expressed as a convergent power series
 

 
in that region. As an example, the function F(z) = 1/(1-z) is analytic because it is equal to
the convergent series
 

 
However, this series is convergent only for |z| less than 1, which is the root of the
denominator. For z = 1 the denominator goes to zero, and the function goes to infinity. In
general, the series expansion of a polynomial about some point converges only within the
largest circle centered on that point that does not enclose any “poles”. In other words, the
disk of convergence for the power series of a rational function extends only to the nearest
pole. Now, suppose we have a (non-constant) polynomial f(z) that has no complex root. It
follows that the function F(z) = 1/f(z) has no poles, so it is analytic everywhere, and hence
the power series for F(z) converges for all z. But this is impossible, because the magnitude
of f(z) becomes arbitrarily large as z increases to infinity, and hence the magnitude of F(z) =
1/f(z) becomes arbitrarily small, and yet the magnitude of the power series for F(z) becomes
arbitrarily large. The only exception would be if all the coefficients aj of the power series
were zero except for a0, but in that case F(z) is a constant, whereas we stipulated that f(z)
and therefore 1/f(z) is not constant. (The fact that a bounded function which is regular at
every point must be a constant is called Liouville’s theorem.)
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