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Abstract

I show that physical devices that perform observation, ipteah, or recollection share an underlying math-
ematical structure. | call devices with that structure émgnce devices”. | present a set of existence and
impossibility results concerning inference devices. Bhessults hold independent of the precise physical
laws governing our universe. In a limited sense, the imbil#giresults establish that Laplace was wrong
to claim that even in a classical, non-chaotic universeuhg® can be unerringly predicted, giverfstient
knowledge of the present. Alternatively, these imposisybibsults can be viewed as a non-quantum me-
chanical “uncertainty principle”. Next | explore the clasennections between the mathematics of inference
devices and of Turing Machines. In particular, the impadfigitresults for inference devices are similar to
the Halting theorem for TM'’s. Furthermore, one can defineradag of Universal TM's (UTM’s) for in-
ference devices. | call those analogs “strong inferenc&ds' | use strong inference devices to define the
“inference complexity” of an inference task, which is theakng of the Kolmogorov complexity of com-
puting a string. However no universe can contain more thanstrong inference device. So whereas the
Kolmogorov complexity of a string is arbitrary up to spedafion of the UTM, there is no such arbitrariness
in the inference complexity of an inference task. | end bguasing the philosophical implications of these
results, e.g., for whether the universe “is” a computer.
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1. Introduction

Some of the most fruitful investigations of the foundatiofighysics began by identifying a
set of features that are present in all physical realizataira particular type of information pro-
cessing. The next step in these investigations was to &baind formalize those shared features.
Once that was done, one could explore the mathematical giregpef those features, and thereby
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analyze some aspects of the relationship between physiasfammation processing. Examples
of such investigations include the many decades of work enrdftationship between physics
and computation [11,12,1.13,14/15[16,17,18,10,20,223222.24], the work on observation that
started with Everett's seminal papér [25], and more recekwhat considers what possible
forms physical reality might have [26,27]28/293(),3133234,3%,36].

In this spirit, here we first present archetypal examplesgtjral devices that perform obser-
vation, of physical devices that perform prediction, angiofsical devices that perform recollec-
tion. We then identify a set of features common to those exasnphis is our first contribution,
that such physical devices share those features.

Next we formalize those features, defining any device psgsgshem to be an “inference
device”. To do this requires our second contribution: a faliration of the concept of semantic
information conterltl Loosely speaking, we define the semantic information cdrdka vari-
ablesconcerning a variableto be what an external scientist can infer about what theavaiu
is in their particular universe by knowing the statesoNote the central role in this definition of
the scientist external to the device. As discussed belothidrrontext of using inference devices
for observation, this central role of the external scignsisn some ways more consistent with
Wigner’s view of the observation process than with the manylds view of that process.

For the remainder of the paper we develop the theory of infaxelevices, thereby analyzing
numerous aspects of the relationship between physics &meation processing. Our goal in
this endeavor is to illustrate the breadth of the theory farience devices; an exhaustive analysis
of any one aspect of that theory is beyond what can fit intodimigle paper.

A recurring theme in our analysis of inference devices i ttedationship with Turing Ma-
chines (TM’s). In particular, there are impossibility résdor inference devices that are similar
to the Halting theorem for TM’s. Furthermore, one can defineamalog of Universal TM’s
(UTM’s) for inference devices. We call those analogs “styarference devices”.

A central result of this paper is how to use strong inferermaaks to define the “inference
complexity” of an inference task, which is the analog of th@rfogorov complexity of com-
puting a string. A task-independent bound is derived on hawhthe inference complexity of
an inference task canfir for two diferent inference devices. This is analogous to the “encod-
ing” bound governing how much the Kolmogorov complexity aftang can difer between two
UTM'’s used to compute that string. However no universe cantaio more than one strong in-
ference device. So whereas the Kolmogorov complexity afiagsts arbitrary up to specification
of the UTM, there is no such arbitrariness in the inferencaexity of an inference task.

After presenting inference complexity, we informally diss the philosophical implications
of all of our results to that point. In particular, we discugsat it might mean for the universe
to “be” a computer. We also show how much of philosophy candgeiced to constraint satis-
faction problems, potentially involving infinite-dimensial spaces. We follow this discussion by
deriving some graph-theoretic properties governing thesitde inference relationships among
any set of multiple inference devices in the same universe.

Our next contribution is an extension of the inference devitamework to include physical
devices that are used for control. Associated impossibi#isults provide fundamental limits on
the capabilities of physical control systems. After thispresent an extension of the framework
to probabilistic inference devices. Of all the results iis thaper, it is the impossibility results
concerning probabilistic inference devices that are thetrsimilar to quantum mechanical im-

1 In contrast to the concept of syntactic information contasiose formalization by Shannon is the basis of conventiona
information theory([3[7].



possibility results. We end by presenting an extension @fthmework that clarifies its relation
with semantic information.

The crucial property underlying our results is that infax@devices are embodied in the very
physical system (namely the universe) about which they aldmg inferences. This embedding
property and its consequences have nothing to do with theggréaws governing the underly-
ing universe. In particular, those consequences do nobiewthaotic dynamics as in [IL7,18],
nor quantum mechanical indeterminism. Similarly, theylgipdependent of the values of any
physical constants (in contrast, for example, to the worLR]), and more generally apply to
every universe in a multiverse. Nor do the results presumidtions on where in the Chomsky
hierarchy an inference device lies. So for example they drapbply to oracles, if there can be
oracles in our universe. In the limited sense of our impadlisilbesults, Laplace was wrong to
claim that even in a classical, non-chaotic universe theréutan be unerringly predicted, given
suficient knowledge of the preseit |38]. Alternatively, thesg@ossibility results can be viewed
as a hon-quantum mechanical “uncertainty principle”.

All non-trivial proofs are in App. A. An earlier analysis agdsing some of the issues consid-
ered in this paper can be found n[26].

1.1. Notation

We will take the set of binary numbeBsto equal{—1, 1}, so that logical negation is indicated
by the minus sign. We will also tak® to be the Heaviside theta function that equals 1 if its
argument is non-negative, 0 otherwid&is the natural numbers, 2, .... For any function
with domainU, we will write the image ofJ underT" asI'(U). For any functiorl” with domain
U that we will consider, we implicitly assume thiafU) contains at least two distinct elements.
For any (potentially infinite) setV, |W| is the cardinality oW. For any real numbea € R, [a
is the smallest integer greater than or equal.t@iven two functiond’; andI'; with the same
domainU, we writel'; ® T'; for the function with domaitd obeyingu € U :— (['1(u), T2(u)),
and with some abuse of terminology refer to this as the “peticaf I'; andT,.

Given a functiorl” with domainU, we say that the partitiomduced by T is the family of
subsetdI'(y) : y € T'(U)}. Intuitively, it is the family of subsets dff each of which consists
of all elements having the same image undeYe will say that a partitiorA over a spacé&J
is afine-graining of a partitionB overU (or equivalently thaB is a coarse-graining o4) iff
everya € Ais a subset of somee B. Two partitionsA andB are fine-grainings of each othd¥ i
A = B. Say a partitiorA is finite and a fine-graining of a partitid® Then|A| = |B|iff A= B.

Given a probability measure, the mutual information betw®e associated random variables
a, b conditioned on evert is writtenM(a, b | ¢). The Shannon entropy of random variables
H(a).

2. Archetypal examples

We now illustrate that many (if not all) physical realizat®of the processes of observation,
prediction, and memory share a certain mathematical streictVe do this by semi-formally
describing each of those processes, one after the othen. dteh description uses language
that is purposely very similar to the other descriptionss that very similarity of language that
demonstrates that the same mathematical structure asgesteof each of the processes. In the
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following sections of this paper we will formalize that mathatical structure, and then present
our formal results concernindﬂ.

If the reader becomes convinced of this shared mathematicalture before reading through
all the examples, (s)he is encouraged to skip to the nexiosedt is in that section that we
formalize the shared mathematical structure, as an “inferelevice”.

In all of the examples in this sectiob), is the space of all worldlines of the entire universe
that e consistent with the laws of physics (whatever thay be), andi indicates an element
of UZ

Example 1: We start by describing a physical system that is a genenglgse observation de-
vice, capable of observingftierent aspects of the universe. l®tbe some particular variable
concerning the universe whose value at some tinvee want our device to observe. If the uni-
verse’s worldline iqy, then the value o8 att; is given by some function af (e.g., it could be
given by a component af). Write that function a§’; S(t;) = I'(u).

The observation device consists of two parts: an observatiparatus, and a scientist who
uses (and interprets) that apparatus. To make our obsmnyétie scientist must first configure
the observation apparatus to be in some appropriate stateret timet; < to. (The idea is that
by changing how the observation apparatus is configureddieatst can change what aspect
of the universe he observes.) That configuration of the @asen apparatus df is also given
by a function of the entire universe’s worldling since the observation apparatus exists in the
universe. Write that function as with rangey(U).

The goals is that if the apparatus has been properly configtiven sometime aftey it cou-
ples withS in such a way that at some tine> t, the output display of the observation apparatus
accurately reflect$(t;). Again, that output display exists in the universe. So titdesatts is a
function ofu; write that function ag.

The scientist reads the output of the apparatus and intsrfirat output as this attempted
observation ofS(ty). It is this interpretation that imbues that output with sertic information.
Without such interpretation the output is just a meanirgy(@spattern, one that happens to be
physically coupled with the variable being observed. (Agzineme example of such meaning-
less coupling, if a tree falls in a forest, but the video theatarded the fall is encrypted in a way
that the scientist cannot undo, then the scientist doesal@erve” that the tree fell by watching
the video .)

To formalize what such interpretation means, we must defismantic information”. As men-
tioned above, we want the semantic information of a variallencerning a variableto be what
an external scientist can infer abaouty knowing the state . In the current example this means
we require that the scientist can ask questions of the doag8S(t;) = K?” atts, and that/(u)
provides the scientist with (possibly erroneous) answegith questions. As an example, say
thatZ(u) is a display presenting integers from 0 to 1000, inclusiiéh a special 'error’ symbol
for integers outside of that range. Since the scientistpnéts the value on that display tatas
the outcome of the observation 8{t,), by looking at the display &g the scientist is provided

2 Some might quibble that one or another of the these examiptesdsinvolve additional structure, that what is presented
in that example does not fully capture the physical proceis#aims to describe. (See App. B.) The important point is
that the structure presented in these examples is alwags foueal-world instances of the associated physical psEe
Whether or not there is additional structure that “shoule’alssumed is not relevant. The structure that is assumeed in th
examples is dicient to establish our formal results.

3 For expository simplicity we use the language of non-quantmechanical systems in this paper. However most of
what follows holds just as well for a quantum-mechanicalerse, if we interpret quantum mechanics appropriately.
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with (possibly erroneous) answers to the question “Dogs) = K?” for all 1001 values oK
that can be on the display.

To make this more precise, first note that any question likee¢€5(t;) = K?” can either be
answered 'yes’ or 'no’, and therefore is a binary functiouofFor everyK, write this associated
binary function ofu asgx; YK, Yu € U, gk (u) = 1 if S(t2) = I'(u) = K, and it equals -1 otherwise.
Next, note that the brain of the scientist exists in the uisgeSo which (if any) of a set of such
possible binary questions concerning the universe thetistiés asking ats is also a function
of u. We write that function a®. In particular, we presume that any questonis one of the
elements in the range @), i.e., it is one of the questions that (depending on the sthtbe
scientist’s brain then) the scientist might be askint.at

Now for any particular questiogk the scientist might be asking & the answer that the
scientist provides by interpreting the apparatus’ outpuat bit. The value of that bit is specified
by the state of the scientist’s braintat (The premise being that the state of the scientist’s brain
was dfected by the scientist's reading and then interpreting figaeatus’ output.) So again,
since the scientist’s brain exists in the universe, theevafithat answer bit is a function of We
write that function a¥.

It is the combination of) andY that comprise the scientist’s “interpretation”ffand thereby
imbue any particulas(u) with semantic contenQ(u) specifies a questiogy . £(u) then causes
Y(u) to have some associated value. We take that value to becfddist’s interpretation of) the
apparatus’ answer to the question of whettpgiu) = 1 orgx(u) = -1 (i.e., of whethe5(ty) =
K). Combining,/(u) causesyr(u) to have a value that we take to be (the scientist’s inteiqmat
of) the apparatus’ answer to wheth&@({1)](u) = 1 or [Q(u)](u) = -1.

This scenario provides a set of requirements for what it mdanthe combination of the
observation apparatus and the scientist using that apisacabe able to successfully observe the
state ofS atty: First, we require that the scientist can configure the eggparin such a way that
its output atts givesI'(u). We also require that the scientist can read and interpegtdutput.
This means at a minimum that for any question of the form “Dio@g = K?” the scientist can
both ask that question &tand interpret (u) to accurately answer it.

To make this fully formal, we introduce a set of binary funects with domail (U): VK, fx :

v — 1iff y = K. Note that we have one such function for evéye I'(U). Our requirement
for successful observation is that the observation appsan be configured so that, for afgy
if the scientist were to consider an associated binary @preatt; and interpret(u) to answer
the question, then the scientist’'s answer would neceggarilal fx (C(u)). In other words, there
is a valuec € y(U) such that for anK e I'(U), there is an associategt € Q(U) such that the
combination ofy(u) = c andQ(u) = gk implies thatY(u) = fx (I'(u)).

Intuitively, for the scientist to use the apparatus to “ole&(t,)” only means the scientist
must configure the apparatus appropriately; the scientist force the universe to have a world-
line u such thagy(u) = ¢, and that must in turn caugéu) to accurately givé'(u). In particular,
to “observeS(t;)” does not require that the scientist impose any partiotdére onQ(u). Rather
Q's role is to provide a way to interpréfu). The only requirement made &f is thatif the sci-
entist were to ask a question like “Do8¢t;) equalK?”, thenQ(u) — determined by the state
of the scientist’s brain & — would equal that question, and the scientist’s ans{ej would
be appropriately set by(u). It is by usingQ this way that we formalize the notion thafu)
conveys information to the scientist concern®(g,). The “observation is successful” if for any
such question the scientisight pose (as reflected iQ(u)), their associated answer (as reflected
in Y(u)) properly matches the state 8fatt,.

We can motivate this use @ in a less nuanced, more direct way. Consider a scenario where
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the scientist camt both pose all binary-valued questiofisconcerningS(t;) and correctly an-
swer them using the apparatus outglit)). It would seem hard to justify the view that in this
scenario the combination of the scientist with the apparatakes a “successful observation”
concerningS(tz).

Note that by defining an observation device as the combimatfcan observation appara-
tus with the external scientist who is using that apparatesare in a certain sense arriving at
a Wignerian approach to observation. In contrast to a moaggstt-forward many-worlds ap-
proach, we require that the state of the observation apmarait just be correlated with the
variable being observed, but in fact contain semantic mfdion concerning the variable be-
ing observed. This makes the external scientist using tiserghtion apparatus crucial in our
approach, in contrast to the case with the many-worlds ambr.o

Example 2: This example is a slight variant of Ex. 1. In this variant,rthés no scientist, just
“inanimate” pieces of hardware.

We change the apparatus of Ex. 1 slightly. First, we make thput be binary-valued. We
also change the configuration functipyso that in addition to its previous duties, it also specifies
a question of the form, “Dod3qu) equalK?”. Then observation is successful if for aky T'(U),
the apparatus can be configured appropriately, so that ffgibaorrectly answers the question
of whetherS(ty) equalsK. In other words, observation is successful if for &y I'(U) there is
an associated € y(U) such that having(u) = c implies thatY(u) = fx (T'(u)).

Example 3: We now describe a physical system that is a general-purpeskction device,
capable of correctly predictingftiérent aspects of the universe’s future. Edie some particular
variable concerning the universe whose value at somettime want our device to predict. If
the universe’s worldline is, then the value 0§ att; is given by some function af which we
write asI’; S(t2) = T'(u).

The prediction device consists of two parts, a physical aserpand a scientist who programs
that computer to make the prediction and interprets the coenjs output as that prediction. To
“program the computer” means that the scientist initiaiteat some timd; < t, to contain
some information concerning the state of the universe angita simulation of the dynamics of
the universe that uses that information. Accordingly, tooram the computer” to perform the
prediction means making it be in some appropriate state @fhe idea is that by changing how
the computer is programmed, the scientist can change wpattsf the universe the computer
predicts.) That initialization of the computer is also gigy a function of the entire universe’s
worldline u, since the computer exists in the universe. Write that fonasy, with rangey(U).

The hope is that if the computer is properly programmetd,ghen it runs a simulation con-
cerning the evolution of the universe that completes at domet; > t1, and at that time displays
a correct prediction 0$(tp) on its output. (In general we would like to also haye< t,, so that
the simulation completes before the event being prediatadh#ly occurs, but we don’t require
that.) Again, that output display exists in the universeitSatate ats is a function ofu; write
that function ag.

The scientist reads the output of the computer and intexfiras this attempted prediction of
S(t), thereby imbuing that output with semantic meaning. Maecsely, for the valué(u) to
convey information to the scientistigt we require that the scientist can ask questions of the sort,
“Does S(tp) = K?” atts, and that/(u) provides the scientist with (possibly erroneous) answers
to such questions.

As in Ex. 1, to make this more formal, we note that any quedti@en‘DoesS(t;) = K?”"is a
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binary function ofu, of the sortgk presented in Ex. 1. Also as in Ex. 1, the brain of the scientist
exists in the universe. So which (if any) of a set of possihlegions concerning the universe
the scientist is asking &4 is also a function ofi, which we again write a®. Also as in Ex. 1,
the answer of the scientist to any such question is a bit tieed¢ientist generates by interpreting
Z(u). Since that answer is given by the state of the scientistiintatts, it is a function ofu,
which as before we write a6.

So for the combination of the computer and the scientistguiiat computer to be able to
successfully predict the state 8fatt, means two things: First, we require that the scientist
can program the computer in such a way that its outpts givesT'(u). We also require that
the scientist can read and interpret that output. More pedgiour requirement for successful
prediction is that the computer can be programmed so thiagrfg fy, if the scientist were to
consider an associated binary questiotza&nd interpret’(u) to answer the question, then the
scientist's answer would necessarily eqfia(l"(u)). In other words, there is a valuee y(U)
such that for anK e I'(U), there is an associatagk € Q(U) such that the combination of
x(u) = candQ(u) = gk implies thatY(u) = fx (T(u)).

Justasin Ex. 1, for the scientist to use the apparatus taligr$(t,)” only means the scientist
must program the computer appropriately; the scientist fause the universe to have a world-
line u such thaj(u) = ¢, and that must in turn caugéu) to accurately giv&'(u). In particular, to
“predictS(t;)” does not require that the scientist impose any partickdare onQ(u). As before,
Q's role is to provide a way to interpréfu).

Note that the “computer” in this example is defined in termsvbét it does, not in terms of
how it does it. This allows our formalization of predictiandvoid all issues of where exactly in
the Chomsky hierarchy some particular physical computghtrie.

Nothing in the formalizations ending Ex.’s 1 - 3 relies on finecise choices of time-ordering
imposed on the valuds, t,, t3, t4. Those formalizations only concern relations betweentions
T, f, Q, ¢ andY, each having the entire worldline across all time as its doniais fact means
that the same sort of formalization can be applied to “reéttomh”, as elaborated in the following
example.

Example 4: Say we have a system that we want to serve as a general-pugmasding and
recollection device, capable of correctly recordinfietient aspects of the universe and recalling
them at a later time. Le® be some particular variable concerning the universe whahe\at
some timet, we want our device to record. If the universe’s worldline,ishen the value o8 at

to is given by some function af which we write as the functioh; S(t;) = I'(u).

The recording device consists of two parts. The first is a jghysecording apparatus that
records many characteristics of the universe. The secangdentist who queries that apparatus
to see what it has recorded concerning some particular ctesigtic of the universe, and inter-
prets the apparatus’ response as that recording. To “gbergiparatus” means that the scientist
makes some variable concerning the apparatus be in an ajgteogtate at some tintg > t,.
(The idea is that by changing how the apparatus is queriedsdientist can change what aspect
of the universe’s past the apparatus displays to the ssigrifhat state imposed on the variable
concerning the apparatustatis also given by a function of the entire universe’s worldlin
since the apparatus exists in the universe. Write that fmmetsy, with rangey(U).

The hope is that if the apparatus functions properly andepenly queried at;, then it re-
trieves an accurate recording 8{t;), and displays that recording on its output at some time
t3 > t1. Again, that output display of the apparatus exists in thigarse. So its state & is a
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function ofu; write that function ag.

The scientist reads the output of the apparatus and intsrjtras this recording o§(t,),
thereby imbuing that output with semantic meaning. Morejsedy, for the value(u) to convey
information to the scientist &, we require that the scientist can ask questions of the"®wogs
S(tp) = K?” atts, and that'(u) provides the scientist with (possibly erroneous) answegsich
guestions.

As in Ex. 1, to make this more formal, we note that any suchtipress a binary function of,
of the sortgk presented in Ex. 1. Also as in Ex. 1, the brain of the scieakists in the universe.
So which (if any) of a set of possible questions concernieguthiverse the scientist is asking at
t3 is also a function ofi, which we again write a®. Also as in Ex. 1, the answer of the scientist
to any such question is a bit that the scientist generatestbgpireting;(u). Since that answer is
given by the state of the scientist’s brairtatt is a function ofu, which as before we write as

So for the combination of the apparatus and the scientisigubiat apparatus to be able to
successfully record and recall the stateSoat t, means two things: First, we require that the
scientist can query the apparatus in such a way that its batpsigivesI'(u). We also require
that the scientist can read and interpret that output. Mageigely, our requirement for successful
recording and recollection is that the apparatus can beaguso that, for anyfk, if the scientist
were to consider an associated binary questian ahd interpret’(u) to answer the question,
then the scientist's answer would necessarily edudl(u)). In other words, there is a value
¢ € y(U) such that for anK € T'(U), there is an associategd € Q(U) such that the combination
of y(u) = candQ(u) = gk implies thatY(u) = fk (I'(u)).

Just as in Ex. 1, for the scientist to use the apparatus taflr8¢t;)” only means the scientist
must query the apparatus appropriately; the scientist fotrst the universe to have a worldline
u such thaty(u) = ¢, and that must in turn cauggu) to accurately givd'(u). In particular, to
“recall S(t)” does not require that the scientist impose any particudéure onQ(u). As before,
Q's role is to provide a way to interpréfu).

Note that nothing in this example specifies how the recorgingess operates. This is just like
how nothing in Ex. 1 specifies how the observation apparaiuples withS, and how nothing
in Ex. 3 specifies what simulation the computer runs.

See [39,111,30] for discussion about the crucial role thedltection devices play in the psy-
chological arrow of time, and of the crucial dependence chstevices on the second law of
thermodynamics. As a result of their playing such a roleJithéations on recollection devices
derived below have direct implications for the psycholajand thermodynamic arrows of time.

Just as Ex. 2 varies Ex. 1 by removing the scientist, so Exasd4 can be varied to remove
the scientist.

3. Basic concepts

In this section we first formalize the mathematical struetiivat is shared among Ex.’s 1-4 of
Sec[2. In doing so we substantially simplify that structéiter this formalization of the shared
structure in the examples we present some elementarysesuiterning that structure.
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3.1. Inference devices

Definition 1: An (inference) deviceover a setJ is a pair of functionsX, Y), both with domain
U. Y is called theconclusionfunction of the device, and is surjective orio X is called the
setupfunction of the device.

As an illustration, in all of Ex.'s 1-4, the setup functionti®e composite functiony( Q), and
the conclusion function i¥. The value ofX(u) can loosely be interpreted as how the device is
“initialized / configured’E] The value ofY(u) should instead be viewed as all that the device
predicts/observeg recollects when it is doné priori, we assume nothing about hotvandY
are related. Note that we do not require that the compound(®af) : u € U — (X, Y)(u) be
surjective. There can be pairs of values X(U), y € Y(U) that never arise for the sare

Given some functiol’ with domainU and somey € I'(U), we are interested in setting up a
device so that it is assured of correctly answering wheflfgy = y for the actual universa.
Loosely speaking, we will formalize this with the condititratY(u) = 1 iff ['(u) = y for all u
that are consistent with some associated setup value oftheg]i.e., such that(u) = x. If this
condition holds, then setting up the device to have setugevafjuarantees that the device will
make the correct conclusion concerning wheth@) = y. (Hence the terms “setup function”
and “conclusion function” in Def. 1.)

Note that this desired relationship betweénY andI’ can hold even ifX(u) = x doesn't
fix a unique value foiY(u). Such non-uniqueness is typical when the device is beiegd &
observation. Setting up a device to observe a variabledwritsi that device restricts the set of
possible universes; only thosare allowed that are consistent with the observation déxeaegy
set up that way to make the desired observation. But typigafit setting up an observation
device to observe what value a variable has doesn't unidixelge value of that variable.

In general we will want to predig¢tobserve recollect a functiod” that can take on more than
two values. This is done by appropriately choosk(@). As mentionedX(u) specifies what is
known about the outside world together with a simulationgpam (in the case of computer-
based prediction), or a specification of how to set up an ebasien apparatus (in the case of
observation), or a specification of what to remember (in th&eof a memory device). But in
addition, in all those cases(u) specifies one of the possible valuesl¢fi) (i.e., it specifies a
guestion of the form “Doe&(u) = y?"). We then view the device’s conclusion bit as saying
whether (u) doeg doesn’t have that specified value. So for example if our deisi@ computer
being used to predict the value of some variable concerhiagtate of the world, then formally
speaking, the setup of the computer specifies a particuaobthe possible values of that vari-
able (in addition to specifying other information like wis&nulation to run, what is known about
the outside world, etc.). Our hope is that the computer'shkaion bit correctly answers whether
the variable has that value specified in how the computet igfse

Intuitively, this amounts to using a unary representatibh(@)). To formalize this with mini-
mal notation, we will use the following shorthand:

Definition 2: Let Abe a set having at least two elementsgrabe of Ais a mapping fronA onto

B that equals 1 for one and only one argumeatA.

4 Care should be taken with this interpretation though. Famxe, in Ex. 1y concerns the state afat timet;, andQ
concerns the state ofatt;. SoX “straddles multiple times”.
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So a probe ofA is a function that picks out a single one Ak possible values, i.e., it is a
Kronecker delta function whose second argument is fixedydrabe image value 0 is replaced
by -1.

3.2. Notation for inference devices

We now have the tools to define what it means for an inferengieel¢éo successfully observe
/ predict/ recall. Before presenting that definition we introduce sarseful notation.

Unless specified otherwise, a device written &g for any integeri is implicitly presumed
to have domaiJ, with setup functionX; and conclusion functiolY; (and similarly for no sub-
script). Similarly, unless specified otherwise, exprassike “min,” mean minex -

We define a probe of a device to be a probe of the image of thea@lswonclusion function.
Given a function” with domainU and a probef of I'(U), we write f(I') as shorthand for the
functionu e U — f(I'(u)). We writexr(A) to indicate the set of all probes of a getandn(I') to
indicate the set of functions ove, {f(I) : f € x(['(U))}.

Probes are a shorthand way of posing queries concerning ership in a set (e.g., queries
like “is it true thatu € Y~1(y) for some particular valug?”). All such queries are binary-valued
(which is why the range of probesl®y. So couching the analysis in terms of probes essentially
amounts to representing all associated spaces in termgsfTiiis has the advantage that it
allows us to avoid considering the ranges of any functioasdfise in the analysis. In particular,
it allows us to avoid concern for whether one such range “hretap” with the domains ayaf
ranges of other functions. For example, it allows us to acoigcern for such matching between
the spaces defining two firent inference devices when considering whether they adeh
other.. (Se€ [26] for a more elaborate way of circumventirggrteed of those ranges to match.)

Say we are given a set of functions owgy {D1,d;, Dy, dy, ... E1, €, Ez, €,...}. Then with
some abuse of terminology, we writ®7 = d;,D; = dp,... = B3 = e,E; = &,...” as
shorthand for 3@ u € U such thatD;(u) = di(u), D2 = da, ..., andY u € U such thatD;(u) =
di(u), D, = da,..., it is the case thaEi(u) = ey (u), ex(u) = Ex(u),...". We will often abuse
notation even further by allowingd; to be an element dD;’s range. In this caseD; = d; =
Ei1 = " is shorthand foru € U such thaD; = d;, and¥ u € U such thaD(u) = dy, itis also
the case thaE;(u) = e (u)”.

3.3. Weak inference

We can now formalize inference as follows:

Definition 3: A deviceC (weakly) infers a functionI” overU iff Vf € =(I), 3 x such that
X=x=Y=f{).

So using the definitions in the previous subsect@meakly infersC iff Vf € #(['), 3 x € X(U)
such that for alu € U for which X(u) = x, Y(u) = f(I'(u)).

Recall our stipulation that all functions ovidrtake on at least two values, and so in particular
I’ must. Therefora(I') is non-empty. We will writeC > T if C infersI". Expanding our shorthand
notation,C > I' means that for aly € I'(U), 3x € X(U) with the following property~¥u € U :
X(u) = x, it must be thatv(u) = f,(I'(u)), wheref, : T'(U) — B is the probe of”s range that
equals 11ff T'(u) = y.
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Intuitively, to haveC > I means that if the image value Bis expressed as a list of answers to
guestions of the form “Dodsu) = y?”, then we can set up the device so that it will guaranteedly
correctly conclude any particular answer in that list. Altgively, the requirement that there be
an appropriatex for any probe function of’ can be viewed as shorthand; in the definition of
inference we are considering the ability of a device to adlyeanswer any member of a list
of binary-valued questions, a set that is “generatedTb%o weak-inference is a worst-case
definition: if a deviceC weakly infersl’, then no matter what probfee #(I') a malicious demon
might choose, the scientist could guarantee that f (I') by choosing an associated valaéor
the value ofX.

To illustrate this, consider again Ex. 1. ldentify thein Def. 3 with theY in Ex. 1, and
similarly identify thels with each other. Then identify the functiofiin Def. 3 as the product
of functions,y ® Q. (X, Y) specifies a devic€. The functionsfk in Ex. 1 are the probes u(T').

So if C > T, then the aggregate system of scientist and observaticarafos can obsen®t,).
Note thatZ ends up being irrelevant. In essence, it serves as a coondratisfer information into
the scientist’s brain.

In the many-worlds definition of an observation, any patticuesult of the observation is
identified with a solitary worldlineu. Intuitively, this might be worrisome; a solitaryis just a
single pointin a space, with no intrinsic mathematicalcite. The properties of such a single
point can be drastically modified by an appropriate isomismloverU. In particular, as has
been pointed out by many authors, in the many-worlds defimitvhat gets “observed” can be
modified if one changes the basisdf (This is one of the major motivations for the work on
decoherenceé [40,41].)

However if a scientist makes an observation, then that 8stesould provide the value of
any (binary-valued) function of the result of the obsemayif they were asked to. So formally
requiring that the scientist be able to provide such valwesd't preclude real-world instances
of observation. At the same time, adding such a requiremanshbstantial consequences. In
fact, it drives many of the results presented below conogrieak inference. This is why this
requirement is incorporated into the definition of weak iafece. In other words, it is why the
definition of weak inference inherently involves multiplesdlinesu, in contrast to the many-
worlds definition of observation.

See Sed_6l2 for a discussion of the philosophical aspecteeak inference. The relation
between weak inference and the theory of knowledge fune{#43,44,45] is briefly discussed
in Sec[®. App. B contains a discussion of how unrestrictieedefinition of weak inference is.
Finally, some alternative definitions of devices and wedérence are considered in App. C.

3.4. Elementary results concerning weak inference

We say that a devic€; infers a set of functions if it infers every function in thatsWe also
sayC; infers a deviceC, iff C; > Y. In general inference among devices is non-transitive. In
addition we have the following elementary properties ofices.

Proposition 1: Let {T'}} be a set of functions with domaih andW c U.
i) If Vi, |I(W)| > 2, then there is a device overthat infers{T’j}.
i) For any deviceC, there is a binary-valued function thatdoes not infer.

Prop. 1(ii) means in particular that there are $Etssuch that no device can infer every function
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in that set.

In a limited sense, when applied to prediction (cf. Ex. 1p@Rrl(ii) means that Laplace was
wrong: even if the universe were a giant clock, he would neeteen able to reliably predict the
universe’s future state before it occurfddziewed diferently, Prop. 1(ii) means that regardless
of noise levels and the dimensions and other characterigfithe underlying attractors of the
physical dynamics of various systems, there cannot be ageries prediction algorithn [48]
that is always correct in its prediction of the future stdteuxh systems.

Note that time does not appear in Def. 3's model of a predicsigstem. So in particular in
Ex. 3 we could have; < t, — so that the time when the computer provides its predictson i
after the event it is predicting — and the impossibility result @bp. 1(ii) still holds (cf. Ex.
4). Moreover, the program that is input to the prediction paier via the value of could even
contain the value that we want to predict. Prop. 1(ii) wouilimean that the conclusion that the
computer’s user comes to after reading the computer’s bagmnot be guaranteed to be correct.

This is all true even if the computer has super-Turing cdjpgband does not derive from
chaotic dynamics, physical limitations like the speedgfftj or quantum mechanical limitations.
Indeed, when applied to an observation apparatus like inLERrop. 1(ii) can be viewed as a
sort of non-quantum mechanical “uncertainty principlestablishing that there is no general-
purpose, infallible observation device. (See also Propelévy which is perhaps more closely
analogous to the uncertainty principle.) In addition, wia@plied to the recording apparatus of
Ex. 4, Prop. 1(ii) means that there is no general-purpo&sdlilie recording device.

To illustrate this in more detail, consider the relativelygle scenario wher€ is a computer
making a prediction at timeabout the state of the (deterministic, classical) univatgé > t.
Let G be the set of all timé-states of the universe in whi&is output display is+1. The laws
of physics can be used to evol@forward to timet’. Label that evolved set of timg-states of
the universe asl. LetT be the binary-valued question, “does the state of the usdvatt’ lies
outside ofH?".

There is no information concernirg that can be programmed in® at some timg~ < t
that guarantees that the resultant prediction@atakes at is a correct answer to that question.
This is true no matter whdt is, i.e., no matter how much tim@ has to run that program before
making its answer at time It is also true no matter how much time there is betw&eamdt. It
is even true if the program with whidh is initialized explicitly gives the correct answer to the
guestion.

Similar results hold ift’ < t. In particular, such results hold @ is an observation device
that we wish to configure so that at timé correctly completes an observation process saying
whether the universe was outsidetdfat timet’. We can even have be earlier than the time
whenC is set up. In this cas&; is a recording system that contains information about tis pa
and we wish to query it about whether the universe was outsfitte att’. See [26] for further
discussion of these points.

While these limitations are unavoidable, often they areratdvant, in that we are not inter-
ested in whether a device infers an arbitrary set of funstitmstead, often we are interested in
whether a devices infers some specified subset of all fumgtidrop. 1(i) addresses that situation.

5 Similar conclusions have been reached previoUsiy{ [46 M@@jvever in addition to being limited to the inference
process of prediction, that earlier work is quite infornfalirthermore, it unknowingly disputes well-establishesutts

in engineering. For example, the claim in_[46] that “a prédit concerning the narrator’s future ... cannot ... actoun
for the dfect of the narrator’s learning that prediction” is refuteddulaptive control theory and Bellman’s equations.
Similarly, those with training in computer science will ogmize statements (A3), (A4), and the notion of “structyral
identical predictors” in[[4]7] as formally meaningless.
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In particular, given our assumption that any function dyemust contain at least two values in
its range, it immediately implies the following:

Corollary 1:
i) Let{I'} be a set of functions with domalth andW c U. If Vi, T3(U) = Ti(W),
then there is a device that infis}.
i) For any functiol” with domainU there is a device that infefs

Another implication of Prop. 1(i) is the following:

Corollary 2: Let C = (X,Y) be a device ovetd where the partition induced bX is a fine-
graining of the partition induced by. Then|X(U)| > 2 iff there is a function that infers.

Prop. 1(ii) tells us that any inference deviCecan be “thwarted” by an associated function.
However it does not forbid the possibility of some secondakethat can infer that function that
thwartsC. To analyze issues of this sort, and more generally to arahginference relationships
within sets of multiple functions and multiple devices, varswith the following definition:

Definition 4: Two devices Xy, Y1) and (X2, Y) are(setup) distinguishableiff V x;, xo, Jue U
S.t. X (U) = xg, Xo(U) = Xo.

No device is distinguishable from itself. Distinguishdtigils non-transitive in general. Having
two devices be distinguishable means that no matter how ri$tedfevice is set up, it is always
possible to set up the second one in an arbitrary fashiorsgttieg up of the first device does not
preclude any options for setting up the second one. Inaljtjif two devices are not distinguish-
able, then the setup function of one of the devices is pbrtiebntrolled” by the setup function
of the other one. In such a situation, they are not two fuljyesate, independent devices.

By choosing the negation proldg¢y € B) = —y we see that no device can weakly infer itself.
We also have the following:

Theorem 1: No two distinguishable devices can weakly infer each other.

Thm. 1 says that no matter how clever we are in designing agbanference devices, so long
as they are distinguishable from each another, one of thest thwart the other, providing a
function that the other device cannot infer. Whereas theosaibility result of Prop. 1(ii) relies
on constructing a special functidrmatched taC, the implications of Thm. 1 are broader, in that
they establish that a whole class of functions cannot beriedeby C (namely the conclusion
functions of devices that are distinguishable fr@rand also can infe€). It is important to
note that the distinguishability condition is crucial torfithl; mutual weak inference can occur
between non-distinguishable devices.

Example 5: Consider a rectangular grid of particle pairs, each paisistimg of a yellow particle
and a purple particle. Say that all particles can either rewgp or spin down. Write the spin of
the purple particle at grid location, () assP(i, j), and the spin of the yellow particle there as
(i, j).

Such a grid is a set) consisting of all quadrupleS, j, sP(i, j), (i, j)}. Assume there are
at least twa values, and at least one purple spin is up and at least onenis. ddhen we can
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define a “purple inference devic€® by XP(i, j, sP(i, j), &(i, J)) = i andYP(i, j, s°(i, j), &(i, ])) =
sP(i, j). Similarly, a “yellow inference device” can be defined ¥¥(i, j, sP(i, j), ¢(i, j)) = j and
YY(i, j, °(i, j), 9@, j)) £ (i, j) (assuming there are at least tvjs and at least one yellow
particle is spin up and at least one is spin down).

These two devices are distinguishable. In additiéh, > CY if there is some’ such that
sP(i’, ) = ¢(i’, ) for all j, and also som&’ such thats’(i”, j) = —¢(i”, j) for all j. In such
a situation we can set up the purple device with a vall)el{at guarantees that its conclusion
correctly answers the question, “Do&gpoint up?”. Similarly, we can set it up with a value that
guarantees that its conclusion correctly answers the igne$boess’ point down?”.

However if there is such an andi”, then clearly there cannot also be both a vgluand a
value j” that the yellow inference device can use to answer whetheoints up and whether
sP points down, respectively. This impossibility holds regjass of the size of the grid and the
particular pattern of yellow and purple particles on thelgfihm. 1 generalizes this impossibility
result.

As a general comment, the definition of what it means for aaetd inferT" can be re-
expressed in terms of the pre-imagesinf I, I 1(y) : y € F(U)}@ Now in this paper we only
consider weak inference afs that are functions. So none of those pre-imageF oftersect
the others; they comprise a partition\df However more generally, one might be interested in
inference ofl" when some of the pre-imagesibhave non-empty intersection with one another.
For example, one might wish to observe if some physical iz in the range [AL0], the
range [520], or the range [130]. Formally, the generalization to overlapping pre-ies@f
I" arises by allowind" to be a correspondence rather than a function. The geraratizof the
formalism to explicitly accommodate such correspondeircégyond the scope of this paper.
Note though that since devices are pairs of functions, taaegalization is not relevant for much
of the analysis concerning the inference of one device byhano

4. Turing machines, Universal Turing machines, and inferene

There are several connections between inference andg@salbmputer science [49]. In this
section we introduce some elementary concepts for exgdhiose connections.

4.1. Turing machines and inference

Consider a deterministic Turing Machine (TM) and write itteirnal state at iteratiarasg(t),
with the state of its tape then being writtenlg$). So the operation of the TM on a particular
initial value of its tapén(ty) produces an infinite sequendty), g(to), h(to + 1), g(to + 1), .. .}. (If
g(t) is the halt state, then for completeness we dgfiit@ = g(t), h(t’) = h(t) Y’ > t.) Which
such sequence the TM executes is determined by the Wég)e(assuming a default value for
9(to))-

Next takeU to be the set of worldlines consistent with the laws of physicur universe (and
no other worldlines). Hypothesize that it is consistentwitose laws of physics to have some
particular TMT be physically instantiated in our universe, with iteratimmmbert corresponding
to time in some particular reference frame. Then which secei€ actually executes can be

6 Writing it out, if C infersT, then for allV y € T(U), 3 x € X(U) such that K-1(x) n Y-1(1)] = [X"2(x) nT71()].
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cast as a projection function of the worldlimes U. (Recall that worldlines extend across all
time.) Accordingly we can identify any as a functiol” with domainU. The set of all possible
sequences Of that can occur in our universe is simply a set of functibns

To be more precise, fit, and letH™ be the set of all possible initial (tim) values of
T’s tape. DefineM as the map by whicli takesh(tp) € HT to the associated infinite sequence
{h(to), 9(to), h(to+1), g(to+1),...}. MT can be viewed as definirky Equivalently, we can express
T as a function ovet, I'": TT projects every € U in which T has initial tape state € HT to
MT(h). MT andI'™ have the same range (namely the set of all sequence$ tbet generate),
but different domainsH™ andU, respectively).

Now construct an inference devi@ = (X',YT) whereXT(U) = {(h,f) : h e HT,f ¢
n(I'T)}. Write the two components of any vald@ (u) asX/! (u) andX] (u), whereX/ (u) is defined
to be the valué(ty) for the TMT when the worldline ig. Soxg “initializes” the TM. Note that
the second component &, XI, mapsu onto a space of functions ovér (namely, the space
n(I)). Finally, defineY™ : u — 1iff XT(u)[MT (X[ (u)] = 1.

If X7 is set up to be a particular initial state ®fs tape, together with a particular probe
concerning the resultant sequence of internal and tapessthen for any the conclusiory™ (u)
is the actual value of that probe for the sequence of intemdltape states specifiedunSince
probes are simply a way to imbue the conclusion of the devittesemantic meaning (recall Ex.
3in Sec[®), this means we can vi€as equivalent td@. In particularC" infers the TM, i.e.,
C'>1T.

We can generalize this example, to identify inference devin general as analogs of TM’s,
with inference being the analog of TM-style computation. &lthe impossibility results pre-
sented above apply to these analogs of TM’s. To illustrate Brop. 1(ii) can be taken to mean
that for any such inference-based analog of a TM, there isesoimction that the device can-
not “compute”. In particular, this is true for the devi€é that essentially equals the TV In
this, Prop. 1(ii) can be viewed as the analog for inferenetcds of the Halting theorem, which
concerns TM’s. Moreover, this reasoning concerning plafsiealizations of TM’s applies just
as well to other members of the Chomsky hierarchy besidess;Tptoviding us with “halting
theorems” for those other members.

As a final comment on the relation between inference and & stomputation, note that
inference by a devic€ is not a form of counter-factual “computation”. Inferenge® does not
compute the answer to a question of the form{dkiomg then{implicationg”, unless there is
somex such that faxiomg” actually holds for allu € U thatC induces by setting(u) = x. In
particular, if in our universe there is no physical instatitin of some particular TM, then there
is no device in our universe whose inference is computallipaguivalent to that TM.

4.2. Universal Turing machines and inference

Now we investigate how to define an analog of Universal TuNtaghines (UTM’s) for in-
ference devices. More precisely, we consider how to defireg Wwimeans for one devid@; to
emulate the inference process of another deRjcéJust like a UTM emulates the computational
process of another TM.) One natural desideratum for sucHiaititen is that forC; to “emu-
late” C, implies, at a minimum, that; > C,. So for example, if the two devices are both being
used for prediction, this would mean that can correctly predict what predicti@@p will make
(whether or not that prediction I, is itself correct).
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However we wan€; able to do more than infer the valuegf(u); we wantC; able to emulate
the entire mapping taking ang to the associated vaIue(\éQ(Xgl(xz)). We wantC; able to infer
what inferenceC, might make forany setup valuex,, not just the inference th&, makes for
the members of a se¢2[x;1(x1)] picked out by some particulag . This means that alt,’s must
be allowed.

One way to formalize this second desideratum is to requatGhcan inferC, using a setup
value that forces a unique, and can do so for any desiregl. More precisely, consider a par-
ticular case where we wafl; to emulate the inference performed Gy whenX;(u) = x,. We
can do this ifC; infersY,, while the valuex; used in that inference guarantees tkglu) = x..
That guarantee means ti@t infers the conclusion €, whenC; has the setup value. Given
this interpretation of what it means f@; to emulateC, whenX;(u) = X, to haveC; emulate
C, in full simply means that we require that such emulation bgsfie for anyx, € X,(U). So
formally, we require tha¥ f € 7(Y>), VX2, 3% such thatX; = X3 = Xo = Xg, Y1 = f(Y2).

A second formalization takes the opposite approach, apdlates that the valug used byC;
to inferC, places no restrictions og whatsoever. Formally, this means tNdte 7(Y>), Vo, A%
such thatX;*(x1) N X;1(x2) # @ andX; = x; = Y1 = f(Y2).

In analogy with UTM’s, one might say that under the first folixetion C; specifies the “input
tape” toC, for which C; will emulateC,, and then successfully carries out that emulation, i.e.,
successfully “computes” what, will produce in response to that input tape. To do this though
C, must interfere withCy, forcing it to have that desired input tape. In contrast,ambe second
formalization, there is no requirement thét force a particular value oX,. In particular, the
second formalization is obeyed¥ff € n(Y2), Ax; such thatX; = x3 = Y; = f(Y2) while at the
same timeX;1(x)) N X;1(x2) # @ ¥X. In such a situationC; can emulate, using anx; that
doesn'’t reflect hov, is set up. (Physically, this usually requires that the syst@derlyingCy
must be coupled with the system underlyldgat some time, so that can be made known to
C1.)

Despite this apparentfiierence, these two formalizations of our second desideratfiect
the same underlying mathematical structure. To see thiiede composite devid®’ = (X', Y’)
whereX’ : u — (Xz1(u), X2(u)) andY’ = Y;. Then under our second formalization of “emulation”,
for C; to emulateC, implies thatVf € n(Y2), VX, 3X such thatX’~(x) n X;1(x2) # @ and
X =X = X = %,Y = f(Y2). HoweverX}(x) n X;'(x;) # @ means thaX’ = X' =
Xz = X, by definition ofX’. So this second formalization of what it means@rto emulateC,
stipulates a relation betwe&i andC, that is identical to the relation betwe&ja andC, under
the first formalization. In this sense, our second formélirareduces to our first. Accordingly,
we concentrate on the first formalization, and make theotig definition:

Definition 5: A device (X1, Y1) strongly infers a device K», Y2) iff V f € n(Y>) and allx, 3 x;
such thab(l =X => Xo=%,Y1 = f(Yg)

If (X1, Y1) strongly infers Kz, Y2) we write (X1, Y1) > (X, Yz) See App. B for a discussion of
how minimal the definition of strong inference really is.

Say we have a TM that can emulate another T, e.g.,T; is a UTM. This means thét;
can calculate anything th@p can. The analogous property holds for strong and weak infere

7 Note that there are only two probesyf, the identity probef (y2) = y» and the negation probé(y,) = —y». Indicate
those two probes by = 1 andf = -1, respectively. Then we can expregs= x1 = Xz = X, Y1 = f(Y2) in set-theoretic
terms, asX;1(x1) € X;1(x2) N (YaY2)~2(f), whereY1 Yz is the functionu € U — Y1(u)Y2(u).
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In addition, like UTM-style emulation (but unlike weak iménce), strong inference is transitive.
These results are formalized as follows:

Theorem 2: Let C1, C, andC; be a set of inference devices ovérandI” a function overJ.
Then:

i)Cy>CyandC, >T' = Cy >T.

i) C; > CyandC, > C3 = C; > Cas.

Strong inference implies weak inference, i@,> C, = C; > C,. We also have the follow-
ing strong inference analogs of Prop. 1(ii) and Coroll. 1i¢lkiconcerns weak inference):

Proposition 2: Let C; be a device oved.
i) There is a devic€, such thaC; » C,.
i) Say thatv x, |Xl*1(x1)| > 2. Then there is a devide such thatC, > C;.

Recall that the Halting problem concerns whether there iF®IT with the following prop-
erty: Given any TMT’ and associated input strirgy if T’ ands’ are encoded as an input string
to T, thenT always correctly decides wheth&f halts on inputs’. The Halting theorem then
says that there can be no such UTMIntuitively, Prop. 2(i) can be viewed as an analog of this
theorem, in the context of inference. (See also Prop. 7 below

In general we are not interested in whether a device cangliranfer an arbitrary set of other
devices, but rather with the strong inference relatiorshimong the members of a particular
set of devices. Just like with weak inference, no device ¢eongly infer itself. This can be
generalized to concern a set of multiple devices as follows:

Theorem 3: No two devices can strongly infer each other.

Note that Thm. 3 does not require distinguishability, intcast to Thm. 1.

5. Inference Complexity

In computer science, given a TM the Kolmogorov complexity of an output striisgs defined
as the length of the smallest input strisighat when input td” producesas output. To construct
our inference device analog of this, we need to define thegtiénof an input region of an
inference devic€. To do this, we assume we are given a meadureverU, and for simplicity
restrict attention to function& over U with countable range. Then we define tleagth of
g€ G(U) as -In[fdp G %(g)], i.e., the negative logarithm of the volume of alk U such that

G(u) = g. We write this length as#:(g), or just.Z(g) for short®]

Definition 6: Let C be a device antl a function ovetd whereX(U) andI’(U) are countable and
C > T'. Theinference complexityof I" with respect taC is defined as

8 |f fdy 1 = o0, then we instead work with fierences in logarithms of volumes, evaluated under an apptepimit
of du that takesf du 1 — oo. For example, we might work with suchffirences wheb) is taken to be a box whose size
goes to infinity. This is just the usual physics trick for dieglwith infinite volumes.
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cIr|C) = Z minx:X:x:Y:f(I‘)[J(x)]'
fer(I)

The inference complexity of with respect toC is the sum of a set of “complexities”, one
for each probe of’, f. Loosely speaking, each of those complexities is the mihamzount

of Shannon information that must be imposedCis setup function in order to ensure that
correctly concludes what valuehas. In particular, if” corresponds to a potential future state of
some systen$ external toC, then%@'(I' | C) is a measure of how flicult it is for C to predict
that future state 0. Loosely speaking, the more sensitively that future stefgeedds on current
conditions, the more complex is the computation of thatriigiate.

Example 6: Consider a conventional real-world computer, with a sutiseof its RAM set aside
to contain the program it will run, and a separate subses@bmaside to contain the conclusion
that the program will produce. Say the total number of bitshi@ program subsection of the
RAM is 2¢ + k for some integek. Refer to any set of*2+ k bits as a “complete string”; the set of
all complete strings is the set of all possible bit stringthia program subsection of the RAM.

Let 3X be the set of all bit strings consisting of at leask bits such that the firsk bits are a
binary encoding of the total number of bits stbeyond those firsk bits. So every element of
¥X can be read into the beginning of the RAM’s program subsecfor anys € = define an
associated “partial string” as the set of all complete ggiwhose first bits are Intuitively, for
any such complete string, all of its bits beyosdre “wild cards”. (Such partial strings are just
the “files” of real-world operating systems.) With some abasterminology, when we writes’
we will sometimes actually mean the partial string thapecifies.

We can identify a particular program input to the computeswssh a partial string in its pro-
gram subsection. If we append certain bits to suck @nodifying the contents of the firktbits
appropriately) to get a new longer program partial strgighe set of complete strings consistent
with ' is a proper subset of the set of complete strings consistigmisw

Define the length of a partial strirgps the negative of the logarithm of the number of complete
strings that have at their beginning, minuk. This matches the usual definition of the length of a
string used in computer science. In particulas, ifontaingy more bits than does then there are
2ntimes as many complete strings consistent wi#ls there are consistent wish Accordingly,
if we take logarithms to have base 2, the lengtls'afquals the length dof, plusn.

Now view our physical computer as an inference device, Wittihe Cartesian product of the
set of all possible bit strings in the RAM of the computer tibge with some countable-valued
variables concerning the world outside of the computereR&f the components of anye U
specifying the bit string in the program subsection of theMR#s the “program subsection of,
and similarly for the “conclusion subsection st

For the computer to be an inference device means that théusime subsection afi consists
of a single bit, i.e..,Y maps allu € U to the (bit) value of the conclusion subsection of the
computer’'s RAM as specified hy For allu € U, haveX(u) be the bit string at the beginning of
the program subsection afwhose length is given by the firktbits of that program subsection
of u. Sox is a partial string of the RAM’s program subsection. In gahehere are many sets
each consisting of multiple € U that have the same image undgri.e., there are many such
that X-1(x) consists of multiple elements. If we adopt the uniform poieasurely, then.Z(x)
is just the negative logarithm of the number of such elemen¥1(x), i.e., the length of the
partial stringx in the program subsection of the computer’s RAM.

Now say we want our computer to make a prediction concerrirgvlue ofl’'(U), one of
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the variables associated with the world outside of the cderpAs usual, we interpret this to
mean that for any € I'(U), there is some partial string we can read into the commupeogram
subsection that contains enough information concerhiagd the state of the world so that the
computer’s conclusion will correctly say whethigju) = y. The inference complexity of that
prediction ofl" is the sum, over all such probésf I, of the length of the shortest partial string
in the computer’s program subsection that cause it to ctyreonclude the value of.

The min overx's in Def. 6 is a direct analog of the min in the definition of Kalgorov
complexity (there the min is over those strings that whewiitp a particular UTM result in the
desired output string). A natural modification to Def. 6 ig¢onove the min by considering all
X's that causé&’ = f(I'), not just of one of them:

1>

€(T'| C) Z —In [ u (UX:X:XﬁY:f(F)Xil(X)) ]

fen(l)

)

>

—In [
fen(l) x:X=x=Y=f(I)

where the equality follows from the fact that for amyx’ # x, X"}(x) n X~}(x) = @. The
argument of the In in this modified version of inference coewjiyy has a direct analog in TM
theory: The sum, over all input stringsto a UTM that generate a desired output strggof
27", wheren(s) is the bit length of.

We now bound how much more complex a function can appeéy tthan toC; if C; can
strongly inferC,.

Theorem 4:LetC; andC; be two devices and a function ovetJ wherel'(U) is finite,C; > C,,
andC, > T'. Then

Cg(r | Cl) - Cg(r | CZ) < |F(U)| maXXzminXlixelﬁXz:XZ,Ylin[g(xl) - Z(XZ)]

Note that sinceZ (x1) —-Z(x2) = In[ggi;], the bound in Thm. 4 is independent of the units with
1

which one measures volume lih. (Cf. footnote[8.) Furthermore, recall thdf = x; = X; =
X2, Y1 = Y2 iff X71(x1) € X531 (%) N (Y1Y2)~(1). (Cf. footnotd}.) Accordingly, for allx, X,)

pairs arising in the bound in Thm. igﬁ; > 1. So the bound in Thm. 4 is always non-negative.
1

An important result in the theory of UTM’s is an upper boundtbe diference between the
Kolmogorov complexity of a string using a particular UTM and its complexity if using a
different UTM, T,. This bound is independent of the computation to be perfdirard can be
viewed as the Kolmogorov complexity @f emulatingT>.

The bound in Thm. 4 is the analog of this UTM result, for infeze devices. In particular, the
bound in Thm. 4 is independent of all aspectd'afxcept the cardinality of (U). Intuitively,
the bound igI’(U)] times the worst-case amount of “computational work” tBathas to do to
“emulate”Cy’s behavior for some particular value xf.
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6. Realities and copies of devices

In this section the discussion is broadened to allow setsasfynfunctions to be inferred and
/ or inference devices. Some of the philosophical impliggtiof the ensuing results are then
discussed.

6.1. Formal results

To analyze relationships among multiple devices and fonsti define aeality as a pair
(U; {F4}) whereU is a space andF,} is a (perhaps uncountable) non-empty set of functions
all having domairlJ. We will sometimes say that is thedomain of the reality. We are par-
ticularly interested irdevice realitiesin which some of the functions are binary-valued, and we
wish to pair each of those functions uniquely with some ofatier functions. Such realities can
be written as the triplel(; {(Xa. Yo)); {Is}) = (U;(C,}); {I's}) where{C,} is a set of devices over
U and{I's} a set of functions oved.

Define auniversal deviceas any device in a reality that can strongly infer all othericks
and weakly infer all functions in that reality. Thm. 3 meahattno reality can contain more than
one universal device. So in particular, if a reality consaahleast one universal device, then it has
a unique natural choice for an inference complexity meanamely the inference complexity
with respect to its (unique) universal device. (This castsavith Kolmogorov complexity, which
depends on the arbitrary choice of what UTM to use.)

Itis useful to define theeduced formof areality U; {F4}) as the range @¢ F4. Expanding,
this equalsJycu[ X, F4](u), the union over all of the tuples formed by a Cartesian product,
running over alkp, of the values=4(u). In particular, the reduced form of a device reality is the
set of all tuples (K1, y1l, [%2,Y2l,--.;7¥1,72,...) for which3 u € U such that simultaneously
Xl(U) = X1, Yl(U) =V, Xz(U) = Xo, YQ(U) =VY2,...; Fl(U) =1, Fz(U) =Y2,...

As an example, také to be the set of all worldlines consistent with the laws of siby (and
no other worldlines). So for example, if one wants to consaaniverse in which the laws of
physics are time-reversible and deterministic, then weiireghat no two distinct members of
U can intersect. Similarly, properties like time-trangatinvariance can be imposed bh as
can more elaborate laws involving physical constants. Whitch particular properties tf are
imposed depends on what the laws of physics are.

Next, have{T's} be a set of physical characteristics of the universe, eaatacteristic perhaps
defined in terms of the values of one or more physical varg@abtemultiple locations aridr
multiple times. Finally, havéC,} be all predictionf observation systems concerning the universe
that all scientists might ever be involved in.

This example is the conventional way to interpret our urseexs a reality. In this example the
laws of physics are embodiedlh The implications of those laws for the relationships amitieg
scientist devicefC,} and the other characteristics of the univei$g is embodied in the reduced
form of the reality. Viewing the universe this way, it is the U, specifying the universe’s state
for all time, that has “physical meaning”. The reduced fonstéad is a logical implication of the
laws of the universe. In particular, our universeicks out the tuple )X, C.(u)] x [Xz [s(u)]
from the reduced form of the reality.

As an alternative we can view the reduced form of the realitg@capsulating the “physical
meaning” of the universe. In this alternativedoes not have any physical meaning. It is only
the relationships among the inferences ahotitat one might want to make and the devices

20



with which to try to make those inferences that has physiagmng. One could completely
change the spadd and the functions defined over it, but if the associated reddierm of the
reality does not change, then there is no way that the deincémat reality, when considering
the functions in that reality, can tell that they are now dedinver a dferentU. In this view, the
laws of physics i.e., a choice for the $&f are simply a calculational shortcut for encapsulating
patterns in the reduced form of the reality. It is a particifatantiation of those patterns that has
physical meaning, not some particular elemeatU.

Given a reality U; {(X1, Y1), (X2, Y2),...}), we say that a pair of devices in it apairwise
distinguishable if they are distinguishable. We say thagaa (X;, Y;) in that reality isoutside
distinguishable iff V x € X;(U) and allx’; in the range 0f®j¢i Xj, there is au € U such
that simultaneousl¥;(u) = x and X;(u) = X] ¥j # i. (Note that that range may be a proper
subset ofX j,; Xj(U).) We say that the reality as a wholenmitually (setup) distinguishableiff
¥ x1 € X3(U), %2 € Xp(U),... Aue U s.t. X3(u) = Xz, Xo(U) = X, . . ..

Proposition 3:
i) There exist realities(; C,, C,, C3) where each pair of devices is setup distinguishable
andCl >Co>C3>Cy.
i) There exists no realityd; {C; : i € .4 C N}) where the devices are mutually
distinguishable and for some integeiC; > C, > ... > C, > Cy.
iii) There exists no reality; {C; : i € .4 C N}) where for some integer, C; > C; >
..>Ch>»> Cy.

Consider a reality with a countable set of devi¢€g. There are many ways to view such
a reality as a graph, for example by having each node be aa@hde the edges between
the nodes concern distinguishability of the associatedcdsyor concern whether one weakly
infers the other, etc. There are restrictions on what graptisose various sorts can exist. As an
example, given a countable reality, define an associatedtdl graph by identifying each device
with a separate node in the graph, and by identifying eachiogiship of the forn€C; > C; with
a directed edge going from nodé¢o nodej. We call this thestrong inference graphof the
reality.

Thm. 3 means that a universal device in a reality must be anodé of the strong inference
graph of the reality. Applying Th. 3 again shows that thersgrmference graph of a reality with
a universal device must contain exactly one root. In addljtdy Thm. 2(ii), we know that every
node in a reality’s strong inference graph has edges thaieactly to every one of its successor
nodes (whether or not there is a universal device in thetygaly Prop. 3(iii) we also know that
a reality’s strong inference graph is acyclic. This latastfestablishes the following:

Proposition 4: Let D be a finite subset of the devices in a reality, where the stiofegence
graph of the reality is weakly connected oMrSay that any pair of distinct devices hthat
are not connected by an edge of the strong inference gragetne distinguishable.

Then the strong inference graph of the reality has one andamd root oveD.

Results of this sort mean there are unavoidable asymmatride strong inference graphs of
realities. These asymmetries provide a preferred dineciGgtrong inference in realities, akin to
the preferred direction in time provided by the second lathefmodynamics.

Note that even if a devic€; can strongly infer all other devicdsi.; in a reality, it may
not be able to infer themnsimultaneously (strongly or weakly). For example, defide: u —
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(Y2(u), Y3(u), .. .). Then the fact that; is a universal device does not mean thiate #(I') 3 x; :
Y; = f(I). See the discussion in [26] on “omniscient devices” for enan this point.
We now define what it means for two devices to operate in articidnmanner:

Definition 7: Let U andU be two (perhaps identical) sets. L@t be a device in a reality with
domainU. LetR; be the relation betweeX, andY; specified by the reduced form of that reality,
i.e., x1Ryy; iff the pair &1, y1) occurs in some tuple in the reduced form of the reality. &irtyi
let R, be the relation betweeX, andY, for some separate devi€ in the reduced form of a
reality having domaittJ.

Then we say thaE; mimics C; iff there is an injectionyy : X2(U) — Xy(U) and a bijection
oy : YZ(U) < Y1(U), such that foil Xz, Y2, XoRoY2 & px(X2)Ripy(Y2). If both C; mimicsC, and
vice-versa, we say th&; andC, arecopiesof each other.

Note that becausgy in Def. 7 may not be surjective, one device may mimic multipteer
devices. (Surjectivity gby simply reflects the fact that since we're considering deyi¥gU) =
Y2(U) = B.) The relation of one device mimicing another is reflexivd &ansitive. The relation
of two devices being copies is an equivalence relation.

Intuitively, when expressed as devices, two physical systare copies if they follow the
same inference algorithm wighy andpy translating between those systems. In particular, say a
reality contains two separate physical computers thatrdeegdnce devices, both being used for
prediction. If those devices are copies of each other, they form the same conclusion for the
same value of their setup function, i.e., they perform theesaomputation for the same input.

As another example, say that the states of some physicainsygat a particular time and
shortly thereafter at+ § are identified as the setup and conclusion values of a d€yide other
words,C; is given by the functionsXy(u), Y1(u)) = (S(w), S(Ut+s))- In addition, letRs be the
relation betweerX; andY; specified by the reduced form of the reality containing thetey.
Say that the time-translation 6%, given by the two functionS(uy) andS(ur.s), also obeys the
relationRs. Then the pair of functionsX,(u), Y2(u)) = (S(uy), S(ur4s)) is another device that
is copy ofC;. So for example, the same physical computer at two sepaa#teqf moments is
two separate devices, devices that are copies of each aiserming they have the same set of
allowed computations.

Say that an inference devi€® is being used for observation a@d mimicsC,. The fact that
C; mimicsC; does not imply tha€; can emulate the observation ti@tmakes of some outside
functionI". The mimicry property only relatgs; andC,, with no concern for third relationships
with any third function. (This is why for one device to “emtdaanother is defined in terms of
strong inference rather than in terms of mimicry.)

Next for future use we note the following fact that is almdstious (despite being so compli-
cated):

Lemma 1: Let K; be the set of reduced forms of all device realities. Ketbe the set of all
setsk with the following propertyk can be written a$(3X ;e (S, t) X Xgez v;;) 1 eR
for some associated’, # andR such that for alkr, Uit} = B and| U, s,| > 2, while for all
B € B, | UV, > 2. ThenKy = Ky. In particular, anyk € K3 is the reduced form of a reality
(U; {C.}, {Fﬁ}f where for alle € &,8 € %,u € U, there is some associatece R such that
simultaneously,(u) = s, Y,(u) = t;,, andI'z(u) = v;;.

Next, fix a counting numben and a set om cardinalities{Q; : i = 1,...m}. Let M be the set
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of all realities each of which comprisesfunctions, where the ranges of thasdunctions have
the associated cardinaliti¢®; : i = 1,...mj.

Now say we ask whether there is a realityMhwhosem functions have some particular rela-
tionship(s) with one another. (Answers to such questions fmost of the results of the earlier
parts of this paper.) Lemma 1 allows us to transform this tipresnto a constraint satisfac-
tion problem over an associated space of tuples. This wamsftion changes set of “specified
relationship(s)” into a set of simultaneous constraintsrahie associated space of tuples. The
precise type of constraint satisfaction problem produgethb transformation (integer-valued,
real-valued, etc.) is determined by the space of tuplesnouaiesideration, i.e., by the cardinali-
ties of the images of the functions that constitute the tyeali

Often though we can use Lemma 1 more directly to answer quesstioncerning realities,
without invoking any techniques for solving constrainisfaction problems. An example occurs
in the proof of the following result:

Proposition 5: Let C; be a copy ofC,.
i) It is possible tha€,; andC, are distinguishable ard; > C,, even for finiteX; (U), X(U).
i) Itis possible tha€C; > C,, but only if X3(U) andXz(U) are both infinite.

6.2. Philosophical implications

Return now to the case whetkis a set of laws of physics (i.e., the set of all worldlinessien
tent with a set of such laws). The results of this subsectiomige general restrictions that must
relate any devices in such a universe, regardless of thiatbtature of the laws of that universe.
In particular, these results would have to be obeyed by alleuses in a multiversé [27,28/29].

Accordingly, it is interesting to consider these resultsriran informal philosophical perspec-
tive. Say we have a devid@ in a reality that is outside distinguishable. Such a devaw loe
viewed as having “free will”, in that the way the other ded@e set up does not restrict how
C can be set up. Under this interpretation, Thm. 1 means thabiflevices both have free will,
then they cannot predigtecall/ observe each other with guaranteed complete accuracylA rea
ity can have at most one of its devices that has free will ancgocadict/ recall/ observe the other
devices in that reality with guaranteed complete accu&isnilar conclusions hold for whether
the devices can “control” each other; see $éc. 7 below.)

Thm. 3 then goes further and considers devices that can @mmegah other. It shows that
independent of concerns of free will, no two devices cantimglly emulate each other. (In other
words, no reality can have more than one universal deviaaje8vhat tongue in cheek, taken
together, these results could be called a “monotheism énelor

Now suppose that the domain of a reality is a set of worldliegnding across time, and
consider “physical” devices that are identified with systegmolving in time. (See discussion
just after Def. 7.) Prop. 5 tells us that any universal dewicest be infinite (have infinitX(U)) if
there are other devices in the reality that are copies ofriteSthe time-translation of a physical
device is a copy of that device, this means any physical detfiat is ever universal must be
infinite. In addition, the impossibility of multiple univeal devices in a reality means that if any
physical device is universal, it can only be so at one mometitrie. (Its time-translation cannot
be universal.) Again somewhat tongue in cheek, taken tegéiiis second set of results could
be called an “intelligent design theorem”. (See $éc. 7 flated limitations concerning devices
that are used to control one another.)
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In addition to the questions addressed by the monotheisnirdekigent design theorems,
there are many other semi-philosophical questions one skrofathe form “Can there be a
reality with the following properties?”. As mentioned aleov.emma 1 can be used to reduce
all such questions to a constraint satisfaction problertemg@lly involving infinite-dimensional
spaces. In other words, much of philosophy can be reduceshistraint satisfaction problems.

As a final comment, while it is most straight-forward to apfite results of this subsection
to physical universes, they can be applied more widely. tiqadar, somewhat speculatively,
one can consider applying them to mathematical logic itéelsuch an application eache U
would be a (perhaps infinite) string over some alphabet. kamgle,U might be defined as
the set of all strings that are “true” under some encodingtthaslates a string into axioms and
associated logical implications. Then an inference dewizeld be a (perhaps fallible) theorem-
proving algorithm, embodied withib itself. The results of this subsection would then concern
the relation among such theorem-proving algorithms.

7. Control devices

In weak inference there is no causal arrow frbrto X. In fact, the only causal arrow goes
from the device to the function being inferred (in tiéé value forces something abduis value)
rather than vice-versa. This reflects what it means for ugtatile to set up a device so that it is
guaranteed correct in its predictipnbservatiohmemory.

This causal arrow from the device to the function does notmileat the device controls the
function. The reason is thaf's value doesn'’t sef’s value, but only forces that value to be
consistent withy. This motivates the following definition:

Definition 8: A deviceC controls a functionI” overU iff ¥ f € n(I'), Yb € B, dx such that
X=x=Y=f()=b.Csemi-controlsT iff Yy e T(U), A xsuchthalk = x =T = y.

Semi-control has nothing to do with the conclusion functionf the device; that function
enters when one strengthens the definition of semi-commgpét the definition of control. To see
this, note thaC semi-controld" iff V f € n([), Ax such thatX = x = f(I') = 1. However if
X = xforcesf(I') = 1, then for any probé’ # f, X = x forcesf’(I') = 0. SoC semi-controls
Ciffv f € n('), Yb € B, Ax such thatX = x = f(I') = b. This is just the definition of control,
without the extra condition that controls imposes on theiealf Y. We say that one devide
(semi-) controls another if it (semi-) controls the con@nsfunction of that second device.

The weakness of the semi-control concept is that it stipalabthing concerning wheth€r
“knows” (infers) that some valug forcesI into the statef ~%(b). In this, it doesn't capture the
intuitive notion of “control”. Accordingly, in the formatiation of Def. 8, we stipulate that you
do not fully control a function if you force it to have some walbut don’t know what that value
is.

If the partition induced b is a refinement of the partition induced BY50], and in particular
if itis a fine-graining of that partition, the@ semi-control§". Note also that if" is binary-valued,
then havingC semi-control’ means there is both ansuch thaiX(u) = x = u € I'"%(1) and an
X' such thatX(u) = X’ = u e I'"}(-1). In the language of formal epistemolody [42.4%,45,44],
this means thaX~1(x) and X-1(x) are the values of a “knowledge function” evaluated for two
arguments: the subsgt}(1) and the subsdt(-1), respectively. (See Séd. 9 below.)

Clearly control implies semi-control. In addition, if onewce C; strongly infers another
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deviceC,, thenC; semi-controlsX,, though it may not semi-contrf,. Control implies weak
inference, i.e., iC; controls a functiol thenC; > I'. The logical converse need not hold though.

Since control implies weak inference, all impossibilitgults concerning weak inference also
apply to control. In particular, no device can control itsahd no two distinguishable devices
can control each other. In fact we can make the followingmgjes statement, which essentially
states that if two partitions are refinements of each angtiey must be identical:

Theorem 5:If two devicesC; andC, simultaneously semi-control one another’s setup funstion
then the partitions induced bB%; andX; are identical.

Intuitively, Thm. 5 means that if two devices simultanegustmi-control one another’s setup
functions, then those setup functions are identical, upétedeling of their ranges. This provides
the following results contrasting with Thm. 1 and Thm. 3:

Corollary 3: LetC; andC; be two devices that simultaneously semi-control one amisthetup
functions.

i)C1>C2<:)C2>C1.

i) Neither device strongly infers the other.

iii) Neither device controls the other’s setup function.

8. Stochastic devices

In the analysis above there is no probability meadim@ver U. There are several ways to
extend the analysis to incorporate such a probability nreaso that functions ovéy become
random variables. One starts as follows:

Definition 9: Let P(u € U) be a probability measuré, a function with domairlJ and finite
range, and € [0.0, 1.0]. Then we say that a devicX,(Y) (weakly) infersI" with (covariance)
accuracye iff

DZtenry MaxEp(YF(I) | X)]
(YO -

As an example, iP is nowhere 0 an@ weakly infersl', thenC infersT” with accuracy 1.0

There are several reasonable alternatives to this definitie an example, recall the “mali-
cious demon” interpretation of introduced just below Def. 3. That interpretation suggests
change to Def. 9 in which we replace the sum over all prdbaisd associated division hy(U)|
with a minimum over all probes.

Note though that it doesot seem reasonable to define inference accuracy in terms ofinutu
information expressions lik&I(Y, f(I') | X = x). To see why consider the case whdrés a
probe ofl" that equals 1ff I = y, and letx be a value wherX = x = Y = —f(I'). In this case
the mutual information conditioned onbetweenY and f(I') would be maximal. However the

9 A subtlety with the definition of an inference devices arisethis stochastic setting: we can either require e
surjective, as in Def. 1, or instead require tiYabe stochastically surjective Yy € B, Ju with non-zero probability
density such tha¥(u) = y. The distinction between requiring surjectivity and stsfic surjectivity ofY will not arise
here.
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device would have probability zero of correctly answering ¢uestion, “doeE have value/?".
It would either say “yes” and in fadt does not equa}, or it would say “no” and in fact’ does
equaly.

This is an illustration of the fact that the definition of indace assigns semantic content to
Y = 1: it means that the device’s answer is “yes”. In contraggrimation theoretic quantities
like mutual information are (in)famous for not involvingnsantic content.

While inference is a semantic concept, distinguishahigityot, which motivates the following
definition:

Definition 10: Let P(u € U) be a probability measure, arde [0.0,1.0]. Then we say that the
(setup) mutual information-distinguishability of two device Ky, Y1) and Xz, Y2) is

_ Mp(Xy, X2)
Hp(X1) + Hp(X2)

Mutual-information distinguishability is bounded betwe®and 1.

Note that variables can be distinguishable in the sense bDeven if their mutual informa-
tion distinguishability is less than 1. (They can be paltiabrrelated but still distinguishable in
the sense of Def. 4.) This motivates the following altewetiefinition, for simplicity phrased
for countablexX(U):

Definition 11: Let P(u € U) be a probability measure, arde [0.0,1.0]. Then we say that the
counting distinguishability of two device K1, Y1) and (Xo, Y») is

le,xz AU X (u)=xg,X(u)=Xp 1

A ) PYTA()]

There are many analogs of Thm. 1 that relate quantities likeatcuracy with which device
C, infers deviceC,, the accuracy with whiclC, infers C1, how distinguishable they are, the
entropies of the random variabl¥s andX,, etc. To present perhaps the simplest such example,
defineH as the four-dimensional hyperculi® 1})*, k(2) as the map taking any e H to z; +
Z — 2o — 73, M(2) as the map taking ange H to (z — z), andn(2) as the map taking arnge H
to (23 — z).

Proposition 6: Let P be a probability measure over, andC; andC; two devices whose mutual-
information distinguishability is 1, wher¥;(U) = X3(U) = B. DefineP(X; = -1) = « and
P(X; = -1) = B. Say thatC, infersC, with accuracye;, while C; infersC, with accuracye,.
Then

a6 < MaXen | aBlk(2)]? + ak(2M(2) + Bk(DN(2) + M(N(2) |.
In particular, ife = g = 1/2, then

MaXen | (21 — 20)? — (22 — 23)? |
4

IA

€1€2

1/4.
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The maximum forr = 8 = 1/2 can occur in several ways. One is wign= 1, andz, z3, 4 all
equal 0. At these values, both devices have an inferenceacaf 12 at inferring each other.
Each device achieves that accuracy by perfectly inferrimg probe of the other device, while
performing randomly for the remaining probe.

Similarly, say that we have a volume measdgeoverU, as in Sed.]5, together with a proba-
bility measureP overU. Then we can modify the definition of the lengthyofo be—-H(U | x),
the negative of the Shannon entropy under pd@of P(u | X). If as in statistical physicP is
proportional todu across the support &, thenP(u | X) « du(u | X), and these two definitions of
the length ofx are the same.

There are several ways to combine this new definition of lemgth the concept of inference
accuracy to define a stochastic analog of inference complésiparticular, we can define the
stochastic inference complexityof a functionl” with respect taC for accuracy, as

G(T'|C) = Z MiNy gz vt rw=e[—H(U | X)]
fex(D)

assuming the sum exists fer So for example i is proportional todu across the support &
andC > T, thenfore=1,%.(I' | C) = €(T" | C).

One can extend this stochastic framework to include infegaf the probability of an event,
e.g., have the device say whetl®I" = y) has some specified value. Such inference contrasts
with inference accuracy, which (like non-stochastic iefeze) simply concerns a device’s con-
cluding whether an event occurs, e.g., concluding whé@t@gr= y). One can also define stochas-
tic analogs of (semi)control, strong inference, etc. Sughresions are beyond the scope of this
paper.

9. Self-aware devices

We now return to scenarios wheké has no associated probability measure. We consider
devices that know what question they are trying to answeat deast “think they do”. Rather
than encode that knowledge in the conclusion function ofdixéce, we split the conclusion
function into two parts. The value of one of those parts ipliekly) a question for the device,
and the other part is a possible associated answer. We faethis as follows:

Definition 12: A self-awaredevice is a triple X, Y, Q) where ¥, Y) is an inference device&) is
aquestionfunction with domairlJ where eacly € Q(U) is a binary function oftJ, andY® Qs
surjective ontd® x Q(U).

Intuitively, a self-aware device is one that (potentiakgpws what question it is answering in its
conclusion. WheJ = u, we interprefg = Q(u) as the question about the state of the universe
(i.e., about which subset dJ contains the actual) that the conclusiorY(u) is supposed to
answer. The reason we require tiak Q be surjective ont@® x Q(U) is so that the device is
allowed to have any conclusion for any of its questions;titls appropriate setting of(u) that
should determine what conclusion it actually makes.

So one way to view “successful inference” is the mapping gf@a Q(U) to anx such that
X(u) = x(u) both implies that the device’s conclusion to questign correct, i.e.\Y(u) = q(u),
and also implies that the device is sure it is asking questjare., Q(u) = g. As an example,
say we have a computer that we want to use make a predicti@ah cdmputer can be viewed as
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an inference device. In this case the questidhat the device is addressing is specified in the
mind of the external scientist. This means that the quesiarfunction ofu (since the scientist
exists in the universe), but need not be stored directly énirtference device. Accordingly, the
combination of the computer with the external scientist ahograms the computer is a self-
aware device.

To formalize this concept, we must first introduce some imrahat is frankly cumbersome,
but necessary for complete precision. bdie a value in some space. Then we debras the
constant function oveld whose value id, i.e.,u € U — b. Intuitively, the underline operator
takes any constant and produces an associated constaatyahction ovetJ. As a particular
example, lel” be a function with domait). ThenL is the constant function ové&r whose value
is the functiorT, i.e.,u € U — T. Similarly, let B be a set of functions with domald, and let
A be a function with domaity whose range i8 (so eachA(u) is a function ovetd). Then we
defineA as the function taking € U — [A(u)](u). So the overline operator turns any function
overU whose range is functions over into a single function oved. Both the underline and
overline operators turn mathematical structures into tions overU; they ditter in what type
of argument they take. In particular, for any functibloverU, (I) = I'. (Using this notation is
more intuitive in practice than these complicated defingimight suggest.)

Next, recall from Sed. 111 that for any prolheof a functionT” with domainU, f(I') is the
functionu e U — f(T'(u)).

Definition 13: Let D = (X, Y, Q) be a self-aware device.
i) A functionT isintelligible to D iff V f € #('), f(I') € Q(U).
i) Disinfallible iff Yu e U, Y(u) = [Q(W](u).

We say thaD is infallible for Q" € Q(U) iff Vg € Q’, Yu € U such thaiQ(u) = g, Y(u) = q(u).
SoD is infallible iff it is infallible for Q(U) iff Y = Qiff YQ = 1. If a device is not infallible, we
say that it is fallible.

Recall thatY ® Q is supposed to represent the original conclusion functapiit‘into two
parts”. Accordingly, in keeping with the terminology usedthwveak inference, we say that a
self-aware deviceX’, Y’, Q) is intelligible to a self-aware devicX(Y, Q) iff (Y’, Q) is intelli-
gible to (X, Y, Q).

Def. 13 provides the extra concepts needed to analyze mfensith self-aware devices. Def.
13(i) means thab is able to ask what the value is of every probd’oDef. 13(ii) ensures that
whatever the questiorD is asking, it is correctly answering that question. Findthe third part
of “successful inference” — having the device be sure it lsragthe questiom — arises ifD
semi-controls its question function.

These definitions are related to inference by the followespits:

Theorem 6: Let D1 be an infallible, self-aware device.
i) LetT be a function intelligible td; and say thabD; semi-control€Q;. Then Ky, Y1) > T.
ii) Let D, be a device wher¥; is intelligible toD;, D1 semi-controlsQy, Xz), and Q1, Xz)
is surjective ontd1(U) x Xz(U). Then Xy, Y1) > (X2, Y2).

Thm. 6 allows us to apply results concerning weak and strofegénce to self-aware devices.
Note that a special case of havibg semi-controlQ; is whereX = y ® Q; for some function

X, asin Ex. 1. For such a caséandX “share a component”, namely the question being asked,
specified inQ;.
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The following result concerns just intelligibility, withuh any concern for semi-control or in-
fallibility.

Theorem 7: Consider a pair of self-aware devicBs= (X, Y, Q) andD’ = (X', Y’, Q") where
there are function®, P,R’, P’ such that®° andP’ have domairJ, Q = R(P) andQ’ = R (P"). If
P is intelligible toD’” andP is intelligible toD’ then the following hold:

) 1QU)I =1Q (V) = [P(U)] = [P'(U)l.

i) If Q(U) s finite, @ = n(P) = n(Q) andQ = n(P’) = n(Q’).

In particular, takeR andR’ to be identity functions over the associated domains, soRha Q
andP’ = Q'. Using this choice, Thm. 7 says that if each self-aware @ewvémn try to determine
what question the other one is considering, then neitheicdean try to determine anything
else.

An immediate corollary of Thm. 7 is the following:

Corollary 4: No two self-aware devices whose question functions haviefianges are intelli-
gible to each other.

Note that Coroll. 4 does not rely on the devices being dististtable (unlike Thm. 1). Indeed,
it holds even if the two devices are identical; a self-awaeéak whose question function has a
finite range cannot be intelligible to itself.

Coroll. 4 is a powerful limitation on any pair of self-awarewices,D andD’. It says that
for at least one of the devices, sBy there is some questiart € Q’(U) and bitb’, such thaD
cannot evesk, “DoesD’ pose the questiogf and answer with the biy ?”. So whetheb could
correctly answer such a question is moot.

To circumvent Coroll. 4 we can consider self-aware devidesse conclusion functions alone
are intelligible to each other. However combining Thm.'sxtl 8(i) gives the following result:

Corollary 5: Let D; and D, be two self-aware devices that are infallible, semi-cdrttieir
guestions, and are distinguishable. If in addition thegiifach other, then it is not possible that
bothY; is intelligible toD; andY; is intelligible to D».

With self-aware devices a devi€g may be able to infer whether a self-aware devize
correctly answers the question ttiztis considering. To analyze this issue we start the following
definition:

Definition 14: If D is a_device and, a self-aware device, thdd, corrects D, iff 3 x; such
thatXl =xX1=>Y1= Y2Q2.

Def. 2 means that; = 1iff Yo = Qs, i.e., Yo(u) = [Q2(u)](u). Intuitively, if a deviceD; corrects
D,, then there is ax; where havingX; = x; means thaC;'s conclusion tells us whethdd,
correctly answerqz

10 say thatD is also self-aware, and th¥#Q, has both bits in its range (so that probes of it are well-ddjiri€hen we
can modify the definition to seithﬁll correctsD; iff two conditions are met: all probes Y2 Q) are intelligible to
Dj, andD; is infallible for 7(Y2Qy).
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Note how weak Def. 14 is. In particular, there is no sense iickvit requires thab; can assess
whetherY,(u) = gx(u) for all questiongyp, € Q2(U). So long ad; can make that assessment for
any question inQ2(U), we say thaD; correctdD,. Despite this weakness, we have the following
impossibility result, which is similar to Prop. 2(i):

Proposition 7: For any devicéD; there is a self-aware devi thatD; does not correct.

There are similar results for the definition of correctiofantnotd 10, and for the (im)possibility
of correction among multiple devices.

Finally, while there is not room to do so here, many of the emtg investigated above for
inference devices can be extended to self-aware deviceexBmple, one might want to modify
the definition of inference complexity slightly for self-ave devices. LeD be a self-aware
infallible device that semi-controls its question funatiandl’ a function oveld wherel'(U) is
countable and’ is intelligible to D. Then rather tha@' (" | (X,Y)), it may be more appropriate
to consider theself-aware inference complexityof I with respect td, defined as

ZCIKYQ) 2 > Minexoomo-inl-Z (M.

fen(l)

Similarly, consider a reality that includes self-awareides, i.e., a realityy; {F4}) that can be
written as U; (C,}; {Ds}; {I's}) where in addition to the set of functiorfiz} and devicegC,},

we have a set of self-aware devid€&s;}. For such a reality it often makes sense to consider an
augmented reduced form,

R Xalw), Yaw)) @ () T(u) & (R)(Xs(w), Ys(u), Qs(w) @ (X) Qs(V)|-
1 1

ueU et B

The last term means we include in the tuples all instancebefdrm [Q(u)](u’) in which a
self-aware device’s question for onés evaluated at a fierentu’ # u.

Due to page limits the analysis of such extensions is beylumddope of this paper.

We close with some comments on the relation between inferewitb self-aware devices and
work in other fields. Loosely speaking, in the many-worldgipretation of quantum mechan-
ics [285], “observation” only involves the relationship tvetenY andr" (in general, for & whose
range is more than binary). As discussed above, such nesdtiles cannot imbue the observation
with semantic meaning. It is by introduciigandQ into the definition of self-aware devices that
we allow an act of “observation” to have semantic meanings ©formalized in Thm. 6, when
it is applied to scenarios where weak inference is integgras successful observation.

Much of formal epistemology concerns “knowledge functiomkich are maps from subsets
of U to other subsets df) [42(43,4%,44].K;i(A), the knowledge functioi; evaluated for an
argumentA C U, is interpreted as the set of possible worlds in which irdliali knows that
Ais true. The sefA is analogous to specification of the question being asked sBlfeaware
device. So by requiring the specification &f knowledge functions involve semantic meaning,
in contrast to the process of observation in the many-wankgspretation.

A major distinction between inference devices and bothhbety of knowledge functions and
the many-worlds definition of observation is that inferedegices require that the individual
observer be able to answer multiple questions (one for eadfeoncerning the function being
inferred). As mentioned above, this requirement certalvdids in all real-world instances of
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“knowledge” or “observation”. Yet it is this seemingly inowous requirement that drives many
of the results presented above.

Future work involves exploring what inference device tlydwas to say aboutissues of interest
in the theory of knowledge functions. For example, analgéiommon knowledge starts with a
formalization of what it means for “individuato know that individuaj knowsA”. The inference
devices analog would be a formalization of what it means @mviceD to infer that deviceC
infersI™”. Now for this analog to be meaningful, sin€ecan only infer functions with at least
two values in their range, there must be some sense in whichdtu both contains ¢ under
whichC infersI'” and containsi under which it does not. Formally, this means two thingsstf-ir
it must not be the case simply th@t> T, since that means th@tinfersI" underall u. Second,
there must be a proper sub&kt c U such that ifu were redefined to bec (andC andI” were
redefined to havtlc as their domains in the obvious way), themauld be the case th& > T.
This proper subset specifies a binary-valued funciignpyI'c(u) = 1 & u € Uc. The question
of whether ‘D knows thaiC knowsI™ then becomes whethé& can inferTc.

ACKNOWLEDGEMENTS: | would like to thank Nihat Ay, Charlie Bennett, John Doyle,
Michael Gogins, and Walter Read for helpful discussion.

APPENDIX A: Proofs

This section presents miscellaneous proofs. Since mamggésults may be counter-intuitive,
the proofs are presented in elaborate detail. The readatdshear in mind though that many of
the proofs simply amount to “higher order” versions of thei@n liar paradox, Cantor diago-
nalization, or the like (just like many proofs in Turing maohitheory). At the same time, in the
interest of space, little pedagogical discussion is ieseft/nfortunately, the combination makes
many of the proofs a bit of a slog.

Proof of Prop. 1: To prove (i), choose a devic&(Y) whereY(u) = -1 & u € W. Also have
X(u) take on a separate unique value for eachW, i.e.,Ywe Wu € U : w # u, X(w) # X(u).

(Note that by definition ofV, it contains at least two elements.) So by appropriate ehafian
X, X(u) = x forcesu to be any desired element @f.

Chooss. Pick anyy € T'j(U), and examine the probiethat equals 1ff its argument igy. If
for nou € W doesT’j(u) = y, then choose any that forcesu € W. By constructionX(u) = x =
Y(u) = -1, and in additiorX(u) = x = f(Tj(u)) = -1. SoX(u) = x = Y(u) = f([i(u)), as
desired.

Now say that there is a € W such that;(u) = y. By hypothesisju” € W : T(u”) # y. By
construction, there is ansuch thatX(u') = x = U = u”. SoX(U) = x = U € W.Tj(U) # v.
The first of those two conclusions means thié’) = —1. The second means thigf;(u’)) = —1.
So againX(u) = x = Y(u) = f(T(u)), as desired. There are no more cases to consider.

To prove (i), choosd € B and letl" be a function with domaity whereI'(u) = b for all u
obeyingY(u) = —1 and for no others. (The surjectivity ¥fensures there is at least one such
Consider the probé of I'(U) that equals-1 iff I'(u) = b. For allu € U, f(I'(u)) = —Y(u). QED.

Proof of Coroll. 2: To prove the first part of the corollary, letandg be the partitions induced
by X andY, respectively. IfX(U)| = |a| = 2, |a| = |8]. Sincea is a fine-graining of, this means
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thata = 8. So without loss of generality we can label the element$(bf) so thatX = V.

Now hypothesize tha > T for somel'. Recall that we require th#t(U)| > 2. Lety andy’
be two distinct elements &fU) wherel'(u) = y for someu € X-(-1). Definef, to be the probe
of I'(U) that equals 1ff its argument isy, and definef,, similarly. C > T' meansd x, € X(U)
such thatX(u) = x, = f,(C(U)) = Y(u) = X(u) = x,. Sinced u € X"1(-1) such thal'(u) = v,
and sincey(u) = -1 Yu € X~}(-1), x, must equal 1.

This means thaf(u) equalsy across all ofX~1(x,) c U. Therefored u € X~1(-x,) such that
I'(u) = y'. Moreover, since, = Y(X1(x,)) = 1, Y(X"Y(~x,)) = —1. Thereforel u € X~1(-x,)
such thatf, (C(u)) # Y(u). Similarly, V u € X7(x,), f, ([(u)) # Y(u). Therefore there is no
Xy € X(U) such thatX(u) = x,, = f,('(U)) = Y(u). So our hypothesis is wrong; there is no
function thatC infers.

Now consider the case whejig > 2. Label the two elements gfas+1 and -1. Sincex is a
fine-graining of3, and sincéB| = 2, there are at least two distinct elementa ¢fat are contained
in the same element @f having labeb. Choose one of those elementsof, and leta’ be one
of the other elements af that are contained in that elemeni@ivith labelb.

Form the union of with all elements ofr that are contained in the elemeniivith label-b.
That union is a proper subset of all the elements.dfherefore it picks out a proper subsetbf
W. (Note thatw has non-empty overlap with both both partition elemenis.pSo choosé to
be binary-valued, with values given byu) = b iff u € W. Then forX(u) = a, I'(u) = b = Y(u).
On the other hand, fax(u) = &, T'(u) = —b = —=Y(u). So for both probe$ of T, there is a value
xsuchthaX = x=Y = f(I). QED.

Proof of Thm. 1: LetC; andC; be the two devices. Sindéfor any inference device is surjective,
Y,(U) = B, and therefore there are two probesyefU). Since by hypothesi€; weakly infers
C,, using the identity probd(y € B) = y establishes thal x; s.t. X3(u) = X3 = Yi(u = Ya.
Similarly, sinceC, weakly infersC;, using the negation probidy) = —y establishes that x, s.t.
Xa(u) = X2 = Yo(u) = =Yy(u). Finally, by the hypothesis of setup distinguishabiliyy* € U
s.t. X1(u*) = xq, Xo(u*) = x2. Combining, we get the contradictiofy(u*) = Ya(u*) = =Yy (u*).
QED.

Proof of Thm. 2: To establish (i), letf be any probe of'(U). C;, > T' = 3 x; such that
Xo(u) = X2 = Ya(u) = f([(U). Inturn,Cy > C, = A xg suchthaiX; = x4 = Y1 = Y2, X = X2
(by choosing the identity probe &%(U)). Combining,X; = x; = Y1(I). SoC; > T, as claimed
in (i).

To establish (ii), letf be any probe o¥3(U), andx, any member oK3(U).C, > C3 = A % €
X2(U) such thatXa(u) = xp = X3(u) = X3, Y2(u) = f(Y3(u)). C1 > C, then implies thall x;
such thatX;(u) = x; = Xz(U) = Xz, Y1(u) = Yz(u) (by choosing the identity probe &% (U)).
Combining,X1(u) = x3 = X3(u) = X3, Y1(u) = f(Y3(u)), as desiredQED.

Proof of Prop. 2: To establish the first claim, simply tak® to be the functior’ in Prop. 1(ii).

To establish the second claim, focus attention onxang X;(U), and defineV = Xil(xl).
ChooseX; so thatX,(u) take on a separate unique value for each W, i.e.,Yw €,u € U :
W £ U, Xa(W) # Xa(u).

First consider the case wheYg(W) has a single element, i.e/;(u) is the same bit across all
le(xl). Without loss of generality take that bit to be 1. Chods@l) = 1 for somew € W,
andYa,(u) = —1 for all otherw € W. Then choose;, so thatX;(u) = xo = u = w. Therefore
Xo(u) = % = X3(u) = X1, Yo(u) = 1. So for the probd of Y1(U) that equalsy;, Xx(u) =
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X2 = Yz(u) = f(Y1(u)). On the other hand, by hypotheslsnv’ € W that difers fromw’, and
3 x; € X(U) such thatXz(u) = X, = u = w”’. Moreover,Y2(w’) = -1, by construction of>.
So consider the probE of Y;(U) that equals-Y;. For allu € W, f’(Y1(u)) = —1. In particular,
this is the case fon = w”’. Combining,Xz(u) = X, = Xy(u) = Xq, Y2(u) = f’(Y1(u)). Sincef
and f’ are the only probes of;(U), there are no more cases to consider for the situation where
Y1(W) is a singleton.
If Y1(W) is not a singleton, sinc&/ contains at least three elements, there is a proper subset
of W, W', on whichY; takes both values. So by Prop. 1(i) there is a de@aerW that infers
the restriction ofY; to domainW. Define (X, Y2) to be the same as th@tfor all u € W, with
all members ofX,(W) given values that are not found ¥p(U — W). SinceX;(w) = x; for all
w e W, this means that f € 7(Y1), 3 X2 such thatXz(u) = Xo = Xy(u) = Xq, Yo(u) = f(Yr(u)).
Combining, sincefl(X;l(xl)) either is or is not a singleton for eagh € X;(U), we can build
a “partial” deviceC, that strongly infer<; for each regionql(xl). Furthermore, those regions
form a partition ofU. So by appropriately “stitching together” the parti@l’s built for each
xp € X1(U), we build an aggregate devi€ that strongly infersC; over all U, as claimed.
QED.

Proof of Thm. 3: LetC; andC; be two devices and hypothesize that they can strongly iafen e
other. SinceC; can strongly infe€C,, it can forceX; to have any desired value and simultaneously
correctly infer the value o¥, under the identity probe. In other words, there is a fune_ﬂibn
X2(U) — X3(U) such that for allk,, X; = _f,l(xg) = Xz = xp andY; = Ys. Let X; be any element
of £(Xa(V)).

Similarly, by hypothesi€, can forceX; to have any desired value and simultaneously cor-
rectly infer the value ofyY; under the negation probe. In other words, there is a fun@ﬁpn
X1(U) = Xz(U) such that for allk;, Xo = £2,(x1) = X1 = X andY; = -Ya.

DefineX, = £ /(%1). ThenXy(u) = &(%) = Xa(u) = % = &2,(%) and Yi(u) = Ya(u).
The first of those two conclusions in turn means tgu) = —Y,(u). Combining, we see that
X1(U) = (%) = Y2(u) = Y1(u) = —Y2(u), which is impossibleQED

Proof of Thm. 4: SinceC, > T,V f € n(I'), 3 X2 such thatX, = x; = Y, = f(I'). Therefore
the set argmig:x,-x,-v,- 1) [-£(X2)] is non-empty. Accordinglyy f € =(I'), we can define an
associated vaIu1re\2f € Xp(U) as some particular element of argmigy—x,—v,= ) [-Z (%2)].

Now sinceC; > C,, ¥xp, 3 X3 such thaiXy = X3 = Xz = Xp, Y1 = Ya. In particulary¥ f € n(D),
AX Xy =X = X = X;,Yl = Y,. So by definition Of)(;, Vfen(),Ax : Xy =% = X =
X3, Y1 = ().

Combining,Yf € n(I),

minxlixlixli‘lef(r)[g(xl)] < minxl;xlleﬁxzzx;,vlzvz[g(xl)]-

Accordingly,

CIC)-CMIC) < D min o oy [£0a) - Z03)]
fen(T)

< Z max, [minX11X1:X1:>Xz:X2,Y1:Yz[Z(Xl) - Z(XZ)]]
fen()

= |7T(F)| max, [minxlixlixli‘xzixz,Ylin [Z(Xl) - g(XZ)]]
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Using the equalityr(I')| = |T'(U)| completes the proofQED.

Proof of Thm. 5: By hypothesis, for any, € X>(U), 3 x; such thatX; = x; = Xz = X;,. This is
true for any suckx;. Write the function mapping any sush to the associatexh asé;. Similarly,
there is a functio, that maps any; € X;(U) to anx; € X3(U) such thatXy = &(x1) = Xg =
x1. Using the axiom of choice, this provides us with a singletxed mapping fronX;(U) into
Xz2(U) and vice-versa.

Since havingXa(u) = &(x;) forcesX;(u) = X3, the set olu € U such thatX,(u) = £(x;) must
be a subset of those € U such thatXy(u) = xi, i.e.,¥ x1, X5 [&(x1)] € X7 (x1). Similarly,
Y %o, X7 (%)l € X51(x2). This second equality means in particular tégt[é1[£2(x1))] €
X51(€2(x1)). Combining X; [é1[&2(x1))] € X;*(xa)-

HoweverY xi, £&1(£2(x1)) is non-empty. SinceX; is single-valued, this means thdt x,,
&1(£2(x1)) = X1 Combining, we see thatt x;, X;1(x1) € X5 [£2(x1)], and therefore; [éx(xq)] =
Xil(xl). This in turn means that the sm;[x;l(xl)] equals the singletoti(x;) for any x; €
X1(U). AccordinglyV¥ u € Xil(xl), Xo(u) = &2(x1) = &(Xa(u)). In addition, everyu € U obeys
ue Xil(xl) for some x;. Therefore we conclude that for alle U, &(X1(u)) = Xz(u).

This establishes that the partition induced Xyis a fine-graining of the partition induced
by X,. Similar reasoning establishes that the partition indume; is a fine-graining of the
partition induced byX;. This means that the two partitions must be identiQé&iD.

Proof of Coroll. 3: By Thm. 5, we can relabel the image values of the two deviegsisfunc-
tions to express them & = (X, Y1) andC; = (X, Y2).

To prove (i), note that; > C; meansd x € X(U) suchthalX = x = Y; = Yo and3d X' € X(U)
such thatX = X' = Y; = —Y,. But those two properties in turn mean tlagt > C;. A similar
argument establishes that > C; = C; > Ca.

To prove (ii), note thaC; > C, means tha¥x € X(u), f € n(Y2), I X such thatX = X' =
X =x,Y1 = f(Y2). In particular,yx € X(u), I X such thatX = X = X = X, Y1 = Yo, and3d x”
such thatX = x” = X = x, Y1 = —Y,. The only way both conditions can hold isxf = x”. But
that means it is impossible to have bath= Y, andY; = -Ya.

To prove (i), hypothesize tha; control X. This means in particular thatx € X(U), 3 X €
X(U) such thatX = X' = Y; = §xx = 1 (chooséb = 1 and havef be the probe that equals
1 iff its argument equals). To havedxx = 1 meansX = X, which in turn meanx’ = x. So
X = x= Yy = 1. This is true for allx € X(U), soY1(u) = 1 Yu € U. However by definition,
the range ofY; must beB. Therefore the hypothesis is wrong. The same argument sthas,
cannot controX. QED.

Proof of Thm. 6: To prove (i), letf be any probe of. Intelligibility meansf € Q;(U). Since
D; semi-controls its question functioAy; : X; = x3 = Qp = f. Infallibility then implies that
for anyu such thatX;(u) = xq, Y1(u) = [Q(w)](u) = f(u). This proves (i).

Next, letf be any probe o>, andx, any element oX,(U). Intelligibility meansf € Q1(U).
SinceD; semi-controlsQ;, X2) and Q1, X2) is surjectivedx; suchthaX; = x3 = Q1 = f, Xy =
xo. Infallibility then implies that for any such thatX;(u) = xg, Y1(u) = [Q1(uW)](u) = f(u). This
proves (ii).QED.

Proof of Thm. 7: The cardinality ofr(P) is the cardinality ofP(U), |P(U)|. Let f; and f, be two
separate such probes, so that P(U) — B differs fromf, : P(U) — B. Then as functions
overU, f1(P) and f,(P) differ. Therefore by hypothesis they correspond to two distigctn
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Q'(U). SolQ'(U)I = [P(U)I. In turn,|Q(U)I = IR(P(V))] < [P(U)I. So|Q'(U)| > IQ(U)I. Similar
reasoning establishes th@(U)| > |Q'(U)|. So|Q(U)| = |Q'(U)|. ThereforgdQ(U)| = |P(U)| and
|Q' (V)| = |P’(V)|. This proves (i).

Now sinceP”’ is intelligible toD, everyf € n(P’) is an element oQ(U). Therefore folQ(U)|
finite, (i)’s conclusion thalQ(U)| = |P’(U)| means that there is rgpe Q(U) that is not an element
of #(P’). In other wordsQ = n(P"). Next, (i)’s conclusion thaf’(U)| = |R'(P’(U))| establishes
that the partition induced bly’ is identical to the partition induced W(P’). Sox(P’) = n(Q’).
Similar reasoning establishes tl@@at= 7(P) = #(Q). This establishes (i)QED.

Proof of Coroll. 4: ChooseP = (Y, Q) andR : (Y, Q)(u) —» Q(u). (SoRis a projection map.)
Since Y, Q) is surjective|P(U)| = |(Y, Q)(U)| = 2/Q(U)|. By Thm. 7, this is impossible if the two
self-aware devices are intelligible to each anot&D.

Proof of Prop. 3: The validity of the claim in (i) is independent of the queantfanction of the
devices, so they can be set arbitrarily. Chog)) = X2(U) = X3(U) = {0, 1}. Then choose the
reduced form of the setup and conclusion functions of thé&dewn the reality to be the following
four tuples: ([Q0], [0, 0], [0, OI); ([0, O], [[1, O, [1, 1]); ([1, 1], [0, O], [1, O]); ([1, 1], [1, O], [O, 1]).
It is straightforward to verify that each pair of devices istithguishable and tha®; > C, >
C3 > Cl.

To prove (i), note that under hypothes®, > C; = A x1 : X3 = X1 = Y1 = Y5, C, >
C3 = dXx: X2 = Xo = Yz = Yg, ---,Cnfl > Cn = 3 X1 . Xn,]_ = Xp-1 = Ynfl = Yn,
Ch>Ci1 = A X, : Xy = X = Yy = Y1 . Mutual distinguishability means that there is a tuple
in the reduced form of the reality having that setxp¥alues. However that would mean that the
tuple hasy; = —y;. So our hypothesis is wrong.

To prove (iii), simply combine Thm. 3 and Thm. QED.

Proof of Prop. 4: SinceD is acyclic and finite, it contains at least one root node. Lahe such
node asC;. Hypothesize that there is some other root node in the graph.

Given anyD’ C D, defineS(D’) as the union oD’ with the set of all nodes i that are
successors of a node Y. Similarly, defineP(D’) as the union oD’ with the set of all nodes
in D that are predecessors of a nhoddih S({C1}) c D since by hypothesis there is more than
one root node. SincB is weakly connected, this means tI&{C,}) c P[S({C1})]. SinceD is
acyclic and finite, this means that there is a nGgle S({C,}) who has a root node predecessor
Cx whereCy ¢ S({Cy1)).

SoC; is a successor of two separate root no@gksindC,. By transitivity of strong inference,
this means tha€, > C; andCy > C;. By the hypothesis of the proposition, sinCg # C;,
those two devices are distinguishable. This means it isilples®r C; to force X to have one
value while at the same tin@ forcesX; to have a dierent value. This is a contradictioQED.

Proof of Prop. 5: The proof of (i) is by example. Consider the following set @&fguadruples:
V={(-1-1-1,-1);(-1,-1,1,-1);(1L, -1 -1,1);(1L, 1,1,-1),(-11,1,1)}

By Lemma 1,V is the reduced form of a reality consisting of two devi€gsandC,, where we

identify any quadruple itV as the valueX, yi1, X2, ¥2), so thatX;(U) = Xz(U) = B. By inspec-

tion,C; > Cy (e.g., X1 = 1 = Y1 = —Y2). Similarly, by inspectiorC; andC, are distinguishable,

and copies of each other. This completes the proof of (i).
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To prove the first part of (ii), first note th&; > C, requires that for alk;, there is (anx;
that forcesX; = x; andY; = Y>), and (anx; that forcesX; = x; andY; = —Y>). In other words,
there is a single-valued map: X;(U) — X;(U) such that the quadrupl&X{ = &(x2), Y1 =
Y1, X2 = X2, Y2 = Y1) occurs for somg; in some tuple in the reduced form of the reality while
(X1 = €(x2), Y1 = y1, X2 = X), Y2 = ¥2) does not occur for any, if X, # x,, and also does not
occur fory, = —y; if X, = x2. Similarly, there is a single-valued mgp: X>(U) — X1(U) such
that the quadrupleX; = £(x2), Y1 = Y1, X2 = X2, Y2 = —Y;) occurs for somg; in some tuple in
the reduced form of the reality whil&X{ = £(x2), Y1 = y1, X2 = X;, Y2 = y») does not occur for
anyy, if X, # x,, and also does not occur fgs = y; if X, = X;. By construction, botlf and¢”’
are invertible. Furthermore, for alb, £(x2) # & (X2). So|X1(U)| = 2|X,(U)|. On the other hand,
[X1(U)| = |X2(U)| becaus€; andC; are copies of each other. Therefore they must have infinite
setup functions.

The existence proof for (i) is by example. Define a set of quplks

T={(1L-11-1):211-1);3-121):(4121):(5-13-1),(613,-1),..)
= {(i, 1—2( mod 2) [(i/2), 1-2(((i/2) mod 2)) :i € N}

Next, fix any set of spaces, where the spacelyi} = {y2} = B and{xy} = {x} = N all
occur ino. Let S be a subset of the Cartesian product of the spaces fBay that for every
teT, (X1, Y1, X2, Y2) = t for exactly one element @&, and no element db contains a quadruple
(X1, Y1, X2, ¥2) ¢ T. (So there is a bijection betwe&andT, given by projecting any element of
S onto its four components corresponding to the spéegs{xz}, {y1} and{y-}.)

By Lemma 1,S is the reduced form of a reality, where we can defa@J) = {x1}, Y1(U) =
{ya}, X2(U) = {x2}, Y2(U) = {y»}. Accordingly group X3, Y1) into a deviceC; and (X, Y>) into
a deviceC,. By inspection, the relation ifi between pairg; andy; is identical to the relation
in T between pairs; andy,. (Those relations are the pai(d, -1); (2 1); (3, -1),...}.) So the
devicesC; andC; in the reality are copies of each other.

Next, note that¥x, € N,y; € B, (2% + @,yl, X2, 1 — 2(x2 mod 2)) occurs (once) iff .
Accordingly, X; = 2%, + @ = Xy = Xp. Also, for any fixedx,, choosing eitheX; = 2x;
or X; = 2% — 1 forcesy; to be either 1 or1, respectively. Therefore, given that is fixed, it
also forces eithey; = 1 — 2(x; mod 2) or-y; = 1 — 2(xo mod 2). (For exampleX; = 5 forces
X; = 3andY; = Y,, while X; = 6 forcesX; = 3 andY; = —Y>.) So the choice oK; forces either
Y1 = Yo orY; = =Y. ThereforeC; > C,. QED.

Proof of Prop. 6: Plugging in, the product of the two inference accuracies is

(Zflen(Yz) max, [Ep(Y1f1(Y2) | x1)] ) (Zfzen(Yl) max,[Ep(Y2f2(Y1) | Xz)])
2 2 '

Defineg = Y1Y,. Then we can rewrite our product as

(max)(l[EP(gl X1)] N max,, [Ep(-g | Xl)])(maXxZ{EP(g [ X2)] N max,[Ep(-g | Xz)])
2 2 2 2 ’

For|X1(U)| = |X2(U)| = 2, we can rewrite this as

(lEP(gl Xy =1) - Ep(g] X1 = —1)|)(|EP(9 | Xo=1) - Ep(g] X2 = —1)|)
2 2 '
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Next, since the distinguishability is 1.8; andX; are statistically independent und&rThere-
fore we can writeP(g, x1, X2) = P(g | X1, X2)P(x1)P(x2). So for exampleP(g | x1) = X4, P( |
X1, X2)P(x2), and

Ep(g | 1) = ) [P(@=11%1,%) - P(g = ~1| X1, %)]P(x:)

=2[) P(g =11 %, %)P(x)] - 1

Now definezz = P(g=1|x1=-1,%=-1),22=P@g=1|x=-1%=1),z=Pg=1|
x1=1X =-1),z=P(@=1]| xx = 1, %X = 1). Note that the 4-tuplex, z,, z3, z3) € H so long
as none of its components equals 0. Plugging in,

Ep(g| X1 =-1)=2[z8+2(1-p)] - 1,
Ep(gl X1 =1)=2[z5+z(1-p)] - 1,
Ep(gl X2 =-1)=2[zn + z5(1 - @)] - 1,
Ep(g] X2 = 1)=2[2za + z4(1 - @)] - 1.

So the product of inference accuracies is

IB(k(2) + M a(k(2) + Nl = laBK(2)]* + ak(2IM(2) + BK(ZIN(2) + M(AN(2)!.

This establishes the first part of the proposition. Note tlegtending on the structure of the
mapping from Ky, Xz) — (Y1, Y2), if we require that bothy; be stochastically surjective, there
may be constraints on which quadruptes H are allowed. Such restrictions would make our
bound be loose.

Whena = 8 = 1/2, the product of inference accuracies reduces to

|Zi—25—2§+dzﬁ LR nm |(21—24)2—(22—23)2|
4 2 - 4
This establishes the second claim. The final claim is estaddi by maximizing this expression
overH. QED.

Proof of Prop. 7: Given anyC; = (X, Y1), the proposition is proven if we can construct an
associated, thatC; does not correct. To do that, chooge = Yi, and haveQ,(U) consist
of two elementsg; = Y1, andgy = —Y;. DefineQ,’'s dependence on € U by requiring that
Y:=-1© Q2 =0 (i.e.,Yu € U such thaty;(u) = -1, Q2(u) = g; = Y1), and by requiring that
Y1 =1 e Q, = g, (SinceY; is surjective ontd, this define,'s dependence on all &, and
guarantees tha,(U)| > 2, as required.)

Plugging in,Q, = —1. Now the square of both 1 and -1 equals 1. Si¥ge- Y,, this means
thatY1Y, = 1. Combining,Q, = —Y,Y;. ThereforeY,Q, = -V;. Therefore it is impossible that
Y: = Y»Q,, i.e., there is nx; that implies this equalityQED.

APPENDIX B: The lack of restrictions in the definition of weak inference

Note that there is additional structure in Ex. 1 that is nmigsn Def. 3. Most obviously, no
analog of{ appears in Def. 3. In addition, Def. 3 does not require thatdtbe a component
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of X andor Y that can be interpreted as a question-valued functionQk&loreover, even if

it is the case thaX = y ® Q, Def. 3 allows the value imposed gnto vary depending on
what probe one is considering, in contrast to the case in EAltérnatively, it may be that the
guestionQ(u) does not equal the associated prdhethat is being answered, but so long as
Y(u) = fk(I'(u)) whenevery(u) ® Q(u) has a certain value, the device “gets credit” for being
able to answer questiofx. In this, the definition of weak inference doesn'’t fully inggothe
mathematical structure underpinning the concept of semarformation. Phrased fferently,
the impossibility results for weak inference hold even tfoweak inference only uses some of
the structure needed to define semantic information. (Se&Ser results that involve all of that
structure.)

In addition, it may be that the scientist cannot read the egipa’ output display accurately.
In this case the scientist would give incorrect answers ashat’s on that display. However
so long as that inaccuracy was compensated, say by a mistéke observation apparatus, we
would still say that the device infefs Any such extra structure that is in Ex. 1 can be added
to the definition of weak inference in Def. 3 if desired, and iimpossibility results presented
here for weak inference will still obtain. (See Jec. 9 formarfalization of inference that contains
additional structure much like that in Ex. 1.)

The other examples in Séd. 2 can be cast as instances of weednice in similar fashions. In
particular, all of them have additional structure beyorat tlequired in Def. 3.

It is worth elaborating further this point of just how unmégtive Def. 3 is. One might argue
that to apply to things like computers being used for préalicta definition of inference should
involve additional formal structure like time-ordering,stipulations about the Chomsky hierar-
chy power of the device, or stipulations about physicaltimestricting the device’s operation
like the speed of light, guantum mechanical uncertaingés, More abstractly, one might ar-
gue that for a conclusion of a device to be physically meduning should be possible to “act”
upon that conclusion, and then test through the universsjsanse to that action whether the
conclusion is correct. None of this is required.

Note also that Def. 3 doesn’t require that the device be usédfér some aspect of world
“outside” of the device. For example, no restrictions areased concerning the physical cou-
pling (or lack thereof) at any particular instant of timeweén the device and what the device
infers. The device and what it is inferring can be anythirmgrfrtightly coupled with each other
to completely isolated from each other, at any moment.

As an extreme version of the first end of that spectrum, oneegan have the device and
what it is inferring be “the same system”. For example, thithe case iX andor Y depend on
every degree of freedom in the universe at some moment in(fmsme associated reference
frame). In such a situation, the entire universe is the erfee device, and it is being used to infer
something concerning itself.

As another example of the generality of the definition, nbé time does not appear in Def. 3.
Ultimately, this is the basis for the fact that the definit@frinference applies to both prediction
and recollection, aka “retrodiction”. This absence of timeDef. 3 also means that not only
might the device be the entire universe, but it might be thiesnniverse across all time. In such
a situation, the device is not localized either spatiallplysically; the setup aradr conclusion
of the device is jointly specified by all degrees of freedornthefuniverse at all moments.

In addition,X = x = Y = f(I') does not mean that(u) is the same for every € X~1(x). It
simply means that whatever valuégi) has asi varies acros¥1(x) are the same as the values
that f (I'(u)) has. This weakness in the definition of inference is nesgdser it to accommodate
observation devices. (Recall that in such devik@s) is how the observation device is set up,
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and the conclusion of the device depends on characteridtibe external universe, to be types
of inference devices.)

Along the same line<; > I does not imply that there is exactly one probd dér which the
associated conclusion value is 1. (This is true even thabfJ)) is a full unary representation
of T'(U).) Formally,C > T does not imply that there is exactly one probef I such that
Ax: X =x=Y = f(') = 1. There may be more than one suctor even none. So as embodied
in weak inference, foC to predict (something concerning the future state of thearse as
encapsulated in the functiof)does not mean that for eaghe I'(U) there is some associated
guestionx that if embodied inX guarantees that correctly says, “yes, in this universey is
the value that will occuf’(u) = y”. Weak inference only requires that for eagland associated
probe,X can be set up so that the device’s ans¥@n must be correct, not that it can be set up
to be correct and answer in thiemative.

Similarly, C > T" does not imply tha€ can infer a “coarse-grained” version Bf It implies
thatC can correctly answer, “dod¥u) equaly,?” for somey; € I'(U), and that it can correctly
answer “doe$’(u) equaly,” for somey, € I'(U). However it does not imply that can correctly
answer, “doe$'(u) equal eithely; or y, or both?”. In particular, for two functions ovér, T and
I”,C > ([, I") does not imphC > T.

As another example of how weak Def. 3 is, recall tig to be interpreted as including all that
the device "knows”. On the other hand, itighat includes a specification of what inference task
the device is being asked to perform. So in the definition feéfrence, we don’t even require that
the device knows what inference task it is being asked tmparfWe just ask if it can be given
such a task and then come to the right conclusion, even ifasdd know what its conclusion
“means”.

There is no reason one could not introduce additional forstralcture in the definition of
inference to embody some (or all) of these attributes. Fample, say we want to analyze the
property of a devic& both inferring somd™ while also being capable of correctly answering
“doesTI'(u) equal either; or y, or both?”. We could do this by strengthening the definition of
weak inference to also require that for any union of probes, @, there is arnx € X(U) such
that X(u) = x implies thatY(u) = 1 & f(['(u)) = 1 for somef € ®. (In general thex € X(U)
that force the device to infer such unions of multiple protesdiferent from thex e X(U) that
force the device to infer single probes.) As another exangale we want to hav€ infer some
" while also knowing how it is set up (so in particular it knowkat probe of" it is inferring).
We can accomplish this by requiri@y> (T, X).

Whatever dificulties such additional structures might impose, they miadidition to the im-
possibility results we derive below; the results below gy matter what such additional struc-
tures are imposed.

In addition, in Def. 3 there are no restrictions on how, pbghy, the functiorl” gets mapped
to the setup valua. So there are no stipulations, implicit or otherwise, abloaw x is inter-
preted. A mechanism for forcing(u) to have the desired value for its inference will typically
exist in any real device. In fact, in general to infeffdient functions will require dierent such
mechanisms. So in the real world there is typically a way pla®e one such mechanism with
another, depending on the functibieing inferred.

By leaving the mechanism out of the formal definition of ifiece, all such complications are
avoided. In Def. 3, we simply say there exists some apprtgpxia X(U) for any f(I'), with
nothing mentioned about how to force the inference deviod (aereforeu) to have what the
device is supposed to compuf€l), reflected in the valug.

Indeed, given any devic€, we can define a new devic® = (X’,Y’) whereX’(u) itself
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specifies thef (I') that we wish to answer using the original deviegY). So for example, say
(X,Y) is a computer running a physical simulation program whog@lized state is given by
X(u). ThenC’ is that computer modified by having a “front end” program tts first to figure
out how to initialize the simulation to have the bit it pro@s@s a conclusion answer the question
of interest. In this case, trivially, there is no issue in piag fromI" to x; that mapping is part of
the setup function of our new devicé/(.).

In particular, say that there is an “external” scientist viyyoes into the computeZ a specifi-
cation of the system whose evolution is to be simulated irctimeputer (i.e., forceX(u) to have
a value that is interpreted as that specification). Then amedefineC’ so that the scientist is
embodied inX’(.). In this definition, we view the human scientist as “part tifé device (s)he is
using.

In summary, and speaking very colloquially, one can view kviederence as a necessary
condition for saying that a device “knows” the actual valdeadunction of the state of the
universe. Whatever else such knowledge entails, it meanthté device can, by whatever means,
correctly answer (with a yes or a no), “Does the value of tmefion of the state of the universe
equalz?” for any valuez in the codomain of the function.

Like with weak inference, there is no requirement that ackeknows how it has been set up
for it to strongly infer another device. Similarly, therenig requirement that it be able to strongly
infer the unions of probes, no requirements concerningatstion in the Chomsky hierarchy,
etc. Despite being so pared-down, the definition of strofigrémce is still sfficient to exhibit
some non-trivial behavior.

APPENDIX C: Alternative definitions of weak inference

There are alternatives to Def. 3 that accommodate the caseeWifU)| > 2 without em-
ploying multiple probes. One such alternative uses maltif@vices in concert, each sharing the
same setup function, and each device’s conclusion givirifferdnt bit concerning’s value. As
an example, say thats range isR. Then we could assign each device to a separate real num-
ber, and require that for all one and only one device’s conclusion equals 1, namely thiegev
corresponding to the value b{u).

To formalize this, say we have a set of devi¢€s: z € R} and some functiolf : U — R. In
addition suppose there is some vectavith components; running over alk € R such that

) Nz X;1(%) = Ur # o.
i)ueUr = VzeR, Y, = 1iffT(u) = z
iii) Vy € T(U), u € Ur such thatY,(u) = 1.

Then we can jointly set up the set of devices so that theit fmnclusion give§'(u), and we can
do so without precluding any elementlgu). In this, the set of devices “jointly inferd”.
Alternatively, we could use a single device, where we mottify definition of “device” to
allow arbitrary cardinality of the range &f With this modification, the conclusion function of
the device does not answer the question of what the value aftecplar function ofl’(U) is.
Rather it directly encodes the valuelit)).
It would appear that under such an alternative we do not reeleave the value oX(u) specify
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the bit concernind@’(u) that we want to infer, and do not need to consider multiptdps. So for
example, it would appear that when the device is being usgatéaliction, under this alternative
X(u) need only specify what is known concerning the currenestéthe system whose future
state is being predicted, without specifying a particuiicbncerning that future state that we
wish our device to predict. The conclusi¥r(or set of conclusions, as the case might be) would
specify the prediction in full.

Things are not so simple unfortunately. If we wish to allow trevice to infer functionB with
different ranges, then under this alternative we have to allfardnt functions relatiny(u) and
I'(u). This need is especially acute if we want to allpu)| to vary.

Such functions should be surjective, to ensure that ourcdewan conclude every possible
value ofl'(U). (This surjectivity is analogous to the requirement thataensider all probes in
Def. 3.) For any such functios : Y(U) — I'(U), we would interpret a particular valogu) as
saying T(u) = ¢(Y(u))". (This contrasts with the situation whef{U) = B, where we interpret
Y(u) = +1/-1 to mean “ye80”, respectively, in response to the question of whetheneso
associated probe has the vaki)

One immediate problem with this alternative definition deience is that it does not allow a
device K, Y) to infer any functioi(U) whereI’(U)| > |Y(U)|. Such dificulties do not hold for
Def. 3. For example, iK(U) = 3, X is a fine-graining of with two of its elements contained in
Y~1(-1), andr" is a fine-graining o, then (X, Y) > I". (For every probe of (U), x is chosen to
be one of the two elements that cax§e) = —1. The precisex chosen for a particular probie
is the one that lies inf(T"))~1(-1).)

Other dificulties arise when we try to specify this alternative dafinitin full. For example,
one possible such definition is th@tinfersT iff 3 x and functiong : Y(U) — I'(U) such that
X = x = ¢(Y) = I'. Such a definition is unsatisfying in that by not fixiggahead of time, it
leaves unspecified how the conclusion of the device is to psiphlly interpreted as an encoding
of T'(u). (This is in addition to the lack of a fixed mapping frdmo x, a lack which also arises
in Def. 3.)

To get around this problem we could pre-fix a set, one for every member of a set of
ranges{I'(U)}. We could then have pick out the precis@ to use. This requires introduction
of substantial additional structure into the definition efrites however. (A somewhat related
notion is considered in Secl 9.) Another possible solutiaulal be along the lines of¢ :
Y(U) — T, Ix such thatX = x = ¢(Y) = I'". But this returns us to a definition of inference
involving multiple functions relatingy andI".

All of these other diiculties also apply to the definition above of joint inferemoeolving
multiple devices. In particular, say we wish to use the saghefaddevices to jointly infer function
having diferent ranges from one another. Then we have to specify sargethout how to map
the joint conclusion of the devices into an inference in ahthose ranges. For example, if the
set of devices i4C;, : z € R} andT'(U) is non-numeric, we would need to specify something
about how a joint conclusiofY;(u)} gets mapped into that non-numeric space.

As a final possibility, we could stick with a single device dmleY(U) = B, but use some
representation df(U) in X other than the unary representation implicit in Def. 3. Baraple,
we could require that for all binary representatigins I'(U), for all bitsi in that representation,
there is arx such thaiX = x = Y = ¢;(I'). This would allow smaller spaceéqU) in general. But
it would still require consideration of multiple functionslatingY andr. It would also raise the
issue of how to encode the elementd'@f) as bits.

For simplicity, in the text we avoid these issues and resdttention to the original definitions.
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