
ar
X

iv
:g

r-
qc

/9
70

20
52

v2
  5

 A
pr

 1
99

7

On the dimensionality of spacetime
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Some superstring theories have more than one effective
low-energy limit, corresponding to classical spacetimes with
different dimensionalities. We argue that all but the 3+1-
dimensional one might correspond to “dead worlds”, devoid
of observers, in which case all such ensemble theories would
actually predict that we should find ourselves inhabiting a
3+1-dimensional spacetime. With more or less than one
time-dimension, the partial differential equations of nature
would lack the hyperbolicity property that enables observers
to make predictions. In a space with more than three di-
mensions, there can be no traditional atoms and perhaps no
stable structures. A space with less than three dimensions al-
lows no gravitational force and may be too simple and barren
to contain observers.

I. INTRODUCTION

Many superstring theories have several stable (or ex-
tremely long-lived) states that constitute different effec-
tive low-energy theories with different spacetime dimen-
sionalities, corresponding to different compactifications
of the many (e.g., 11 or 26) dimensions of the fundamen-
tal manifold. Since the tunneling probabilities between
these states are negligible, such a theory for all prac-
tical purposes predicts an ensemble of classical n + m-
dimensional spacetimes, and the prediction for the di-
mensionality takes the form of a probability distribution
over n and m [1]. There are also inflationary models
predicting a Universe consisting of parts of exponentially
large size having different dimensionality [2]. In this pa-
per, we argue that this failure to make the unique predic-
tion (n, m) = (3, 1) is not a weakness of such theories, but
a strength. To compute the theoretically predicted prob-
ability distribution for the dimensionality of our space-
time1, we clearly need to take into account the selection
effect arising from the fact that some of these states are
more likely than others to contain self-aware observers
such as us. This is completely analogous to the famil-
iar selection effect in cosmological galaxy surveys, where
we must take into account that bright galaxies are more

1 Here and thoughout, we let n and m refer to the number of
non-compactified space and time dimensions, or more gener-
ally to the effective spacetime dimensionality that is relevant
to the low-energy physics we will be discussing.

likely than faint ones to be sampled [3]. Below we will ar-
gue that if observers can only exist in a world exhibiting a
certain minimum complexity, predictability and stability,
then all such ensemble theories may actually predict that
we should find ourselves inhabiting a 3+1-dimensional
spacetime with 100% certainty, as illustrated in Figure 1,
and that the Bayesean prior probabilities of quantum-
mechanical origin are completely irrelevant. We will first
review some old but poorly known results regarding the
number of spatial dimensions (when m = 1), then present
some new arguments regarding the number of time di-
mensions. In both cases, we are not attempting to rigor-
ously show that merely (n, m) = (3, 1) permits observers.
Rather, we are simply arguing that it is far from obvi-
ous that any other (n, m) permits observers, since radical
qualitative changes occur in all cases, so that the burden
of proof of the contrary falls on the person wishing to
criticize ensemble theories with fine-tuning arguments.

FIG. 1. When the partial differential equations of na-
ture are elliptic or ultrahyperbolic, physics has no predictive
power for an observer. In the remaining (hyperbolic) cases,
n > 3 may fail on the stability requirement (atoms are unsta-
ble) and n < 3 may fail on the complexity requirement (no
gravitational attraction, topological problems).
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FIG. 2. The two body problem in four-dimensional space:
the light particles that approach the heavy one at the cen-
ter either escape to infinity or get sucked into a cataclysmic
collision. There are no stable orbits.

II. WHY IS SPACE THREE-DIMENSIONAL?

As was pointed out by Ehrenfest back in 1917 [4], nei-
ther classical atoms nor planetary orbits can be stable
in a space with n > 3, and traditional quantum atoms
cannot be stable either [5]. These properties are re-
lated to the fact that the fundamental Green function of
the Poisson equation ∇2φ = ρ, which gives the electro-
static/gravitational potential of a point particle, is r2−n

for n > 2. Thus the inverse square law of electrostatics
and gravity becomes an inverse cube law if n = 4, etc.
When n > 3, the two-body problem no longer has any
stable orbits as solutions [6]. This is illustrated in Fig-
ure 2, where a swarm of light test particles are incident
from the left on a massive point particle (the black dot),
all with the same momentum vector but with a range
of impact parameters. There are two cases: those that
start outside the shaded region escape to infinity, whereas
those with smaller impact parameters spiral into a sin-
gular collision in a finite time. We can think of this as
there being a finite cross section for annihilation. This is
of course in stark contrast to the familiar case n = 3,
which gives either stable elliptic orbits or non-bound
parabolic and hyperbolic orbits, and has no “annihila-
tion solutions” except for the measure zero case where
the impact parameter is exactly zero. A similar disas-
ter occurs in quantum mechanics, where a study of the
Schrödinger equation shows that the Hydrogen atom has
no bound states for n > 3 [5]. Again, there is a finite
annihilation cross section, which is reflected by the fact
that the Hydrogen atom has no ground state, but time-
dependent states of arbitrarily negative energy. The sit-
uation in General relativity is analogous [5]. Modulo the
important caveats in the discussion section, this means
that such a world cannot contain any objects that are sta-

ble over time, and thus probably cannot contain stable
observers.

What about n < 3? It has been argued [7] that organ-
isms would face insurmountable topological problems if
n = 2: for instance, two nerves cannot cross. Another
problem, emphasized by Wheeler [8], is the well-known
fact (see e.g. [9]) that there is no gravitational force in
General Relativity with n < 3. We will not spend more
time listing problems with n < 3, but simply conjecture
that since n = 2 (let alone n = 1 and n = 0) offers vastly
less complexity than n = 3, worlds with n < 3 are just
too simple and barren to contain observers.

III. WHY IS TIME ONE-DIMENSIONAL?

In this section, we will present an argument for why a
world with the same laws of physics as ours and with an
n + m-dimensional spacetime can only contain observers
if the number of time-dimensions m = 1, regardless of
the number of space-dimensions n. Before describing
this argument, which involves hyperbolicity properties of
partial differential equations, let us make a few general
comments about the dimensionality of time.

What would reality appear like to an observer in a
manifold with more than one time-like dimension? Even
when m > 1, there is no obvious reason for why an ob-
server could not nonetheless perceive time as being one-
dimensional, thereby maintaining the pattern of having
“thoughts” in a one-dimensional succession that char-
acterizes our own reality perception. If the observer is
a localized object, it will travel along an essentially 1-
dimensional (time-like) world line through the n + m-
dimensional spacetime manifold. The standard General
Relativity notion of its proper time is perfectly well-
defined, and we would expect this to be the time that
it would measure if it had a clock and that it would sub-
jectively experience.

Needless to say, many aspects of the world would
nonetheless appear quite different. For instance, a re-
derivation of relativistic mechanics for this more general
case shows that energy now becomes an m-dimensional
vector rather than a constant, whose direction determines
in which of the many time-directions the world-line will
continue, and in the non-relativistic limit, this direction
is a constant of motion. In other words, if two non-
relativistic observers that are moving in different time di-
rections happen to meet at a point in spacetime, they will
inevitably drift apart in separate time-directions again,
unable to stay together.

Another interesting difference, which can be shown by
an elegant geometrical argument [10], is that particles
become less stable when m > 1. For a particle to be
able to decay when m = 1, it is not sufficient that there
exists a set of particles with the same quantum numbers.
It is also necessary, as is well-known, that the sum of
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their rest masses should be less than the rest mass of
the original particle, regardless of how great its kinetic
energy may be. When m > 1, this constraint vanishes
[10]. For instance,

• a proton can decay into a neutron, a positron and
a neutrino,

• an electron can decay into a neutron, an antiproton
and a neutrino, and

• a photon of sufficiently high energy can decay into
any particle and its antiparticle.

In addition to these two differences, one can concoct
seemingly strange occurrences involving “backward cau-
sation” when m > 1. Nonetheless, although such un-
familiar behavior may appear disturbing, it would seem
unwarranted to assume that it would prevent any form
of observer from existing. After all, we must avoid the
fallacy of assuming that the design of our human bod-
ies is the only one that allows self-awareness. Electrons,
protons and photons would still be stable if their kinetic
energies were low enough, so perhaps observers could still
exist in rather cold regions of a world with m > 12.

There is, however, an additional problem for observers
when m > 1, which has not been previously emphasized
even though the mathematical results on which it is based
are well-known. If an observer is to be able to make any
use of its self-awareness and information-processing abil-
ities, the laws of physics must be such that it can make
at least some predictions. Specifically, within the frame-
work of a field theory, it should by measuring various
nearby field values be able to compute field values at
some more distant space-time points (ones lying along
its future world-line being particularly useful) with non-
infinite error bars. If this type of well-posed causality
were absent, then not only would there be no reason for
observers to be self-aware, but it would appear highly un-
likely that information processing systems (such as com-
puters and brains) could exist at all.

Although this predictability requirement may sound
modest, it is in fact only met by a small class of partial
differential equations (PDEs), essentially those which are
hyperbolic. We will now discuss the classification and
causal structure of PDEs in some detail. This mathe-
matical material is well-known, and can be found in more
detail in [12]. Given an arbitrary second order linear par-
tial differential equation in Rd,





d
∑

i=1

d
∑

j=1

Aij

∂

∂xi

∂

∂xj

+

d
∑
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bi

∂

∂xi

+ c



u = 0,

2 It is, however, far from trivial to formulate a quantum field
theory with a stable vacuum state when m > 1 [11].

where the matrix A (which we without loss of generality
can take to be symmetric), the vector b and the scalar c
are given differentiable functions of the d coordinates, it
is customary to classify it depending on the signs of the
eigenvalues of A. The PDE is said to be

• elliptic in some region of Rd if they are all positive
or all negative there,

• hyperbolic if one is positive and the rest are negative
(or vice versa), and

• ultrahyperbolic in the remaining case, i.e., where at
least two eigenvalues are positive and at least two
are negative.

What does this have to do with the dimensionality of
spacetime? For the various covariant field equations of
nature that describe our world (the wave equation u;µµ =
0, the Klein-Gordon equation u;µµ +m2u = 0, etc.3), the
matrix A will clearly have the same eigenvalues as the
metric tensor. For instance, they will be hyperbolic in a
metric of signature (+−−−), corresponding to (n, m) =
(3, 1), elliptic in a metric of signature (+ + + + +), and
ultrahyperbolic in a metric of signature (+ + −−).

One of the merits of this standard classification of
PDEs is that it determines their causal structure, i.e.,
how the boundary conditions must be specified to make
the problem well-posed. Roughly speaking, the problem
is said to be well-posed if the boundary conditions de-
termine a unique solution u and if the dependence of
this solution on the boundary data (which will always
be linear) is bounded. The last requirement means that
the solution u at a given point will only change by a fi-
nite amount if the boundary data is changed by a finite
amount. Therefore, even if an ill-posed problem can be
formally solved, this solution would in practice be useless
to an observer, since it would need to measure the initial
data with infinite accuracy to be able to place finite error
bars on the solution (any measurement error would cause
the error bars on the solution to be infinite).

Elliptic equations allow well-posed boundary value

problems. On the other hand, giving “initial” data for an
elliptic PDE on a non-closed hypersurface, say a plane,
is an ill-posed problem. This means that an observer in
a world with no time dimensions (m=0) would not be
able do make any inferences at all about the situation in
other parts of space based on what it observes locally.

3 Our discussion will apply to matter fields with spin as well,
e.g. fermions and photons, since spin does not alter the causal
structure of the solutions. For instance, all four components
of an electron-positron field obeying the Dirac equation satisfy
the Klein-Gordon equation as well, and all four components of
the electromagnetic vector potential in Lorentz gauge satisfy
the wave equation.
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FIG. 3. The causality structure for hyperbolic and ul-
tra-hyperbolic equations.

Hyperbolic equations, on the other hand, allow well-
posed initial-value problems. For example, specifying ini-
tial data (u and u̇) for the Klein-Gordon equation on the
shaded disc in Figure 3 determines the solution in the vol-
umes bounded by the two cones, including the (missing)
tips. A localized observer can therefore make predictions
about its future. If the matter under consideration is of
such low temperature that it is nonrelativistic, then the
fields will essentially contain only Fourier modes with
wave numbers |k| ≪ m, which means that for all practi-
cal purposes, the solution at a point is determined by the
initial data in a “causality cone” with an opening angle
much narrower than 45◦.

In contrast, if the initial data for a hyperbolic PDE
is specified on a hypersurface that is not spacelike, the
problem becomes ill-posed. Figure 3, which is based on
[12], provides an intuitive understanding of what goes
wrong. A corollary of a remarkable theorem by Asgeirs-
son [13] is that if we specify u in the cylinder in Fig-
ure 3, then this determines u throughout the region made
up of the truncated double cones. Letting the radius
of this cylinder approach zero, we obtain the disturb-
ing conclusion that providing data in a for all practical
purposes one-dimensional region determines the solution
in a three-dimensional region. Such an apparent “free
lunch”, where the solution seems to contain more infor-
mation than the input data, is a classical symptom of
ill-posedness. The price that must be paid is specifying
the input data with infinite accuracy, which is of course
impossible given real-world measurement errors. Clearly,
generic boundary data allows no solution at all, since it is
not self-consistent. It is easy to see that the same applies
when specifying “initial” data on part of a non-spacelike
hypersurface, e.g., that given by y = 0. These proper-
ties are analogous in n+1-dimensions, and illustrate why
an observer in an n + 1-dimensional spacetime can only
make predictions in time-like directions.

Asgeirsson’s theorem applies to the ultrahyperbolic

case as well, showing that initial data on a hypersurface
containing both spacelike and timelike directions leads
to an ill-posed problem. However, since a hypersurface
by definition has a dimensionality which is one less than
that of the spacetime manifold (data on a submanifold
of lower dimensionality can never give a well-posed prob-
lem), there are no spacelike or timelike hypersurfaces in
the ultrahyperbolic case, and hence no well-posed prob-
lems. 4

Since a mere minus sign distinguishes space from time,
the remaining case (n, m) = (1, 3) is mathematically
equivalent to the case where (n, m) = (3, 1) and all par-
ticles are tachyons [14] with imaginary rest mass. Also
in this case, an observer would be unable to make any
predictions, since as described in more detail in [15], well-
posed problems require data to be specified in the non-
local region outside the lightcones.

Above we discussed only linear PDEs, although the full
system of coupled PDEs of nature is of course non-linear.
This in no way weakens our conclusions about only m = 1
giving well-posed initial value problems. When PDEs
give ill-posed problems even locally, in a small neighbor-
hood of a hypersurface (where we can generically approx-
imate the nonlinear PDEs with linear ones), it is obvious
that no nonlinear terms can make them well-posed in a
larger neighborhood.

IV. DISCUSSION

Our conclusions are graphically illustrated in Figure 1:
given the other laws of physics, it is not implausible that
only a 3+1-dimensional spacetime can contain observers
that are complex and stable enough to be able to under-
stand and predict their world to any extent at all, for the
following reasons.

• More or less than 1 time dimension: insufficient
predictability.

• More than 3 space dimensions: insufficient stabil-
ity.

• Less than 3 space dimensions: insufficient complex-
ity.

Thus although application of the so-called weak an-
thropic principle [16] does in general not appear to give

4The only remaining possibility is the rather contrived case
where data is specified on a null hypersurface. To measure
such data, an observer would need to “live on the light cone”,
i.e., travel with the speed of light, which means that it would
subjectively not perceive any time at all (its proper time
would stand still).
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very strong predictions for physical constants [17], its di-
mensionality predictions may indeed turn out to give the
narrowest probability distribution possible. Viewed in
this light, the multiple dimensionality prediction of some
superstring theories is a strength rather than a weak-
ness, since it eliminates the otherwise embarrassing dis-
crete fine-tuning problem of having to explain the “lucky
coincidence” that the compactification mechanism itself
happened to single out only a 3+1-dimensional space-
time.

Needless to say, we have not attempted to rigorously
demonstrate that observers are impossible for other di-
mensionalities. For instance, within the context of spe-
cific models, one might consider exploring the possibility
of stable structures in the case (n, m) = (4, 1) based on
short distance quantum corrections to the 1/r2 poten-
tial or on string-like (rather than point-like) particles.
We have simply argued that it is far from obvious that
any other combination than (n, m) = (3, 1) permits ob-
servers, since radical qualitative changes occur when n
or m are altered. For this reason, a theory cannot be
criticized for failing to predict a definitive spacetime di-
mensionality until the stability and predictability issues
raised here have been carefully analyzed.
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