
Seemingly Remarkable Mathematical

Coincidences Are Easy to Generate

William H. Press

The University of Texas at Austin

June 1, 2009

1 Introduction

Gelfond’s constant eπ can be expressed as the “equation”

eπ = 17 +
√

3 +
4
√

172 + log log 9 (1)

But, unsurprisingly, equation (1) is a fake: its two sides differ numerically by
about 2 × 10−14, as can readily be checked in a computer language that im-
plements arbitrary precision arithmetic, for example Mathematica.[1] Similarly
bogus, though also accurate to better than 2 × 10−14, is

π =

[

(

7 + log
7

12

)1/3

+ 1

]4

− 64 (2)

or, accurate to about 2 × 10−16,

π =

(

12

log 889

)2

+ e−4 (3)

or

1

π
=

3
√

3

10

(

5 −
√

10

13 − 6 3
√

9

)

(4)

whose error is only about 2 × 10−19, several orders of magnitude smaller than
the inherent error of most computers’ IEEE double-precision arithmetic.[2]

As far as is known, equations (1)–(4) are purely numerical coincidences.
As such they are, in some ways, less remarkable and less interesting than the
mundane

π ≈ 22/7, or π ≈ 355/113 (5)

which at least derive from a mathematical property of π, namely its contin-
ued fraction expansion. What seems remarkable about equations (1)–(4), and
similar coincidental near-equations, is their blind, stubborn accuracy.

1

How hard is it to find such coincidences? Must one try on the order of 1019

formulas before getting one as good as equation (4)? Not at all. The standard
cryptographic technique of “meet-in-the-middle attack”[3, 4] yields a computa-
tional complexity of order the square root of the inverse precision, requiring also
about this much memory. So coincidences as good as equation (4) can readily
be found in O(109) operations on an ordinary desktop machine with O(109)
memory. The rest of this note gives the details of one such implementation.

2 Meet-in-the-Middle Attack

Suppose we generate at random a large number N of well-formed symbolic
expressions and evaluate them numerically. As we will see below, it is not hard
to arrange for the values to be roughly log-uniformly distributed over about
∆ ∼ 5 e-folds, so the average density ρ of values per e-fold is

ρ = N/∆ (6)

If the values are independent and identically distributed (i.i.d.) random, then
the logarithmic difference between consecutive values ǫ is exponentially dis-
tributed with c.d.f.

P (ǫ < ǫ0) = 1 − exp(ρǫ0) ≈ ρǫ0 (7)

Thus, among N (or, strictly, N − 1) independent differences, the smallest dif-
ference should be on the order of

ǫmin ∼ 1

ρN
∼ ∆

N2
(8)

If we repeat the entire process M times and take the smallest difference found,
we should expect

ǫmin ∼ ∆

MN2
(9)

The above model makes two incorrect assumptions: First, it assumes that
the N expressions are algebraically (and not just symbolically) distinct. This
is wrong, because there are many equivalent ways of writing the same algebraic
expression, so the effective value of N is reduced. Second, the model assumes
that the generated values are i.i.d. This is wrong because expressions are com-
posed of sub-expressions that may be common to many different expressions.
There is thus a complicated structure of conditional dependency that generates
clumpiness among the values. The effective value of ρ is thus increased. Figure
1 illustrates the clumpiness of expression values by plotting histograms of the
counts of numerical values of random expressions at three different scales of
resolution. Comparable fluctuations, hugely in excess of Poisson, are seen at
the different resolutions.

As regards ǫmin, the two effects act in opposite directions. Experimentally,
they seem to be of comparable importance (within a factor 30, say), so that the
estimate of equation (9) is also good to about a factor of 30. Our experiments
have ∆ ∼ 5, N ∼ 108, M ∼ 102, predicting ǫmin ∼ 5 × 10−18. In practice, we
typically see 10−16 or 10−17. Equation (4) is apparently just unusually lucky.

2

0 20 40 60 80 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

bin number

co
un

ts
 /

m
ea

n

bin = 0.1
bin = 0.01
bin = 0.001

Figure 1: Histograms of the counts of numerical values of random expressions
on three scales. The blue histogram spans the range 16.18 to 26.18; magenta,
16.18 to 17.18; red 16.18 to 16.28. Comparable fluctuations in counts, much
larger than Poisson, are seen on all three scales.

3 Random Well-Formed Expressions

Here we discuss in more detail what we mean by a random symbolic expression.
There is a lot of arbitrariness in our choices, so this section should be seen as
an example, not a general discussion.

We consider expressions as being made from these atoms: numbers consisting
of non-zero positive integers (e.g., 1 to 13), e, and π; the binary operations +,
−, ×, and ÷; and the unary operations

√
, 3
√

, ()2, log, exp, and sin. (We

will be able to restrict to a subset of the operations if desired.) Each atom is
assigned a one-character representation, as follows:

atom 1 2 3 4 5 6 7 8 9 10 11 12 13
char 1 2 3 4 5 6 7 8 9 a b c d

e π + − × ÷ √
3
√

()2 log exp sin

e p + − ∗ / q t Q L E S

A string of characters is interpreted as reverse-Polish notation for an expression,[5]
that is, like an RPN scientific calculator with a push-down stack for intermediate
results. For example,

“7p+qdt/” =

√
7 + π
3
√

13
(10)

3

Not all strings are well-formed. A string can fail to be well-formed with
one of three exceptions: (1) A unary operator is encountered when the stack is
empty. (2) A binary operator is encountered when the stack has fewer than two
values. (3) The string ends with more than one value on the stack.

We generate strings from left to right, adding one character at a time. Ex-
ception (1) is obviated by a special rule for the first character. A convenient,
though highly non-unique, way of obviating the other two exceptions is to spec-
ify as a parameter the number nbin of binary operations that will be in the
completed string. Then, when adding a character, we choose it to be a binary
operation with probability

Pbin = max

(

0, min

(

1,
is − 1

nbin − ibin

))

(11)

where is is the current stack size and ibin is the number of binary operations
already in the string.

A complete specification of the generative model is now obtained by spec-
ifying these additional parameters: Pun, the probability of a unary operation
(versus a number); a vector of probabilities, summing to 1, for choosing among
numbers; likewise, a vector for unary operations; and a vector for binary oper-
ations. Rather than taking nbin as a fixed constant, we take it as being Poisson
distributed with mean µbin, so this parameter replaces nbin.

4 Details, Details

4.1 “Aiming”

Like Humpty-Dumpty’s assertion on the meaning of words,[6] a unary or binary
operation can mean “just what we choose it to mean”. That is to say, when-
ever we encounter an operator, we already have on the stack the values of its
operands. We can use this fact to advantage. For example, we can maintain
positivity by redefining the subtraction operator:

a − b ≡

a − b if a > b

a + b if a = b

b − a if a < b

(12)

Note that this redefinition can be substituted both numerically and symbolically

when a string is evaluated. Similarly,

log a ≡

log a if a > 1

a if a = 1

− log a if a < 1

(13)

Further redefinitions avoid excessively large or small results:

exp a ≡
{

exp a if |a| < 5

a otherwise
(14)

4

a2 ≡
{

a2 if 0.01 < a2 < 100.

a otherwise
(15)

In general, the purpose of these redefinitions is to “aim” the value of the
expression into a limited (logarithmic) range of positive values, and thus to
increase the density of values in that range. We are allowed to do this precisely
because we don’t really care what the expression is! We only care if it is close
to another, different, expression.

In practice, we obtain a roughly log-normal distribution of expression values,
with a standard deviation on the order of a factor of 10. Because memory is
a scarce resource for meet-in-the-middle, we discard (don’t store) expressions
whose values lie more than one standard deviation (logarithmicaly) from the
mean. Typically this results in keeping values between about 1 and 100.

4.2 Tautology Filtering

Most near-coincident expression values are simply algebraic tautologies, for ex-
ample,

“5L2L+E” = “45*2/”

exp(log 5 + log 2) = 4 × 5/2
(16)

Unfortunately, because of roundoff error, these are not generally exactly equal
computationally. There are two possible ways to proceed:

(1) We can reject as “probably tautological” coincidences that are close
enough to be roundoff differences only. In this case, we will be unable to find
by secondary processing (see below) coincidences that are near, or smaller than,
the machine’s roundoff precision, on the order of 10−15 for 64-bit double. A
mitigation strategy would be to do all calculations in 128-bit long double,
which hardly exists in current compilers and is very slow in current processors.

(2) We can use additional special-case information to reject tautologies. For
example, equations (1)–(4) were found by the special rule “one expression must
contain exactly one π, and the other must contain no π’s”. This is not perfect,
because a small number of expressions will contain a π in a negligibly small
sub-expression. But in practice it is good enough.

4.3 Regeneration

Memory is the scarce resource. We generate, then sort into numerical order, as
many expression values as we can fit. It would be wasteful to store the actual
strings. Since the strings are generated by calls to a known random number
generator, exactly the same string will be generated from the same random
seed. We therefore use a random generator whose initialization is fast,[7] and
re-initialize it with a different seed for each string. What we store, and later use
to regenerate the small number of interesting strings, is the seed, as an 8-byte
long long.

5

4.4 Post-Processing

As first encountered, a coincidence looks like this:

“151cLa-+1+-7L+Et*”− “1pa16-1+*+4+qq-”

≈ 1.862515913491208− 1.862515913491209 ≈ −2.38435e-016 (17)

It is easy to re-evaluate the strings symbolically instead of numerically and
output Mathematica notation:

(1*(((((1+(10-Log[12]))+1)-5)+Log[7]))(̂1/3))

- (((((Pi+(10*((6-1)+1)))+4))(̂1/2))(̂1/2)-1) (18)

In turn, we can send expressions like this, in batch, through a Mathematica

function defined as something like

Sho[expr] := {Print[FullSimplify[expr]], Print[N[expr, 20]]}
(19)

That is, we needn’t re-invent wheels as complex as the FullSimplify[] and
(arbitrary precision) N[] functions, since only a small number of candidate
expressions must be post-processed in this way. In the above case, we get

1 − (64 + π)1/4 +

(

7 − Log

[

12

7

])1/3

− 1.6982395465876682008× 10−16

(20)

which is readily seen to be a form of equation (2).

4.5 Density versus Aesthetics

In the above model, we specify the average length of expression strings through
the parameter nbin (or µbin). We typically use µbin = 9. If µbin is too small,
then the number of distinct expression values becomes too small, both because
of identical strings and tautologies. On the other hand, if it is too large, then
the resulting expressions become large and ugly – they start to look somehow
like “constructions” instead of “coincidences”. This purely psychological, not
mathematical, effect is a thread that, if pulled, can unravel the whole present
enterprise.

It is not really surprising that long strings can represent π, for example,

3 + 1/10 + 4/10/10 + 1/10/10/10+ 5/10/10/10/10+ . . . (21)

Indeed, none of our coincidences are surprising in an information theoretic sense:
they all have more symbols, drawn from a larger alphabet, than the correspond-
ing decimal representation.

The space we are searching is thus fundamentally aesthetic, not mathemat-
ical. While equations (3) and (4) are indeed about the most accurate that we

6

have turned up, the less-accurate equations (1) and (2) were selected on aes-
thetic grounds from among 100 or so candidates of comparable accuracy. The
fact that we find all of equations (1)–(4) multiple times suggests that many
closer coincidences can be found by increasing µbin, N and M . But if these are
ugly, then who will care?

References

[1] Mathematica, Wolfram Research Inc., http://www.wolfram.com

[2] “Standard for Floating-Point Arithmetic”, IEEE 754-2008.

[3] W. Diffie and M. E. Hellman, ”Exhaustive Cryptanalysis of the NBS Data
Encryption Standard”, Computer 10 (6), 1977.

[4] Wikipedia, “Meet-in-the-middle attack,” (seen May 30, 2009).

[5] Wikipedia, “Reverse Polish notation,” (seen May 30, 2009).

[6] L. Carroll, Through the Looking Glass, Chapter 6, at
http://www.gutenberg.org/files/12/12-h/12-h.htm#2HCH0006

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-

merical Recipes: The Art of Scientific Computing, 3rd ed. (New York:
Cambridge), 2007, §7.1.3 (routine Ranq1).

7

