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paper: “The Physical Interpretation of Quantum
Mechanics’’ where he introduced the concept of
negative energies and negative probabilities:

“Negative energies and probabilities should
not be considered as nonsense. They are well-
defined concepts mathematically, like a sum of
negative money. . .”, Paul Dirac

The idea of negative probabilities has later got
increased attention in physics and particular in
quantum mechanics. Another famous physicist,
Richard Feynman (1987) (also with a Noble prize
in Physics), argued that no one objects to using
negative numbers in calculations, although
“minus three apples” is no valid concept in real
life. Similarly he argued how negative probabili-
ties as well as probabilities above unity can be
very useful in probability calculations:

“Trying to think of negative probabilities
gave me a cultural shock at first, but when I
finally got easy with the concept I wrote myself
a note so I wouldn’t forget my thoughts. . . It is
usual to suppose that, since probabilities of
events must be positive, a theory which gives
negative numbers for such quantities must be
absurd.’’, Richard Feyman, 1987

Feynman discusses mainly the Bayes formu-
la for conditional probabilities

P(i) =
∑

α

P(i|α)P(α),

where 
∑

α P(α) = 1. The idea is that as long as P(i)
is positive then it is not a problem if some of the
probabilities P(i|α) or P(α) are negative or larger
than unity. This approach works well when one
cannot measure all of the conditional probabili-
ties P(i|α) or the unconditional probabilities P(α)

in an experiment. That is, the variables α can
relate to hidden states. Such an approach has
therefore been used in quantum physic to solve
problems involving hidden variables.

There has since been a multitude of papers in
theoretical physics that focuse on the use of neg-
ative probabilities. I have included a few exam-
ples in the reference list, that can also be down-
loaded from the web; Castro (2000), Cereceda
(2000), Curtright and Zachosy (2001) and
Peacock (2002). There seems to be a continuation
of interest in negative probabilities in physics:

“I have done some work recently, on mak-
ing supergravity renormalizable, by adding
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What is the probability of the expected being neither expected nor unexpected?

1 The History of Negative
Probability
In finance negative probabilities are considered
nonsense, or at best an indication of model-
breakdown. Doing some searches in the finance
literature the comments I found on negative
probabilities were all negative,1 see for example
Brennan and Schwartz (1978), Hull and White
(1990), Derman, Kani, and Chriss (1996), Chriss
(1997), Rubinstein (1998), Jorgenson and Tarabay
(2002), Hull (2002). Why is the finance society so
negative to negative probabilities? The most like-
ly answer is simply that we “all’’ were taught that
probabilities by definition must be between 0
and 1, as assumed in the Kolmogorov measure
theoretical axioms. Our negativity to negative
probabilities might be as short sighted as if we
decided to limit ourselves to consider only posi-
tive money. I am not the first one to think that
negative probabilities can be useful. Negative
probabilities where to my knowledge first intro-
duced by Paul Dirac. Dirac is probably best
known for his mathematical prediction of anti-
matter, a feat for which he was awarded the
Noble prize in 1933. In 1942 Paul Dirac wrote a
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higher derivative terms to the action. This
apparently introduces ghosts, states with nega-
tive probability. However, I have found this is an
illusion. One can never prepare a system in a
state of negative probability. But the presence
of ghosts that one can not predict with arbitrary
accuracy. If one can accept that, one can live
quite happily with ghosts.’’ Stephen Hawking

2 Negative Probabilities
in Quantitative Finance
In this section we look at a few examples of
where negative probabilities can show up in
finance. My examples are not revolutionary in
the sense that they solve problems never solved
before. I hope, however, that they will illustrate
why negative probabilities are not necessary
“bad’’, and that they might even be useful.

2.1 Negative Probabilities
in the CRR binomial tree
The well-known Cox, Ross, and Rubinstein (1979)
binomial tree (CRR tree) is often used to price a
variety of derivatives instruments, including
European and American options. The CRR binomi-
al tree can be seen as a discretization of geometric
Brownian motion dS = µSdt + σ SdZ , where S is
the asset price, µ is the drift and σ is the volatility
of the asset. In the CRR tree the asset price in any
node of the tree is given by

Suidj−i, i = 0, 1, . . . , j,

where the up and down jump size that the asset
price can take at each time step #t apart is given by

u = eσ
√

#t, d = e−σ
√

#t,

where #t = T/n is the size of each time step, and
n is the number of time steps. The layout of the
asset price (the geometry of the tree) we will call
the sample space (the set of all asset price Sij

node values). The probability measure P is the set
of the probabilities at the various nodes. The
probabilities related to each node in the CRR tree
follows from the arbitrage principle

Sebi#t = piuS + (1 − pi)dS, (1)

where pi is risk-neutral probability of the asset
price increasing at the next time step, and bi is
the cost-of-carry of the underlying asset.2 The i
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subscript indicates that we can have a different
probability and also cost-of-carry at each time
step. Solving 1 for pi we get

pi = ebi#t − d
u − d

.

The probability of going down must be 1 − pi

since the probability of going either up or down
equals unity. As mentioned by Chriss (1997) a
low volatility and relatively high cost of carry in
the CRR tree can lead to negative risk-neutral
probabilities.3 More precisely we will have nega-
tive probabilities in the CRR tree when4

σ < |bi

√
#t|.

In this context it is worth mentioning that even
if the CRR binomial tree can give negative and
higher than unity probabilities the sum of the
down and up probability will still sum to one.

2.1.1 What to do with negative
probabilities?
Assume we are using a CRR binomial tree to
value a derivative instrument, and consider the
following numerical example. The asset price is
100, the time to maturity of the derivative
instrument is 6 months, the volatility of the
underlying asset is 2%, the cost-of-carry of the
underlying asset is 12% for the first month, and
are increasing by 0.5% for every month there-
after. For simplicity we use only six time steps.
That is S = 100, T = 0.5, b1 = 0.12, σ = 0.02,
n = 6. From this we have #t = 0.5/6 = 0.833 and

u = e0.02
√

0.0833 = 1.006,

d = e−0.02
√

0.0833 = 0.9942,

Further we get a risk-neutral up probability of

p1 = e0.12×0.0833 − 0.9942
1.006 − 0.9942

= 1.3689.

and we get a down probability of

1 − p1 = 1 − 1.3689 = −0.3689

As expected, we get negative probabilities. In this
generalized version of the CRR tree we can have
different probabilities for every time steps, so we
could have probabilities outside the interval [0, 1]
for some time steps and inside for other time
steps, in numerical example all the probabilities

will be outside zero and one. When we observe
negative probabilities in a tree model we have at
least three choices

1. We can consider negative probabilities as
unacceptable, and any model yielding nega-
tive probabilities as having broken down.
The model should be trashed, or alternative-
ly we should only use the model for input
parameters that do not results in negative
probabilities.

2. Override the negative probabilities. Basically
replacing any transition probabilities that
are negative or above unity with probabili-
ties consistent with the standard axiomatic
framework. For example Derman, Kani, and
Chriss (1996) suggest this as a possible solu-
tion in their implied trinomial tree when
running into negative probabilities.

3. Look at negative probabilities as a mathemat-
ical tool to add more flexibility to the model.

From these choices I have only seen choice 1
(most common) and 2 being discussed in the
finance literature. I am not saying that choice 1
and 2 are wrong, but this should not automati-
cally make us reject choice 3.

Back to the CRR binomial tree example. In
this case what we do about the negative proba-
bilities should depend on the use of the model.
Let’s consider case 1. In this case we would sim-
ply say that for this numerical case the model is
useless. In the CRR model case we can actually
get around the whole problem of negative proba-
bilities, but let us ignore this for the moment.

In case 2 we could override the few negative
probabilities in some “smart’’ way. This will in
general make the model loose information (in
particular if calibrated to the market in some way)
and is not desirable, as also indicated by Derman,
Kani, and Chriss (1996) in use of their implied tri-
nomial tree.

Consider now case 3. The problems with the
CRR tree is in my view actually not the negative
probabilities, but the choice of sample space. The
negative probabilities simply indicate that the for-
ward price is outside the sample space. The for-
ward price is in a “hidden state’’, not covered by
the sub-optimal location of nodes in the tree. The
sub-optimal choice of sample space could certainly
be a problem when trying to value some options.
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Actual realizations of the asset price of relevance
to the option price could easily fall outside the
sample-space of the model. The strike price X can
also be outside the sample space of the tree. This
seems to be the main problem with the CRR tree,
and not the negative probabilities. We could easily
think of an example where the user of the CRR
model simply used it to compute forward prices,
taking into account a deterministic term structure
of interest rates and dividends (bi). Computing the
forward price can naturally be achived in a sim-
pler and more efficient way, but there is nothing
wrong with using a complex model to value a sim-
ple product, except possibly wasting computer
speed. Even with negative probabilities (and proba-
bilities larger than unity) the CRR tree will still
give the correct forward price. Allowing negative
probabilities still leaves the model partly intact.
The negative probabilities actually seems to add
flexibility to the model.

It is also worth refreshing our memories that
most probabilities used in quantitative finance are
so called risk-neutral probabilities, including the
binomial probabilities we just have looked at. As
every reader probably already know, risk-neutral
probabilities5 should not be confused with real prob-
abilities. Risk neutral probabilities sometimes also
called pseudo-probabilities are simply computation-
al devices constructed for a “fantasy world’’ (in this
case a risk-neutral world) to simplify our calcula-
tions. For this reason I can see nothing wrong with
at least starting to thinking about negative probabil-
ities as a mathematical tool of convenience. This
expand to outside the world of binomial trees, a
binomial model can simply be seen as a special case
of a explicit finite difference model, see for example
Heston and Zhou (2000) or James (2003). In the same
way a trinomial tree can also be shown to be equiva-
lent to the explicit finite difference method (see for
example James (2003)) when the probability of the
asset price going up pu and down pd and stay at the
same are set to6

pu = 1
6

+ (b − σ 2/2)

√

#t
12σ 2

pd = 1
6

− (b − σ 2/2)

√

#t
12σ 2

pm = 2
3

This will lead to negative up probability pu if

σ >

√

2b + 2
3#t

+ 2
√

1 + 6b#t
3#t

and negative down probability pd if

σ <

√

2b + 2
3#t

− 2
√

1 + 6b#t
3#t

For example with cost-of-cary 20% and 20 time
steps and one year to maturity, then we will get a
negative down probability if the volatility is
below 7.63%, this is far from a totally unrealistic
case. Similarly we can also get probabilities high-
er than unity7. In the same way a CRR equivalent
trinomial tree can also give negative probabili-
ties, see appendix.

If you take a close look at the Collector car-
toon story accompanying this article you will see
it is surprisingly similar to the binomial and tri-
nomial tree just described. By believing he is
talking to James, the professor has no idea that
the expected death of James is far outside his
sample space. The professor is selecting a sub-
optimal sample space, only the future, as basis
for his model. The Collector, admittedly having
more information is recognizing that the profes-
sor uses a sub-optimal sample space, but is still
able to answer the question with remarkable
accuracy, by allowing negative probabilities
(pseudo probabilities). This is very much a paral-
lel to considering a node of a tree model outside
the geometry of the tree.

3 Getting the Negative
Probabilities to Really Work
in Your Favor
In the case of the discretization of a geometric
Brownian motion through a binomial or trinomi-
al model we can admittedly avoided negative
probabilities all together. In the CRR or trinomial
tree just described this can be done simply by
respectively setting the number of time steps n
equal to or higher than

Integer
[

T
(σ/b)2

]

,

Integer
[

3bT
(

−1 + b
σ 2

+ σ 2

4b

)]

+ 1.

For very low volatility and high cost-of-carry this
will typically require a lot of time steps, and can
for this reason be very computer intensive. A bet-
ter way to avoid negative probabilities is to chose
a more optimal sample space, for example in a
binomial tree this can be done using a geometry
of the tree as suggested by Jarrow and Rudd
(1983), setting 

u = e(b−σ 2 /2)#t+σ
√

#t,

and

d = e(b−σ 2 /2)#t−σ
√

#t,

which gives equal up and down probability of

p = 0.5, 1 − p = 0.5.

Even if the CRR tree and the Jarrow-Rudd tree use
different sample space and probability measure
they are both equivalent in the limit, for many
time steps. For a binomial tree there is a almost
an unlimited amount of sample spaces to choose
from, each with their own probability measure,
but all leading to the same result in the limit.

For more complex models and stochastic
processes we will not necessary be able to avoid
negative probabilities. Does this mean that the
model has to be trashed? In the introduction to
this article I basically told you that all papers I
have seen in the finance literature are negative to
negative probabilities. This is not entirely true; in
a recent and very interesting paper by Forsyth,
Vetzal, and Zvan (2001): “Negative Coefficients in
Two Factor Option Models’’ the authors illustrate
how some finite difference/finite element models
with negative probabilities are still stable and
consistent. They moreover show how the require-
ment of positive pseudo-probabilities not only are
unnecessary but can even be detrimental.
Forsyth, Vetzal and Zvan seem to try to avoid the
term “negative probability’’, and are consistently
using the term “negative coefficients’’. What they
call negative coefficients are closely related to the
binomial and trinomial probabilities we just dis-
cussed (as also indicated by the authors). That the
authors possibly try to avoid the term negative
probability seems to be somewhat a parallel to
how many physicist treat the Wigner distribution.
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Wigner and Szilard developed a distribution func-
tion which for the first time was applied by
Wigner to calculate quantum corrections to a gas
pressure formula. Wigner original called this a
probability function. The Wigner distribution
gives apparently negative probabilities for some
quantum states. For this reason many physicists
prefer to call it the Wigner function, this even if it
has no other physical interpretation than a proba-
bility distribution. Khrennikov (1999) is giving a
detailed mathematical description of why it
should be considered a probability distribution,
and also explain why the Wigner distribution
results in negative probabilities.

Even if Forsyth, Vetzal and Zvan seems to
avoid the term negative probabilities, their paper
are in a excellent way illustrating just what I have
been looking for, a demonstration that allowing
negative probabilities really can make a differ-
ence in quantitative finance models.

The binomial, trinomial and finite difference
models we have touched upon so far were origi-
nally developed by assuming probabilities in the
interval [0, 1]. So even if negative probabilities
seems to add flexibility to some of these models
we must be careful with the interpretation of
any such negative pseudo-probabilities.

4 Hidden Variables in Finance
Feynman’s idea of applying negative probabilities
to hidden variables can possibly have some paral-
lels in finance. Expected return, and expected risk
(expected volatility, correlation etc.) are hidden
variables that can not be observed directly. Such
hidden variables in finance still play an important
role and can affect other observable variables.
Derman (1996) describe these as hidden variables
in the context to the somewhat related topic of
model risk, where he indicate that such variables
simply may be individuals’ opinion. Much of mod-
ern financial modeling deals with uncertainty for
such hidden variables, still it looks like nobody
have considered including negative probabilities
in such calculations. Inspired by Dirac, Feynman,
and Hawking could there be that negative proba-
bilities also could be of use to model hidden finan-
cial ghosts? Ultimately one would naturally like to
see research that proves that using negative proba-
bilities gives a clear advantage.

4.1 Negative Probabilities
Hidden in Waste from Model
Break Downs?

Personally I don’t know of any financial model
that at some point in time has not had a break-
down—-there’s a reason we call them “models’’.
Just as an example, any derivatives valuation
model I am aware of assume that the current
asset price is known. When valuing for example
a stock option we take the latest traded stock
price from our computer screen as input to the
model. In reality this price is not known. Every
year there are multiple incorrectly reported
prices, due to a human error, or a hardware or
software problem. One can naturally reduce the
uncertainty surrounding the current price by
double-checking several independent providers
etc. Still there are uncertainty concerning any
price, even the current one. In some sense almost
any asset in financial markets can be affected by
“hidden variables’’. For example in the interbank
Foreign Exchange markets, if you physically
trade an option at a price over the phone you can
not with 100% certainty know that you actually
traded at that price. It is not uncommon that the
counterpart calls you up hours later to cancel or
adjust the price of a deal, because they claim
they priced it using wrong input parameters,
human error or whatever. Few or no models in
quantitative finance take such situations into
account.

Others examples of model break downs we have
when asset prices takes values completely outside
our expected sample space. I remember some years
back in time, when the electricity price in a local
area of Norway actually went negative for a few
hours during the night. The electricity was pro-
duced by hydropower using large turbines. When
there is an over supply of electricity on the grid one
can naturally shut down some of the turbines,
however this can be a costly process. In this case,
instead of shutting down the turbine the power
producer was willing to pay someone to use the
electricity. The Scandinavian electricity markets
are probably the most well functioning electricity
markets in the world, including futures, forwards
and options. We can easily think about a derivative
model assuming positive prices breaking down in

such a scenario. Finance Professors’ assumptions of
“no free lunch’’ is probably only a reality at the uni-
versity campuses.

My main point is that there are almost unlim-
ited examples of cases where the real uncertainty
is outside the sample space of our quantitative
models. A whole new field of finance has grown
out from model errors, going under the name
“model risk’’. Can there be that negative probabili-
ties are hidden in “data waste’’ from such model
breakdowns? There is obvious many ways we can
improve our models and still stay inside the stan-
dard assumption of probabilities between zero
and one, but could it be that building our models
from the ground up to allow negative probabilities
in the first place could help us make the models
more robust, closer to reality?

5 The Future of Negative
Probabilities in Quantitative
Finance
The main reason that negative probabilities have
not found much use in quantitative finance yet is
probably that the researchers that have developed
these models have been doing this under the
belief that any probability must lie between zero
and one, limiting their view to Kolmogorov prob-
abilities. So far, I have just done a feeble attempt
to trace the footsteps of Dirac and Feynman. That
is we have considered negative probabilities as
just formal quantities that can be useful in cer-
tain calculations. Most people in quantitative
finance are interested in finance and not the
foundation of probability theory and have proba-
bly for this reason ignored that the Komologrov
model is not necessary the complete picture of
stochastic reality. To take the next step we need to
use a rigid mathematical foundation for a proba-
bility theory that also allows for negative proba-
bilities. Andrei Khrennikov has developed such a
theory, he has found the root of negative proba-
bilities in the very foundation of probability theo-
ry: ensemble and frequency. With background in
his theory described in mathematical detail in his
brilliant book: “Interpretations of Probability”
Khrennikov (1999), see also Khrennikov (1997), it
is reason to believe that negative probabilities
applied to finance could take it’s next step? The
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Kolmogorov probability theory that is the basis of
all mathematical finance today can be seen as a
limited case of a more general probability theory
developed by a handful of scientists standing on
the shoulder of giants like Dirac and Feynman.
The probability that the future of quantitative
finance will contain negative probabilities is pos-
sibly negative, but that does not necessary exclude
negative probabilities.

If you eliminate the impossible, whatever
remains, however improbable, must be the
truth. Sherlock Holmes

6 Appendix: Negative probabilities
in CRR equivalent trinomial tree
Trinomial trees introduced by Boyle (1986), are
similar to binomial trees and are also very popu-
lar in valuation of derivative securities. One possi-
bility is to build a trinomial tree with CRR equiva-
lent parameters, where the asset price at each
node can go up, stay at the same level, or go down.
In that case, the up-and-down jump sizes are:

u = eσ
√

2#t, d = e−σ
√

2#t,

and the probability of going up and down
respectively are:

pu =
(

eb#t/2 − e−σ
√

#t/2

eσ
√

#t/2 − e−σ
√

#t/2

)2

pd =
(

eσ
√

#t/2 − eb#t/2

eσ
√

#t/2 − e−σ
√

#t/2

)2

.

The probabilities must sum to unity. Thus the prob-
ability of staying at the same asset price level is

pm = 1 − pu − pd.

When the volatility σ is very low and the cost-of-
carry is very high pu and pd can become larger
than one and then naturally pm will become neg-
ative. More precisely we will get a negative proba-
bility pm < 0 when

σ <

√

b2#t
2

.

From this we can also find that we need to set the
number of time steps to n ≥ Integer

[

b2 T
2σ 2

]

+ 1 to
avoid negative probabilities. Alternatively we
could avoid negative probabilities by choosing a
more optimal sample space.

1. At least in the sense that they urge one to avoid nega-
tive probabilities.
2. For stocks (b = r), stocks and stock indexes paying a
continuous dividend yield q (b = r − q), futures (b = 0),
and currency options with foreign interest rate rf
(b = r − rf ).
3. Negative risk-neutral probabilities will also lead to nega-
tive local variance in the tree, the variance at any time step

in the CRR tree is given by σ 2
i = 1

#t
p(1 − p)(ln(u2 ))2 .

Negative variance seems absurd, there is several papers
discussing negative volatility, see Peskir and Shiryaev
(2001), Haug (2002) and Aase (2004).
4. This is also described by Hull (2002) page 407, as well as
in the accompanying solution manual page 118.
5. Risk-neutral probabilities are simply real world probabili-
ties that have been adjusted for risk. It is therefore not
necessary to adjust for risk also in the discount factor for
cash-flows. This makes it valid to compute market prices as
simple expectations of cash flows, with the risk adjusted
probabilities, discounted at the riskless interest rate—
hence the common name “risk-neutral’’ probabilities,
which is somewhat of a misnomer.
6. Hull (2002) also shows the relationship between trino-
mial trees and the explicit finite difference method, but
using another set of probability measure, however as he
points out also with his choice of probability measure one
can get negative probabilities for certain input parameters.
7.We will get a up probability pu higher than unity if

σ <

√

2b + 50

3#t
− 10

√
25 + 6b#t

3#t
,

and down probability of higher than unity if

σ >

√

2b + 50

3#t
+ 10

√
25 + 6b#t

3#t
.
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