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2.1 Gödel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Infinite Combinatorics . . . . . . . . . . . . . . . . . . . 18
2.3 Definability . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Model-Theoretic Techniques . . . . . . . . . . . . . . . . 23

3 The Advent of Forcing . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 Cohen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Method of Forcing . . . . . . . . . . . . . . . . . . . . . . 30
3.3 0#, L[U ], and L[U ] . . . . . . . . . . . . . . . . . . . . . 35
3.4 Constructibility . . . . . . . . . . . . . . . . . . . . . . . 38

4 Strong Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1 Large Large Cardinals . . . . . . . . . . . . . . . . . . . 42
4.2 Determinacy . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Silver’s Theorem and Covering . . . . . . . . . . . . . . . 49
4.4 Forcing Consistency Results . . . . . . . . . . . . . . . . 53

5 New Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Into the 1980s . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Consistency of Determinacy . . . . . . . . . . . . . . . . 62
5.3 Later Developments . . . . . . . . . . . . . . . . . . . . . 65

6 Summaries of the Handbook Chapters . . . . . . . . . . . . . . . 69

1



2 CONTENTS



0. Introduction

Akihiro Kanamori

Set theory has entered its prime as an advanced and autonomous research
field of mathematics with broad foundational significance, and this Handbook
with its expanse and variety amply attests to the fecundity and sophistication
of the subject. Indeed, in set theory’s further reaches one sees tremendous
progress both in its continuing development of its historical heritage, the
investigation of the transfinite numbers and of definable sets of reals, as well
as its analysis of strong propositions and consistency strength in terms of
large cardinal hypotheses and inner models.

This introduction provides a historical and organizational frame for both
modern set theory and this Handbook, the chapter summaries at the end be-
ing a final elaboration. To the purpose of drawing in the serious, mathemati-
cally experienced reader and providing context for the prospective researcher,
we initially recapitulate the consequential historical developments leading to
modern set theory as a field of mathematics. In the process we affirm ba-
sic concepts and terminology, chart out the motivating issues and driving
initiatives, and describe the salient features of the field’s internal practices.
As the narrative proceeds, there will be a natural inversion: Less and less
will be said about more and more as one progresses from basic concepts to
elaborate structures, from seminal proofs to complex argumentation, from
individual moves to collective enterprise. We try to put matters in a succinct
yet illuminating manner, but be that as it may, according to one’s experience
or interest one can skim the all too familiar or too obscure. To the histo-
rian this account would not properly be history—it is, rather, a deliberate
arrangement, in significant part to lay the ground for the coming chapters.
To the seasoned set theorist there may be issues of under-emphasis or over-
emphasis, of omissions or commissions. In any case, we take refuge in a wise
aphorism: If it’s worth doing, it’s worth doing badly.
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4 0. Introduction

1. Beginnings

1.1. Cantor

Set theory was born on that day in December 1873 when Georg Cantor (1845-
1918) established that the continuum is not countable—there is no one-to-one
correspondence between the real numbers and the natural numbers 0, 1, 2, . . ..
Given a (countable) sequence of reals, Cantor defined nested intervals so that
any real in their intersection will not be in the sequence. In the course of
his earlier investigations of trigonometric series Cantor had developed a def-
inition of the reals and had begun to entertain infinite totalities of reals for
their own sake. Now with his uncountability result Cantor embarked on a
full-fledged investigation that would initiate an expansion of the very con-
cept of number. Articulating cardinality as based on bijection (one-to-one
correspondence) Cantor soon established positive results about the existence
of bijections between sets of reals, subsets of the plane, and the like. By
1878 his investigations had led him to assert that there are only two infinite
cardinalities embedded in the continuum: Every infinite set of reals is either
countable or in bijective correspondence with all the reals. This was the Con-
tinuum Hypothesis (CH) in its nascent context, and the continuum problem,
to resolve this hypothesis, would become a major motivation for Cantor’s
large-scale investigations of infinite numbers and sets.

In his magisterial Grundlagen of 1883 Cantor developed the transfinite
numbers and the key concept of well-ordering, in large part to take a new,
structured approach to infinite cardinality. The transfinite numbers follow
the natural numbers 0, 1, 2, . . . and have come to be depicted in his later
notation in terms of natural extensions of arithmetical operations:

ω, ω + 1, ω + 2, . . . ω + ω(= ω·2),

. . . ω·3, . . . ω·ω(= ω2), . . . ω3, . . . ωω, . . . ωωω

, . . .

A well-ordering on a set is a linear ordering of it according to which every
non-empty subset has a least element. Well-orderings were to carry the sense
of sequential counting, and the transfinite numbers served as standards for
gauging well-orderings. Cantor developed cardinality by grouping his transfi-
nite numbers into successive number classes, two numbers being in the same
class if there is a bijection between them. Cantor then propounded a basic
principle: “It is always possible to bring any well-defined set into the form of
a well-ordered set.” Sets are to be well-ordered, and they and their cardinali-
ties are to be gauged via the transfinite numbers of his structured conception
of the infinite.

The transfinite numbers provided the framework for Cantor’s two ap-
proaches to the continuum problem, one through cardinality and the other
through definable sets of reals, these each to initiate vast research programs.
As for the first, Cantor in the Grundlagen established results that reduced
the continuum problem to showing that the continuum and the countable
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transfinite numbers have a bijection between them. However, despite sev-
eral announcements Cantor could never develop a workable correlation, an
emerging problem being that he could not define a well-ordering of the reals.

As for the approach through definable sets of reals, Cantor formulated
the key concept of a perfect set of reals (non-empty, closed, and containing
no isolated points), observed that perfect sets of reals are in bijective cor-
respondence with the continuum, and showed that every closed set of reals
is either countable or else have a perfect subset. Thus, Cantor showed that
“CH holds for closed sets”. The perfect set property, being either countable
or else having a perfect subset, would become a focal property as more and
more definable sets of reals came under purview.

Almost two decades after his initial 1873 result, Cantor in 1891 subsumed
it through his celebrated diagonal argument. In logical terms this argument
turns on the use of the validity ¬∃y∀x(Pxx ←→ ¬Pyx) for binary predicates
P parametrizing unary predicates and became, of course, fundamental to the
development of mathematical logic. Cantor stated his new, general result in
terms of functions, ushering in totalities of arbitrary functions into mathemat-
ics, but his result is cast today in terms of the power set P (x) = {y | y ⊆ x}
of a set x: For any set x, P (x) has a larger cardinality than x. Cantor had
been extending his notion of set to a level of abstraction beyond sets of reals
and the like; this new result showed for the first time that there is a set of a
larger cardinality than that of the continuum.

Cantor’s Beiträge of 1895 and 1897 presented his mature theory of the
transfinite, incorporating his concepts of ordinal number and cardinal num-
ber The former are the transfinite numbers now reconstrued as the “order-
types” of well-orderings. As for the latter, Cantor defined the addition, mul-
tiplication, and exponentiation of cardinal numbers primordially in terms of
set-theoretic operations and functions. Salient was the incorporation of “all”
possibilities in the definition of exponentiation: If a is the cardinal number
of A and b is the cardinal number of B then a

b is the cardinal number of the
totality, nowadays denoted BA, of all functions from B into A. As befits the
introduction of new numbers Cantor introduced a new notation, one using
the Hebrew letter aleph, ℵ. ℵ0 is to be the cardinal number of the natural
numbers and the successive alephs

ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . .

indexed by the ordinal numbers are now to be the cardinal numbers of the
successive number classes from the Grundlagen and thus to exhaust all the
infinite cardinal numbers. Cantor pointed out that the exponentiated 2ℵ0

is the cardinal number of the continuum, so that CH could now have been
stated as

2ℵ0 = ℵ1 .

However, with CH unresolved Cantor did not even mention the hypothesis
in the Grundlagen, only in correspondence. Every well-ordered set has an
aleph as its cardinal number, but where is 2ℵ0 in the aleph sequence?
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Cantor’s great achievement, accomplished through almost three decades
of prodigious effort, was to have brought into being the new subject of set
theory as bolstered by the mathematical objectification of the actual infinite
and moreover to have articulated a fundamental problem, the continuum
problem. Hilbert made this the very first of his famous problems for the 20th
Century, and he drew out Cantor’s difficulty by suggesting the desirability of
“actually giving” a well-ordering of the real numbers.

1.2. Zermelo

Ernst Zermelo (1871-1953), already estimable as an applied mathematician,
turned to set theory at Göttingen under the influence of Hilbert. Zermelo
analyzed Cantor’s well-ordering principle by reducing it to the Axiom of
Choice (AC), the abstract existence assertion that every set x has a choice
function, i.e. a function f with domain x such that for every non-empty y ∈ x,
f(y) ∈ y. Zermelo’s 1904 proof of the Well-Ordering Theorem, that with AC
every set can be well-ordered, would anticipate the argument two decades
later for transfinite recursion:

With x a set to be well-ordered, let f be a choice function on the power
set P (x). Call y ⊆ x an f -set if there is a well-ordering R of y such that for
any a ∈ y, a = f({b ∈ x | b does not R-precede a}). The well-orderings of
f -sets are thus determined by f , and f -sets cohere. It follows that the union
of f -sets is again an f -set and must in fact be x itself.

Zermelo’s argument provoked open controversy because of its appeal to
AC, and the subsequent tilting toward the acceptance of AC amounted to
a conceptual shift in mathematics toward arbitrary functions and abstract
existence principles. Responding to his critics Zermelo in 1908 published a
second proof of the Well-Ordering Theorem and then the first full-fledged ax-
iomatization of set theory, one similar in approach to Hilbert’s axiomatization
of geometry and incorporating set-theoretic ideas of Richard Dedekind. This
axiomatization duly avoided the emerging “paradoxes” like Russell’s Para-
dox, which Zermelo had come to independently, and served to buttress the
Well-Ordering Theorem by making explicit its underlying set-existence as-
sumptions. Zermelo’s axioms, now formalized, constitute the familiar theory
Z, Zermelo set theory :

Extensionality (sets are equal if they contain the same members), Empty
Set (there is a set having no members), Pairs (for any sets x and y there is
a set {x, y} consisting exactly of x and y), Union (for any set x there is a
set

⋃
x consisting exactly of those sets that are members of some member

of x), Power Set (for any set x there is a set P (x) consisting exactly of the
subsets of x), Choice (for any set x consisting of non-empty, pairwise disjoint
sets, there is a set c such that every member of x has exactly one member
in c), Infinity (there is a certain, specified infinite set); and Separation (for
any set x and “definite” property P , there is a set consisting exactly of those
members of x having the property P ).
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Extensionality, Empty Set, and Pairs lay the basis for sets. Infinity and
Power Set ensure sufficiently rich settings for set-theoretic constructions.
Power Set legitimizes “all” for subsets of a given set, and Separation legit-
imizes “all” for elements of a given set satisfying a property. Finally, Union
and Choice (formulated reductively in terms of the existence of a “transver-
sal” set meeting each of a family of sets in one member) complete the encasing
of the Well-Ordering Theorem.

Zermelo’s axiomatization sought to clarify vague subject matter, and like
strangers in a strange land, stalwarts developed a familiarity with sets guided
hand-in-hand by the axiomatic framework. Zermelo’s own papers, with work
of Dedekind as an antecedent, pioneered the reduction of mathematical con-
cepts and arguments to set-theoretic concepts and arguments from axioms.
Zermelo’s analysis moreover served to draw out what would come to be gen-
erally regarded as set-theoretic and combinatorial out of the presumptively
logical, with Infinity and Power Set salient and the process being strategi-
cally advanced by the segregation of the notion of property to the Separation
axioms.

Taken together, Zermelo’s work in the first decade of the 20th Century
initiated a major transmutation of the notion of set after Cantor. With AC
Zermelo shifted the notion away from Cantor’s inherently well-ordered sets,
and with his axiomatization Zermelo ushered in a new abstract, prescriptive
view of sets as structured solely by membership and governed and generated
by axioms. Through his set-theoretic reductionism Zermelo made evident
how his set theory is adequate as a basis for mathematics.

1.3. First Developments

During this period Cantor’s two main legacies, the extension of number into
the transfinite and the investigation of definable sets of reals, became fully
incorporated into mathematics in direct initiatives. The axiomatic tradition
would be complemented by another, one that would draw its life more directly
from the mathematics.

The French analysts Emile Borel, René Baire, and Henri Lebesgue took
on the investigation of definable sets of reals in what would be a typically
“constructive” approach. Cantor had established the perfect set property for
closed sets and formulated the concept of content for a set of reals, but he
did not pursue these matters. With these as antecedents the French work
would lay the basis for measure theory as well as descriptive set theory, the
definability theory of the continuum.

Borel, already in 1898, developed a theory of measure for sets of reals; the
formulation was axiomatic, and at this early stage bold and imaginative. The
sets measurable according to his measure are the now well-known Borel sets.
Starting with the open intervals (a, b) of reals assigned measure b − a, the
Borel sets result when closing off under complements and countable unions,
measures assigned in a corresponding manner.
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Baire in his 1899 thesis classified those real functions obtainable by start-
ing with the continuous functions and closing off under pointwise limits—the
Baire functions—into classes indexed by the countable ordinal numbers, pro-
viding the first transfinite hierarchy after Cantor. Baire’s thesis also intro-
duced the now basic concept of category. A set of reals is nowhere dense iff
its closure under limits includes no open set, and a set of reals is meager (or
of first category) iff it is a countable union of nowhere dense sets—otherwise,
it is of second category. Generalizing Cantor’s 1873 argument, Baire estab-
lished the Baire Category Theorem: Every non-empty open set of reals is of
second category. His work also suggested a basic property: A set of reals A
has the Baire property iff there is an open set O such that the symmetric
difference (A−O)∪ (O−A) is meager. Straightforward arguments show that
every Borel set has the Baire property.

Lebesgue’s 1902 thesis is fundamental for modern integration theory as the
source of his concept of measurability. Lebesgue’s concept of measurable set
subsumed the Borel sets, and his analytic definition of measurable function
subsumed the Baire functions. In simple terms, any arbitrary subset of a
Borel measure zero set is a Lebesgue measure zero, or null, set, and a set is
Lebesgue measurable if it is the union of a Borel set and a null set, in which
case the measure assigned is that of the Borel set. It is this “completion”
of Borel measure through the introduction of arbitrary subsets which gives
Lebesgue measure its complexity and applicability and draws in wider issues
of constructivity and set theory. Lebesgue’s subsequent 1905 paper was the
seminal paper of descriptive set theory: He correlated the Borel sets with
the Baire functions, thereby providing a transfinite hierarchy for the Borel
sets, and then applied Cantor’s diagonalization argument to show both that
this hierarchy is proper (new sets appear at each level) and that there is a
Lebesgue measurable set which is not Borel.

As descriptive set theory was to develop, a major concern became the
extent of the regularity properties, those indicative of well-behaved sets of
reals, of which prominent examples were Lebesgue measurability, having the
Baire property, and having the perfect set property. Significantly, the context
was delimited by early explicit uses of AC in the role of providing a well-
ordering of the reals: In 1905 Giuseppe Vitali established that there is a non-
Lebesgue measurable set, and in 1908 Felix Bernstein established that there
is a set without the perfect set property. Thus, Cantor’s early contention
that the reals are well-orderable precluded the universality of his own perfect
set property, and it would be that his new, enumerative approach to the
continuum would steadily provide focal examples and counterexamples.

The other, more primal Cantorian legacy, the extension of number into
the transfinite, was considerably advanced by Felix Hausdorff, whose work
was first to suggest the rich possibilities for a mathematical investigation
of the uncountable. A mathematician par excellence, he took that sort of
mathematical approach to set theory and extensional, set-theoretic approach
to mathematics that would come to dominate in the years to come. In a
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1908 paper, Hausdorff provided an elegant analysis of scattered linear orders
(those having no dense sub-ordering) in a transfinite hierarchy. He first stated
the Generalized Continuum Hypothesis (GCH)

2ℵα = ℵα+1 for every α .

He emphasized cofinality (the cofinality cf(κ) of a cardinal number κ is the
least cardinal number λ such that a set of cardinality κ is a union of λ
sets each of cardinality less than κ) and the distinction between singular
(cf(κ) < κ) and regular (cf(κ) = κ) cardinals. And for the first time broached
a “large cardinal” concept, a regular limit cardinal > ℵ0. Hausdorff’s work
around this time on sets of real functions ordered under eventual domination
and having no uncountable “gaps” led to the first plausible mathematical
proposition that entailed the denial of CH.

Hausdorff’s 1914 text, Grundzüge der Mengenlehre, broke the ground for
a generation of mathematicians in both set theory and topology. Early on,
he defined an ordered pair of sets in terms of (unordered) pairs, formulated
functions in terms of ordered pairs, and ordering relations as collections of
ordered pairs. He in effect capped efforts of logicians by making these moves
in mathematics, completing the set-theoretic reduction of relations and func-
tions. He then presented Cantor’s and Zermelo’s work systematically, and
of particular interest, he used a well-ordering of the reals to provide what
is now known as Hausdorff’s Paradox. The source of the later and better
known Banach-Tarski Paradox, Hausdorff’s Paradox provided an implausi-
ble decomposition of the sphere and was the first, and a dramatic, synthesis
of classical mathematics and the new Zermelian abstract view.

A decade after Lebesgue’s seminal 1905 paper, descriptive set theory came
into being as a distinct discipline through the efforts of the Russian math-
ematician Nikolai Luzin. He had become acquainted with the work of the
French analysts while in Paris as a student, and in Moscow he began a for-
mative seminar, a major topic of which was the “descriptive theory of func-
tions”. The young Pole Wac law Sierpiński was an early participant while he
was interned in Moscow in 1915, and undoubtedly this not only kindled the
decade-long collaboration between Luzin and Sierpiński but also encouraged
the latter’s involvement in the development of a Polish school of mathematics
and its interest in descriptive set theory. In an early success, Luzin’s student
Pavel Aleksandrov (and independently, Hausdorff) established the ground-
breaking result that the Borel sets have the perfect set property, so that “CH
holds for the Borel sets”.

In the work that really began descriptive set theory, another student of
Luzin’s, Mikhail Suslin, investigated the analytic sets after finding a mistake
in Lebesgue’s paper. In a brief 1917 note Suslin formulated these sets in terms
of an explicit operationA drawn from Aleksandrov’s work and announced two
fundamental results: a set B of reals is Borel iff both B and its complement
R−B are analytic; and there is an analytic set which is not Borel. This was to
be his sole publication, for he succumbed to typhus in a Moscow epidemic in
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1919 at the age of 25. In an accompanying note Luzin announced that every
analytic set is Lebesgue measurable and has the perfect set property, the latter
result attributed to Suslin. Luzin and Sierpiński in joint papers soon provided
proofs, in work that shifted the emphasis to the co-analytic sets, complements
of analytic sets, and provided for them a basic tree representation based on
well-foundedness (having no infinite branches) from which the main results
of the period flowed.

After this first wave in descriptive set theory had crested, Luzin and
Sierpiński in 1925 extended the domain of study to the projective sets . For
Y ⊆ Rk+1, the projection of Y is pY = {〈x1, ..., xk〉 | ∃y(〈x1, ..., xk, y〉 ∈ Y )}.
Suslin had essentially noted that a set of reals is analytic iff it is the pro-
jection of a Borel subset of R2. Luzin and Sierpiński took the geometric
operation of projection to be basic and defined the projective sets as those
sets obtainable from the Borel sets by the iterated applications of projection
and complementation. The corresponding hierarchy of projective subsets of
Rk is defined, in modern notation, as follows: For A ⊆ Rk,

A is Σ1
1 iff A = pY for some Borel set Y ⊆ Rk+1 ,

A is analytic as for k = 1, and for n > 0,

A is Π1
n iff Rk −A is Σ1

n ,

A is Σ1
n+1 iff A = pY for some Π1

n set Y ⊆ Rk+1, and

A is ∆1
n iff A is both Σ1

n and Π1
n .

(Σ1
n is also written Σ∼

1
n; Π1

n is also written Π∼
1
n; and ∆1

n is also written ∆∼
1
n.

One can formulate these concepts with continuous images instead of projec-
tions, e.g. A is Σ1

n+1 iff A is the continuous image of some Π1
n set Y ⊆ R. If

the basics of continuous functions are in hand, this obviates the need to have
different spaces.)

Luzin and Sierpiński recast Lebesgue’s use of the Cantor diagonal argu-
ment to show that the projective hierarchy is proper, and soon its basic
properties were established. However, this investigation encountered obsta-
cles from the beginning. Whether the Π1

1 subsets of R, the co-analytic sets
at the bottom of the hierarchy, have the perfect set property and whether the
Σ1

2 sets are Lebesgue measurable remained unknown. Besides the regularity
properties, the properties of separation, reduction, and especially uniformiza-
tion relating sets to others were studied, but there were accomplishments only
at the first projective level. The one eventual success and a culminating re-
sult of the early period was the Japanese mathematician Motokiti Kondô’s
1937 result, the Π1

1 Uniformization Theorem: Every Π1
1 relation can be uni-

formized by a Π1
1 function. This impasse with respect to the regularity prop-

erties would be clarified, surprisingly, by penetrating work of Gödel involving
metamathematical methods.

In modern set theory, what has come to be taken for the “reals” is actually
Baire space, the set of functions from the natural numbers into the natural
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numbers (with the product topology). Baire space, the “fundamental do-
main” of a 1930 Luzin monograph, is homeomorphic to the irrational reals
and so equivalent for all purposes having to do measure, category, and per-
fect sets. Already by then it had become evident that a set-theoretic study of
the continuum is best cast in terms of Baire space, with geometric intuitions
being augmented by combinatorial ones.

During this period AC and CH were explored by the new Polish school,
most notably by Sierpiński, Alfred Tarski, and Kazimierz Kuratowski, no
longer as underlying axiom and primordial hypothesis but as part of ongoing
mathematics. Sierpiński’s own earliest publications, culminating in a 1918
survey, not only dealt with specific constructions but also showed how deeply
embedded AC was in the informal development of cardinality, measure, and
the Borel hierarchy. Even more than AC, Sierpiński investigated CH, and
summed up his researches in a 1934 monograph. It became evident how
having not only a well-ordering of the reals but one as given by CH whose
initial segments are countable led to striking, often initially counter-intuitive,
examples in analysis and topology.

1.4. Replacement and Foundation

In the 1920s, fresh initiatives in axiomatics structured the loose Zermelian
framework with new features and corresponding axioms, the most consequen-
tial moves made by John von Neumann (1903-1957) in his doctoral work, with
anticipations by Dmitry Mirimanoff in an informal setting. Von Neumann
effected a Counter-Reformation of sorts that led to the incorporation of a
new axiom, the Axiom of Replacement: For any set x and property P (v, w)
functional on x (i.e. for any a ∈ x there is exactly one b such that P (a, b)),
{b | P (a, b) for some a ∈ x} is a set. The transfinite numbers had been cen-
tral for Cantor but peripheral to Zermelo; von Neumann reconstrued them
as bona fide sets, the ordinals, and established their efficacy by formaliz-
ing transfinite recursion, the method for defining sets in terms of previously
defined sets applied with transfinite indexing.

Ordinals manifest the basic idea of taking precedence in a well-ordering
simply to be membership. A set x is transitive iff

⋃
x ⊆ x, so that x is

“closed” under membership, and x is an ordinal iff x is transitive and well-
ordered by ∈. Von Neumann, as had Mirimanoff before him, established the
key instrumental property of Cantor’s ordinal numbers for ordinals: Every
well-ordered set is order-isomorphic to exactly one ordinal with membership.
Von Neumann took the further step of ascribing to the ordinals the role of
Cantor’s ordinal numbers. To establish the basic ordinal arithmetic results
that affirm this role, von Neumann saw the need to establish the Transfi-
nite Recursion Theorem, the theorem that validates definitions by transfinite
recursion. The proof was anticipated by the Zermelo 1904 proof, but Re-
placement was necessary even for the very formulation, let alone the proof,
of the theorem. Abraham Fraenkel and Thoralf Skolem had independently
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proposed Replacement to ensure that a specific collection resulting from a
simple recursion be a set, but it was von Neumann’s formal incorporation
of transfinite recursion as method which brought Replacement into set the-
ory. With the ordinals in place von Neumann completed the restoration
of the Cantorian transfinite by defining the cardinals as the initial ordinals,
i.e. those ordinals not in bijective correspondence with any of its predecessors.
The infinite initial ordinals are now denoted

ω = ω0, ω1, ω2, . . . , ωα, . . . ,

so that ω is to be the set of natural numbers in the ordinal construal. It
would henceforth be that we take

ωα = ℵα

conflating extension with intension, with the left being a von Neumann or-
dinal and the right being the Cantorian cardinal concept. Every infinite set
x, with AC, is well-orderable and hence in bijective correspondence with a
unique initial ordinal ωα, and the cardinality of x is |x| = ℵα. It has become
customary to use the lower case Greek letters to denote ordinals; α < β to
denote α ∈ β construed as ordering; On to denote the ordinals; and the mid-
dle letters κ, λ, µ, . . . to denote the initial ordinals in their role as the infinite
cardinals, with κ+ denoting the cardinal successor of κ.

Von Neumann provided a new axiomatization of set theory, one that first
incorporated what we now call proper classes. A class is the totality of all
sets that satisfy a specified property, so that membership in the class amounts
to satisfying the property, and von Neumann axiomatized the ways to have
these properties. Only sets can be members, and so the recourse to possi-
bly proper classes, classes not represented by sets, avoids the contradictions
arising from formalizing the known paradoxes. Actually, von Neumann took
functions to be primitive in an involved framework, and Paul Bernays in
1930 re-constituted the von Neumann axiomatization with sets and classes
as primitive. Classes would not remain a formalized component of modern
set theory, but the informal use of classes as objectifications of properties
would become increasingly liberal, particularly to convey large-scale issues in
set theory.

Von Neumann (and before him Mirimanoff, Fraenkel, and Skolem) also
considered the salutary effects of restricting the universe of sets to the well-
founded sets. The well-founded sets are the sets in the class

⋃
α Vα, where

the “ranks” Vα are defined by transfinite recursion:

V0 = ∅; Vα+1 = P (Vα); and Vδ =
⋃

α<δVα for limit ordinals δ .

Von Neumann entertained the Axiom of Foundation: Every nonempty set x
has an ∈-minimal element, i.e. a y ∈ x such that x ∩ y is empty. (With AC
this is equivalent to having no infinite ∈-descending sequences.) This axiom
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amounts to the assertion that the cumulative hierarchy exhausts the universe
V of sets:

V =
⋃

αVα .

In modern terms, the ascribed well-foundedness of ∈ leads to a ranking func-
tion ρ : V → On defined recursively by ρ(x) =

⋃
{ρ(y) + 1 | y ∈ x}, so that

Vα = {x | ρ(x) < α}, and one can establish results for all sets by induction
on rank.

Zermelo in a 1930 paper offered his final axiomatization of set theory as
well as a striking, synthetic view of a procession of models that would have
a modern resonance. Proceeding in what we would now call a second-order
context, Zermelo amended his 1908 axiomatization Z by adjoining both Re-
placement and Foundation while leaving out Infinity and AC, the latter being
regarded as part of the underlying logic. The now standard axiomatization of
set theory ZFC, Zermelo-Fraenkel with Choice,

is recognizable if we inject Infinity and AC, the main difference being that

ZFC is a first-order theory (as discussed below). “Fraenkel” acknowledges
the early suggestion by Fraenkel to adjoin Replacement; and the Axiom of
Choice is explicitly mentioned.

ZF, Zermelo-Fraenkel,

is ZFC without AC and is a base theory for the investigation of weak Choice-
type propositions as well as propositions that contradict AC.

Zermelo herewith completed his transmutation of the notion of set, his
abstract view stabilized by further axioms that structured the universe of
sets. Replacement and Foundation focused the notion of set, with the first
providing the means for transfinite recursion and induction and the second
making possible the application of those means to get results about all sets,
they appearing in the cumulative hierarchy. Foundation is the one axiom
unnecessary for the recasting of mathematics in set-theoretic terms, but the
axiom is also the salient feature that distinguishes investigations specific to set
theory as a field of mathematics. With Replacement and Foundation in place
Zermelo was able to provide natural models of his axioms, each a Vκ where κ is
an inaccessible cardinal (regular and strong limit: if λ < κ, then 2λ < κ), and
to establish algebraic isomorphism, initial segment, and embedding results for
his models. Finally, Zermelo posited an endless procession of such models,
each a set in the next, as natural extensions of their cumulative hierarchies.

Inaccessible cardinals are at the modest beginnings of the theory of large
cardinals, now a mainstream of modern set theory devoted to the investi-
gation of strong hypotheses and consistency strength. The journal volume
containing Zermelo’s paper also contained Stanis law Ulam’s seminal paper
on measurable cardinals, which would become focal among large cardinals.
In modern terminology, a filter over a set Z is a family of subsets of Z closed
under the taking of supersets and of intersections. (Usually excluded from
consideration as trivial are {X ⊆ Z | A ⊆ X} for some set A ⊆ Z, the
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principal filters.) An ultrafilter U over Z is a maximal filter over Z, i.e. for
any X ⊆ Z, either X ∈ U or else Z − X ∈ U . For a cardinal λ, a filter
is λ-complete if it is closed under the taking of intersections of fewer than
λ members. Finally, an uncountable cardinal κ is measurable iff there is a
κ-complete ultrafilter over κ. In a previous, 1929 note Ulam had been the
first to construct, using a well-ordering of the reals, an ultrafilter over ω.
Measurability thus generalizes a property of ω, and Ulam showed moreover
that measurable cardinals are inaccessible. In this work, Ulam was motivated
by measure-theoretic considerations, and he viewed his work as about {0, 1}-
valued measures, the measure 1 sets being the sets in the ultrafilter. To this
day, ultrafilters of all sorts in large cardinal theory are also called measures.

A decade later Tarski provided a systematic development of these concepts
in terms of ideals. An ideal over a set Z is a family of subsets of Z closed
under the taking of subsets and of unions. This is the “dual” notion to filters;
if I is an ideal (resp. filter) over Z, then Ĭ = {Z − X | X ∈ I} is its dual
filter (resp. ideal). An ideal is λ-complete if its dual filter is. A more familiar
conceptualization in mathematics, Tarski investigated a general notion of
ideal on a Boolean algebra in place of the power set algebra P (Z). Although
filters and ideals in large cardinal theory are most often said to be on a
cardinal κ, they are more properly on the Boolean algebra P (κ). Moreover,
the measure-theoretic terminology has persisted: For an ideal I ⊆ P (Z), the
I-measure zero (negligible) sets are the members of I , the I-positive measure
(non-negligible) sets are the members of P (Z) − I , and the I-measure one
(all but negligible) sets are the members of the dual filter {Z −X | X ∈ I}.

Returning to the axiomatic tradition, Zermelo’s 1930 paper was in part a
response to Skolem’s advocacy of the idea of framing Zermelo’s 1908 axioms
in first-order logic, the logic of formal languages based on the quantifiers ∀
and ∃ interpreted as ranging over the elements of a domain of discourse.
First-order logic had emerged in 1917 lectures of Hilbert as a delimited sys-
tem of logic amenable to mathematical investigation. Entering from a differ-
ent, algebraic tradition, Skolem in 1920 had established a seminal result for
semantic methods with the Löwenheim-Skolem Theorem, that a countable
collection of first-order sentences, if satisfiable, is satisfiable in a countable
domain. For this he introduced what we now call Skolem functions, func-
tions added formally for witnessing ∃x assertions. For set theory Skolem in
1923 proposed formalizing Zermelo’s axioms in the first-order language with
∈ and = as binary predicate symbols. Zermelo’s “definite” properties were
to be those expressible in this first-order language in terms of given sets, and
the Axiom of Separation was to become a schema of axioms, one for each
first-order formula. As an argument against taking set theory as a foundation
for mathematics, Skolem pointed out what has come to be called Skolem’s
Paradox: Zermelo’s 1908 axioms cast in first-order logic is a countable col-
lection of sentences, and so if they are satisfiable at all, they are satisfiable
in a countable domain. Thus, we have the paradoxical existence of countable
models for Zermelo’s axioms although they entail the existence of uncount-
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able sets. Zermelo found this antithetical and repugnant. However, strong
currents were at work leading to a further, subtler transmutation of the no-
tion of set as based on first-order logic and incorporating its relativism of
set-theoretic concepts.

2. New Groundwork

2.1. Gödel

Kurt Gödel (1906-1978) substantially advanced the mathematization of logic
by submerging metamathematical methods into mathematics. The main ve-
hicle was the direct coding, “the arithmetization of syntax”, in his celebrated
1931 Incompleteness Theorem, which worked dialectically against a program
of Hilbert’s for establishing the consistency of classical mathematics. But
starting an undercurrent, the earlier 1930 Completeness Theorem for first-
order logic clarified the distinction between the formal syntax and semantics
of first-order logic and secured its key instrumental property with the Com-
pactness Theorem.

Tarski in the early 1930s provided his systematic “definition of truth”, ex-
ercising philosophers to a surprising extent ever since. Tarski simply schema-
tized truth as a correspondence between formulas of a formal language and
set-theoretic assertions about an intended structure interpreting the language
and provided a recursive definition of the satisfaction relation, when a formula
holds in the structure, in set-theoretic terms. The eventual effect of Tarski’s
mathematical formulation of semantics would be not only to make mathe-
matics out of the informal notion of satisfiability, but also to enrich ongoing
mathematics with a systematic method for forming mathematical analogues
of several intuitive semantic notions. Tarski would only be explicit much later
about satisfaction-in-a-structure for arbitrary structures, this leading to his
notion of logical consequence. For coming purposes, the following affirms
notation and concepts in connection with Tarski’s definition.

For a first-order language, a structure N interpreting that language (i.e. a
specification of a domain of discourse as well as interpretations of the function
and predicate symbols), a formula ϕ(v1, v2, . . . , vn) of the language with the
(free) variables as displayed, and a1, a2, . . . , an in the domain of N ,

N |= ϕ[a1, a2, . . . , an]

asserts that the formula ϕ is satisfied in N according to Tarski’s recursive
definition when vi is interpreted as ai. A subset y of the domain of N is first-
order definable over N iff there is a ψ(v1, v2, . . . , vn+1) and a1, a2, . . . , an in
the domain of N such that

y = {z ∈ N | N |= ψ[a1, a2, . . . , an, z]}.

(The first-order definability of k-ary relations is analogously formulated with
vn+1 replaced by k variables.)
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Through Tarski’s recursive definition and an “arithmetization of syntax”
whereby formulas are systematically coded by natural numbers, the satis-
faction relation N |= ϕ[a1, a2, . . . , an] for sets N is definable in set theory.
On the other hand, by Tarski’s result on the “undefinability of truth”, the
satisfaction relation for V itself is not first-order definable over V .

Set theory was launched as a distinctive field of mathematics by Gödel’s
construction of the class L leading to the relative consistency of the Axiom of
Choice and the Generalized Continuum Hypothesis. In a brief 1939 account
Gödel informally presented L essentially as is done today: For any set x
let def(x) denote the collection of subsets of x first-order definable over the
structure 〈x,∈〉 with domain x and the membership relation restricted to it.

Then define:

L0 = ∅; Lα+1 = def(Lα), Lδ =
⋃
{Lα | α < δ} for limit ordinals δ;

and the constructible universe

L =
⋃

αLα .

Gödel pointed out that L “can be defined and its theory developed in the
formal systems of set theory themselves.” This is actually the central feature
of the construction of L. L is definable in ZF via transfinite recursion based
on the formalizability of def(x), which was reaffirmed by Tarski’s definition
of satisfaction. With this, one can formalize the Axiom of Constructibility
V = L, i.e. ∀x(x ∈ L). To set a larger context, we affirm the following for
a class X : for a set-theoretic formula ϕ, ϕX denotes ϕ with its quantifiers
restricted to X and this extends to set-theoretic terms t (like

⋃
x, P (x), and

so forth) through their definitions to yield tX . X is an inner model iff X is a
transitive class containing all the ordinals such that ϕX is a theorem of ZF for
every axiom ϕ of ZF. What Gödel did was to show in ZF that L is an inner
model which satisfies AC and GCH. He thus established a relative consistency
which can be formalized as an assertion: Con(ZF) implies Con(ZFC + GCH).

In the approach via def(x) it is necessary to show that def(x) remains
unaltered when applied in L with quantifiers restricted to L. Gödel himself
would never establish this absoluteness of first-order definability explicitly.
In a 1940 monograph, Gödel worked in Bernays’ class-set theory and used
eight binary operations producing new classes from old to generate L set by
set via transfinite recursion. This veritable “Gödel numbering” with ordinals
eschewed def(x) and made evident certain aspects of L. Since there is a
direct, definable well-ordering of L, choice functions abound in L, and AC
holds there. Of the other axioms the crux is where first-order logic impinges,
in Separation and Replacement. For this, “algebraic” closure under Gödel’s
eight operations ensured “logical” Separation for bounded formulas, formulas
having only quantifiers expressible in terms of ∀v ∈ w, and then the full
exercise of Replacement (in V ) secured all of the ZF axioms in L.

Gödel’s proof that L satisfies GCH consisted of two separate parts. He
established the implication V = L→ GCH, and, in order to apply this impli-
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cation within L, that (V = L)L. This latter follows from the aforementioned
absoluteness of def(x), and in his monograph Gödel gave an alternate proof
based on the absoluteness of his eight binary operations.

Gödel’s argument for V = L→ GCH rests, as he himself wrote in his 1939
note, on “a generalization of Skolem’s method for constructing enumerable
models.” This was the first significant use of Skolem functions since Skolem’s
own to establish the Löwenheim-Skolem theorem, and with it, Skolem’s Para-
dox. Ironically, though Skolem sought through his paradox to discredit set
theory based on first-order logic as a foundation for mathematics, Gödel
turned paradox into method, one promoting first-order logic. Gödel specifi-
cally established his “Fundamental Theorem”:

For infinite γ, every constructible subset of Lγ

belongs to some Lβ for a β of the same cardinality as γ.

For infinite α, Lα has the same cardinality as that of α. It follows from the
Fundamental Theorem that in the sense of L, the power set of Lωα

is included
in Lωα+1 , and so GCH follows in L.

The work with L led, further, to the resolution of difficulties in descriptive
set theory. Gödel announced, in modern terms: If V = L, then (a) there
is a ∆1

2 set of reals that is not Lebesgue measurable, and (b) there is a Π1
1

set of reals without the perfect set property. Thus, the early descriptive set
theorists were confronting an obstacle insurmountable in ZFC! When even-
tually confirmed and refined, the results were seen to turn on a “good” Σ1

2

well-ordering of the reals in L defined via reals coding well-founded struc-
tures and thus connected to the well-founded tree representation of Π1

1 sets.
Gödel’s results (a) and (b) constitute the first real synthesis of abstract and
descriptive set theory, in that the axiomatic framework is brought to bear on
the investigation of definable sets of reals.

Gödel brought into set theory a method of construction and of argument
which affirmed several features of its axiomatic presentation. Most promi-
nently, he showed how first-order definability can be formalized and used to
achieve strikingly new mathematical results. This significantly contributed
to a lasting ascendancy for first-order logic which, in addition to its suffi-
ciency as a logical framework for mathematics, was seen to have considerable
operational efficacy. Moreover, Gödel’s work buttressed the incorporation
of Replacement and Foundation into set theory, the first immanent in the
transfinite recursion and arbitrary extent of the ordinals, and the second as
underlying the basic cumulative hierarchy picture that anchors L.

In later years Gödel speculated about the possibility of deciding propo-
sitions like CH with large cardinal hypotheses based on the heuristics of
reflection, and later, generalization. In a 1946 address he suggested the con-
sideration of “stronger and stronger axioms of infinity” and reflection down
from V : “Any proof of a set-theoretic theorem in the next higher system
above set theory (i.e. any proof involving the concept of truth ...) is replace-
able by a proof from such an axiom of infinity.” In a 1947 expository article
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on the continuum problem Gödel presumed that CH would be shown inde-
pendent from ZF and speculated more concretely about possibilities with
large cardinals. He argued that the axioms of set theory do not “form a
system closed in itself” and so the “very concept of set on which they are
based suggests their extension by new axioms that assert the existence of still
further iterations of the operation of ‘set of’.” In an unpublished footnote
toward a 1966 revision of the article, Gödel acknowledged “extremely strong
axioms of infinity of an entirely new kind”, generalizations of properties of
ω “supported by strong arguments from analogy.” These heuristics would
surface anew in the 1960s, when the theory of large cardinals developed a
self-fueling momentum of its own, stimulated by the emergence of forcing
and inner models.

2.2. Infinite Combinatorics

For decades Gödel’s construction of L stood as an isolated monument in
the axiomatic tradition, and his methodological advances would only become
fully assimilated after the infusion of model-theoretic techniques in the 1950s.
In the mean time, the direct investigation of the transfinite as extension of
number was advanced, gingerly at first, by the emergence of infinite combi-
natorics.

The 1934 Sierpiński monograph on CH discussed earlier having consider-
ably elaborated its consequences, a new angle in the combinatorial investiga-
tion of the continuum was soon broached. Hausdorff in 1936 reactivated his
early work on gaps in the orderings of functions to show that the reals can
be partitioned into ℵ1 Borel sets, answering an early question of Sierpiński.
Hausdorff had newly cast his work in terms of functions from ω to ω, the
members of Baire space or the “reals”, under the ordering of eventual dom-
inance: f ≤∗ g if f(n) ≤ g(n) for all but finitely many n ∈ ω. Work on
this structure and definable sets of reals in the 1930s, and particularly of
Fritz Rothberger through the 1940s, isolated what is now called the domi-
nating number d, the least cardinality of a subset of Baire space cofinal in
≤∗. ℵ1 ≤ d ≤ 2ℵ0 , but absent CH d assumed an independent significance
as a pivotal cardinal. Rothberger established incisive results which we now
cast as about the relationships to other pivotal cardinals, results which pro-
vided new understandings about the structure of the continuum but would
become vacuous with the blanket assumption of CH. The investigation of d

and other “cardinal characteristics (or invariants) of the continuum” would
blossom with the advent of forcing.

Taking up another thread, Frank Ramsey in 1930, addressing a problem of
formal logic, established a generalization of the pigeonhole principle for finite
sets, and in a move transcending purpose and context he also established an
infinite version implicitly applying the now familiar Kőnig’s Lemma for trees.
In modern terms, for ordinals α, β, and δ and n ∈ ω the partition relation

β −→ (α)n
δ
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asserts that for any partition f : [β]n → δ of the n-element subsets of β into
δ cells, there is an H ⊆ β of order type α homogeneous for the partition,
i.e. all the n-element subsets of H lie in the same cell. Ramsey’s theorem
for finite sets is: For any n, k, i ∈ ω there is an r ∈ ω such that r −→ (k)n

i .
The “Ramsey numbers”, the least possible r’s for various n, k, i, are unknown
except in a few basic cases. The (infinite) Ramsey’s Theorem is: ω −→ (ω)n

i

for every n, i ∈ ω.
A tree is a partially ordered set T such that the predecessors of any ele-

ment are well-ordered. The αth level of T consists of those elements whose
predecessors have order-type α, and the height of T is the least α such that
the αth level of T is empty. A chain of T is a linearly ordered subset, and
an antichain is a subset consisting of pairwise incompatible elements. A co-
final branch of T is a chain with elements at every non-empty level of T .
Finally, for a cardinal κ, a κ-tree is a tree of height κ each of whose levels
has cardinality less than κ, and κ has the tree property iff every κ-tree has a
cofinal branch. Kőnig’s Lemma, of 1927, is the assertion that ω has the tree
property.

The first systematic study of transfinite trees was carried out in Djuro
Kurepa’s 1935 thesis, and several properties emerging from his investigations,
particularly for ω1-trees as the first broaching context, would later become
focal in the combinatorial study of the transfinite. An Aronszajn tree is an
ω1-tree without a cofinal branch, i.e. a counterexample to the tree property
for ω1. Kurepa acknowledged and gave Nachman Aronszajn’s proof that
there is an Aronszajn tree. A Suslin tree is an ω1-tree with no uncountable
chains or antichains. Kurepa reduced a hypothesis growing out of a 1920
question of Suslin about the characterizability of the ordering of the reals to
a combinatorial property of ω1, Suslin’s Hypothesis (SH): There are no Suslin
trees. Finally, a Kurepa tree is an ω1-tree with at least ω2 cofinal branches,
and Kurepa’s Hypothesis deriving from a later 1942 paper of Kurepa’s is
the assertion that such trees exist. Much of this would be rediscovered, and
both Suslin’s Hypothesis and Kurepa’s Hypothesis would be resolved decades
later with the advent of forcing, several of the resolutions in terms of large
cardinal hypotheses. Kurepa’s work also anticipated another development
from a different quarter.

Paul Erdős, although an itinerant mathematician for most of his life, was
the prominent figure of a strong Hungarian tradition in combinatorics, and
through some seminal results he introduced major initiatives into the de-
tailed combinatorial study of the transfinite. Erdős and his collaborators
simply viewed the transfinite numbers as a combinatorially rich source of
intrinsically interesting problems, the concrete questions about graphs and
mappings having a natural appeal through their immediacy. One of the
earliest advances was an 1943 paper of Erdős and Tarski which concluded
enticingly with an intriguing list of six combinatorial problems, the positive
solution to any, as it was to turn out, amounting to the existence of a large
cardinal. In a footnote various implications were noted, one of them being
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essentially that for inaccessible κ, the tree property for κ implies κ −→ (κ)2
2,

a generalization of Ramsey’s ω −→ (ω)22 drawing out the Kőnig Lemma prop-
erty needed.

The detailed investigation of partition relations began in earnest in the
1950s, with a 1956 paper of Erdős and Richard Rado’s being representative.
For a cardinal κ, set i0(κ) = κ and in+1(κ) = 2in(κ). What became known
as the Erdős-Rado Theorem asserts: For any infinite cardinal κ and n ∈ ω,

in(κ)+ −→ (κ+)n+1
κ .

This was established using the basic tree argument underlying Ramsey’s re-
sults, whereby a homogeneous set is not constructed recursively, but a tree is
constructed such that its branches provide homogeneous sets, and a counting
argument ensures that there must be a homogeneous set of sufficient car-
dinality. The Erdős-Rado Theorem is the transfinite analogue of Ramsey’s
theorem for finite sets, with both having the form, given α, δ and n there is
a β such that β −→ (α)n

δ . However, while what the Ramsey numbers are is
largely unknown, the in(κ)+ are known to be optimal. Kurepa in effect had
actually established the case n = 1 and shown that i1(κ)+ is the least pos-
sible, and the in(κ)+ was also shown to be the least possible in the general
case by a “negative stepping up” lemma.

Still among the Hungarians, Géza Fodor in 1956 established a now basic
fact about the uncountable that has become woven into its sense, so opera-
tionally useful and ubiquitous it has become in infinite combinatorics. For
a cardinal λ and a set C ⊆ λ, C is closed unbounded (or “club”) in λ iff
C contains its limit (or “accumulation”) points, i.e. those 0 < α < λ such
that sup(C ∩ α) = α, and is cofinal, i.e.

⋃
C = λ. The use of “closed” and

“unbounded” are as for 〈λ,<〉 with the order topology. A set S ⊆ λ is sta-
tionary in λ iff for any C closed unbounded in λ, S ∩ C is not empty. For
regular λ > ω, the intersection of fewer than λ sets closed unbounded in λ
is again closed unbounded in λ, and so the closed unbounded subsets of λ
generate a λ-complete filter, the closed unbounded filter, denoted Cλ. The
nonstationary subsets of λ constitute the dual nonstationary ideal, denoted
NSλ. Now Fodor’s (or Regressive Function or “Pressing Down”) Lemma: For
regular λ > ω, if a function f is regressive on a set S ⊆ λ stationary in λ,
i.e. f(α) < α for every α ∈ S, then there is a T ⊆ S stationary in λ on which
f is constant.

Fodor’s Lemma is a basic fact and its proof a simple exercise now, but then
it was the culmination of a progression of results beginning with a seminal
1929 observation of Aleksandrov that a regressive function on ω1 must be
constant on an uncountable set. The subsets of a regular λ > ω naturally
separate out into the nonstationary sets, the stationary sets, and among
them the closed unbounded sets as the negligible, non-negligible, and all but
negligible sets according to NSλ. Fodor’s Lemma is intrinsic to stationarity,
and can be cast as a substantive characterization of the concept. It would be
that far-reaching generalizations of stationarity, e.g. stationary towers, would



2. New Groundwork 21

become important in modern set theory.

2.3. Definability

Descriptive set theory was to become transmuted by the turn to definability
following Gödel’s work. After his fundamental work on recursive function
theory in the 1930s, Stephen Kleene expanded his investigations of effective-
ness and developed a general theory of definability for relations on ω. In
the early 1940s Kleene investigated the arithmetical relations on reals, those
relations obtainable from the recursive relations by applications of number
quantifiers. Developing canonical representations he classified these relations
into a hierarchy according to quantifier complexity and showed that the hier-
archy is proper. In the mid-1950s Kleene investigated the analytical relations,
those relations obtainable from the arithmetical relations by applications of
function (“real”) quantifiers. Again he worked out representation and hier-
archy results, and moreover he established an elegant theorem that turned
out to be an effective version of Suslin’s characterization of the Borel sets.

Kleene was developing what amounted to the effective content of classical
descriptive set theory, unaware that his work had direct antecedents in the
papers of Lebesgue, Luzin, Sierpiński, and Tarski. Kleene’s student John
Addison then established that there is an exact correlation between the hier-
archies of classical and effective descriptive set theory (as described below).
The development of effective descriptive set theory considerably clarified the
classical context, injected recursion-theoretic techniques into the subject, and
placed definability considerations squarely at its forefront. Not only were new
approaches to classical problems provided, but results and questions could
now be formulated in a refined setting.

Second-order arithmetic is the two-sorted structure

A2 = 〈ω, ωω, ap,+,×, <, 0, 1〉,

where ω and ωω (Baire space or the “reals”) are two separate domains con-
nected by the binary operation ap : ωω × ω → ω of application given by
ap(x,m) = x(m), and +,×, <, 0, 1 impose the usual arithmetical structure
on ω. The underlying language has two sorts of variables, those ranging over
ω and those ranging over ωω, and corresponding number quantifiers ∀0, ∃0

and function quantifiers ∀1, ∃1.
For relations A ⊆ (ωω)k,

A is arithmetical iff A is definable over A2 by a formula
without function quantifiers .

A is analytical iff A is definable over A2 .

Through the manipulation of quantifiers the analytical sets can be classified
in the analytical hierarchy , the levels of which are the (lightface) Σ1

n, Π1
n, and
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∆1
n classes defined as follows: For relations A ⊆ (ωω)k and n > 0,

A ∈ Σ1
n iff ∀w(A(w) ↔ ∃1x1∀

1x2 . . . QxnR(w, x1, . . . , xn)) , and

A ∈ Π1
n iff ∀w(A(w) ↔ ∀1x1∃

1x2 . . . QxnR(w, x1, . . . , xn))

for some arithmetical R ⊆ (ωω)k+n, where Q is ∃1 if n is odd and ∀1 if n is
even in the first and vice versa in the second. Finally,

A ∈ ∆1
n iff A ∈ Σ1

n ∩ Π1
n .

The correlation of the effective (“lightface”) and classical (“boldface”) hi-
erarchies was established by Addison in 1958 through the simple expedient
of relativization to real parameters. For a ∈ ωω, second-order arithmetic in
a is the expanded structure

A2(a) = 〈ω, ωω, ap,+,×, <, 0, 1, a〉

where a is regarded as a binary relation on ω. Replacing A2 by A2(a) in the
preceding, we get the corresponding relativized notions: arithmetical in a,
analytical in a, Σ1

n(a), Π1
n(a), and ∆1

n(a). The correlation of the hierarchies
is then as follows: Suppose that A ⊆ (ωω)k and n > 0. Then A ∈ Σ1

n iff
A ∈ Σ1

n(a) for some a ∈ ωω, and similarly for Π1
n. Loosely speaking, a

projective set can be analyzed with a real parameter coding the construction
of the underlying Borel set, ∃1 corresponding to projection, and ∀1 through
¬∃1¬ corresponding to complementation.

Joseph Shoenfield in 1961 advanced the study of projective sets into the
new definability context by providing a tree representation for Σ1

2 sets based
on well-foundedness as charted out to ω1. The classical Luzin-Sierpiński tree
representation of Π1

1 sets turned, in the new terms, on the f of the function
quantifier ∀f imputing infinite branches through a tree arithmetical in a
for some a ∈ ωω that must be cut off. This well-foundedness can be cast
as having an order-preserving ranking function into ω1, which Shoenfield
pointed out can be recast as having an infinite branch through a tree built
on the countable ordinals.
T is a tree on ω × κ iff (a) T consists of pairs 〈s, t〉 where s is a finite

sequence drawn from ω and t is a finite sequence drawn from κ of the same
length, and (b) if 〈s, t〉 ∈ T , s′ is an initial segment of s and t′ is a initial
segment of t of the same length, then also 〈s′, t′〉 ∈ T . For such T , [T ] consists
of pairs 〈f, g〉 corresponding to infinite branches, i.e. f and g are ω-sequences
such that for any finite initial segment s of f and finite initial segment t of g
of the same length, 〈s, t〉 ∈ T . In modern terms, A ⊆ ωω is κ-Suslin iff there
is a tree on ω× κ such that A = p[T ] = {f | ∃g(〈f, g〉 ∈ [T ])}. [T ] is a closed
set in the space of 〈f, g〉’s where f : ω → ω and g : ω → κ, and so otherwise
complicated sets of reals, if shown to be κ-Suslin, are newly comprehended
as projections of closed sets. The analytic (Σ1

1) sets are exactly the ω-Suslin
sets.
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Shoenfield established that every Σ1
2 set is ω1-Suslin, and his proof, em-

phasizing constructibility, showed that if A ⊆ ωω is Σ1
2, then A = p[T ] for a

tree T on ω×ω1 such that T ∈ L. Shoenfield applied well-foundedness in the
∀ sense (no infinite descending sequences) and the ∃ sense (there is a ranking
function) to establish that Σ1

2 relations are absolute (or “correct”) for L: For
any w ∈ L, A2 |= ∃1x∀1yϕ[x, y,w] iff (A2 |= ∃1x∀1yϕ[x, y,w])L when ϕ has
no function quantifiers.

Many substantive propositions of classical analysis as well as of meta-
mathematical investigation are Σ1

2 or Π1
2, and if they can be established from

V = L (or just CH), then they can be established in ZF alone. It would be
that in the years to come more and more projective sets of reals would be
comprehended through κ-Suslin representations for larger and larger cardi-
nals κ.

András Hajnal and Azriel Levy, in their theses of the mid-1950s, developed
generalizations of L that were to become basic in a richer setting. For a set
A, Hajnal formulated the constructible closure L(A) of A, i.e. the smallest
inner model M such that A ∈ M , and Levy formulated the class L[A] of
sets constructible relative to A, i.e. the smallest inner model M such that
for every x ∈ M , A ∩ x ∈ M . To formulate L(A), define: L0(A) = the
smallest transitive set ⊇ {A} (to ensure that the resulting class is transi-
tive); Lα+1(A) = def(Lα(A)); Lδ(A) =

⋃
α<δ Lα(A) for limit δ > 0; and

finally L(A) =
⋃

α Lα(A). To formulate L[A], first let defA(x) denote the
collection of subsets of x first-order definable over 〈x,∈, A ∩ x〉, i.e. A ∩ x
is now allowed as a predicate in the definitions. Then define: L0[A] = ∅;
Lα+1[A] = defA(Lα[A]); Lδ[A] =

⋃
α<δ Lα[A] for limit δ > 0; and finally

L[A] =
⋃

α Lα[A]. With the “trace” A = A ∩ L[A] one has Lα[A] = Lα[A]
for every α and so L[A] = L[A].
L(A) realizes the algebraic idea of building up a model starting from a set

of generators, and L[A] the idea of building up a model using A construed as
a predicate. L(A) may not satisfy AC since it may not have a well-ordering
of A, yet L[A] always satisfies that axiom. This distinction was only to
surface later, as both Hajnal and Levy took A to be a set of ordinals, when
L(A) = L[A], and used these models to establish conditional independence
results of the sort: if the failure of CH is consistent, then so is that failure
together with 2λ = λ+ for sufficiently large cardinals λ. In the coming
expansion of the 1960s, both Hajnal and Levy would be otherwise engaged,
with Hajnal becoming a major combinatorial set theorist and collaborator
with Erdős, and Levy, a pioneer in the investigation of independence results.

2.4. Model-Theoretic Techniques

Model theory began in earnest with the appearance in 1949 of the method of
diagrams in Abraham Robinson’s thesis and the related method of constants
in Leon Henkin’s thesis, which gave a new proof of the Gödel Completeness
Theorem. Tarski had set the stage with the formulation of formal languages
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and semantics in set-theoretic terms, and with him established at the Uni-
versity of California at Berkeley, a large part of the development in the 1950s
and 1960s would take place there. Tarski and his students carefully laid
out satisfaction-in-a-structure; theories (deductively closed collections of sen-
tences) and their models; algebratization with Skolem functions and hulls;
and elementary substructures and embeddings. j : A → B is an elementary
embedding if for any a1, . . . , an from the domain of A, 〈a1, . . . , an〉 satisfies in
A the same formulas that 〈j(a1), . . . , j(an)〉 does in B; and when j is the iden-
tity A is an elementary substructure of B, denoted A ≺ B. The construction
of models freely used transfinite methods and soon led to new questions in
set theory, but also set theory was to be decisively advanced by the infusion
of model-theoretic methods.

A precursory result was a 1949 generalization by Andrzej Mostowski of
the Mirimanoff-von Neumann result that every well-ordered set is order-
isomorphic to exactly one ordinal with membership. A binary relation R on
a set X is extensional if distinct members of X have distinct R-predecessors,
and well-founded if every non-empty Y ⊆ X has an R-minimal element (or,
assuming AC, there is no infinite R-descending sequence). If R is an ex-
tensional, well-founded relation on a set X, then there is a unique transitive
set T and an isomorphism of 〈X,R〉 onto 〈T,∈〉, i.e. a bijection π : X → T
such that for any x, y ∈ X , xR y iff π(x) ∈ π(y). 〈T,∈〉 is the transitive
collapse of X , and π the collapsing isomorphism. Thus, the linearity of
well-orderings has been relaxed to analogues of Extensionality and Founda-
tion, and transitive sets become canonical representatives as ordinals are for
well-orderings. Well-founded relations other than membership had surfaced
much earlier, most notably in the Luzin-Sierpiński tree representation of Π1

1

sets. The general transitive collapse result would come to epitomize how
well-foundedness made possible a coherent theory of models of set theory.

After Richard Montague applied reflection phenomena to establish that ZF
is not finitely axiomatizable, Levy also formulated reflection principles and
established their broader significance. The 1960 Montague-Levy Reflection
Principle for ZF asserts: For any (first-order) formula ϕ(v1, . . . , vn) and any
ordinal β, there is a limit ordinal α > β such that for any x1, . . . , xn ∈ Vα,

ϕ[x1, . . . , xn] iff Vα |= ϕ[x1, . . . , xn] .

Levy showed that this schema is equivalent to the conjunction of the Re-
placement schema together with Infinity in the presence of the other axioms
of ZF. Moreover, he formulated reflection principles in local form that char-
acterized the Mahlo cardinals, conceptually the least large cardinals after the
inaccessible cardinals. Also William Hanf and Dana Scott posited analogous
reflection principles for higher-order formulas, leading to what are now called
the indescribable cardinals . The model-theoretic reflection idea thus provided
a coherent scheme for viewing the bottom of an emerging hierarchy of large
cardinals as a generalization of Replacement and Infinity.

In those 1946 remarks by Gödel where he broached the heuristic of reflec-
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tion, Gödel also entertained the concept of ordinal definable set. A set x is
ordinal definable iff there are ordinals α1, . . . , αn and a formula ϕ(v0, . . . , vn)
such that ∀y(y ∈ x ↔ ϕ[y, α1, . . . , αn]). This ostensible dependence on the
satisfaction relation for V can be formally recast through a version of the
Reflection Principle for ZF, so that one can define the class OD of ordinal
definable sets. With tc(y) denoting the smallest transitive superset of y, let
HOD = {x | tc({x}) ⊆ OD}, the class of hereditarily ordinal definable sets .

As noted by Gödel, HOD is an inner model in which AC, though not
necessarily CH, holds. The basic results about this inner model were to be
rediscovered several times. In these several ways reflection phenomena both
as heuristic and as principle became incorporated into set theory, bringing
to the forefront what was to become a basic feature of the study of well-
foundedness.

The set-theoretic generalization of first-order logic allowing transfinitely
indexed logical operations was to clarify the size of measurable cardinals.
Extending familiarity by abstracting to a new domain, Tarski in 1962 for-
mulated the strongly compact and weakly compact cardinals by ascribing nat-
ural generalizations of the key compactness property of first-order logic to
the corresponding infinitary languages. These cardinals had figured in that
1943 Erdős-Tarski paper in equivalent combinatorial formulations that were
later seen to imply that a strongly compact cardinal is measurable, and a
measurable cardinal is weakly compact. Tarski’s student Hanf then estab-
lished, using the satisfaction relation for infinitary languages, that there are
many inaccessible cardinals (and Mahlo cardinals) below a weakly compact
cardinal. A fortiori, the least inaccessible cardinal is not measurable. This
breakthrough was the first result about the size of measurable cardinals since
Ulam’s original 1930 paper and was greeted as a spectacular success for meta-
mathematical methods. Hanf’s work radically altered size intuitions about
problems coming to be understood in terms of large cardinals and ushered in
model-theoretic methods into the study of large cardinals beyond the Mahlo
cardinals.

Weak compactness was soon seen to have a variety of characterizations,
most notably κ is weakly compact iff κ→ (κ)22 iff κ→ (κ)n

λ for every n ∈ ω
and λ < κ iff κ is inaccessible and has the tree property, and this was an
early, significant articulation of the large cardinal extension of context for
effecting known proof ideas and methods.

The concurrent emergence of the ultraproduct construction in model theory
set the stage for the development of the modern theory of large cardinals.
The ultraproduct construction was brought to the forefront by Tarski and
his students after Jerzy  Loś’s 1955 adumbration of its fundamental theorem.
The new method of constructing concrete models brought set theory and
model theory even closer together in a surge of results and a lasting interest
in ultrafilters.

The ultraproduct construction was driven by the algebraic idea of making
a structure out of a direct product of structures as modulated (or “reduced”)



26 0. Introduction

by a filter. The particular case when all the structures are the same, the
ultrapower, was itself seen to be substantive. To briefly describe a focal case
for set theory, let N be a set, construed as a structure with ∈, and U an
ultrafilter over a set Z. On ZN , the set of functions from Z to N , define

f =U g iff {i ∈ Z | f(i) = g(i)} ∈ U ,

The filter properties of U imply that =U is an equivalence relation on ZN ,
so with (f)U denoting the corresponding equivalence class of f , set ZN/U =
{(f)U | f ∈ ZN}. Next, the filter properties of U show that a binary relation
EU on ZN/U can be unambiguously defined by

(f)U EU (g)U iff {i ∈ Z | f(i) ∈ g(i)} ∈ U .

=U is thus a congruence relation, one that preserves the underlying struc-
ture; this sort of preservation is crucial in ultraproduct and classical, an-
tecedent constructions with filters. (For example, in the space L∞ in which
two bounded measurable functions are equated when they agree on a set
in the filter of full measure sets, the algebraic structure of + and × have
many of the properties that + and × for the real numbers have. If the fil-
ter is extended to an ultrafilter, we get an ultrapower.) The ultrapower of
N by U is then defined to be the structure 〈ZN/U,EU〉. The crux of the
construction is the fundamental  Loś’s Theorem: For a formula ϕ(v1, . . . , vn)
and f1, . . . , fn ∈ ZN ,

〈ZN/U,EU〉 |= ϕ[(f1)U , . . . , (fn)U ] iff

{i ∈ Z | N |= ϕ[f1(i), . . . , fn(i)]} ∈ U .

Satisfaction in the ultrapower is thus reduced to satisfaction on a large set
of coordinates, large in the sense of U . The proof is by induction on the
complexity of ϕ using the filter properties of U , the ultrafilter property for
the negation step, and AC for the existential quantifier step.
EU is an extensional relation, and crucially, well-founded when U is ℵ1-

complete. In that case by Mostowski’s theorem there is a collapsing isomor-
phism π of the ultrapower onto its transitive collapse 〈M,∈〉. Moreover, if for
x ∈ N , cx is the constant function: N → {x} and jU : N →M is defined by
jU (x) = π((cx)U ), then jU is an elementary embedding, i.e. for any formula
ϕ(v1, . . . , vn) and a1, . . . , an ∈ N ,

〈N,∈〉 |= ϕ[a1, . . . , an] iff 〈M,∈〉 |= ϕ[jU (a1), . . . , jU (an)]

by  Loś’s Theorem. When we have well-foundedness, the ultrapower is iden-
tified with its transitive collapse and denoted Ult(N,U).

All of the foregoing is applicable, and will be applied, with proper classes
N , as long as we replace the equivalence class (f)U by sets

(f)0U = {g ∈ (f)U | g has minimal rank }
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(“Scott’s trick”), and take  Loś’s Theorem as a schema for formulas.
The model theorist H. Jerome Keisler established penetrating connections

between combinatorial properties of ultrafilters and of their ultraproducts,
and in particular took the ultrapower of a measurable cardinal κ by a κ-
complete ultrafilter over κ to provide a new proof of Hanf’s result that there
are many large cardinals below a measurable cardinal. With Ulam’s con-
cept shown in a new light as providing well-founded ultrapowers, Dana Scott
then struck on the idea of taking the ultrapower of the entire universe V
by a κ-complete ultrafilter over a measurable κ, exploiting the resulting well-
foundedness to get an elementary embedding j : V → Ult(V, U). Importantly,
κ is the critical point, i.e. j(α) = α for every α < κ yet κ < j(κ): Taking
e.g. the identity function id : κ → κ, {ξ < κ | α < ξ < κ} ∈ U for ev-
ery α < κ, so that κ ≤ π((id)U ) < j(κ) by  Loś’s Theorem. If V = L, then
Ult(V, U) = L by the definability properties of L, but this confronts κ < j(κ),
e.g. if κ were the least measurable cardinal. (One could also appeal to the
general fact that U /∈ Ult(V, U); that one “loses” the ultrafilter when tak-
ing the ultrapower would become an important theme in later work.) With
this Scott established that if there is a measurable cardinal, then V 6= L.
Large cardinal assumptions thus assumed a new significance as a means for
“maximizing” possibilities away from Gödel’s delimitative construction.

The ultrapower construction provided one direction of a new characteriza-
tion that established a central structural role for measurable cardinals: There
is an elementary embedding j : V →M for some M with critical point δ iff δ
is a measurable cardinal. Keisler provided the converse direction: With j as
hypothesized, Uj ⊆ P (δ) defined “canonically” by X ∈ Uj iff δ ∈ j(X) is a
δ-complete ultrafilter over δ. Generating ultrafilters thus via “ideal” elements
would become integral to the theory of ultrafilters and large cardinals.

This characterization, when viewed with the focus on elementary embed-
dings, raises a point that will be even more germane, and thus will be em-
phasized later, in connection with strong hypotheses. That a j : V → M
is elementary is not formalizable in set theory because of the appeal to the
satisfaction relation for V , let alone the assertion that there is such a class
j. Thus the “characterization” is really one of giving a formalization, one
that provides operative sense through the ultrapower construction. In any
event Ulam’s original concept was thus made intrinsic to set theory with
the categorical imperative of elementary embeddings. In any event ZFC is
never actually transcended in consistency results; one can always work in a
sufficiently large Vα through the Reflection Principle for ZF.

In Scott’s j : V → M = Ult(V, U) the concreteness of the ultrapower
construction delivered κM ⊆ M , i.e. M is closed under the taking of arbi-
trary (in V ) κ-sequences, so that in particular Vκ+1 ∩M = Vκ+1. Through
this agreement strong reflection conclusions can be drawn. U is normal iff
π((id)U ) = κ, the identity function is a “least non-constant” function, a

property that can be easily arranged. For such U , since κ is inaccessible, it
is so in M and hence by  Loś’s Theorem {ξ < κ | ξ is inaccessible} ∈ U—the
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inaccessible cardinals below κ have measure one. An analogous argument
applies to any Vκ+1 property of κ like weak compactness, and so, as would
typify large cardinal hypotheses, measurability articulates its own sense of
transcendence over “smaller” large cardinals.

Normality went on to become staple to the investigation of ideals and
large cardinals. Formulated for an ideal I over a cardinal λ, I is normal iff
whenever a function f is regressive on an S ∈ P (λ)−I , there is a T ∈ P (S)−I
on which f is constant. Fodor’s Lemma is then just the assertion that the
nonstationary ideal NSλ is normal for regular λ > ω, and a multitude of
“smallness” properties other than nonstationarity has been seen to lead to
normal ideals.

Through model-theoretic methods set theory was brought to the point of
entertaining elementary embeddings into well-founded models. It was soon
to be transfigured by a new means for getting well-founded extensions of
well-founded models.

3. The Advent of Forcing

3.1. Cohen

Paul Cohen (1934-2007) in April 1963 established the independence of AC
from ZF and the independence of CH from ZFC. That is, Cohen established
that Con(ZF) implies Con(ZF + ¬AC) and Con(ZFC) implies Con(ZFC +
¬CH). Already prominent as an analyst, Cohen had ventured into set theory
with fresh eyes and a open-mindedness about possibilities. These results
solved two central problems of set theory. But beyond that, Cohen’s proofs
were the inaugural examples of a new technique, forcing , which was to become
a remarkably general and flexible method for extending models of set theory.
Forcing has strong intuitive underpinnings and reinforces the notion of set
as given by the first-order ZF axioms with prominent uses of Replacement
and Foundation. If Gödel’s construction of L had launched set theory as a
distinctive field of mathematics, then Cohen’s method of forcing began its
transformation into a modern, sophisticated one.

Cohen’s approach was to start with a model M of ZF and adjoin a set
G that witnesses some desired new property. This would have to be done
in a minimal fashion in order that the resulting extension also model ZF,
and so Cohen devised special conditions on both M and G. To be concrete,
Cohen started with a countable transitive model 〈M,∈〉 of ZF. The ordinals
of M would then coincide with the predecessors of some ordinal ρ, and M
would be the cumulative hierarchy M =

⋃
α<ρ Vα ∩M . Cohen recursively

defined in M a system of terms (or “names”) to denote members of the new
model, working with a ramified language. In a streamlined rendition, for
each x ∈ M let x̌ be a corresponding constant; let Ġ be a new constant;
and for each α < ρ introduce quantifiers ∀α and ∃α. Then define: Ṁ0 =
{Ġ}, and for limit ordinals δ < ρ, Ṁδ =

⋃
α<δ Ṁα. At the successor stage,
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let Ṁα+1 be the collection of constants x̌ for x ∈ Vα ∩M and class terms
corresponding to formulas allowing parameters from Ṁα and quantifiers ∀α

and ∃α—a syntactical analogue of the operator def(x) for Gödel’s L. Once a
set G is provided from the outside, a model M [G] =

⋃
α<ρMα[G] would be

determined by the terms.
But what properties can be imposed on G to ensure that M [G] be a model

of ZF? Cohen’s key idea was to tie G closely to M through a partially ordered
system of sets in M called conditions that would approximate G. While G
may not be a member of M , G is to be a subset of some Y ∈M (with Y = ω
a basic case), and these conditions would “force” some assertions about the
eventual M [G] e.g. by deciding some of the membership questions, whether
x ∈ G or not, for x ∈ Y . The assertions are to be just those expressible in
the ramified language, and Cohen developed a corresponding forcing relation
p 
 ϕ, “p forces ϕ”, between conditions p and formulas ϕ, a relation with
properties reflecting his approximation idea. For example, if p 
 ϕ and
p 
 ψ, then p 
 ϕ ∧ ψ. The conditions are ordered according to the
constraints they impose on the eventual G, so that if p 
 ϕ, and q is a
stronger condition, then q 
 ϕ. It was crucial to Cohen’s approach that the
forcing relation, like the ramified language, be definable in M .

The final ingredient which gives this whole scaffolding life is the incorpo-
ration of a certain kind of set G. Stepping out of M and making the only use
of its countability, Cohen enumerated the formulas of the ramified language
in a countable sequence and required that G be completely determined by a
sequence of stronger and stronger conditions p0, p1, p2, . . . such that for every
formula ϕ of the ramified language exactly one of ϕ or ¬ϕ is forced by some
pn. Such a G is called a generic set. The language is congenial; with the
forcing conditions naturally topologized, a generic set meets every open dense
set in M and is thus generic in a classical topological sense.

Cohen was able to show that the resulting M [G] does indeed satisfy the
axioms of ZF: Every assertion about M [G] is already forced by some condi-
tion; the forcing relation is definable in M ; and so the ZF axioms holding in
M , most crucially Replacement and Foundation, can be applied to the rami-
fied terms and language to derive corresponding forcing assertions about the
ZF axioms holding in M [G].

Cohen first described the case when G ⊆ ω and the conditions p are
functions from some finite subset of ω into {0, 1} and p 
 ṅ ∈ Ġ if p(n) = 1
and p 
 ṅ /∈ Ġ if p(n) = 0. Today, a G so adjoined to M is called a
Cohen real over M . If subsets of ω are identified with reals as traditionally
construed, that G is generic can be extrinsically characterized by saying that
G meets every open dense set of reals lying in M .

Generally, a G ⊆ κ analogously adjoined with conditions of cardinality less
than κ is called a Cohen subset of κ. Cohen established the independence
of CH by adjoining a set which in effect is a sequence of many Cohen reals.
It was crucial that the cardinals in the ground model and generic extension
coincide, and with two forcing conditions said to be incompatible if they have
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no common, stronger condition, Cohen to this end drew out and relied on the
important countable chain condition (c.c.c.): Any antichain, i.e. collection of
mutually incompatible conditions, is countable.

Cohen established the independence of AC by a version of the above
scheme, where in addition to Ġ there are also new constants Ġi for i ∈ ω,
and Ġ is interpreted by a set X of Cohen reals, each an interpretation of
some Ġi. The point is that X is not well-orderable in the extension, since
there are permutations of the forcing conditions that induce a permutation
of the Gi’s yet leave X fixed.

Several features of Cohen’s arguments would quickly be reformulated, reor-
ganized, and generalized, but the thrust of his approach through definability
and genericity would remain. Cohen’s great achievement lies in devising a
concrete procedure for extending well-founded models of set theory in a min-
imal fashion to well-founded models of set theory with new properties but
without altering the ordinals.

The extent and breadth of the expansion of set theory described hence-
forth dwarfs all that has been described before, both in terms of the numbers
of people involved and the results established, and we are left to paint with
even broader strokes. With clear intimations of a new and concrete way of
building models, set theorists rushed in and, with forcing becoming method,
were soon establishing a cornucopia of relative consistency results, truths in a
wider sense, with some illuminating classical problems of mathematics. Just
in the first weeks after Cohen’s discovery, Solomon Feferman, who had been
extensively consulted by Cohen as he was coming up with forcing, estab-
lished further independences elaborating ¬AC and about definability; Levy
soon joined in this work and pursued both directions, formulating the “Levy
collapse” of an inaccessible cardinal; and Stanley Tennenbaum established the
failure of Suslin’s Hypothesis by generically adjoining a Suslin tree. Soon,
ZFC became quite unlike Euclidean geometry and much like group theory,
with a wide range of models being investigated for their own sake.

3.2. Method of Forcing

Robert Solovay above all epitomized this period of sudden expansion in set
theory with his mathematical sophistication and central results about and
with forcing, and in the areas of large cardinals and descriptive set theory.
Following initial graduate study in differential topology, Solovay turned to set
theory after hearing a May 1963 lecture by Cohen. Just weeks after, Solovay
elaborated the independence of CH by characterizing the possibilities for the
size of 2κ for regular κ and made the first exploration of a range of cardinals.
Building on this William Easton in late 1963 established the definitive result
for powers of regular cardinals: Suppose that GCH holds and F is a class
function from the class of regular cardinals to cardinals such that for regular
κ ≤ λ, F (κ) ≤ F (λ) and the cofinality cf(F (κ)) > κ. Then there is a
(class) forcing extension preserving cofinalities in which 2κ = F (κ) for every
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regular κ. Thus, as Solovay had seen locally, the only restriction beyond
monotonicity on the power function for regular cardinals is that given by a
well-known constraint, the classical Zermelo-Kőnig inequality that cf(2κ) > κ
for any cardinal κ. Easton’s result enriched the theory of forcing with the
introduction of proper classes of forcing conditions, the basic idea of a product
analysis, and the now familiar concept of Easton support. The result focused
interest on the possibilities for powers of singular cardinals and the Singular
Cardinals Hypothesis (SCH), which asserts that 2κ for singular κ is the least
possible with respect to the powers 2µ for µ < κ as given by monotonicity and
the Zermelo-Kőnig inequality. This requires in particular that for singular
strong limit cardinals κ, 2κ = κ+. With Easton’s models satisfying SCH,
the Singular Cardinals Problem, to determine the range of possibilities for
powers of singular cardinals, would become a major stimulus for the further
development of set theory much as the continuum problem had been for its
early development.

In the Spring of 1964 Solovay established a result remarkable for its math-
ematical depth and revelatory of what standard of argument was possible
with forcing: If there is an inaccessible cardinal, then in a ZF inner model
of a forcing extension the Principle of Dependent Choices (DC) holds and
every set of reals is Lebesgue measurable, has the Baire property, and has
the perfect set property. Solovay’s inner model is precluded from having a
well-ordering of the reals, but DC is a choice principle implying the regu-
larity of ω1 and sufficient for the formalization of the traditional theory of
measure and category on the real numbers. Thus, Solovay’s work vindicated
the early descriptive set theorists in the sense that the regularity properties
can consistently hold for all sets of reals in a bona fide model for the classical
mathematical analysis of the reals. To prove his result Solovay applied the
Levy collapse of an inaccessible cardinal to make it ω1. For the Lebesgue
measurability he introduced a new kind of forcing beyond Cohen’s direct
ways of adjoining new sets of ordinals or collapsing cardinals, that of adding
a random real given by forcing with the Borel sets of positive measure as
conditions and p stronger than q when p − q is null. In contrast to Cohen
reals, a random real meets every measure one subset of the unit interval
lying in the ground model. Solovay’s work not only opened the door to a
wealth of different forcing arguments, but to this day his original definability
arguments remain vital to descriptive set theory.

The perfect set property, central to Cantor’s direct approach to the con-
tinuum problem through definability, led to the first acknowledged instance
of a new phenomenon in set theory: the derivation of equi-consistency results
between large cardinal hypotheses and combinatorial propositions about low
levels of the cumulative hierarchy. Forcing showed just how relative the Can-
torian concept of cardinality is, since bijective functions could be adjoined
to models of set theory and powers like 2ℵ0 can be made arbitrarily large
with relatively little disturbance. For instance, large cardinals were found
to satisfy substantial propositions even after they were “collapsed” to ω1
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or ω2, i.e. a bijective function was adjoined to render the cardinal the first
or second uncountable cardinals respectively. Conversely, such propositions
were found to entail large cardinal propositions in an L-like inner model,
mostly pointedly the very same initial large cardinal hypothesis. Thus, for
some large cardinal property ϕ(κ) and proposition ψ, there is a direction
Con(∃κϕ(κ)) → Con(ψ) established by a collapsing forcing argument, and a
converse direction Con(ψ)→ Con(∃κϕ(κ)) established by witnessing ϕ(κ) in
an inner model.

Solovay’s result provided the forcing direction from an inaccessible cardi-
nal to the proposition that every set of reals has the perfect set property and
ω1 is regular. But Ernst Specker in 1957 had in effect established that if this
obtains, then ω1 (of V ) is inaccessible in L. Thus, Solovay’s use of an inac-
cessible cardinal was actually necessary, and its collapse to ω1 complemented
Specker’s observation. The emergence of such equi-consistency results is a
subtle realization of earlier hopes of Gödel for deciding propositions via large
cardinals. Forcing, however, quickly led to the conclusion that there could
be no direct implication for CH itself: Levy and Solovay, also in 1964, es-
tablished that measurable cardinals neither imply nor refute CH, with an
argument generalizable to other inaccessible large cardinals. Rather, CH and
many other propositions would be reckoned with in terms of consistency, the
methods of forcing and inner models being the operative modes of argument.

Building on his Lebesgue measurability result Solovay in 1965 reactivated
the classical descriptive set theory program of investigating the extent of the
regularity properties (in the presence of AC) by providing characterizations
in terms of forcing and definability concepts for the Σ1

2 sets, the level at which
Gödel established from V = L the failure of the properties. This led to the
consistency relative to ZFC of the Lebesgue measurability of all Σ1

2 sets.
Also, the characterizations showed that the regularity properties for Σ1

2 sets
follow from existence of a measurable cardinal. Thus, although measurable
cardinals do not decide CH, they do establish the perfect set property for Σ1

2

sets so that “CH holds for the Σ1
2 sets”. A coda after many years: Although

Solovay’s use of an inaccessible cardinal for universal Lebesgue measurability
seemed ad hoc at the time, in 1979 Saharon Shelah established in a tour de
force that if ZF + DC and all Σ1

3 sets of reals are Lebesgue measurable, then
ω1 is inaccessible in L.

In a separate initiative, Solovay in 1966 established the equi-consistency
of the existence of a measurable cardinal and the “real-valued” measurability
of 2ℵ0 , i.e. that there is a (countably additive) measure extending Lebesgue
measure to all sets of reals. For the forcing direction, Solovay starting with a
measurable cardinal adjoined random reals and applied the Radon-Nikodym
Theorem of analysis, and for the converse direction, he starting with a real-
valued measure enlisted the inner model constructed relative to the ideal of
measure zero sets. This consistency result provided context for an extended
investigation of the possibilities for the continuum as structured by such a
measure. Through this work the concept of saturated ideal, first studied by
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Tarski, was brought to prominence as a generalization of having a measurable
cardinal applicable to the low levels of the cumulative hierarchy. For an ideal
over a cardinal κ, I is λ-saturated iff for any {Xα | α < λ} ⊆ P (κ)− I there
are β < γ < λ such that Xβ ∩Xγ ∈ P (κ)− I (i.e. the corresponding Boolean
algebra has no antichains of cardinality λ). The ideal of measure zero sets
is ℵ1-saturated, and Solovay showed that if I is any κ-complete λ-saturated
ideal over κ for some λ < κ, then L[I ] |= “κ is measurable”.

Solovay’s work also brought to the foreground the concept of generic ul-
trapower and generic elementary embedding. For an ideal I over κ, forcing
with the members of P (κ) − I as conditions and p stronger than q when
p− q ∈ I engenders an ultrafilter on the ground model P (κ). With this one
can construct an ultrapower of the ground model in the generic extension and
a corresponding elementary embedding. It turns out that the κ+-saturation
of the ideal ensures that this generic ultrapower is well-founded. Thus, a
synthesis of forcing and ultrapowers is effected, and this raised enticing pos-
sibilities for having such large cardinal-type structure low in the cumulative
hierarchy.

The development of the theory of forcing went hand in hand with this
procession of central results. Solovay had first generalized forcing to arbitrary
partial orders of conditions, proceeding in terms of incompatible members
and dense sets and Levy’s concept of generic filter. In his work on the Baire
property for his 1964 model, Solovay came to the idea of assigning values to
formulas from a complete Boolean algebra. Loosely speaking, the value would
be the supremum of all the conditions forcing it. Working independently,
Solovay and Scott developed the idea of recasting forcing entirely in terms
of Boolean-valued models. This approach showed how to replace Cohen’s
ramified languages by a more direct induction on rank and how to avoid his
dependence on a countable model. Boolean-valued functions play the role
of sets, and formulas involving these functions are assigned Boolean-values
by recursion respecting logical connectives and quantifiers. By establishing
in ZFC that e.g. there is a complete Boolean algebra assigning the formula
expressing ¬CH Boolean value one, a semantic construction was replaced by
a syntactic one that directly secured relative consistency.

Still, the view of forcing as a way of actually extending models held the
reservoir of sense and the promise of discovery, and after Shoenfield pop-
ularized an approach to the forcing relation that captured the gist of the
Boolean-valued approach, forcing has been generally cast as a matter of par-
tial orders and generic filters. Boolean algebras would nonetheless underscore
and enhance the setting: partial orders are to have a maximum element 1; one
is attuned to the separativity of partial orders, the property that ensures that
they are densely embedded in their canonical Boolean completions; Boolean-
values are used when illuminating; and embedding results for forcing partial
orders are cast, as most algebraically informative, in terms of Boolean alge-
bras.

By the 1970s there would be a further assimilation of both the syntactic
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and semantic approaches in that generic extensions would be “taken” of V .
In this the current approach then, a partial order 〈P,<〉 of conditions is
specified to a purpose, with p < q for p being stronger than q. A class V P

of P -names defined recursively is used in forcing assertions, with a canonical
name x̌ corresponding to x ∈ V . A D ⊆ P is dense if for any p ∈ P there is a
d ∈ D with d ≤ p. An F ⊆ P is a filter if (i) if p ∈ F and p ≤ q, then q ∈ F ,
and (ii) if p1, p2 ∈ F then there is an r ∈ F with r ≤ p1 and r ≤ p2. Finally,
G ⊆ P is a V -generic filter if G is a filter such that for every dense D ⊆ P ,
G ∩ D 6= ∅. One posits such a G and takes a generic extension V [G], its
properties argued for on the basis of combinatorial properties of P . For inner
or transitive set models M , one proceeds analogously to define M -generic
filters meeting every dense set belonging to M and takes generic extensions
M [G].

In this one goes against the sense of V as the universe of all sets and
Tarski’s “undefinability of truth”, but actually V has become schematic for
a ground model. Generic extensions of inner models M are taken with M -
generic G, and moreover, successive iterated extensions are taken, exacerbat-
ing any preoccupation with a single universe of sets. As the techniques of
forcing were advanced, the methodology was itself soon to be woven into set
theory as part of its postulations.

Solovay and Tennenbaum earlier in 1965 had established the consistency
of Suslin’s Hypothesis, that there are no Suslin trees, illuminating a clas-
sical question from 1920 with a ground-breaking use of iterated forcing to
keep “killing Suslin trees” in intermediate extensions. D. Anthony Martin
pointed out that the Solovay-Tennenbaum argument actually established the
consistency of a closure of forcing extensions of a certain kind, an instru-
mental “axiom” now known as Martin’s Axiom (MA): For any c.c.c. partial
order P and collection D of fewer than 2ℵ0 dense subsets of P , there is a
filter G ⊆ P meeting every member of D. Thus method became axiom,
and many consistency results could now be simply stated as direct conse-
quences of a single umbrella proposition. CH technically implies MA, but
the Solovay-Tennenbaum argument established the consistency of MA with
the continuum being arbitrarily large.

While classical results with CH had worked on an ℵ0 /ℵ1 dichotomy, MA
established a <2ℵ0/ 2ℵ0 dichotomy. For example, Martin and Solovay estab-
lished that MA implies that the union of fewer than 2ℵ0 Lebesgue measure
zero sets is again Lebesgue measure zero. Sierpiński in 1925 had established
that every Σ1

2 set of reals is the union of ℵ1 Borel sets. Hence, MA and
2ℵ0 > ℵ1 implies that every Σ1

2 set of reals is Lebesgue measurable. Many
further results plied the <2ℵ0/ 2ℵ0 dichotomy to show that under MA in-
ductive arguments can be carried out in 2ℵ0 steps that previously succeeded
under CH in ℵ1 steps. The continuum problem was newly illuminated as a
matter of method, by showing that CH as a construction principle could be
generalized to 2ℵ0 being arbitrarily large.

Glancing across the wider landscape, forcing provided new and diverse
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ways of adjoin generic reals and other sets, and these led to new elucidations,
for example about cardinal characteristics, or invariants, of the continuum
and combinatorial structures and objects, like ultrafilters over ω. The work
on Suslin’s Hypothesis in hand and the possibilities afforded by Martin’s Ax-
iom, the investigation of general topological notions gathered steam. With
Mary Ellen Rudin and her students at Wisconsin breaking the ground, new
questions were raised for general topological spaces about separation prop-
erties, compactness-type covering properties, separability and metrizability,
and corresponding cardinal characteristics.

3.3. 0#, L[U ], and L[U ]

The infusion of forcing into set theory induced a broad context extending
beyond its applications and sustained by model-theoretic methods, a context
which included central developments about large cardinals having their source
in Scott’s 1961 result that measurable cardinals contradict V = L. Haim
Gaifman invented iterated ultrapowers and established seminal results about
and with the technique, results which most immediately stimulated definitive
work in the formative theses of Silver and Kunen.

Jack Silver in his 1966 Berkeley thesis provided a structured sense of tran-
scendence over L in terms of the existence of a special set of natural numbers
0# (“zero sharp”) which refined an earlier formulation of Gaifman and was
quickly investigated by Solovay in terms of definability. Mostowski and An-
drzej Ehrenfeucht in 1956 had developed theories whose models have indis-
cernibles, implicitly ordered members of the domain all of whose n-tuples sat-
isfy the same formulas. They had applied Ramsey’s Theorem in compactness
arguments to get models generated by indiscernibles, models consequently
having many automorphisms. Silver applied partition properties satisfied by
measurable cardinals to produce indiscernibles within given structures, par-
ticularly in the initial segment 〈Lω1 ,∈〉 of the constructible universe. With
definability and Skolem hull arguments, Silver was able to isolate a canonical
collection of sentences to be satisfied by indiscernibles, a theory whose mod-
els cohere to get L itself as generated by canonical ordinal indiscernibles—a
dramatic accentuation of the original Gödel generation of L. 0# is that the-
ory coded as a real, and as Solovay emphasized, 0# is the only possible real
to satisfy a certain Π1

2 relation, one whose complexity arises from its assert-
ing that to every countable well-ordering there corresponds a well-founded
model of the coded theory. The canonical class, closed and unbounded, of
ordinal indiscernibles is often called the Silver indiscernibles. Having these
indiscernibles substantiates V 6= L in drastic ways: Each indiscernible ι has
various large cardinal properties and satisfies Lι ≺ L, so that by a straight-
forward argument the satisfaction relation for L is definable from 0#. The
theory of 0# was seen to relativize, and for reals a ∈ ωω the analogous a#

for the inner model L[a] would play focal roles in descriptive set theory as
based on definability.
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Kunen’s main large cardinal results emanating from his 1968 Stanford the-
sis would be the definitive structure results for inner models of measurability.
For U a normal κ-complete ultrafilter over a measurable cardinal κ, the inner
model L[U ] of sets constructible relative to U is easily seen with U = U∩L[U ]
to satisfy L[U ] |= “U is a normal κ-complete ultrafilter”. With no presump-
tion that κ is measurable (in V ) and taking U ∈ L[U ] from the beginning, call
〈L[U ],∈, U〉 a κ-model iff 〈L[U ],∈, U〉 |= “U is a normal κ-complete ultrafil-
ter over κ”. Solovay observed that in a κ-model, the GCH holds above κ by a
version of Gödel’s argument for L and that κ is the only measurable cardinal
by a version of Scott’s argument. Silver then established that the full GCH
holds, thereby establishing the relative consistency of GCH and measurabil-
ity; Silver’s proof turned on a local structure Lα[U ] being acceptable in the
later parlance of inner model theory.

Kunen made Gaifman’s technique of iterated ultrapowers integral to the
subject of inner models of measurability. For a κ-model 〈L[U ],∈, U〉, the
ultrapower of L[U ] by U with corresponding elementary embedding j provides
a j(κ)-model 〈L[j(U)],∈, j(U)〉, and this process can be repeated. At limit
stages, one can take the direct limit of models, which when well-founded
can be identified with the transitive collapse. Indeed, by Gaifman’s work
these iterated ultrapowers are always well-founded, i.e. κ-models are iterable.
Kunen showed that the λth iterate of a κ-model for any regular λ > κ+ is
of form 〈L[Cλ],∈, Cλ ∩ L[Cλ]〉, where Cλ again is the closed unbounded filter
over λ, so that remarkably, constructing relative to a filter definable in set
theory leads to an inner model of measurability. With this, there can be
comparison of κ-models and κ′-models by iterating them up to a sufficiently
large λ. This comparison possibility let to the structure results: (1) for any
κ-model and κ′-model with κ < κ′, the latter is an iterated ultrapower of the
former, and (2) for any κ, there is at most one κ-model. It then followed that
if κ is measurable and U1 and U2 are any κ-complete ultrafilters over κ, then
L[U1] = L[U2]. These various results argued forcefully for the coherence and
consistency of the concept of measurability. And it would be that iterability
and comparison would remain as basic features in inner model theory in its
subsequent development.

Kunen’s contribution to the theory of iterated ultrapowers was that it-
erated ultrapowers can be taken of an inner model M with respect to an
ultrafilter U even if U /∈ M , as long U is an M -ultrafilter, i.e. U in addi-
tion to having M related ultrafilter properties also satisfies an “amenability”
condition for M . A crucial dividend was a characterization of the existence
of 0# that secured its central importance in inner model theory. With 0#,
any increasing shift of the Silver indiscernibles provides an elementary em-
bedding j : L → L. Kunen established conversely that such an embedding
generates indiscernibles, so that 0# exists iff there is a (non-identity) elemen-
tary embedding j : L → L. Starting with such an embedding Kunen defined
the corresponding ultrafilter U over the critical point and showed that U is
an L-ultrafilter with which the iterated ultrapowers of L are well-founded.
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The successive images of the critical point were seen to be indiscernibles for
L, giving 0#. As inner model theory was to develop, this sharp analysis
would become schematic: the “sharp” of an inner model M would encap-
sulate transcendence over M , and the non-rigidity of M , that there is a
(non-identity) elementary embedding j : M → M , would provide equivalent
structural sense.

William Mitchell in 1972, just after completing a pioneering Berkeley thesis
on Aronszajn trees, provided the first substantive extension of Kunen’s inner
model results and brought to prominence a new large cardinal hypothesis.
For normal κ-complete ultrafilters U and U ′ over κ, define the Mitchell order
U ′ C U iff U ′ ∈ Ult(V, U), i.e. there is an f : κ → V representing U ′ in the
ultrapower, so that {α < κ | f(α) is a normal α-complete ultrafilter over
α} ∈ U and κ is already a limit or measurable cardinals. U C U always fails,
and generally, C is a well-founded relation by a version of Scott’s argument
that measurable cardinals contradict V = L. Consequently, to each U can
be recursively assigned a rank o(U) = sup{o(U ′) + 1 | U ′ C U}, and to a
cardinal κ, the supremum o(κ) = sup{o(U) + 1 | U is a normal κ-complete
ultrafilter over κ}. By a cardinality argument, if 2κ = κ+ then o(κ) ≤ κ++.

The hypothesis o(κ) = δ provided an “order” of measurability calibrated
by δ, with larger δ corresponding to stronger assumptions on κ. For the inves-
tigation of these orders, Mitchell devised the concept of a coherent sequence of
ultrafilters (“measures”) and was able to establish canonicity results for inner
models L[U ] |= “U is a coherent sequence of ultrafilters”. A coherent sequence
U is a doubly indexed system of normal α-complete ultrafilters U(α, β) over α
such that U(κ, β) C U(κ, β′) for β < β′ at the κth level, and the earlier levels
contain just enough ultrafilters necessary to represent these C relationships
in the respective ultrapowers. (Technically, if j : V → Ult(V,U(κ, β ′)), then
j(U)�{(α, β) | α ≤ κ} = U�{(α, β) | α < κ ∨ (α = κ ∧ β < β′)}, i.e. j(U)
through κ is exactly U “below” (κ, β′).)

Mitchell first affirmed that these L[U ]’s are iterable in that arbitrary it-
erated ultrapowers via ultrafilters in U and its successive images are always
well-founded. He then effected a comparison: Any L[U1] and L[U2] have
respective iterated ultrapowers L[W1] and L[W2] such that W1 is an initial
segment of W2 or vice versa. This he achieved through a process of coitera-
tion of least differences: At each stage, one finds the lexicographically least
coordinate at which the current iterated ultrapowers of L[U1] and L[U2] differ
and takes the respective ultrapowers by the differing ultrafilters; the differ-
ence is eliminated as ultrafilters never occur in their ultrapowers. Note that
this iteration process is external to L[U1] and L[U2], further drawing out the
advantages of working externally to models as Kunen had first done with his
M -ultrafilters. With this coiteration, Mitchell established that in L[U ] the
only normal α-complete ultrafilters over α for any α are those that occur in
U and other propositions like GCH that showed these models to be L-like.
Coiteration would henceforth be embedded in inner model theory, and with
his models L[U ] modeling o(κ) = δ for δ < κ++L[U ], ∃κ(o(κ) = κ++) would
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become the delimitative proposition of his analysis.

3.4. Constructibility

These various results were set against a backdrop of an increasing articulation
of Gödel’s original notion of constructibility. Levy in 1965 had put forward
the appropriate hierarchy for the first-order formulas of set theory: A formula
is Σ0 and Π0 if it is bounded, i.e. having only quantifiers expressible in terms
of ∀v ∈ w and ∃v ∈ w, and recursively, a formula is Σn+1 if it is of the
form ∃v1 . . .∃vkϕ where ϕ is Πn and is Πn+1 if it is of the form ∀v1 . . . ∀vkϕ
where ϕ is Σn. Two basic points about discounting bounded quantifiers are
that Σ0 formulas are absolute for transitive structures, i.e. they hold in such
structures just in case they hold in V , and that if ϕ is Σn (resp. Πn) then
∃v ∈ wϕ and ∀v ∈ xϕ are equivalent in ZFC to Σn (resp. Πn) formulas by
uses of Replacement. Levy wove in Shoenfield’s Σ1

2 absoluteness result to
establish the Shoenfield-Levy Absoluteness Lemma: For any Σ1 sentence σ,
ZF + DC ` σ ←→ σL. Levy actually showed that L here can be replaced
by a countable Lγ fixed for all σ, and as such the lemma can be seen as a
refinement of the Reflection Principle for ZF, one that was to find wide use
in the burgeoning field of admissible set theory.

Gödel’s original GCH result with L was newly seen in light of the struc-
tured context for definability. For N and M construed as structures with
∈, j : N → M is a Σn-elementary embedding iff for any Σn ϕ(v1, . . . , vk)
and x1, . . . , xk ∈ N , N |= ϕ[x1, . . . , xk] iff M |= ϕ[j(x1), . . . , j(xk)]. N is a
Σn-elementary substructure of M , denoted N ≺n M , iff the identity map is
Σn-elementary. Analysis of the satisfaction relation established that being
an Lα is a Σ1 property, and this led to the Condensation Lemma:

If α is a limit ordinal and N ≺1 Lα,
then the transitive collapse of N is Lβ for some β ≤ α.

Operatively, one applies this lemma with Skolem’s algebraic approach to
logic by taking N to be a Σ1 Skolem hull in Lα: For any Σ0 formula
ϕ(v1, . . . , vn, vn+1) and x1, . . . , xn ∈ Lα, if 〈Lα,∈〉 |= ϕ[x1, . . . xn, y] for
y ∈ Lα, let fϕ(x1, . . . , xn) be such a y. Then let N be the algebraic clo-
sure of some subset of Lα under these Skolem functions. The road from the
Condensation Lemma to Gödel’s Fundamental Theorem for the consistency
of GCH is short. Generally, the lemma articulates a crucial hierarchical co-
hesion, and its various emanations would become fundamental to all inner
model theory.

The consummate master of constructibility was to be Ronald Jensen,
whose first systematic analysis transformed the subject with the introduc-
tion of the fine structure theory for L. Jensen’s work is distinguished by
the persistent pursuit of internal logical structure, the sophistication of the
local apparatus developed, and a series of remarkable successes with rever-
berations throughout the whole expanse of set theory. After his 1964 Bonn
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dissertation on models of arithmetic, Jensen moved with strength into inves-
tigations with forcing and of definability, two directions that would steadily
complement each other in his work. He, like Solovay, saw the great poten-
tial of forcing, and he soon derived the Easton results independently. In the
direction of definability he in 1965 worked out with Carol Karp a theory of
primitive recursive set functions, and with these he began his investigation of
L. By 1966 he had realized the importance of Σn Uniformization for n > 1,
central to fine structure, although notably he had no particular application
for it in mind at that time.

In 1968 Jensen made a major breakthrough by showing that V = L implies
the failure of Suslin’s Hypothesis, i.e. (there is a Suslin tree)L, applying L for
the first time after Gödel to establish a relative consistency result about a
classical proposition. The initial breakthrough had been when Tennenbaum
had adjoined a Suslin tree with forcing and Thomas Jech had provided an-
other forcing argument; Jensen at first pitched his construction in the guise
of a forcing argument, one in fact like Jech’s. This is the paradigmatic case
of what would become a recurring phenomenon: A combinatorial existence
assertion is first shown to be relatively consistent with ZFC using forcing,
and then the assertion is shown to hold in L, the minimal inner model.

The lack of cofinal branches in Suslin trees is complemented by their abun-
dance in Kurepa trees. Inspired by Jensen’s construction the ubiquitous Solo-
vay established: (there is a Kurepa tree)L. Here too the relative consistency
of the proposition had been established first through forcing.

Jensen isolated the combinatorial features of L that enabled these con-
structions and together with Kunen in 1969 worked out a larger theory. The
focus was mainly on two combinatorial principles of Jensen’s for a regular car-
dinal κ, ♦κ (“diamond”) and a strengthening, ♦+

κ (“diamond plus”). Stating
the first,

♦κ There is a sequence 〈Sα | α < κ〉 with Sα ⊆ α such that
for any X ⊆ κ, {α < κ | X ∩ α = Sα} is stationary in κ .

Just ♦ is implicitly ♦ω1 . ♦κ implies
⋃

α<κ κ
|α| = κ (so that ♦ implies CH) as

every bounded subset of κ occurs in a ♦κ sequence. Indeed, a ♦κ sequence is
an enumeration of the bounded subsets of κ that can accommodate everyX ⊆
κ in anticipatory constructions where X ∩ α appearing in the enumeration
for many α’s suffices. Within a few years ♦ would be on par with CH as
a construction principle with wide applications in topology, algebra, and
analysis. (Another coda of Shelah’s after many years: In 2007 he established
that for successors λ+ > ω1, 2λ = λ+ actually implies ♦λ+ , so that the two
are equivalent.)

Jensen abstracted his Suslin tree result to: (1) if V = L, then ♦κ holds
from every regular κ > ω, and (2) if ♦ω1 holds, then there is a Suslin tree.
Solovay’s result was abstracted to higher, κ-Kurepa trees, κ-trees with at least
κ+ cofinal branches, in terms of a new cardinal concept, ineffability, arrived
at independently by Jensen and Kunen: If V = L and κ > ω is regular,
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then ♦+
κ holds iff κ is not ineffable. Ineffable cardinals, stronger than weakly

compact cardinals, would soon be seen to have a range of involvements and
an elegant theory. As for “higher” Suslin trees, they would involve the use of
a new combinatorial principle, one that first figured in a sophisticated forcing
argument.

The crowning achievement of the investigation of Suslin’s Hypothesis was
its joint consistency with CH, Con(ZFC) → Con(ZFC + CH + SH), es-
tablished by Jensen. In the Solovay-Tennenbaum consistency proof for SH,
cofinal branches had been adjoined iteratively to Suslin trees as they arose
and direct limits were taken at limit stages, a limiting process that conspired
to adjoin new reals so that CH fails. Jensen, with considerable virtuosity for
the time, devised a way to kill Suslin trees less directly and effected the itera-
tion according to a curtailed tree-like indexing—so that no new reals are ever
adjoined. That indexing is captured by the κ = ω1 case of the combinatorial
principle �κ (“square”):

�κ There is a sequence 〈Cα | α a limit ordinal < κ+〉 such that
for α < κ+:

(a) Cα ⊆ α is closed unbounded in α,
(b) for β a limit point of Cα, Cα ∩ β = Cβ , and
(c) for ω ≤ cf(α) < κ, the order-type of Cα is less than κ.

�ω is immediate, as witnessed by any ladder system, i.e. a sequence
〈Cα | α a limit ordinal < ω1〉 such that Cα is of order-type ω and cofi-
nal in α. �κ for κ > ω brings out the tension between the desired (b) and
the needed (c). As such, �κ came to guide many a construction of length κ+

based on components of cardinality < κ.
�κ can be adjoined by straightforward forcing with initial approximations;

Jensen established: If V = L, then �κ holds for every κ. As for higher Suslin
trees, a κ-Suslin tree is expectedly a κ-tree with no chains or antichains of
cardinality κ. Jensen established, generalizing his result for κ = ω1: (1)
for any κ, ♦κ+ and �κ imply that there is a κ+-Suslin tree, and, for limit
cardinals κ, the characterization (2) there is a κ-Suslin tree iff κ is not weakly
compact. It is a notable happenstance that Suslin’s early, 1920 speculation
would have such extended ramifications in modern set theory.

Jensen’s results that �κ holds in L and (2) above were the initial appli-
cations of his fine structure theory. Unlike Gödel who had focused with L
on relative consistency, Jensen regarded the investigation of how the con-
structible hierarchy grows by examining its behavior at arbitrary levels as
of basic and intrinsic interest. And with his fine structure theory Jensen
developed a considerable and intricate machinery for this investigation. A
pivotal question became: when does an ordinal α first get “singularized”,
i.e. what is the least β such that there is in Lβ+1 an unbounded subset of α
of smaller order-type, and what definitional complexity does this set have?
One is struck by the contrast between Jensen’s attention to such local ques-
tions as this one, at the heart of his proof of �κ, and how his analysis could
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lead to major large-scale results of manifest significance.
For a uniform development of his fine structure theory, Jensen switched

from the hierarchy of Lα’s to a hierarchy of Jα’s, the Jensen hierarchy, where
Jα+1 is the closure of Jα ∪ {Jα} under the “rudimentary” functions (the
primitive recursive set functions without the recursion scheme). For L[A],
there is an analogous hierarchy of JA

α where one also closes off under the
function x 7−→ A ∩ x. For a set N , construed as a structure with ∈ and
possibly with some A ∩ N as a predicate, a relation is Σn(N) iff it is first-
order definable over N by a Σn formula. For every α, both 〈Jξ | ξ < α〉 and
a well-ordering <L of L restricted to Jα are Σ1 definable over Jα uniformly,
in that the same formula works for all the Jα’s.

In these terms, fine structure addresses the classical issue of Skolem func-
tions through definability. For (k + 1)-ary relations R and S,

R is uniformized by S iff

S ⊆ R and ∀w(∃yR(w, y)←→ ∃!yS(w, y)) ,

where ∃! is “there exists exactly one”. This amounts to the assertion that
S refines R to a function on the same w’s and is thus a form of AC. In
systematic applications of the Condensation Lemma one deduces, toward the
construction of Σ1 Skolem hulls, that Σ0(Jα), and hence Σ1(Jα), relations are
uniformizable by Σ1(Jα) relations that choose <L-least witnesses. Weaving
together all such relations into one universal one, one gets a Skolem function
h Σ1 definable over Jα uniformly, with the property that for any X ⊆ Jα an
application of h to X yields an elementary substructure of Jα.

What about Σ2(Jα) relations? Choosing<L-least witnesses as before leads
only to a Σ3(Jα) uniformizing relation, since asserting that no predecessor
in the Σ1 definable well-ordering satisfies the Σ2 formula adds to the quan-
tifier complexity. Jensen saw that a palatable analysis of definability stable
through various transformations would require a Σ2(Jα) uniformizing rela-
tion. He achieved this by applying the basic elements of fine structure: As
a measure of the lack of closure under definability, let the (first) projectum
ρα ≤ α be the least γ for which there is a Σ1(Jα) subset of γ which is not
a member of Jα. There is then a Σ1(Jα) map of a subset of Jρα

onto Jα,
essentially a Skolem function as in the previous paragraph. The Σ1(Jα) defi-
nitions involved here can be construed as depending on one parameter in Jα,
and one can fix the <L-least possibility—the standard parameter. With this
one can consider the projectum structure 〈Jρα

, Aα〉 where Aα the standard
code—the <L-least among certain master codes—a predicate that codes Σ1

satisfaction for Jα so that the part of any Σ2(Jα) relation in Jρα
can be taken

to be a Σ1(〈Jρα
, Aα〉) relation. The relation can then be uniformized by a

Σ1(〈Jρα
, Aα〉) function, one that can subsequently be projected up to be a

Σ2(Jα) uniformizing function with the available Σ1(Jα) mapping of a subset
of Jρα

onto Jα.
The foregoing sets out the salient features of fine structure theory, and

Jensen carried out this analysis in general to establish for every n ≥ 1 the
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Σn Uniformization Theorem: For every α, every Σn(Jα) relation can be uni-
formized by a Σn(Jα) relation. In truth, as often with the thrust of method,
fine structure would become autonomous in that it would be the actual fine
structure workings of this lemma, rather than just its statement, which would
be used. Jensen also gave expression to canonicity with what is now known as
the Downward Extension of Embeddings Lemma, which for the foregoing sit-
uation asserts that if e : N → 〈Jρα

, Aα〉 is Σ0-elementary, then N itself is the
projectum structure of a unique Jβ and e can be extended uniquely to a Σ1-
elementary e : Jβ → Jα. Jensen moved forward with this fine structure the-
ory to uncover and articulate the combinatorial structure of the constructible
universe.

4. Strong Hypotheses

4.1. Large Large Cardinals

With elementary embedding having emerged as a systemic concept in set
theory, Solovay and William Reinhardt at Berkeley in the late 1960s for-
mulated inter-related large cardinal hypotheses stronger than measurability.
Reinhardt conceived extendibility, and he and Solovay independently, su-
percompactness. A cardinal κ is γ-supercompact iff there is an elementary
embedding j : V → M for some inner model M , with critical point κ and
γ < j(κ) such that γM ⊆ M , i.e. M is closed under the taking of arbitrary
γ-sequences. κ is supercompact iff κ is γ-supercompact for every γ. Evi-
dently, the heuristics of generalization and reflection were at work here, as κ is
measurable iff κ is κ-supercompact, and stronger closure properties imposed
on the target model M ensures stronger reflection properties. For example,
if κ is 2κ-supercompact with witnessing j : V → M , then M |= “κ is mea-
surable”, since 2κ

M ⊆ M implies that every ultrafilter over κ is in M , and
so if Uj ⊆ P (κ) is defined canonically from j by X ∈ Uj iff κ ∈ j(X), then
{ξ < κ | ξ is measurable} ∈ Uj by  Loś’s Theorem. Supercompactness was
initially viewed as an ostensible strengthening of Tarski’s strong compactness
in that, with the focus on elementary embedding, reflection properties were
directly incorporated. Whether strong compactness is actually equivalent to
supercompactness became a new “identity crisis” issue.

Reinhardt entertained a prima facie extension of these ideas, that there
is a (non-identity) elementary embedding j : V → V . With suspicions soon
raised, Kunen dramatically established in 1970 that this is inconsistent with
ZFC by applying an Erdős-Hajnal partition relation result, a combinatorial
contingency making prominent use of the Axiom of Choice. This contingency
pointed out a specific lack of closure of the target model: For any elementary
embedding j : V → M with critical point κ, let λ be the supremum of κ <
j(κ) < j2(κ) < . . .. Then, Vλ+1 6⊆ M . This lack of closure has essentially
stood as the weakest known to this day.

A net of hypotheses consistency-wise stronger than supercompactness was
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soon cast across the conceptual space delimited by Kunen’s inconsistency.
For n ∈ ω, κ is n-huge iff there is an elementary embedding j : V →M , for
some inner model M , with critical point κ such that jn(κ)M ⊆M . κ is huge
iff κ is 1-huge. If κ is huge, then Vκ |= “there are many supercompact cardi-
nals”. Thematically close to Kunen’s inconsistency were several hypotheses
articulated for further investigation, e.g. there is a (non-identity) elementary
embedding j : Vλ → Vλ for some λ.

The appearance of proper classes in these various formulations raises issues
about legitimacy. By Tarski’s “undefinability of truth”, the satisfaction rela-
tion for V is not definable in ZFC, and the elementary embedding character-
ization of measurability already suffers from this shortcoming. However, the
γ-supercompactness of κ can be analogously formulated in terms of the exis-
tence of a “normal” ultrafilter over the set Pκγ = [γ]<κ = {x ⊆ γ | |x| < κ}.
Similarly, n-hugeness can also be recast. As for Kunen’s inconsistency, his
argument can be regarded as establishing: There is no (non-identity) ele-
mentary embedding j : Vλ+2 → Vλ+2 for any λ.

The details on γ-supercompactness drew out new, generalizing concepts
for filters (and so, for ideals). Suppose that Z is a set and F a filter over P (Z)
(so F ⊆ P (P (Z))). Then F is fine iff for any a ∈ Z, {x ∈ P (Z) | a ∈ x} ∈ F .
F is normal iff whenever f is a function satisfying {x ∈ P (Z) | f(x) ∈ x} ∈
F , i.e. f is a choice function on a set in F , there is an a ∈ Z such that
{x ∈ P (Z) | f(x) = a} ∈ F , i.e. f is constant on a set in F . When Z is
a cardinal κ and κ = {x ∈ P (κ) | x ∈ κ} ∈ F , then this new normality
reduces to the previous concept. With an analogous reduction to filters over
Pκγ = [γ]<κ = {x ∈ P (γ) | |x| < κ}, we have the formulation: κ is γ-
supercompact iff there is a κ-complete, fine, normal ultrafilter over Pκγ.
This inspired a substantial combinatorial investigation of filters over sets
Pκγ, and a general, structural approach to filters over sets P (Z).

Whether it is in these large cardinal hypotheses or the transition from
V to V [G] in forcing, the appeal to the satisfaction relation for V is liberal
and unabashed in modern set-theoretic practice. Yet ZFC remains parsimo-
niously the official theory and this carries with it the necessary burden of
formalization. On the other hand, it is the formalization that henceforth
carries the operative sense; for example, the ultrafilter characterization of
γ-supercompactness delivers through the concreteness of the ultrapower con-
struction critical properties that become part of the concept in its use. It
has become commonplace in modern set theory that informal assertions and
schematic procedures often convey an incipient intentional sense, but formal-
ization refines that sense with workable structural articulations.

Although large large cardinals were developed particularly to investigate
the possibilities for elementary embeddings and were quickly seen to have
a simple but elegant basic theory, what really intimated their potentialities
were new forcing results in the 1970s and 1980s, especially from supercom-
pactness, that established new relative consistencies, even of assertions low
in the cumulative hierarchy. The earliest, orienting result along these lines
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addressed the singular cardinals problem. The “Prikry-Silver” result pro-
vided the first instance of a failure of the Singular Cardinal Hypothesis by
drawing together two results of independent significance, themselves crucial
as methodological advances.

Karel Prikry in his 1968 Berkeley thesis had set out a simple but elegant
notion of forcing that changed the cofinality of a measurable cardinal while
not collapsing any cardinals. With U a normal κ-complete ultrafilter over κ,
(basic) Prikry forcing for U has as conditions 〈p,A〉 where p is a finite subset
of κ and A ∈ U . For conditions 〈p,A〉 and 〈q, B〉, the first is stronger than
the second if p ⊇ q and α ∈ p−q implies α > max(q), and A∪ (p−q) ⊆ B. A
condition thus specifies a finite initial part of a new ω-cofinalizing subset of
κ, and further members are to be added on top from a set large in the sense
of being in U . Applying a partition property available for normal ultrafilters,
Prikry established that for any condition 〈p,A〉 and forcing statement, there
is a B ⊆ A such that B ∈ U and 〈p,B〉 decides the statement, i.e. extending
p is unnecessary. Hence, e.g. the κ-completeness of U implies that Vκ remains
unchanged in the forcing extension yet the cofinality of κ now becomes ω.

Prikry forcing may at first have seemed a curious possibility for singular-
ization. However, that a Prikry generic sequence also generates the corre-
sponding U in simple fashion and also results from indiscernibles made them
a central feature of measurability. Prikry forcing would be generalized in
various directions and for a variety of purposes. With the capabilities made
available for changing cofinalities, equi-consistency connections would eventu-
ally be established between large cardinals on the one hand and formulations
in connection with the Singular Cardinals Problem on the other.

Silver in 1971 first established the relative consistency of having a mea-
surable cardinal κ satisfying 2κ > κ+, a proposition that Kunen had shown
to be substantially stronger than measurability. Forcing over the model con-
structed by Silver with Prikry forcing yielded the first counterexample to the
Singular Cardinals Hypothesis by providing a singular strong limit cardinal
κ satisfying 2κ > κ+.

To establish his result, Silver provided a technique for extending elemen-
tary embeddings into generic extensions and thereby preserving large cardinal
properties. To get at what is at issue, suppose that j : V →M is an elemen-
tary embedding, P is a notion of forcing, and G is V -generic for P . To extend
(or “lift”) j to an elementary embedding for V [G], the natural scheme would
be to get a M -generic G′ for j(P ) and extend j to an elementary embedding
from V [G] into M [G′]. But for this to work with the forcing terms, it would
be necessary to enforce

(∗) ∀p ∈ G (j(p) ∈ G′) .

For getting a measurable cardinal κ satisfying 2κ = κ++, Silver started with
an elementary embedding as above with critical point κ and devised a P for
adjoining κ++ Cohen subsets of κ. In order to establish a close connection
between P and j(P ) toward securing (∗), he took P to be a uniform iteration
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of forcings to adjoin λ++ Cohen subsets of λ for every inaccessible cardinal λ
up to and including κ itself. Then with the shift from κ to j(κ), j(P ) can be
considered a two-stage iteration of P followed by a further iteration Q. Now
with G V -generic for P , G is also M -generic for P , and in M [G] one should
devise an H M [G]-generic for Q such that the combined generic G′ = G ∗H
satisfies (∗).

But how is this to be arranged? Silver was able to control the j(p)’s for
p ∈ G by a single, (strong) master condition q ∈ Q, and build in V [G] an
H M [G]-generic over Q with q ∈ H to satisfy (∗). For getting both q and
H , he needed that M be closed under arbitrary κ++-sequences. Thus he
established: If κ is κ++-supercompact, then there is a forcing extension in
which κ is measurable and 2κ = κ++. (To mention an elegant coda, work
of Woodin and Gitik in the 1980s showed that having a measurable cardinal
satisfying 2κ > κ+ is equi-consistent with having a κ with o(κ) = κ++ in the
Mitchell order.) Silver’s preparatory “reversed Easton” forcing with Easton
support and master condition constructions of generic filters would become
staple ingredients for the generic extension of elementary embeddings.

What about the use of very strong hypotheses in consistency results? A
signal, 1972 result of Kunen brought into play the strongest hypothesis to that
date for establish a consistency result about the low levels of the cumulative
hierarchy. Earlier, Kunen had established that having a κ-complete κ+-
saturated ideal over a successor cardinal κ had consistency strength stronger
than having a measurable cardinal. Kunen now showed: If κ is huge, then
there is forcing extension in which κ = ω1 and there is an ℵ1-complete ℵ2-
saturated ideal over ω1. With a j : V → M with critical point κ, λ = j(κ),
and λM ⊆ M as given by the hugeness of κ, Kunen collapsed κ to ω1 and
followed it was a collapse of λ to ω2 in such a way so as to be able to define
a saturated ideal. Crucially, the first collapse was a “universal” collapse
P iteratively constructed so that the second collapse can be absorbed into
j(P ) in a way consistent with j applied to P , and this required λM ⊆ M .
Hence, a sufficient algebraic argument was contingent on a closure property
for an elementary embedding, one plucked from the emerging large cardinal
hierarchy. In the years to come, Kunen’s argument would be elaborated and
emended to become the main technique for getting various sorts of saturated
ideals over accessible cardinals. As for the proposition that there is an ℵ1-
complete ℵ2-saturated ideal over ω1 itself, Kunen’s result set an initial high
bar for the stalking of its consistency strength, but definitive work of the
1980s would show that far less than hugeness suffices.

4.2. Determinacy

The investigation of the determinacy of infinite games is the most distinc-
tive and intriguing development of modern set theory, and the correlations
eventually achieved with large cardinals the most remarkable and synthetic.
Notably, the mathematics of games first came to the attention of pioneers
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of set theory as an application of the emerging subject. Zermelo in a 1913
note discussed chess and worked with the concepts of winning strategy and
determined game, and Kőnig in the paper that introduced his well-known tree
lemma extended Zermelo’s work to games with infinitely many positions. Von
Neumann, lauding set-theoretic formulation, established the crucial minimax
theorem, the result that really began the mathematical theory of games, and
by the mid-1940s he and Oskar Morgenstern had codified the theory and its
analysis of economic behavior, stimulating research for decades to come.

The investigation of infinitely long games that can be cast in a simple,
abstract way would draw game-theoretic initiatives back into set theory. For
a set X and A ⊆ ωX , let GX (A) denote the following “infinite two-person
game with perfect information”: There are two players, I and II . I initially
chooses an x(0) ∈ X ; then II chooses an x(1) ∈ X ; then I chooses an
x(2) ∈ X ; then II chooses an x(3) ∈ X ; and so forth:

I : x(0) x(2) . . .
II : x(1) x(3) . . .

Each player before making each of his moves is privy to the sequence of
previous moves (“perfect information”); and the players together specify an
x ∈ ωX . I wins GX(A) if x ∈ A, and otherwise II wins. A strategy is a
function that tells a player what move to make given the sequence of previous
moves. A winning strategy is a strategy such that if a player plays according
to it he always wins no matter what his opponent plays. A is determined if
either I or II has a winning strategy in GX (A).

David Gale and James Stewart in 1953 initiated the study of these games
and observed that if A ⊆ ωX is open (in the product topology) then A is
determined. The simple argument turned on how membership is secured at a
finite stage, and a basic stratagem in the further investigations of determinacy
would be the reduction to such “open games”. Focusing on the basic case
X = ω and noting that a strategy then can itself be construed as a real, Gale
and Stewart showed by diagonalizing through all strategies that assuming
AC there is an undetermined A ⊆ ωω. Determinacy itself would come to
be regarded as a regularity property, but there were basic difficulties from
the beginning. Gale and Stewart asked whether all Borel sets of reals are
determined, and in the decade that followed only sets very low in the Borel
hierarchy were shown to be determined.

Infinitely long games involving reals had been considered as early as in the
1920s by mathematicians of the Polish school. With renewed interest in the
subject in the 1950s, and with determinacy increasingly seen to be potent
in its consequences, Jan Mycielski and Hugo Steinhaus in 1962 proposed the
following axiom, now known as the Axiom of Determinacy (AD):

Every A ⊆ ωω is determined.

With AD contradicting AC they proposed from the beginning that in the ZFC
context the axiom should hold in some inner model. Solovay pointed out that
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the natural candidate L(R), the constructible closure of the reals R = ωω,

observing that if AD holds then ADL(R), i.e. AD holds in L(R). Further
restricted hypotheses would soon be applied to the tasks at hand: Projective
Determinacy (PD) asserts that every projective A ⊆ ωω is determined; Σ1

n-
determinacy, that every Σ1

n set A is determined; and so forth.
By 1964, games to specific purposes had been devised to show that for

A ⊆ ωω there is a closely related B ⊆ ωω (a continuous preimage) so that
if B is determined, then A is Lebesgue measurable, and similarly for the
Baire property and the perfect set property. Moreover, AD does imply a
limited choice principle, that every countable set consisting of sets of reals
has a choice function. Thus, the groundwork was laid for the reign of AD in
L(R) to enforce the regularity properties for all sets of reals there as well as
a local choice principle, and unfettered uses of AC relegated to the universe
at large.

In 1967 two results drew determinacy to the foreground of set theory, one
about the transfinite and the other about definable sets of reals. Solovay
established that AD implies that ω1 is measurable, injecting emerging large
cardinal techniques into a novel setting without AC. David Blackwell pro-
vided a new proof via the determinacy of open games of a classical result of
Kuratowski that the Π1

1 sets have the reduction property. These results stim-
ulated interest because of their immediacy and new approach to proof, that
of devising a game and appealing to the existence of winning strategies to
deduce a dichotomy. Martin in particular saw the potentialities at hand and
soon made incisive contributions to investigations with and of determinacy.
He initially made a simple but crucial observation based on the construal of
strategies as reals that would have myriad applications; he showed that under
AD the filter over the Turing degrees generated by the cones is an ultrafilter.

After seeing Blackwell’s argument, Martin and Addison quickly and inde-
pendently came to the idea of assuming determinacy hypotheses and pointed
out that ∆1

2-determinacy implies that Σ1
3 sets have the reduction property.

Then Martin and Yiannis Moschovakis independently in 1968 extended the
reduction property through the projective hierarchy by playing games and
assuming PD, realizing a methodological goal of the classical descriptive set
theorists by carrying out an inductive propagation. This was Martin’s initial
application of his ultrafilter on Turing cones, and the idea of ranking ordinal-
valued functions via ultrafilters, so crucial in later arguments, first occurred
here.

Already in 1964 Moschovakis had abstracted a property stronger and more
intrinsic than reduction, the prewellordering property, from the classical anal-
ysis of Π1

1 sets. A relation � is a prewellordering if it is a well-ordering
except possibly that there could be distinct x and y such that x � y and
y � x. While a well-ordering of a set A corresponds to a bijection of A into
an ordinal, a prewellordering corresponds to a surjection onto an ordinal—a
stratification of A into well-ordered layers. A class Γ of sets of reals has the
prewellordering property if for any A ∈ Γ there is a prewellordering of A such
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that both it and its complement are in Γ in a strong sense. and this property
supplanted the reduction property in the Martin-Moschovakis First Period-
icity Theorem, which implied that under PD the prewellordering property
holds periodically for the projective classes: Π1

1, Σ1
2, Π1

3, Σ1
4, . . ..

As for Solovay’s result, he in fact established that under AD the closed
unbounded filter Cω1 is an ultrafilter by using a game played with countable
ordinals and simulating it with reals. Martin provided an alternate proof
using his ultrafilter on Turing cones, and then Solovay in 1968 used Martin’s
result to establish that under AD ω2 is measurable. With an apparent trend
set, quite unexpected was the next advance. Martin in 1970 established that
under AD the ωn’s for 3 ≤ n < ω are all singular with cofinality ω2! This
was a by-product of Martin’s incisive analysis of Σ1

3 sets under AD.
Martin and Solovay had by 1969 established results about the Σ1

3 sets
assuming a# exists for every a ∈ ωω, and Martin went on to make explicit
a “Martin-Solovay” tree representation for Σ1

3 sets. Just as Shoenfield had
dualized the classical tree representation of Π1

1 sets by reconstruing well-
foundedness as having order-preserving ranking functions, so too Martin was
able to dualize the Shoenfield tree. For this he used the existence of sharps to
order ordinal-valued functions and secure important homogeneity properties
to establish that if a# exists for every a ∈ ωω, then every Σ1

3 set is ω2-Suslin.
This careful analysis with indiscernibles led to the aforementioned singularity
of the ωn’s for 3 ≤ n < ω under AD.

Martin also reactivated the earlier project of securing more and more
determinacy by establishing that if there is measurable cardinal, then Π1

1-
determinacy holds, or in refined terms, if a# exists, then Π1

1(a)-determinacy
holds. The proof featured a remarkably simple reduction to an open game,
based on indiscernibles and homogeneity properties, of form GX(A) for a set
X of ordinals. This ground-breaking proof served both to make plausible
the possibility of getting PD from large cardinals as well as getting ∆1

1-
determinacy, Borel Determinacy, in ZFC—both directions to be met with
complete success in later years.

The next advance would be by way of what would become the central
structural concept in the investigation of the projective sets under determi-
nacy. The classical issue of uniformization had been left unaddressed by the
prewellordering property, and so Moschovakis in 1971 isolated a strength-
ening abstracted from the proof of the classical, Kondô Π1

1 Uniformization
Theorem. A scale on a set A ⊆ ωω is an ω-sequence of ordinal-valued func-
tions on A satisfying convergence and continuity properties, and a class Γ of
sets of reals has the scale property if for any A ∈ Γ there is a scale on A whose
corresponding graph relations are in Γ in a strong sense. Having a scale on
A corresponds to having A = p[T ] for a tree T in such a way that, impor-
tantly, from A is definable a member of A through a minimization process
(“choosing the honest leftmost branch”).

Instead of carrying out a tree dualizing procedure directly à la Shoenfield
and Martin-Solovay, Moschovakis used a game argument to establish the
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Second Periodicity Theorem, which implied that under PD the scale property,
and therefore uniformization, holds for the same projective classes as for
prewellordering: Π1

1, Σ1
2, Π1

3, Σ1
4, . . ..

In the early 1970s Moschovakis, Martin, and Alexander Kechris proceeded
with scales to provide a detailed analysis of the projective sets under PD in
terms of Borel sets and as projections of trees, based on the projective ordinals
δ

1
n (= δ

∼

1
n) = the supremum of the lengths of the ∆1

n prewellorderings. For
example, the Σ1

2n+2 sets are exactly the δ
1
2n+1-Suslin sets. The further analy-

sis would be based on Moschovakis’s Coding Lemma, which with determinacy
provides for an arbitrary set meeting the layers of a prewellordering a appro-
priately definable subset meeting those same layers, and his Third Periodicity
Theorem, which with determinacy asserts that when winning strategies ex-
ist there are appropriately definable such strategies. The projective ordinals
themselves were subjected to considerable scrutiny, with penetrating work of
Kunen particularly advancing the theory, and were found to be measurable
and to satisfy strong partition properties. However, where exactly the δ

1
n

for n ≥ 5 are in the aleph hierarchy would remain a mystery until the lat-
ter 1980s, when Steve Jackson in a tour de force settled the question with
a deep analysis of the ultrafilters and partition properties involved. As an
otherwise complete structure theory for projective sets was being worked out
into the 1970s, Martin in 1974 returned to a bedrock issue for the regularity
properties and established in ZFC that ∆1

1-determinacy, Borel Determinacy,
holds.

4.3. Silver’s Theorem and Covering

In mid-1974 Silver established that if κ is a singular cardinal with cf(κ) > ω
and 2λ = λ+ for λ < κ, then 2κ = κ+. This was a dramatic event and
would stimulate dramatic developments. There had been precious little in
the way of results provable in ZFC about cardinal arithmetic, and in the early
ruminations about the singular cardinals problem it was quite unforeseen
that the power of a singular cardinal can be so constrained. An analogous
preservation result had been observed by Scott for measurable cardinals,
and telling was that Silver used large-cardinal ideas connected with generic
ultrapowers.

Silver’s result spurred broad-ranging investigations both into the combi-
natorics and avenue of proof and into larger, structural implications. The
basis of his argument was a ranking of ordinal-valued functions on cf(κ). Let
〈γα | α < cf(κ)〉 be a sequence of ordinals unbounded in κ and for α < cf(κ)
let τα : P (γα) → 2γα be a bijection. For X ⊆ κ let fX on cf(κ) be defined
by: fX(α) = τα(X ∩ γα), noting that X1 6= X2 implies fX1 and fX2 dif-
fer for sufficiently large α. Then 2κ is mirrored through these eventually
different functions, which one can work to order according to an ideal over
the uncountable cf(κ). The combinatorial possibilities of such rankings led
to a series of limitative results on the powers of singular cardinals of un-
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countable cofinality, starting with the results of Fred Galvin and Hajnal, of
which the paradigmatic example is that if ℵω1 is a strong limit cardinal, then
2ℵω1 < ℵ(2ℵ1 )+ .

In the wake of Silver’s proof, Thomas Jech and Prikry defined a κ-complete
ideal over κ to be precipitous iff the corresponding generic ultrapower à la
Solovay is well-founded. They thus put the focus on a structural property
of saturated ideals that Silver had simulated to such good effect. Jech and
Prikry pointed out that a proof of Kunen’s for saturated ideals using iterated
ultrapowers can be tailored to show: If there is a precipitous ideal over κ, then
κ is measurable in an inner model. Then Mitchell showed: If a measurable
cardinal is Levy collapsed to ω1, then there is a precipitous ideal over ω1.
Hence, a first equi-consistency result was achieved for measurability and ω1.
With combinatorial characterizations of precipitousness soon in place, well-
foundedness as thus modulated by forcing became a basic ingredient in a
large-scale investigation of strong properties tailored to ideals and generic
elementary embeddings.

The most dramatic and penetrating development from Silver’s Theorem
was Jensen’s work on covering for L and its first extensions, the most promi-
nent advances of the 1970s in set theory. Jensen had found Silver’s result a
“shocking discovery,” and was stimulated to intense activity. By the end of
1974 he had made prodigious progress, solving the singular cardinals problem
in the absence of 0# in three manuscripts, “Marginalia to a Theorem of Sil-
ver” and its two sequels. The culminating result featured an elegant and focal
formulation of intuitive immediacy, the Covering Theorem (or “Lemma”) for
L: If 0# does not exist, then for any uncountable set X of ordinals there is a
Y ∈ L with |Y | = |X | such that Y ⊇ X. (Without the “uncountable” there
would be a counterexample using “Namba forcing”.) This covering property
expresses a global affinity between V and L, and its contrapositive provides a
surprisingly simple condition sufficient for the existence of 0# and the ensu-
ing indiscernible generation of L. As such, Jensen’s theorem would find wide
applications for implicating 0# and would provide a new initiative in inner
model theory for encompassing stronger hypotheses.

The Covering Theorem gave the essence of Jensen’s argument that in the
absence of 0# the Singular Cardinals Hypotheses holds: Suppose that κ
is singular and for reckoning with the powers of smaller cardinals consider
λ = sup{2µ | µ < κ}. If there is a ν < κ such that λ = 2ν , then the functions
fX defined as above adapted to the present situation satisfy fX : cf(κ)→ 2ν ,
and so λ ≤ 2κ ≤ (2ν)cf(κ) ≤ λ. If on the other hand λ is the strict supremum
of increasing 2µ’s, then cf(λ) = cf(κ) and so the Zermelo-Kőnig inequality
would dictate the least possibility for 2κ to be λ+. However, if for any X ⊆ κ
the range of fX is covered by a Y ⊆ λ with Y ∈ L of cardinality cf(κ) · ℵ1,
then: there are 2cf(κ)·ℵ1 subsets of each such Y and by the GCH in L, at
most |λ+L| such Y . Hence, we would have 2κ ≤ 2cf(κ)·ℵ1 · |λ+L| ≤ λ+.

The Covering Theorem also provided another dividend that would grow in
separate significance as having weak covering property: Assume that 0# does
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not exist. If κ is singular, then κ+L = κ+. If to the contrary κ+L < κ+,
then cf(κ+L) < κ. Let X ⊆ κ+L be unbounded so that |X | < κ and let
Y ∈ L cover X with |Y | = |X | · ℵ1. But then, the order-type of Y would be
less than κ, contradicting the regularity of κ+L in L.

A crucial consequence of weak covering is that in the absence of 0#, �κ

holds for singular κ, since a �κ sequence in the sense of L is then a �κ

sequence in V . The weak covering property would itself become pivotal in
the study of inner models corresponding to stronger and stronger hypotheses,
and the failure of �κ for singular κ would become a delimitative proposition.
Solovay had already established an upper bound on consistency by showing
in the early 1970s that if κ is λ+-supercompact and λ ≥ κ, then �λ fails.

Jensen’s ingenious proof of the Covering Theorem for L proceeded by tak-
ing a counterexample X to covering with τ = sup(X) and |X | minimal;
getting a certain Σ1-elementary j : Jγ → Jτ which contains X in its range
through a Skolem hull construction so that |γ| = |X | and, as X cannot be
covered, γ is a cardinal in L; and extending j to an elementary embedding
from L into L, so that 0# exists. The procedure for extending j up to some
large Jδ was to consider a directed system of embeddings of structures gen-
erated by ξ ∪ p for some ξ < γ and p a finite subset of Jδ, the transitized
components of the system all being members of Jγ as γ is a cardinal in L,
and to consider the corresponding directed system consisting of the j images.
The choice of γ insured that the new directed system is also well-founded,
and so isomorphic to some Jζ . For effecting embedding extendibility, Jensen
established the fine structural Upward Extension of Embeddings Lemma, ac-
cording to which if N is the projectum structure for Jα and a Σ1-elementary
e : N →M is strong in that it preserves the well-foundedness of Σ1 relations,
then M itself is the projectum structure of some unique Jβ and e can be
extended uniquely to a Σ1-elementary e : Jα → Jβ .

How can the proof of the Covering Theorem be adapted to establish a
stronger result? The only possibility was to consider a larger inner model
M and to establish that M has the covering property : for any uncountable
set X of ordinals there is a Y ∈ M with |Y | = |X | such that Y ⊇ X . In
groundbreaking work for inner model theory, Solovay in the early 1970s had
developed a fine structure theory for inner models of measurability. Whilst
a research student at Oxford University Anthony Dodd worked through this
theory, and in early 1976 he and Jensen laid out the main ideas for extending
the Covering Theorem to a new inner model, now known as the Dodd-Jensen
core model, denoted KDJ.

If 〈L[U ],∈, U〉 is an inner model of measurability, say the κ-model, then
there is a generic extension in which covering fails: If G is Prikry generic
for U over L[U ], then G cannot be covered by any set in L[U ] of cardinality
less than κ. Drawing back, there remains the possibility of “iterating out”
the measurable cardinal: If 〈L[U ],∈, U〉 is the κ-model, then 〈L[W ],∈,W 〉
is the λ-model for some λ > κ exactly when it is an iterate of 〈L[U ],∈
, U〉, in which case L[W ] ⊆ L[U ], Vκ ∩ L[U ] = Vκ ∩ L[W ], and U /∈ L[W ].
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Thus, if 〈L[Uα] | α ∈ On〉 enumerates the inner models of measurability,
then starting with any one of them, the process of iterating it through the
ordinals converges to a proper class

⋂
α L[Uα] which has no inner models of

measurability, with the stabilizing feature that for any γ, Vγ ∩
⋂

α L[Uα] =
Vγ ∩ L[Uβ] for sufficiently large β. Assuming that there are inner models of
measurability, KDJ is in fact characterizable as this residue class. Aspiring
to this, but without making any such assumption, Dodd and Jensen provided
a formulation of KDJ in ZFC.
KDJ was the first inner model of ZFC since Gödel’s L developed using

distinctly new generating principles. Dodd and Jensen’s approach was to
take KDJ as the union of L together with “mice”. Loosely speaking, a mouse
is a set Lα[U | such that

〈Lα[U ],∈, U〉 |= U is a normal ultrafilter over κ

satisfying: (i) there is a subset of κ in Lα+1[U ] − Lα[U ], so that U is on
the verge of not being an ultrafilter; (ii) 〈Lα[U ],∈, U〉 is iterable in that all
the iterated ultrapowers are well-founded, and (iii) fine structure conditions
about a projectum below κ leading to (i). Mice can be compared by taking
iterated ultrapowers, so that there is a natural prewellordering of mice, and
moreover, crucial elements about L can be lifted to the new situation because
there is a generalization of condensation: Σ1-elementary substructures of
mice, when transitized, are again mice. This led to KDJ |= GCH, and that
KDJ in the sense of KDJ is again KDJ.

Mice generate indiscernibles through iteration, and so if 0# does not exist,
then KDJ = L; if 0# exists but 0## does not, then KDJ = L[0#]; and
this continues through the transfinite by coding sequences of sharps. On
the other hand, KDJ has no simple constructive analysis from below and is
rather like a maximal inner model on the brink of measurability: Its own
“sharp”, that there is an elementary embedding j : K → K, is equivalent
to the existence of an inner model of measurability. Indeed, this was Dodd
and Jensen’s primary motivation for the formulation of KDJ. They used
it in place of the elementary embedding characterization of the existence of
0#, together with the L-like properties of KDJ, to establish the Covering
Theorem for KDJ: If there is no inner model of measurability, then KDJ has
the covering property. This has the attendant consequences for the singular
cardinals problem. Moreover, Dodd and Jensen were able to establish a
covering result for inner models of measurability that accommodates Prikry
forcing. Solovay had devised a set of integers 0† (“zero dagger”), analogous
to 0#, such that 0† exists exactly when for some κ-model L[U ] there is an
elementary embedding j : L[U ] → L[U ] with critical point above κ. Dodd
and Jensen established: If 0† does not exist yet there is an inner model of
measurability, then for the κ-model L[U ] with κ least, either (a) L[U ] has
the covering property, or (b) there is a Prikry generic G for U over L[U ]
such that L[U ][G] has the covering property. Prikry forcing provides the only
counterexample to covering! Hence, the inner models thus far considered
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were also “core models”, models on the brink so that the lack of covering
leads to the next large cardinal hypothesis.

In the light of the Dodd-Jensen work, Mitchell in the later 1970s devel-
oped the core model K[U ] for coherent sequences U of ultrafilters, which
corresponds to his L[U ] as KDJ does to L[U ]. The mice are now sets of form
Jα[W ] with iterability and fine structure properties, where W is an ultrafilter
sequence with U as an initial segment. Under the assumption that there is
no κ satisfying o(κ) = κ++, Mitchell established a covering theorem for K[U ]
setting out how the Dodd-Jensen covering proof for L[U ] involving Prikry
generic sets can be cast in terms of having coherent systems of indiscernibles.
With this result, Mitchell established that several propositions each have
consistency strength at least that of ∃κ(o(κ) = κ++). Two prominent propo-
sitions were that there is a singular cardinal κ such that (κ+)K[U ] < κ+ for
weak covering and that there is an ℵ1-complete ℵ2-saturated ideal over ω1, es-
tablishing a new lower bound in consistency strength for Kunen’s consistency
result from a huge cardinal.

4.4. Forcing Consistency Results

Through the 1970s a wide range of variegated forcing consistency results were
established at a new level of sophistication that clarified relationships among
combinatorial propositions and principles and often drew in large cardinal
hypotheses and stimulated the development of method, especially in iterated
forcing. A conspicuous series of results resolved questions of larger mathe-
matics (Whitehead’s Problem, Borel’s Conjecture, Kaplansky’s Conjecture,
the Normal Moore Space Problem) in terms of relative consistency and set-
theoretic principles, newly affirming the efficacy and adjudicatory character
of set theory. In what follows, as we have begun to already, we pursue the
larger longitudinal themes and results, necessarily saying less and less about
matters of increasing complexity.

Much of the early formative work on strong large cardinal hypotheses and
their integration into modern set theory through consistency results was car-
ried out by Menachem Magidor, whose subsequent, broad-ranging initiatives
have considerably advanced the entire subject. After completing his Hebrew
University thesis in 1972 on supercompact cardinals, Magidor in the 1970s
established a series of penetrating forcing consistency results involving strong
hypotheses. In 1972-3 he illuminated the “identity crisis” issue of whether
supercompactness and strong compactness are distinct concepts by establish-
ing: (1) It is consistent that the least supercompact cardinal is also the least
strong compact cardinal, and (2) It is consistent that the least strong compact
cardinal is the least measurable cardinal (and so much smaller than the least
supercompact cardinal). The proofs showed how changing many cofinalities
with Prikry forcing to destroy measurable cardinals can be integrated into
arguments about extending elementary embeddings.

In 1974 Magidor made a basic contribution to the theory of changing cofi-
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nalities, the first after Prikry. Magidor established: If a measurable cardinal
κ is of Mitchell order o(κ) ≥ λ for a regular λ < κ, then there is a forc-
ing extension preserving cardinals in which cf(κ) = λ. Generalizing Prikry
forcing, Magidor’s conditions consisted of a finite sequence of ordinals and
a sequence of sets drawn from normal ultrafilters in the Mitchell order, the
sets providing for the possible ways of filling out the sequence. Like Prikry’s
forcing, Magidor’s may at first have seemed a curious possibility for a new
singularization. However, one of the subsequent discernments of Mitchell’s
core model for coherent sequences of measures is that, remarkably: If a regu-
lar cardinal κ in V satisfies ω < cf(κ) < κ in a generic extension, then V has
an inner model in which o(κ) is at least that cofinality. Thus, the capability
of changing cofinalities was exactly gauged; “Prikry-Magidor” generic sets
as sequences of indiscernibles would become a basic component of Mitchell’s
covering work.

The most salient results of Magidor’s of this period were two of 1976 that
provided counterweight to Jensen’s covering results on the singular cardinal
problem. Magidor showed: (1) If κ is supercompact, there is a forcing ex-
tension in which κ is ℵω as a strong limit cardinal yet 2ℵω > ℵω+1, and (2)
If κ is a huge cardinal, then there is a forcing extension in which κ = ℵω,
2ℵn = ℵn+1 for n ∈ ω, yet 2ℵω > ℵω+1. Thus, forcing arguments showed that
the least singular cardinal can be a counterexample to the Singular Cardi-
nals Hypothesis; the strong elementary embedding hypotheses allowed for an
elaborated Prikry forcing interspersed with Levy collapses. The Prikry-Silver
and the Magidor results showed through initial incursions of Prikry forcing
how to arrange high powers for singular strong limit cardinals; it would be
one of the great elaborations of method that equi-consistency results would
eventually be achieved with weaker hypotheses.

With respect to the Jech-Prikry-Mitchell equi-consistency of measurability
and precipitousness, Magidor showed that absorptive properties of the Levy
collapse of a measurable cardinal to ω1 can be exploited by subsequently
“shooting” closed unbounded subsets of ω1 through stationary sets to get: If
there is a measurable cardinal κ, then there is a forcing extension in which κ =
ω1 and NSω1 is precipitous. Thus a basic, definable ideal can be precipitous,
and this naturally became a principal point of departure for the investigation
of ideals.

The move of Saharon Shelah into set theory in the early 1970s brought
in a new and exciting sense of personal initiative that swelled into an en-
hanced purposiveness across the subject, both through his solutions of major
outstanding problems as well as through his development of new structural
frameworks. A phenomenal mathematician, Shelah from his 1969 Hebrew
University thesis on has worked in model theory and eventually infused it
with a transformative, abstract classification theory for models. In both
model theory and set theory he has remained eminent and has produced re-
sults at a furious pace, with nearly 1000 items currently in his bibliography
(his papers are currently archived at http://shelah.logic.at/).
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In set theory Shelah was initially stimulated by specific problems. He typ-
ically makes a direct, frontal attack, bringing to bear extraordinary powers of
concentration, a remarkable ability for sustained effort, an enormous arsenal
of accumulated techniques, and a fine, quick memory. When he is successful
on the larger problems, it is often as if a resilient, broad-based edifice has
been erected, the traditional serial constraints loosened in favor of a wide,
fluid flow of ideas and the final result almost incidental to the larger struc-
ture. What has been achieved is more than a just succinctly stated theorem
but rather the erection of a whole network of robust arguments.

Shelah’s written accounts have acquired a certain notoriety that in large
part has to do with his insistence that his edifices be regarded as autonomous
conceptual constructions. Their life is to be captured in the most general
forms, and this entails the introduction of many parameters. Often, the
network of arguments is articulated by complicated combinatorial principles
and transient hypotheses, and the forward directions of the flow are rendered
as elaborate transfinite inductions carrying along many side conditions. The
ostensible goal of the construction, that succinctly stated result that is to
encapsulate it, is often lost in a swirl of conclusions.

Shelah’s first and very conspicuous advance in set theory was his 1973,
definitive results on Whitehead’s Problem in abelian group theory: Is every
Whitehead group, an abelian groupG satisfying Ext1(G,Z) = 0, free? Shelah
established that V = L implies that this is so, and that Martin’s Axiom
implies that there is a counterexample. Shelah thus established for the first
time that a strong purely algebraic statement is undecidable in ZFC. With
his L result specifically based on diamond-type principles, Shelah brought
them into prominence with his further work on them, which were his first
incursions into iterated forcing. As if to continue to get his combinatorial
bearings, Shelah successfully attacked several problems on an Erdős-Hajnal
list for partition relations, developing in particular a “canonization” theory
for singular cardinals. By the late 1970s his increasing understanding of and
work in iterated forcing would put a firm spine on much of the variegated
forcing arguments about the continuum.

With an innovative argument pivotal for iterated forcing, Richard Laver
in 1976 established the consistency of Borel’s conjecture: Every set of reals
of strong measure zero is countable. CH had provided a counterexample,
and Laver established the consistency with 2ℵ0 = ℵ2. His argument fea-
tured the adjunction of what are now called Laver reals in the first clearly
set out countable support iteration, i.e. an iteration with non-trivial local
conditions allowed only at countably many coordinates. The earlier Solovay-
Tennenbaum argument for the consistency of MA had relied on finite support,
and a Mitchell argument about Aronszajn trees, on an involved countable
support with a “termspace” forcing, which would also find use. Laver’s work
showed that countable support iteration is both manageable and efficacious
for preserving certain framing properties of the continuum to establish the
consistency of propositions with 2ℵ0 = ℵ2. Interestingly, a trade-off would
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develop however: while finite support iterations put all cardinals ≥ ℵ2 on
an equal footing with respect to the continuum, countable support iterations
restricted the continuum to be at most ℵ2. With a range of new generic reals
coming into play with the widening investigation of the continuum, James
Baumgartner formulated a property common to the corresponding partial
orders, Axiom A, which in particular ensured the preservation of ω1. He
showed that the countable support iteration of Axiom A forcings is Axiom
A, thereby uniformizing the iterative adjunction of the known generic reals.

All this would retrospectively have a precursory air, as Shelah soon es-
tablished a general, subsuming framework. Analyzing Jensen’s consistency
argument for SH + CH and coming to grips with forcing names in iterated
forcing, Shelah came to the concept of proper forcing as a general prop-
erty that preserves ω1 and is preserved in countable support iterations. The
instrumental formulation of properness is given in an appropriately broad
setting:

First, for a regular cardinal λ, let H(λ) = {x | |tc({x})| < λ}, the sets
hereditarily of cardinality less than λ. The H(λ)’s provide another cumula-
tive hierarchy for V , one stratified into layers that each satisfy Replacement;
whereas the Vα’s for limit α satisfy every ZFC axiom except possibly Re-
placement, the H(λ)’s satisfy every ZFC axiom except possibly Power Set.
A partial order 〈P,<〉 is proper if for any regular λ > 2|P | and countable
M ≺ H(λ) with P ∈M , every p ∈ P ∩M has a q ≤ p such that q 
 Ġ∩M is
M -generic. (Here, Ġ a canonical name for a generic filter with respect to P ,
and q forcing this genericity assertion has various combinatorial equivalents.)

A general articulation of how all countable approximations are to have
generic filters has been achieved, and its presentation under countable sup-
port iterations exhibited the efficacy of this remarkable move to a new plateau.
Shelah soon devised variants and augmentations, and in a timely 1982 mono-
graph Proper Forcing revamped forcing for combinatorics and the continuum
with systemic proofs of new and old results. Proper forcing, presented in
Chapter 5 of this Handbook, has become a staple part of the methods of
modern set theory, with its applications wide-ranging and the development
of its extended theory a fount of research.

In light of Shelah’s work and Martin’s Axiom, Baumgartner in the early
1980s established the consistency of a new encompassing forcing axiom, the
Proper Forcing Axiom (PFA): For any proper partial order P and collection
D of ℵ1 dense subsets of P , there is a filter G ⊆ P meeting every member
of D. Unlike MA, the consistency of PFA required large cardinal strength
and moreover could not be achieved by iteratively taking care of the par-
tial orders at issue, as new proper partial orders occur arbitrarily high in
the cumulative hierarchy. Baumgartner established: If there is a supercom-
pact cardinal κ, then there is a forcing extension in which κ = ω2 and PFA
holds. In an early appeal to the full global reflection properties available at
a supercompact cardinal Baumgartner iteratively took care of the emerging
proper partial orders along a special diamond-like sequence that anticipates
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all possibilities. Laver first formulated this sequence, the “Laver diamond”,
toward establishing what has become a useful result for forcing theory; in a
forcing extension he made a supercompact cardinal “indestructible” by any
further forcing from a substantial, useful class of forcings. PFA became a
widely applied forcing axiom, showcasing Shelah’s concept, but beyond that,
it would itself become a pivotal hypothesis in the large cardinal context.

Two points of mathematical practice should be mentioned in connection
with Shelah’s move into set theory. First, through his work with proper
forcing it has become routine to appeal in proofs to structures 〈H(λ),∈, <∗

, . . .〉 for regular λ sufficiently large, with <∗ some well-ordering of H(λ) and
. . . including all the sets concerned. One then develops systems of elementary
substructures generated uniformly by Skolem functions defined via <∗. This
technique, in providing some of the structure available in L-like inner models,
has proved highly efficacious over a wide range from combinatorics to large
cardinals.

Second, several of a developing Israeli school in set theory have followed
Shelah in writing “p > q” for p being a stronger condition than q instead of
“p < q”. The former is argued for as more natural, whereas the latter had
been motivated structurally by Boolean algebras. This revisionism has no
doubt led to confusion, until one realizes that it is a particular stamp of the
Israeli school.

5. New Expansion

5.1. Into the 1980s

The 1980s featured a new and elaborating expansion in set theory signif-
icantly beyond the successes, already remarkable, of the previous decade.
There were new methods and results of course, but more than that there
were successful maximizations in several directions—definitive and evidently
optimal results—and successful articulations at the interstices—new concepts
and refinements that filled out the earlier explorations. A new wave of young
researchers entered the fray, including the majority of the authors contribut-
ing to this Handbook, soon to become the prominent experts in their re-
spective, newly variegated subfields. Our narrative now becomes even more
episodic in increasingly inverse relation to the broad-ranging and penetrat-
ing developments, leaving accounts of details and some whole subjects to the
chapter summaries at the end.

In 1977 Lon Radin toward his Berkeley thesis developed an ultimate gen-
eralization of the Prikry and Magidor forcings for changing cofinalities, a
generalization that could in fact adjoin a closed unbounded subset, consist-
ing of formerly regular cardinals, to a large cardinal κ while maintaining its
regularity and further substantive properties. As graduate students at Berke-
ley, Hugh Woodin and Matthew Foreman saw the possibilities abounding in
Radin forcing. While an undergraduate at Caltech Woodin did penetrating
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work on the consistency of Kaplansky’s Conjecture (Is every homomorphism
on the Banach algebra of continuous functions on the unit interval contin-
uous?) and now with Radin forcing in hand would produce his first series
of remarkable results. By 1979 Foreman and Woodin had the essentials for
establishing: If there is a supercompact cardinal κ, then there is forcing exten-
sion in which Vκ as a model of ZFC satisfies that the GCH fails everywhere,
i.e. 2λ > λ for every λ. This conspicuously subsumed the Magidor result
getting ℵω a strong limit yet 2ℵω > ℵω+1 and put Radin forcing on the map
for establishing global consistency results.

Shelah soon established two re-orienting results about powers of singular
cardinals. Having come somewhat late into the game after Silver’s Theorem,
Shelah had nonetheless extended some of the limitative results about such
powers, even to singular κ such that ℵκ = κ. Shelah subsequently established:
If there is a supercompact cardinal κ and α is a countable ordinal, then
there is a forcing extension in which κ is ℵω as a strong limit cardinal yet
2ℵω = ℵα+1. He thus extended Magidor’s result by showing that the power
of ℵω can be made arbitrarily large below ℵω1 . In 1980 Shelah established

the general result that for any limit ordinal δ, ℵ
cf(δ)
δ < ℵ(|δ|cf(δ))+, so that in

particular if ℵω is a strong limit cardinal, then 2ℵω < ℵ(2ℵ0 )+ . Not only was
he able to get an absolute upper bound in ZFC, but he had brought countable
cofinality, the one cofinality unattended to by Silver’s Theorem, into the
scheme of things. Shelah’s argument, based on the possible cofinalities of
“reduced products” of a cofinal subset of ℵδ, would evolve into a generally
applicable method by the late 1980’s, the remarkable pcf theory.

In 1978, Mitchell made a new breakthrough for the inner model theory
of large large cardinals by developing such a model for “hypermeasurable
cardinals”, e.g. a measurable cardinal κ such that for some normal ultra-
filter U over κ, P (P (κ)) ⊆ Ult(V, U), so that every ultrafilter over κ is in
the ultrapower. This at least captured a substantial consequence of the 2κ-
supercompactness of κ, and so engendered the hope of getting L-like inner
models for such strong hypotheses. Supercompactness, while increasingly re-
lied on in relative consistency results owing to its reflection properties, was
out of reach, but the Mitchell result suggested an appropriate weakening: A
cardinal κ is α-strong iff there is an elementary embedding j : V → M for
some inner model M , with critical point κ and α < j(κ) such that Vα ⊆M .
(One can alternately require that the αth iterated power set P α(κ) be a sub-
set of M , which varies the definition only for small α like α = 2 but makes
the definition more germane for them.) κ is strong iff it is α-strong for every
α.

Dodd and Jensen soon simplified Mitchell’s presentation in what turned
out to be a basic methodological advance for the development of inner model
theory. While introducing certain redundancies, they formulated a general
way of analyzing an elementary embedding in terms of extenders. The idea,
anticipated in Jensen’s proof of the Covering Theorem, is that elementary
embeddings between inner models can be approximated arbitrarily closely
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as direct limits of ultrapowers with concrete features reminiscent of iterated
ultrapowers.

Suppose that N and M are inner models of ZFC, j : N →M is elementary
with a critical point κ, and β > κ. Let ζ ≥ κ be the least ordinal satisfying
β ≤ j(ζ); the simple (“short”) case is ζ = κ, and the general case is for the
study of stronger hypotheses. For each finite subset a of β, define Ea by:

X ∈ Ea iff X ∈ P ([ζ]|a|) ∩N ∧ a ∈ j(X) .

This is another version of the idea of generating ultrafilters from embeddings.
Ea may not be in N , but 〈N,∈, Ea〉 |= “Ea is a κ-complete ultrafilter over
[ζ]|a|”. The (κ, β)-extender derived from j isE = 〈Ea | a is a finite subset of β〉.

For each finite subset a of β, Ult(N,Ea) is seen to be elementarily em-
beddable into M , so that in particular Ult(N,Ea) is well-founded and hence
identified with its transitive collapse, say Ma. Next, for a ⊆ b both finite
subsets of β, corresponding to how members of a sit in b there is a natural
elementary embedding iab : Ma →Mb. Finally,

〈〈Ma | a is a finite subset of β〉, 〈iab | a ⊆ b〉〉

is seen to be a directed system of structures with commutative embeddings,
so stipulate that 〈ME ,∈E〉 is the direct limit, and let jE : N → ME be the
corresponding elementary embedding. We thus have the extender ultrapower
of N by E as a direct limit of ultrapowers. The crucial point is that the direct
limit construction ensures that jE and ME approximate j and M “up to β”,
e.g. if |Vα|

M ≤ β, then |Vα|
M = |Vα|

ME , i.e. the cumulative hierarchies of M
and ME agree up to α. Having formulated extenders derived from an embed-
ding, a (κ, β)-extender is a sequence E = 〈Ea | a is a finite subset of β〉 that
satisfies various abstracted properties that enable the above construction.

In a manuscript circulated in 1980, Dodd and Jensen worked out inner
models for strong cardinals. Building on the previous work of Mitchell, Dodd
and Jensen formulated coherent sequences of extenders, built inner models
relative to such, and established GCH in these models. The arguments were
based on extending the established techniques of securing iterability and com-
parison through coiteration. The GCH result was significant as precursory
for the further developments in inner model theory based on “iteration trees”.
Thus, with extenders the inner model theory was carried forward to encom-
pass strong cardinals, newly arguing for the coherence and consistency of the
concept. There would however be little further progress until 1985, for the
aspiration to encompass stronger hypotheses had to overcome the problem
of “overlapping extenders”, having to carry out comparison through coiter-
ation for local structures built on (κ1, β1)-extenders and (κ2, β2)-extenders
with κ1 ≤ κ2 < β1. The difficulty here is one of “moving generators”: if
an extender ultrapower is taken with a (κ1, β1)-extender and then with a
(κ2, β2)-extender, then κ2 < β1 implies that the generating features of the
first extender ultrapower has been shifted by the second ultrapower and so
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one can no longer keep track of that ultrapower in the coiteration process. In
any event, a crucial inheritance from this earlier work was the Dodd-Jensen
Lemma about the minimality of iterations copied across embeddings, which
would become crucial for all further work in inner model theory.

In the direction of combinatorics and the study of continuum, there was
considerable elaboration in the 1970s and into the 1980s, particularly as these
played into the burgeoning field of set-theoretic topology. Not only were there
new elucidations and new transfinite topological examples, but large cardinals
and even the Proper Forcing Axiom began to play substantial roles in new
relative consistency results. The 1984 Handbook of Set-Theoretic Topology
summed up the progress, and its many articles set the tone for further work.

In particular, Eric van Douwen’s article provided an important service by
standardizing notation for the cardinal characteristics, or invariants, of the
continuum in terms of the lower case Fraktur letters. We have discussed the
dominating number d, the least cardinality of a subset of Baire space cofinal
under eventual dominance <∗. There is the bounding number b, the least
cardinality of a subset of Baire space unbounded under eventual dominance
<∗; there is the almost disjoint number a, the least cardinality of a subset of
P (ω) consisting of infinite sets pairwise having finite intersection; there is a
splitting number s, the least cardinality of a subset S ⊆ P (ω) such that any
infinite subset of ω has infinite intersection with both a member of S and its
complement; and, now, many more. The investigation of the possibilities for
the cardinality characteristics and their ordering relations with each other
would itself have sustained interest in the next decades, becoming a large
theory to which both Chapters 6 and 7 of this Handbook are devoted.

Conspicuous in combinatorics and topology would be the work of Stevo
Todorcevic. Starting with his doctoral work with Kurepa in 1979 he car-
ried out an incisive analysis of uncountable trees—Suslin, Aronszajn, Kurepa
trees and variants—and their linearizations and isomorphism types. In 1983
he dramatically re-oriented the sense of strength for the Proper Forcing Ax-
iom by showing that PFA implies that �κ fails for every κ > ω. PFA had
previously been shown consistent relative to the existence of a supercompact
cardinal. With the failure of �κ for singular κ having been seen as having
quite substantial consistency strength, PFA was itself seen for the first time
as a very strong proposition. Todorcevic would go from strength to strength,
making substantial contributions to the theory of partition relations, even-
tually establishing definitive results about ω1 as the archetypal uncountable
order-structure. His chapter in this Handbook presents that single-handedly
developed combinatorial theory of sequences and walks.

Starting in 1980 Foreman made penetrating inroads into the possibilities
for very strong propositions holding low in the cumulative hierarchy based
on the workings of generic elementary embeddings. Extending Kunen’s work
and deploying Silver’s master condition idea, Foreman initially used 2-huge
cardinals to get model-theoretic transfer principles to hold and saturated
ideals to exist among the range of ℵn’s. He would soon focus on generic



5. New Expansion 61

elementary embeddings and corresponding ideals themselves, even making
them postulational for set theory. This general area of research has become
fruitful, multi-faceted, and enormous, as detailed in Foreman’s chapter on
this subject in this Handbook.

In a major 1984 collaboration in Jerusalem, Foreman, Magidor, and Shelah
established penetrating results that led to a new understanding of strong
propositions and the possibilities with forcing. The focus was on a new,
maximal forcing axiom: A partial order P preserves stationary subsets of ω1

iff stationary subsets of ω1 remain stationary in any forcing extension by
P , and with this we have Martin’s Maximum (MM): For any P preserving
stationary subsets of ω1 and collection D of ℵ1 dense subsets of P , there is
a filter G ⊆ P meeting every member of D. This subsumes PFA and is a
maximally strong forcing axiom in that there is a P which does not preserve
stationary subsets of ω1 for which the conclusion fails. Foreman, Magidor,
and Shelah established: If there is a supercompact cardinal κ, then there is a
forcing extension in which κ = ω2 and MM holds.

Shelah had considered a weakening of properness called semiproperness, a
notion for forcing that could well render uncountable cofinalities countable.
To iterate such forcings, it had to be faced that the countable cofinality of
limit stages cannot be ascertained in advance, and so he developed revised
countable support iteration (RCS) based on names for the limit stage index-
ing. Foreman, Magidor, and Shelah actually carried out Baumgartner’s PFA
consistency proof for semiproper forcings with RCS iteration to establish the
consistency of the analogous Semiproper Forcing Axiom (SPFA). Their main
advance was that, although a partial order that preserves stationary subsets
of ω1 is not necessarily semiproper, it is in this supercompact collapsing con-
text. (Eventually, Shelah did establish that MM and SPFA are equivalent.)

Foreman, Magidor, and Shelah then established the relative consistency
of several propositions by deriving them directly from MM. One such propo-
sition was that NSω1 is ℵ2-saturated. Hence, not only was the upper bound
for the consistency strength of having an ℵ1-complete ℵ2-saturated ideal over
ω1 considerably reduced from Kunen’s huge cardinal, but for the first time
the consistency of NSω1 itself being ℵ2-saturated was established relative to
large cardinals. Another formative result was simply that MM actually im-
plies that 2ℵ0 = ℵ2, starting a train of thought about forcing axioms actually
determining the continuum. It would be by different and elegant means that
Todorcevic would show in 1990 that PFA already implies that 2ℵ0 = ℵ2.

With their work Foreman, Magidor, and Shelah had overturned a long-
held view about the scaling down of large cardinal properties. In the first
flush of new hypotheses and propositions, Kunen had naturally enough col-
lapsed a large cardinal to ω1 in order to transmute strong properties of the
cardinal into an ℵ1-complete ℵ2-saturated ideal over ω1, and this sort of di-
rect connection had become the rule. The new discovery was that a collapse
of a large cardinal to ω2 instead can provide enough structure to secure such
an ideal. In fact, Foreman, Magidor, and Shelah showed that even the usual
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Levy collapse of a supercompact cardinal to ω2 engenders an ℵ1-complete ℵ2-
saturated ideal over ω1. In terms of method, the central point is that such a
collapse leads to substantial generic elementary embeddings with small crit-
ical points like ω1. Woodin’s later strengthenings and elaborations of these
results would have far-reaching consequences.

5.2. Consistency of Determinacy

The developments of the 1980s which are the most far-reaching and pre-
sentable as sustained narrative have to do with the stalking of the consistency
of determinacy. By the late 1970s a more or less complete structure theory
for the projective sets was in place, a resilient edifice founded on determi-
nacy with both strong buttresses and fine details. In 1976 the researchers
had started the Cabal Seminar in the Los Angeles area, and in a few years,
with John Steel and Woodin having joined the ranks, attention began to shift
to sets of reals beyond the projective sets, to inner models, and to questions
of overall consistency. Most of the work before the crowning achievements
of the later 1980s appears in the several proceedings of the Cabal Seminar
appearing in 1978, 1981, 1983, and 1988.

With the growing sophistication of methods, the inner model L(R) in-
creasingly became the stage for the play of determinacy, both as the domain
to extend the structural consequences of AD and as the natural inner model
for AD that can exhibit characterizations. Scales having held the key to
the structure theory for the projective sets, Martin and Steel established a
a limiting case for the scale property; with the Σ2

1 sets of reals being those
definable with one existential third-order quantifier, they showed that AD
and V = L(R) imply that Σ2

1 is the largest class with the scale property.
Steel moreover developed a fine structure theory for L(R), and analyzing
the minimal complexity of scales there, he extended some of the structure
theory under AD to sets of reals in L(R). As for characterizations, Kechris
and Woodin showed that in L(R), AD is equivalent to the existence of many
(“Suslin”) cardinals that have strong partition properties. Woodin also es-
tablished that in L(R), AD is equivalent to Turing Determinacy, determinacy
for only sets of reals closed under Turing equivalence.

The question of the overall consistency of determinacy came increasingly
to the fore. Is AD consistent relative to some large cardinal hypothesis? Or,
with its strong consequences, can AD subsume large cardinals in some sub-
stantial way or be somehow orthogonal? Almost a decade after his initial
result that the existence of a measurable cardinal implies Π1

1-determinacy,
Martin and others showed that determinacy for sets in the “difference hierar-
chy” built on the Π1

1 sets implies the existence of corresponding inner models
with many measurable cardinals. Then in 1978 Martin, returning to the ho-
mogeneity idea of his early Π1

1 result, applied it with the Martin-Solovay tree
representation for Π1

2 sets together with algebraic properties of elementary
embeddings posited close to Kunen’s large cardinal inconsistency to estab-
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lish Π1
2-determinacy. A direction was set but generality only came in 1984,

when Woodin showed that an even stronger large cardinal hypothesis implies
ADL(R). So, a mooring was secured for AD after all in the large cardinal
hierarchy. With Woodin’s hypothesis apparently too remote it would now be
a question of scaling it down according to the methods becoming available
for proofs of determinacy, perhaps even achieving an equi-consistency result.

The rich 1984 Foreman-Magidor-Shelah work would have crucial conse-
quences for the stalking of consistency also for determinacy. Shelah carried
out a version of their collapsing argument that does not add any new reals
but nonetheless gets an ℵ1-complete ℵ2-saturated ideal over ω1. Woodin then
pointed out that with no new reals adjoined the generic elementary embed-
ding induced by such an ideal can be used to establish that the ground model
L(R) reals are actually Lebesgue measurable. Thus Shelah and Woodin had
established an outright result: If there is a supercompact cardinal, then every
set of reals in L(R) is Lebesgue measurable. This result not only portended

the possibility of getting ADL(R) from a supercompact cardinal, but through
the specifics of the argument stimulated the reducing of the hypothesis. While
Woodin was visiting Jerusalem in June 1984, he came up with what is now
known as a Woodin cardinal. The hypothesis was then reduced as follows: If
there are infinitely many Woodin cardinals with a measurable cardinal above
them, then every set of reals in L(R) is Lebesgue measurable. An early sug-
gestion of optimality of hypothesis was that if the “infinitely” is replaced by
“n” for some n ∈ ω, then one can conclude that every Σ1

n+2 set of reals is
Lebesgue measurable. The measurable cardinal hovering above would be a
recurring theme, the purpose loosely speaking to maintain a stable environ-
ment with the existence of sharps.

Especially because of its subsequent centrality, it is incumbent to give an
operative definition of Wooding cardinal: For a set A, κ is α-A-strong iff
there is an elementary embedding j : V → M witnessing that κ is α-strong
which moreover preserves A: A∩Vα = j(A)∩Vα. A cardinal δ is Woodin iff
for any A ⊆ Vδ , there is a κ < δ which is α-A-strong for every α < δ.

A Woodin cardinal, evidently a technical, consistency-wise strengthening
of a strong cardinal, is an important example of concept formation through
method. The initial air of contrivance gives way to seeing that Woodin car-
dinal seemed to encapsulate just wanted is needed to carry out the argument
for Lebesgue measurability. That argument having been based on first col-
lapsing a large cardinal to get a saturated ideal and then applying the cor-
responding generic elementary embedding, Woodin later in 1984 stalked the
essence of method and formulated stationary tower forcing. An outgrowth
of the Foreman-Magidor-Shelah work, this notion of forcing streamlines their
forcing arguments to show that a Woodin cardinal suffices to get a generic
elementary embedding j : V →M with critical point ω1 and ωM ⊆M . With
a new, minimizing large cardinal concept isolated, there would now be dra-
matic new developments both in determinacy and inner model theory. One
important scaling down result was the early 1985 result of Shelah: If κ is
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Woodin, then in a forcing extension κ = ω1 and NSω1 is ℵ2-saturated. The
large cardinal strength now seemed minimal for getting such an ideal, and
there was anticipation of achieving an equi-consistency.

Steel in notes of Spring 1985 developed an inner model for a weak version of
Woodin cardinal. While inner models for strong cardinals had only required
linear iterations for comparison, the new possibility of overlapping extenders
and moving generators had led Mitchell in 1979 to develop iteration trees of
iterated ultrapowers for searching for possible well-founded limits of models
along branches. A particularly simple example of an iteration tree is an
alternating chain, a tree consisting of two ω-length branches with each model
in the tree an extender ultrapower of the one preceding it on its branch, via
an extender taken from a correspoding model in the other branch. Initially,
Steel tried to avoid alternating chains, but the Foreman-Magidor-Shelah work
showed that for dealing with Woodin cardinals they would be a necessary
part. Their use soon led to a major breakthrough in the investigation of
determinacy.

In the Fall of 1985 Martin and Steel showed that Woodin cardinals im-
ply the existence of alternating chains in which both branches have well-
founded direct limits, and used this to establish: If there are infinitely many
Woodin cardinals, then PD holds. This was a culmination of method in
several respects. In the earlier Martin results getting Π1

1-Determinacy and
Π1

2-Determinacy, trees on ω × κ for some cardinal κ had been used, to each
node of which were attached ultrafilters in a coherent way that governed ex-
tensions. Kechris and Martin isolated the relevant concept of homogeneous
tree, the point being that sets of reals which are the projections p[T ] of such
trees T—the homogeneously Suslin sets—are determined. With PD, the scale
property had been propagated through the projective hierarchy. Now with
Woodin cardinals, having representations via homogeneous trees was propa-
gated, getting determinacy itself. In particular, Martin and Steel established:
If n ∈ ω and there are n Woodin cardinals with a measurable cardinal above
them, then Π1

n+1-determinacy holds.
Within weeks after the Martin-Steel breakthrough, Woodin used it to-

gether with stationary towers to investigate tree representations in L(R) to
establish: If there are infinitely Woodin cardinals with a measurable cardi-
nal above them, then ADL(R) holds. With the consistency strength of AD
having been gauged by this result, Woodin soon established the crowning
equi-consistency result: The existence of infinitely many Woodin cardinals
is equi-consistent with the Axiom of Determinacy. Both directions of this
result, worked out with hindsight in Chapters 22 and 23 of this Handbook,
involve substantial new arguments.

This was a remarkable achievement of the concerted effort to establish
the consistency strength of AD along the large cardinal hierarchy. But even
this would just be a beginning for Woodin, who would go from strength
to strength in establish many structural results involving AD and stronger
principles, to become preeminent with Shelah in set theory.
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5.3. Later Developments

In the later 1980s set theory continued to expand apace in various directions,
and we conclude our historical survey by mentioning here a few of the most
prominent developments, each of a different character but all being decisive
advances.

In inner model theory, Martin and Steel in 1986 took the analysis of itera-
tion trees beyond their determinacy work to develop inner models of Woodin
cardinals. In order to effect comparison, they for the first time came to
grips with the central iterability problem of the existence and uniqueness
of iteration trees extending a given iteration tree. They were thus able to
establish that “the measurable cardinal above” cannot be eliminated from
their determinacy result by showing: If n ∈ ω and there are n Woodin car-
dinals, then there is an inner model with n Woodin cardinals and a ∆1

n+2

well-ordering of the reals. (The existence of such a well-ordering precludes

Π1
n+1-determinacy.) These models were of form L[ ~E] where ~E is a coherent

sequence of extenders, but the comparison process used did not involve the
models themselves, but rather a large model constructed from a sequence of
background extenders, extenders in the sense of V whose restrictions to L[ ~E]

led to the sequence ~E. With the comparison process thus external to the
models, their structure remained largely veiled, and for example only CH,
not GCH, could be established.

In 1987 Stewart Baldwin made a suggestion, one which Mitchell then newly
forwarded, which led to a crucial methodological advance. Up to then, the
extender models L[ ~E] constructed relative to a coherent sequence of exten-

ders ~E had each extender E in the sequence “measure” all the subsets in
L[ ~E] of the critical point. The Baldwin-Mitchell idea was to construct only
with “partial” extenders E which if indexed at γ only measures the sets in
Lγ [ ~E�γ]. This together with a previous Mitchell strategy of carrying out the
comparison process using finely calibrated partial ultrapowers (“dropping to

a mouse”) led to a comparison process internal to L[ ~E] based on the use of
fine structure. The infusion of fine structure made the development of the
new extender models more complex, but with this came the important div-
idends of a more uniform presentation, a much stronger condensation, and
a more systematic comparison process. During 1987-9, Mitchell and Steel
worked out the details and showed that if there is a Woodin cardinal then
there is an inner model L[ ~E], L-like in satisfying GCH and so forth, in which
there is a Woodin cardinal. The process involved the correlating of iteration
trees for L[ ~E] with iteration trees in V and applying the former Martin-Steel
results. A canonical, fine structural inner model of a Woodin cardinal newly
argued for the consistency of the concept, as well as provided a great deal of
understanding about as set in a finely tuned, layer-by-layer hierarchy.

What about a core model “up to” a Woodin cardinal, in analogy toKDJ for
L[U ]? In 1990, Steel solved the “core model iterability problem” by showing
that large cardinals in V are not necessary for showing that certain models
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L[ ~E] have sufficient iterability properties. With this, he constructed a new
core model, first building a “background certified” Kc based on extenders
in V and then the “true” core model K. Steel was thus able to extend the
previous work of Mitchell on the core model K[U ] up to ∃κ(o(κ) = κ++)
to establish e.g.: If there is an ℵ1-complete ℵ2-saturated ideal over ω1 and
a measurable cardinal, then there is an inner model with a Woodin cardi-
nal. Thus, Shelah’s 1985 forcing result and Steel’s, except for the artifact of
“the measurable cardinal above”, had calibrated an important consistency
strength, and what had become a central goal of forcing and inner model
theory was handily achieved.

In the early 1990s, Steel, Mitchell, and Ernest Schimmerling pushed the
Jensen covering argument over the hurdles of the new fine structural Steel
core model K to establish a covering lemma up to a Woodin cardinal. Schim-
merling both established combinatorial principles in K as well established
new consistency strengths, e.g. PFA implies that there is an inner model
with a Woodin cardinal.

The many successes would continue in inner model theory, but we bring our
narrative to a close at a fitting point. Mitchell’s Chapter 18 in this Handbook
is given over to the concerted study of covering over various models; Steel’s
Chapter 19 provides the outlines of inner model theory in general terms as
well as an important application to HOD; and Schimmerling’s Chapter 20
develops Steel’s core model K up to a Woodin cardinal as well as provide
applications across set theory.

The later 1980s featured a distinctive development that led to a new con-
ceptual framework of applicability to singular cardinals, new incisive results
in cardinal arithmetic, and a re-orienting of set theory to new possibilities for
outright theorems of ZFC. Starting in late 1987 Shelah returned to the work
on bounds for powers of singular cardinals and drew out an extensive under-
lying structure of possible cofinalities of reduced products, soon codified as
pcf theory. With this emerged new work in singular cardinal combinatorics,
with Shelah himself initially providing applications to model theory, parti-
tion relations, Jónsson algebras, Boolean algebras, and cardinal arithmetic.
This last was epitomized by a dramatic result that exhibited how the newly
seen structural constraints impose a tight bound: If δ is a limit ordinal with

|δ|cf(δ) < ℵδ then ℵ
cf(δ)
δ < ℵ(|δ|+4), so that in particular if ℵω is a strong limit

cardinal, then 2ℵω < ℵω4 .
Suppose that A is an infinite set of cardinals and F is a filter over A.

The product ΠA consists of functions f with domain A such that f(a) ∈ a
for every a ∈ A. For f, g ∈ ΠA, the relation =F defined by f =F g iff
{a ∈ A | f(a) = g(a)} ∈ F is an equivalence relation on ΠA, and the reduced
product ΠA/F consists of the equivalence classes. We can impose order,
officially on ΠA/F but still working with functions themselves, by: f <F g
iff {a ∈ A | f(a) < g(a)} ∈ F .

Shelah’s new theory took as central the investigation of the possible cofi-
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nalities function:

pcf(A) = {cf(ΠA/D) | D is an ultrafilter over A}

as calibrated by the ideals

J<λ[A] = {b ⊆ A | cf(ΠA/D) < λ whenever

D is an ultrafilter over A such that b ∈ D}.

These concepts had appeared before in Shelah’s work, notably in his 1980 re-

sult ℵ
cf(δ)
δ < ℵ(|δ|cf(δ))+ , but now they became autonomous and were propelled

forward by the discovery of unexpectedly rich structure.
With an eye to substantive cofinal subsets A of a singular cardinal, the

abiding assumption was that A is a set of regular cardinals satisfying |A| <
min(A). With this one gets that for any ultrafilter D over A, cf(ΠA/D) < λ
iff D∩J<λ[A] 6= ∅, and further, that pcf(A) has a maximum element. At the
heart is the striking result that J<λ+ [A] is generated by J<λ[A] together with
a single set Bλ ⊆ A. Shelah in fact got “nice” generators Bλ derived from
imposing the structure of elementary substructures of a sufficiently large
H(Ψ). This careful control on the possible cofinalities then led, when A
consists of all the regular cardinals in an interval of cardinals, to |pcf(A)| ≤
|A|+++, and in particular to the ℵω4 bound mentioned above.

Shelah’s work on pcf theory to 1993 appeared in his 1994 book Cardinal
Arithmetic, and since then he has further developed the theory and provided
wide-ranging applications. Through its applicability pcf theory has to a sig-
nificant extent been woven into modern set theory as part of the ZFC facts
of singular cardinal combinatorics. Chapter 14 of this Handbook presents
a version of pcf theory and its applications to cardinal arithmetic, and the
theory makes it appearance elsewhere as well, most significantly in Chapter
15.

The Singular Cardinal Hypothesis (SCH) and the train of results starting
with the Prikry-Silver result of the early 1970s were to be decisively informed
by results of Moti Gitik. Gitik’s work exhibits a steady engagement with
central and difficult issues of set theory and a masterful virtuosity in the
application of sophisticated techniques over a broad range. Gitik by 1980
had established through an iterated Prikry forcing the conspicuous singular-
ization result that: If there is a proper class of strongly compact cardinals,
then in a ZF inner model of a class forcing extension every infinite cardinal
has cofinality ω. Mentioned earlier was the mid-1970s result that that NSω1

is precipitous is equi-consistent with having a measurable cardinal. In 1983,
Gitik established: The precipitousness of NSω2 is equi-consistent with having
a measurable cardinal κ such that o(κ) = 2 in the Mitchell order. The dif-
ficult, forcing direction required considerable ingenuity because of inherent
technical obstructions.

Turning to the work on SCH, in 1988 Woodin dramatically weakened the
large cardinal hypothesis needed to get a measurable cardinal κ satisfying
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2κ > κ+, and hence the failure of SCH with the subsequent use of Prikry
forcing, to a proposition technically strengthening measurability. He also
showed that one can in fact get Magidor’s conclusion that ℵω could be the
least cardinal at which GCH fails. Soon afterwards Gitik established both
directions of an equi-consistency: First, he established that one can get the
consistency of Woodin’s proposition from just ∃κ(o(κ) = κ++). Then, he ap-
plied a result from Shelah’s pcf theory to Mitchell’sK[U ] analysis to establish,
bettering a previous result of Mitchell, that ∃κ(o(κ) = κ++) is actually nec-
essary to get the failure of SCH. Hence, The failure of SCH is equi-consistent
with ∃κ(o(κ) = κ++).

Woodin’s model in which GCH first fails at ℵω required a delicate con-
struction to arrange GCH below and an ingenious idea to get 2ℵω = ℵω+2.
How about getting 2ℵω > ℵω+2? In a signal advance of method, Gitik and
Magidor in 1989 provided a new technique to handle the general singular
cardinals problem with appropriately optimal hypotheses. The Prikry-Silver
two-stage approach, first making 2κ large and then singularizing κ without
adding any new bounded subsets or collapsing cardinals, had been the ba-
sic model for attacking the singular cardinals problem. Gitik and Magidor
showed how to add many subsets to a large cardinal κ while simultaneously
singularizing it without adding any new bounded subsets or collapsing car-
dinals. Thus, it became much easier to arrange any particular continuum
function behavior below κ, like achieving GCH below, while at the same
time making 2κ arbitrarily large. Moreover, the new method smacked of
naturalness and optimality.

The new Gitik-Magidor idea was to add many new Prikry ω-sequences
corresponding to κ-complete ultrafilters over κ while maintaining the ba-
sic properties of Prikry forcing. There is an evident danger that if these
Prikry sequences are too independent, information can be read from them
that corresponds to new reals being adjoined. The solution was to start from
a sufficient strong large cardinal hypothesis and develop an extender-based
Prikry forcing structured on a “nice system” of ultrafilters 〈Uα | α < λ〉,
a system such that for many α ≤ β < λ there is a ground model function
f : κ→ κ such that: For all X ⊆ κ, X ∈ Uα iff f−1(X) ∈ Uβ. (Having such a
projection function is the classical way of connecting two ultrafilters together,
and one writes that Uα ≤RK Uβ under the Rudin-Keisler partial order.) By
this means one has the possibility of adding new subsets of κ, correspond-
ing to different Prikry sequences, which are still dependent on each other so
that no new bounded subsets need necessarily be added in the process. Gitik
and Magidor worked out how their new approach leads to what turns out to
be optimal or near optimal consistency results, and incorporating collapsing
maps as in previous arguments of Magidor and Shelah, they got models in
which GCH holds below ℵω yet 2ℵω = ℵα+1 for any prescribed countable
ordinal α.

In subsequent work Gitik, together with Magidor, Mitchell, and others,
have considerably advanced the investigation of powers of singular cardinals.
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Equi-consistency results have been achieved for large powers of singular car-
dinals along the Mitchell order and with α-strong cardinals, and uncountable
cofinalities have been encompassed, the investigation ongoing and with dra-
matic successes. Much of this work is systematically presented in Gitik’s
Chapter 16 in this Handbook.

We now leave the overall narrative, having pursued several longitudinal
themes to appropriate junctures. Stepping back to gaze at modern set theory,
the thrust of mathematical research should deflate various possible metaphys-
ical appropriations with an onrush of new models, hypotheses, and results.
Shedding much of its foundational burden, set theory has become an intrigu-
ing field of mathematics where formalized versions of truth and consistency
have become matters for manipulation as in algebra. As a study couched in
well-foundedness ZFC together with the spectrum of large cardinals serves
as a court of adjudication, in terms of relative consistency, for mathematical
propositions that can be informatively contextualized in set theory by let-
ting their variables range over the set-theoretic universe. Thus, set theory
is more of an open-ended framework for mathematics rather than an eluci-
dating foundation. It is as a field of mathematics proceeding with its own
internal questions and capable of contextualizing over a broad range that set
theory has become an intriguing and highly distinctive subject.

6. Summaries of the Handbook Chapters

This Handbook is divided into three volumes with the first devoted to Com-
binatorics, the Continuum, and Constructibility; the second devoted to El-
ementary Embeddings and Singular Cardinal Combinatorics, and the third
devoted to Inner Models and Determinacy.

The following chapter summaries engage the larger historical contexts as
they serve to introduce and summarize the contents. In many cases we build
on our preceding survey as a framework and proceed to elaborate it in the
directions at hand, and in some cases we introduce the topics as new offshoots
and draw them in. Consequently, some summaries are shorter on account of
the leads from the survey and others longer because of the new lengths to
which we go.

VOLUME I

1. Stationary Sets. The veteran set theorist Thomas Jech is the author
of Set Theory (third millennium edition, 2002), a massive and impressive
text that comprehensively covers the full range of the subject up to the
elaborations of this Handbook. In this first chapter, Jech surveys the work
directly involving stationary sets, a subject to which he has made important
contributions. In charting out the ramifications of a basic concept buttressing
the uncountable, the chapter serves, appropriately, as an anticipatory guide
to techniques and results detailed in subsequent chapters.
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The first section provides the basic theory of stationary subsets of a regular
uncountable cardinal κ. The next describes the possibilities for stationary set
reflection: For S ⊆ κ stationary in κ, is there an α < κ such that S ∩ α is
stationary in α? With reflection having become an important heuristic in set
theory, stationary set reflection commended itself as a specific, combinatorial
possibility for investigation. Focusing on the non-stationary ideal, the third
section surveys the possibilities for its saturation and precipitousness.

The later sections study these various issues as adapted to notions of closed
unbounded and stationary for subsets of Pκλ = {x ∈ P (λ) | |x| < κ}, a study
that the author had pioneered in the early 1970s. The wide-ranging involve-
ments in proper forcing, Boolean algebras and stationary tower forcing are
described. Of particular interest are reflection principles based on Pℵ1λ. Fore-
man, Magidor, and Shelah in their major 1984 work had shown that Martin’s
Maximum implies that a substantial reflection principle holds for stationary
subsets of Pℵ1λ for every λ ≥ ω2. Todorcevic then showed that a stronger
reflection principle SRP follows from MM, one from which substantial con-
sequences of MM already follow, like the ℵ2-saturation of NSω1 . Qi Feng
and Jech subsequently formulated a streamlined principle PRS equivalent to
SRP.

2. Partition Relations. In this chapter two prominent figures in the field
of partition relations, András Hajnal and Jean Larson, team up to present
the recent work, the first bringing to bear his expertise in relations for un-
countable cardinals and the second her expertise in relations for countable
ordinals. The investigation of partition relations has been a steady, rich, and
concrete part of the combinatorial investigation of the transfinite, a source
of intrinsically interesting problems that have stimulated the application of
a variety of emerging techniques.

With the classical, 1956 Erdős-Rado Theorem in(κ)+ −→ (κ+)n+1
κ having

established the context as the transfinite generalization of Ramsey’s Theo-
rem, extensive use of the basic tree or “ramification” method had led by the
mid-1960s to an elaborately parametrized theory. This theory was eventu-
ally presented in the 1984 Erdős-Hajnal-Rado-Máté book, which is initially
reflected in the first two sections of the chapter.

The next sections emphasize new methods as leading not only to new
results but also providing new proofs of old results, and in this spirit they
develop a 1991 method of Baumgartner, Hajnal, and Todorcevic and es-
tablish their generalizations of the Erdős-Rado Theorem. This method in-
volves taking chains of elementary substructures of a sufficiently rich struc-
ture 〈H(λ),∈, <∗, . . .〉 and associating ideals along the way. Next, the en-
hanced method of the recent, 1998 Foreman-Hajnal result on successors of
measurable cardinals is used establish a watershed, 1972 Baumgartner-Hajnal
Theorem in the special case ω1 −→ (α)2m for any α < ω1 and m ∈ ω. Shelah,
with his considerable combinatorial prowess, has steadily made important
contributions to the theory of partition relations, and several are presented,
among them a recent result involving strongly compact cardinals and another
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invoking his pcf theory.
The investigation of partition relations for small countable ordinals was a

current from the beginnings of the general theory in the late 1950s and has
focused, for natural reasons, on the relation α −→ (α,m)2 for finite m, the
assertion that if the pairs from α are assigned 0 or 1, then either there is an
H ⊆ α of ordertype α all of whose pairs are assigned 0, or m elements in α
all of whose pairs are assigned 1. A formative early 1970s result was Chen-
Chung Chang’s that with ordinal exponentiation, ωω → (ωω, 3)2, the proof
considerably simplified by Larson. Remarkably, after the passing of more
than two decades Carl Darby and Rene Schipperus working independently
established the first new positive and negative results, the latter by way of
the same counterexamples. In the last two sections, a negative result ωω2

6→
(ωω2

, 6) and a positive result ωωω

→ (ωωω

, 3) are established, the careful
combinatorial analysis in terms of blocks of ordinals and trees illustrative of
some of the most detailed work with small ordertypes.

3. Coherent Sequences. This chapter is a systematic account by Stevo
Todorcevic of his penetrating analysis of uncountable order structures, with
ω1 being both a particular and a paradigmatic case. The chapter is a short
version of his recent monograph Walks on Ordinals and Their Characteristics
(2007), but has separate value for being more directed and closer to the
historical route of discovery.

The analysis for a regular cardinal θ begins with a C-sequence 〈Cα | α < θ〉
where for successors α = β + 1, Cα = {β}, and for limits α, Cα is a closed
unbounded subset of α. In the case θ = ω1, one requires that for limits α,
Cα has order-type ω, so that we have a “ladder system”. One can climb
up, but also walk down: Given α < β < θ, let β1 be the least member
of Cβ − α, let β2 the least member of Cβ1 − α, and so forth, yielding the
walk β > β1 > . . . > βn = α. Through a sustained analysis Todorcevic has
shown that these walks have a great deal of structure as conveyed by various
“distance functions” or “characteristics” ρ on [θ]2, where ρ(α, β) packages
information about the walk from β to α.

Initially, Todorcevic in 1985 used such a function to settle the main parti-
tion problem about the complexity of ω1, by establishing the negative “square
brackets partition relation” ω1 6→ [ω1]2ω1

: There is a function f : [ω1]2 → ω1

such that for any unbounded X ⊆ ω1, f“[X ]2 = ω1, i.e. for any ζ < ω1 there
are α < β both in X such that f(α, β) = ζ. Todorcevic’s f was based on the
property that if S ⊆ ω1 is stationary, then for any unbounded X ⊆ ω1 there
are α < β both in X such that the walk from β to α has a member of S.
More generally, Todorcevic introduced the oscillation map to effect a version
of this property for regular θ > ω1 to show that if there is a stationary S ⊆ θ
which does not reflect, i.e. there is no α < θ such that S ∩ α is stationary in
α, then the analogous θ 6→ [θ]2θ holds.

The first sections of the chapter develops several distance functions for
the case θ = ω1 as paradigmatic. Systematic versions of “special” Aronszajn
trees and the (Shelah) result that adding a Cohen real adds a Suslin tree
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are presented, as well as a range of applications to Hausdorff gaps, Banach
spaces, model theory, graph theory and partition relations.

The later sections encompass general θ, with initial attention given to
systematic characterizations of Mahlo and weakly compact cardinals. There
is soon a focus on square (or coherent) sequences, those C-sequences 〈Cα |
α < θ〉 such that Cα = Cβ ∩ α whenever α is a limit of Cβ . With these a
range of applications is provided involving the principle �κ, higher Kurepa
trees, and Jensen matrices. The oscillation map is latterly introduced, and
with it the proof of the general negative square brackets partition relation as
stated above. Finally, elegant characterizations for Chang’s Conjecture are
presented. Throughout, there is the impression that one has gotten at the
immanent structure of the uncountable from which a wide range of combina-
torial consequences flow.

4. Borel Equivalence Relations. Descriptive set theory as fueled by the
incentive for generalization is appropriately construed as the investigation of
definable sets in Polish spaces, i.e. separable, completely metrizable spaces.
For such spaces one can define the Borel and projective sets and the corre-
sponding hierarchies through definability. In the 1990s fresh incentives came
into play that expanded the investigation into quotient spaces X/E for a
Polish space X and a definable equivalence relation E on X , such quotients
capturing various important structures in mathematics. New methods had to
be developed, in what amounts to the investigation of definable equivalence
relations on Polish spaces.

In this short chapter Greg Hjorth provides a crisp survey of Borel equiv-
alence relations on Polish spaces as organized around the Borel reducibility
ordering ≤B. In an initial disclaimer, he points out how he is leaving aside
several other approaches, but in any case his account provides a worthy look
at a modern, burgeoning subject.

For Polish spaces X and Y , a function f : X → Y is Borel if the preimage
of any Borel set is Borel. An equivalence relation on X is Borel if it is Borel as
a subset of X×X . If E is a Borel equivalence relation on X and F is a Borel
equivalence relation on Y , then E ≤B F asserts that there is a Borel f : X →
Y such that x1Ex2 ↔ f(x1)Ff(x2). The emphasis here is on the equivalence
relations, with only the Borel sets of the underlying spaces being at issue.
There is the correlative E <B F , and with id(X) indicating the identity
relation on X , an example is id(R) <B E0, where E0 is the equivalence
relation of eventual agreement on ω2. E0 is a reconstrual of Vitali’s classical
equivalence relation, with which he established that with AC there is a non-
Lebesgue measurable set. The seminal Harrington-Kechris-Louveau “Glimm-
Effros dichotomy” result is: For any Borel equivalence relation E, exactly one
of E ≤B id(R) or E0 ≤B E holds.

Starting with this seminal result the author discusses various structure
theorems, concluding with his work on turbulence. Next is the work on count-
able Borel equivalence relations, i.e. those whose equivalence classes are all
countable. This topic has notable interactions across diverse fields of mathe-



6. Summaries of the Handbook Chapters 73

matics, and an enduring problem is how to characterize the hyperfinite Borel
equivalence relations. The author next discusses ≤B as effective cardinal-
ity, bringing in his results with determinacy. The final topic is classification
problems, problems of locating variously given Borel equivalence relations in
the structure given by ≤B . The range of issues here speaks to the importance
and relevance of Borel equivalence relations in larger mathematics.

5. Proper Forcing. Uri Abraham provides a lucid exposition of Shelah’s
proper forcing. In a timely monograph Proper Forcing (1982) and a book
Proper and Improper Forcing (1998), Shelah had set out his penetrating,
wide-ranging work on and with proper forcing. Striking a nice balance,
Abraham presents the basic theory of proper forcing and then some of the
variants and their uses that illustrate its wide applicability. This chapter is
commended to the reader conversant even with only the basics of forcing to
assimilate what has become a staple part of the theory and practice of forc-
ing. To be noted is that being of the Israeli school, Abraham writes “p > q”
for p being a stronger condition than q.

In the first two sections, basic forcing notions are reviewed, and proper
forcing is motivated and formulated. The basic lemma that properness is
preserved in countable support iterations is carefully presented, as well as the
basic fact that under CH a length ≤ ω2 iteration of ℵ1 size proper forcings
satisfies the ℵ2-chain condition and so preserves all cardinals.

A forcing partial order P is ωω-bounding iff the ground model reals are
cofinal under eventual dominance <∗ in the reals of any generic extension by
P . The third section presents the preservation of ωω-bounding properness
in countable support iterations. With this is established a finely wrought
result of Shelah’s, answering a question of classical model theory, that it is
consistent that there are two countable elementarily equivalent structures
having no isomorphic ultrapowers by any ultrafilter over ω.

A forcing partial order P is weakly ωω-bounding iff the ground model re-
als are unbounded under eventual dominance <∗ in the reals of any generic
extension by P . The fourth section presents the preservation of weakly ωω-
bounding properness, one that deftly and necessarily has to assume a stronger
property at successor stages. With this is established another finely wrought
result of Shelah’s, answering a question in the theory of cardinal character-
istics, that it is consistent with 2ℵ0 = ℵ2 that the bounding number b is less
than the splitting number s.

The final section develops iterated proper forcing that adjoins no new
reals. A relatively complex task, this has been a prominent theme in Shelah’s
work, and to this purpose he has come up with several workable conditions.
Abraham motivates one condition, Dee-completeness, with his first result in
set theory, and then establishes an involved preservation theorem. As pointed
out, through this approach one can provide a new proof of Jensen’s result
that CH + SH is consistent, which for Shelah was an important stimulus in
his initial development of proper forcing.
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6. Combinatorial Cardinal Characteristics of the Continuum. This
and the next chapters cover the recent, increasingly systematic, work across
the wide swath having to do with cardinal characteristics, or invariants, of
the continuum and their possible order relationships. In this chapter, the
broad-ranging Andreas Blass provides a perspicuous account of combinato-
rial cardinal characteristics through to some of his own work. He deftly
introduces characteristics in turn together with more and more techniques
for their analysis, and at the end surveys the extensive forcing consistency
results.

There is initially a discussion of the dominating number d and the bound-
ing number b, one that introduces several generalizing characteristics corre-
sponding to an ideal I: add(I), cov(I), non(I), cof (I). The next topic is
the splitting number s and related characteristics having to do with Ramsey-
type partition theorems.

A systematic approach, first brought out by Peter Vojtáš, is then presented
for describing many of the characteristics and the relationships among them.
A triple A = 〈A−, A+, A〉 such that A ⊆ A−×A+ is simply a relation, and its
norm ‖A‖ is the smallest cardinality of any Y ⊆ A+ such that ∀x ∈ A−∃y ∈
Y (〈x, y〉 ∈ A). The dual of A = 〈A−, A+, A〉 is A⊥ = 〈A+, A−,¬Ă〉, where
¬Ă is the complement of the converse Ă of A, i.e. 〈x, y〉 ∈ ¬Ă iff 〈y, x〉 /∈ A.
In these terms, for example, if D = 〈ωω, ωω,<∗〉, then ‖D‖ = d and ‖D⊥‖ =
b. A morphism for a relation A = 〈A−, A+, A〉 to another B = 〈B−, B+, B〉
is a pair φ = (φ−, φ+) of functions such that φ− : B− → A−; φ+ : A+ → B+;
and

∀b ∈ B−∀a ∈ A+(〈φ−(b), a〉 ∈ A→ 〈b, φ+(a)〉 ∈ B) .

It is seen that having such a morphism implies that ‖A‖ ≥ ‖B‖ and ‖A⊥‖ ≤
‖B⊥‖. Through this overlay of relations and morphisms one can efficiently
incorporate both categorical combinations of relations as well as conditions on
morphisms, like being Borel or continuous, into the study of characteristics.

The author proceeds to discuss characteristics corresponding to the ideal
B of meager sets and to the ideal L of null sets: add(B), cov(B), non(B),
cof(B), add(L), cov(L), non(L), cof(L). The main results are established
in terms of relations and morphisms, and one gets to the inequalities among
these characteristics and b and d as given by what is known as Cichoń’s
diagram. The characteristics of measure and category are further pursued in
the next chapter.

The succeeding topics have to do with cardinalities of families F ⊆ P (ω)
as mediated by ⊆∗, where X ⊆∗ Y iff X − Y is finite. Forcing axioms
are brought into play as now particularly informative for drawing ordering
conclusions. Then characteristics corresponding to maximal almost disjoint
(MAD) families and independent families are investigated.

The author finally discusses characteristics related to or developed through
his own work. Discussing filters and ultrafilters over ω, he gets to his principle
of Near Coherence of Filters (NCF), a principle proved consistent by Shelah,
and results about ultrafilters generated from filters in terms of characteris-
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tics. He then discusses his evasion and prediction, which initially had an
algebraic motivation but became broadened into a combinatorial framework
that provides a unifying approach to many of the characteristics.

The concluding section is largely a survey of what happens to the charac-
teristics when one iteratively adjoins many generic reals of one kind, dealing
in turn with the following reals: Cohen, random, Sacks, Hechler, Laver, Math-
ias, Miller. As such, this is an informative account of these various generic
reals and how they mediate the continuum.

7. Invariants of Measure and Category. Tomek Bartoszynski presents
the recent work on measure and category as viewed through their cardinal
invariants, or characteristics. The account updates the theory presented in
the substantive Set Theory: On the Structure of the Real Line (1995) by
Bartoszynski and Haim Judah, which had stood as a standard reference for
this general area for quite some time.

After putting the language of relations and morphisms (see the previ-
ous summary) in place, the author pursues an approach, one advocated by
Ireneusz Rec law, of emphasizing classes of sets “small” according to various
criteria corresponding to the ideal invariants. One develops Borel morphisms
that lead to inclusion relations among the classes and thence to the inequal-
ities of Cichon’s diagram. Combinatorial characterizations of membership in
these classes and thus of the invariants are given, as well as a new under-
standing of the ideal of null sets as maximal, in terms of embedding, among
analytic P-ideals.

Turning to cofinality, the author establishes Shelah’s remarkable and un-
expected 1999 result that it is consistent that cf(cov(L)) = ω. The author
then provides a systematic way of associating to each of the invariants in
Cichon’s diagram a generic real so that iteration with countable support in-
creases that invariant and none of the others. Corresponding issues about
the classes of small sets further draw in proper forcing techniques.

8. Constructibility and Class Forcing. In this chapter Sy Friedman
presents work on the limits of possibilities for reals in terms of forcing and
constructibility, the supporting technique being Jensen coding. In the mid-
1960s Solovay, when investigating the remarkable properties of 0#, raised
several questions about the scope of the recently devised forcing method.
For sets x, y let x ≤L y denote that x is constructible from y, i.e. x ∈ L[y],
and let x <L y be correlative. 0# cannot be adjoined to L by forcing because
of its global consequences for L, but 0# was plausibly considered minimal
in this respect. A (weak form of a) question of Solovay’s was: If r is a real
satisfying r <L 0#, does r belong to some generic extension of L?

In 1975-6 Jensen devised his impressive “coding the universe in a real”
technique and with it established (a strong form of): If GCH holds, then
there is a class partial order P such that if G is P -generic, then V [G] has the
same cardinals and cofinalities yet for some real r there, V [G] |= “V = L[r]”.
The intricately woven P here was built using fine structure theory in L-like
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situations and provided a means of coding up more and more layers of the
cumulative hierarchy while crucially maintaining its cardinal structure. Not
only cofinalities but those properties compatible with models of form L[r]
all continue to hold, so that this real r veritably codes the entire universe.
Jensen showed that assuming 0# exists it is consistent that there is such a
real r <L 0#, answering Solovay’s question in the negative, the intention
there having been to address forcing with set partial orders. Not only did
Jensen bring class forcing into prominence for establishing new consistency
results about sets, but also for establishing outright theorems of ZFC + “0#

exists”.
Starting in the mid-1980s Friedman reworked and extended the Jensen

theory and established some notable results about 0# and class forcing, and
this work eventually appeared in his book Fine Structure and Class Forcing
(2000). This chapter is a short version of the book, appropriate to the task
of working more directly toward several problems of Solovay and developing
techniques where needed. After stating three problems of Solovay as moti-
vation, Friedman develops the criterion of tameness for class partial orders
for preserving ZFC and gets at the property of relevance, having a generic
definable in L[0#]. He then provides his proof of Jensen’s coding theorem
assuming that 0# does not exist, this assumption allowing a comparatively
simple argument free of fine structure but making appeals to the Jensen Cov-
ering Theorem. With this the Solovay problems are addressed in turn. To
conclude, wide-ranging applications are given as well as a nice list of open
problems.

9. Fine Structure. This and the next chapter deal with fine structure and
are complementary in that they present different versions, both due initially
to Jensen, as well as applications in different directions. In this chapter Ralf
Schindler and Martin Zeman provide an incisive, self-contained account of
Jensen’s original fine structure theory for the Jα hierarchy relativized to a
predicate A. Much is drawn from Zeman’s book Inner Models and Large
Cardinals (2002), but diverging from it Schindler and Zeman steer to the
use of the Mitchell-Steel rΣn formulas for discussing iterated projecta and
embeddings. With A being a sequence of extenders this was the approach
that had been taken for the use of fine structure in inner model theory. The
chapter thus provides the fine structure groundwork for Chapters 18, 19, and
20 of this Handbook.

After the preliminaries about J-structures, the chapter focuses on the ac-
ceptable ones, those that satisfy GCH in a strong form. The projecta of these
J-stuctures are described, and then the Downward and Upward Extensions
of Embeddings Lemmas are established. Iterated projecta are then formu-
lated and rΣn introduced for expressing preservation through embeddings
using very good parameters. Next, standard parameters are fully analyzed
and all the considerations about soundness and solidity witnesses necessary
for inner model theory are given.

A later section analyzes fine ultrapowers, fine structure preserving ul-
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trapowers by extenders, treating the “short” and “long” cases uniformly,
and draws out the connections with the Upward Extensions of Embeddings
Lemma. Finally, two illustrative applications to L are presented, with gener-
alizable arguments: a proof, in the absence of 0#, of the “countably closed”
weak covering property for L and a proof of �κ for κ > ω.

10. Σ∗ Fine Structure. Philip Welch considerably rounds out the discus-
sion of fine structure by presenting the Σ∗ version and the extensive work
on square principles and morasses, providing commentary throughout about
the interactions with inner model theory.

Σ∗ fine structure is due to Jensen and detailed in Zeman’s book Inner
Models and Large Cardinals (2002). The theory is a notable advance in
that it isolated the “right” classes of formulas for the articulation of fine
structure results. The classes form a certain ramified version of the Levy

hierarchy, the Σ
(n)
k formulas for n, k ∈ ω, which level-by-level are able to

capture syntactically the semantic role of standard parameters. In particular,

Σ
(n)
1 (Jα) relations can be uniformized by Σ

(n)
1 (Jα) relations defined uniformly

for all α. And the Σ
(n)
1 formulas are exactly the formulas preserved by the

rΣn+1 embeddings involving very good parameters.
The first section of the chapter establishes the Σ∗ theory, with the treat-

ment much as in Zeman’s book. The Σ∗ approach is shown to advantage in
the development of the Σ∗ ultrapower, Σ∗ fine structure preserving extender
ultrapowers. Then the more general pseudo-ultrapower (which corresponds
to the use of “long” extenders) is developed, with a refinement toward coming
applications.

The second section is devoted to square principles. Jensen had established
that if V = L, then in addition to the principles �κ a global, class version
� holds. Most of the section is taken up by a Σ∗ pseudo-ultrapower proof of
this result, one that provides a global � sequence with uniform features.

The section concludes with an extensive and detailed description of the re-
cent investigation of square principles in inner models. Of particular interest
is the failure of �κ, this for singular κ precluding covering properties for inner
models. Around 2000 an elucidating systemic characterization was achieved.
Solovay’s initial 1970s result—that if κ is λ+-supercompact and λ ≥ κ, then
�λ fails—had led to refinements, and Jensen had extracted a streamlined
large cardinal concept, later dubbed subcompactness, still sufficient so that:
If κ is subcompact, then �κ fails. Then in a remarkable analysis, Zeman
and Schimmerling established: In “Jensen-style” extender models L[ ~E], if
�κ fails, then κ is subcompact. These results established the reach of �κ

well beyond current inner model theory, in that subcompact cardinals, far
stronger than Woodin cardinals, are not known to have canonical inner mod-
els. By 2005 Steel established: If �κ fails for some singular strong limit
cardinal κ, then ADL(R) holds.

The chapter is brought in an end with a survey of the extensive work on
morasses. A (κ, 1) morass is a system approximating the Lα’s for κ < α ≤ κ+
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by means of Lβ ’s for β < κ and maps fβ,β′ between them as regulated by
a series of conditions. Just after his development of fine structure Jensen
formulated morasses and established their existence in L in order to establish
model-theoretic “cardinal transfer” theorems there. A great deal of work has
since been carried out on morass structures as providing approximations to
large structures in terms of indexed arrays of small structures, and morasses
have come to carry the weight of the extent of combinatorial structure in the
constructible universe.

VOLUME II

11. Elementary Embeddings and Algebra. In this chapter Patrick De-
hornoy presents a notable development arising out of the investigation of
algebraic features of very strong elementary embeddings. After Kunen estab-
lished his result that a strong large cardinal postulation is inconsistent, it was
natural to investigate remaining possibilities just weaker and so still of great
consistency strength. One was that there exists a (non-identity) elementary
embedding j : Vλ → Vλ for some limit λ. There is a collective structure here,
for letting Eλ be the set of such embeddings, Eλ is closed under functional
composition ◦, as well as application: For j, k ∈ Eλ, let j[k] =

⋃
γ<λ j(k∩Vγ),

regarding k of course as a set of ordered pairs; then j[k] is in Eλ as well. Com-
position ◦ and application [ ] together satisfy a handful of laws, and the latter
satisfies the left distributive law j[k[l]] = j[k][j[l]]. Martin’s 1978 result, that
if there is an “iterable” elementary j : Vλ → Vλ then Π1

2-Determinacy holds,
first used application and these laws for j self-applied.

Laver saw that application provided a wealth of elementary embeddings
and a proliferation of critical points, and initiated a systematic investigation
into the structure of Eλ for its own sake. In 1989 he established the freeness
of the subalgebra generated by one j in 〈Eλ, [ ]〉 subject to the left distributive
law and the analogous result for 〈E , [ ], ◦〉. Moreover, with his analysis Laver
established that the corresponding word problem for the left distributive law
is solvable, i.e. it is recursively decidable whether two given expressions in
the language of one generator and [ ] are equivalent according to the left
distributive law. This elicited considerable interest, with a hypothesis near
the limits of consistency entailing solvability in finitary mathematics. In
1992 Dehornoy eliminated the large cardinal assumption from the solvability
result with an elegant argument that led to unexpected results about the
Artin braid group.

Dehornoy in this chapter effectively presents the body of work on Eλ and
the left distributive law. Beyond the solvability of the word problem, he also
presents the Laver-Steel theorem about the set of critical points of members
of Eλ having ordertype ω, a result that initially applied results about the
Mitchell ordering in inner model theory; Randall Dougherty’s result that the
growth rate of the critical points is faster than Ackermann’s function; and
results on the finite “Laver tables” using Eλ 6= ∅ that thus far have not been
established in ZFC alone.
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12. Iterated Forcing and Elementary Embeddings. James Cummings
provides a lucid exposition of that core part of the mainstream of forcing and
large cardinals having to do with iterated forcing and extensions of elemen-
tary embeddings. Forcing and large cardinals are elaborated in the directions
of ideals and generic elementary embeddings in the next chapter and in the
direction of Prikry-type forcings in Chapter 16. Drawing on his wide-ranging
knowledge, Cummings provides a well-organized account, in mainly short,
crisp sections, starting from the basics and proceeding through a series of
techniques, with historical progression a rough guide and conceptual com-
plexity a steady one. This chapter is commended to the reader conversant
even with only the basics of forcing and large cardinals to assimilate what
have become important techniques of modern set theory.

The early sections proceed leisurely through the basics of elementary em-
beddings, ultrapowers and extenders, large cardinal axioms, forcing, some
forcing partial orders, and iterated forcing. The first ascent is to building
generic objects to extend (“lift”) elementary embeddings in forcing exten-
sions. Describing Silver’s Easton support iteration and the key idea of mas-
ter condition, his 1971 result is established: If κ is κ++-supercompact, then
there is a forcing extension in which κ is measurable and 2κ = κ++. Next,
Magidor’s important technique of making do with an “increasingly master-
ful” sequence of conditions is presented. Then, the general idea of absorption,
embedding a complex partial order into a simple one, is discussed. This is
illustrated with Magidor’s 1982 result (also highlighted in Chapter 15): If
there are infinitely many supercompact cardinals, then in a forcing extension
in which they become the ℵn’s, every subset of ℵω+1 reflects.

Precipitiousness is the subject of the two longer sections of the chapter.
In the first, the Jech-Prikry-Mitchell-Magidor mid-1970s result is established,
building on the previous work: If there is a measurable cardinal κ, then there
is a forcing extension in which κ = ω1 and NSω1 is precipitous. This involves
exploiting the absorptive properties of the initial Levy collapse with iterated
“club shooting”. In the second, and longest, section a Gitik 1983 result is
established: The precipitousness of NSω2 is equi-consistent with having a
measurable cardinal κ such that o(κ) = 2 in the Mitchell order. The difficult,
forcing direction exhibited Gitik’s virtuosity of technique, and all the features
of a “preparation forcing” before the iterated club shooting are carefully laid
out: Namba forcing, RCS iteration, the S and I conditions.

The rest of the chapter reverts to short sections that describe a wide range
of techniques and results, of which we mention the more conspicuous. Pre-
senting Kunen’s universal collapse and Silver’s collapse, Kunen’s focal 1972
result is established: If κ is huge, then there is forcing extension in which
κ = ω1 and there is an ℵ1-complete ℵ2-saturated ideal over ω1. Laver’s
termspace forcing for introducing a universal generic object by forcing with
a partial order of terms is described and applied to establish Magidor’s 1973
result: It is consistent that the least strong compact cardinal is the least mea-
surable cardinal. The “Laver diamond” and its original use to make super-
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compact cardinals “indestructible” is presented, and with this Baumgartner’s
1983 consistency result is established: If there is a supercompact cardinal κ,
then there is a forcing extension in which κ = ω2 and PFA holds. Finally,
Woodin’s technique of “altering generic objects” is used to establish his 1988
consistency result of getting a measurable cardinal κ satisfying 2κ > κ+ from
what turned out, by later work of Gitik, to be the optimal hypothesis. The
encompassing of these various, historically important results in one chapter
speak to how iterated forcing methods have been comprehensively assimilated
in modern set theory.

13. Ideals and Generic Elementary Embeddings. In this the longest
chapter of this Handbook, Matthew Foreman provides a wealth of methods
and results surrounding the general theme of ideals and generic elementary
embeddings. What is at play is the basic synthesis of forcing and ultrapowers
whereby one starts with an ideal I over a cardinal κ; forces with P (κ) − I
where p is stronger than q if p− q ∈ I ; thus produces an ultrafilter over the
ground model P (κ); and then gets a generic elementary embedding of the
ground model into the corresponding ultrapower. With the possibilities of
ideals occurring low in the cumulative hierarchy, so that large cardinal ideas
can be brought to bear on classical problems of set theory, an enormous
subject has grown as attested to by this chapter. Indeed, in it a very wide
range and variety of material have been marshalled, and this comes together
with an informal and inviting engagement that provides if not proofs, sketches
of proofs, and if not sketches, outlines that “show”.

Not just a compendium, the chapter has been organized in terms of overall
guiding themes. At the broadest level are the “three parameters” describing
the strength of a generic elementary embedding j : V → M : how j moves
the ordinals; how large and closed M is; and the nature of the forcing that
provided j. This last is the new parameter at play beyond the “conven-
tional” large cardinal hypotheses. Ideals through their forcing properties
thus assuming a crucial role, another guiding theme is the distinction be-
tween “natural” ideals that have intrinsic definitions and ideals “induced” by
elementary embeddings. As the chapter progresses, strong ideal properties
gain an autonomy as “generic large cardinal hypotheses” in their own right,
and the chapter is further delineated according to consequences of generic
large cardinals and consistency results about them.

Section 2 introduces the basics of generic ultrapowers and begins the study
of the correspondence between combinatorial properties of ideals and struc-
tural properties of generic ultrapowers. Topics include criteria for precipi-
tousness, the disjointing property, normality, limitations on closure, canonical
functions, selectivity and the use of generic embeddings for reflection.

Section 3 provides a range of examples of natural and induced ideals.
Among the natural ideals considered are the nonstationary ideals NSλ, their
important generalizations to nonstationary subsets over power sets P (X),
Chang ideals, Shelah’s I [λ] and club guessing ideals, non-diamond ideals, and
uniformization ideals. How induced ideals arise is taken up next, with an
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important example being the master condition ideals, with their connections
to proper forcing. In a general setting, goodness and self-genericity are ex-
plored for making natural ideals also induced. Self-genericity can be secured
through semiproper forcing and can secure the saturation or precipitousness
of natural ideals.

Section 4 takes a closer look at combinatorial properties of ideals and struc-
tural properties of generic ultrapowers. Topics include a range of saturation
properties, layered ideals, Rudin-Keisler projections, where the ordinals go
under generic elementary embeddings, and the sizes of sets in dual filters.
Iterations of generic elementary embeddings are also developed as well as
generic elementary embeddings arising from towers of ideals, i.e. sequences
of ideals interrelated by projection maps.

Section 5 considers consequences of positing strong ideals, or generic large
cardinals, low in the cumulative hierarchy. The wide-ranging topics include
graphs and groups; Chang’s Conjecture, Jónsson cardinals, and �κ; CH,
GCH, and SCH; stationary set reflection; Suslin and Kurepa trees; partition
properties; descriptive set theory; and non-regular ultrafilters. As empha-
sized, NSω1 being ℵ2-saturated importantly has countervailing consequences.

Section 6 discusses limitative results on the possibilites for generic large
cardinals. These play a role analogous to the Kunen limitation on conven-
tional large cardinals, and indeed, argumentation for it is initially applied.
A range of restrictions on ideal properties is subsequently presented, among
them results that stand as remarkable successes: the Gitik-Shelah result
that if κ is regular and δ+ < κ, then the ideal generated by NSκ and
{α < κ | cf(α) = δ} is not κ+-saturated; their result that there is no ℵ1-
complete ℵ0-dense nowhere prime ideal; the Matsubara-Shioya result that
for ω < κ ≤ λ with κ regular, Iκλ is not precipitous; and the Foreman-
Magidor result that for ω < κ ≤ λ with κ regular, NSκλ is not λ+-saturated
unless κ = λ = ω1.

Having progressed to the middle of the chapter, one sees that the chapter
naturally divides into halves, the latter having to do with consistency results
for strong ideal assumptions, or generic large cardinals. The long Section
7 attends to the main consistency results for induced ideals having strong
properties. After developing the basic master condition theory for extend-
ing elementary embeddings, a general theorem—the Duality Theorem—is
established for characterizing the forcing necessary for constructing the el-
ementary embedding coming from an induced ideal. With this in place, a
systematic account of various forcing techniques for getting precipitous and
saturated ideals is provided. Highlights are Kunen’s technique for getting
an ℵ1-complete ℵ2-saturated ideal over ω1 from a huge cardinal; Magidor’s
variation for which an “almost huge” cardinal suffices; Foreman’s iteration to
get κ-complete κ+-saturated ideals over κ for every regular κ > ω; Woodin’s
ℵ1-complete ℵ1-dense ideal over ω1 from an almost huge cardianl; and Fore-
man’s ℵ1-complete ℵ1-dense uniform ideal over ω2 from two coordinated al-
most huge cardinals.
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Section 8 in turns attends to consistency results for natural ideals having
strong properties. In the first of two main approaches, one starts with an in-
duced ideal with strong properties and forces that ideal to be a natural ideal
while retaining substantial properties. Important examples are the Magidor
and Woodin arguments for getting the nonstationary ideal to be precipitous
and (somewhere) saturated respectively, and the Foreman-Komjáth argu-
ment for getting the tail club guessing filter to be saturated. In the second
approach, one starts with a natural ideal and manipulates its antichain struc-
ture to make the generic ultrapower have strong properties. The important
example is the “catching antichain” technique of the 1984 Foreman-Magidor-
Shelah work for getting the nonstationary ideal to be saturated.

Section 9 broaches the extension of the context to towers of ideals. First
brought into prominence by Woodin with his stationary tower forcing, this
extension allows for more flexibility in minimizing assumptions and in draw-
ing conclusions. After considering “induced” towers, techniques based on
antichain catching are presented for getting nice generic ultrapowers. The
stationary towers are the “natural” towers, and examples of Woodin and
Douglas Burke are described. Finally, examples of stationary tower forcing
are provided.

Section 10 briefly discusses the consistency strength of ideal assumptions.
How inner model theory has successfully established lower bounds comple-
menting forcing consistency results is quickly summarized. The focus, how-
ever, is on how knowing the image of just a few sets under a generic elemen-
tary embedding suffices to show that there is a conventional large cardinal
in an inner model whose embedding agrees with the generic embedding. No-
tably, equi-consistency results for very large cardinals like the n-huge cardi-
nals are derived by this means.

Section 11 is a speculative discussion of the possibility of adopting generic
large cardinals along with their conventional cousins as additional axioms for
mathematics. There is summarizing, comparisons, and prediction, and the
reader could profitably read this section before surmounting all the others.
Section 11 is an extensive, detailed list of open problems. These two last
sections indicate the wealth of possibilities at this general confluence of the
methods of forcing and ultrapowers.

14. Cardinal Arithmetic. In this chapter Uri Abraham and Menachem
Magidor provide a broad-based account of Shelah’s pcf theory and its applica-
tions to cardinal arithmetic, an account that exhibits the gains of considerable
experience.

A beginning section sets out a general theory of ordinal-valued functions
modulo ideals and cofinal sequences thereof, through to the existence of exact
upper bounds as derived from a diamond-like club guessing principle. Delin-
eating consequences, Silver’s Theorem and a covering result of Magidor are
established forthwith.

The next sections develop the basic theory of the central pcf function as
calibrated by the crucial ideals J<λ[A]. The various aspects of an unex-
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pectedly rich structure are presented, the surround of the focal result that
J<λ+ [A] is generated by J<λ[A] together with a single set Bλ ⊆ A.

The latter sections make the ascent to the applications in cardinal arith-
metic. First, the general Shelah study of the cofinality of [µ]κ = {x ⊆ µ |
|x| = κ} under ⊆ is presented. One takes a sufficiently large HΨ(= H(Ψ))
and structured chains of elementary substructures to get specifically related

generators Bλ. With this the 1980 Shelah result ℵ
cf(δ)
δ < ℵ(|δ|cf(δ))+ is se-

cured. Proceeding through a finer analysis leading to “transitive” generators
Bλ, the now famous result, instantiated by 2ℵω < ℵω4 when ℵω is a strong
limit, is established.

The last section is devoted to Shelah’s remarkable “revised GCH” result
established in the early 1990s. With his investigation of cofinalities leading
to “covering” sets Shelah advocated the consideration of

λ[κ] = min{|P| | P ⊆ [λ]≤κ ∧ ∀u ∈ [λ]κ∃x ∈ [P ]<κ(u =
⋃
x)}.

as a “revised” power set operation. GCH is equivalent to the assertion that
for all regular κ < λ, λ[κ] = λ. Using a variant of the pcf function, Shelah
established that λ[κ] = λ for every λ ≥ iω (where iω = sup{in | n ∈ ω}
with i0 = ℵ0 and in+1 = 2in) and with κ < λ sufficiently large. Thus, pcf
theory provided a viable, substantive version of the GCH provable in ZFC.

15. Successors of Singular Cardinals. The investigation of combinatorial
properties at successors of singular cardinals, with ℵω+1 being paradigmatic,
has emerged as a distinctive subject in modern set theory. Historically, the
early forcing arguments to secure substantial propositions low in the cumu-
lative hierarchy by collapsing large cardinals to ℵ1 or ℵ2 did not adapt to
ℵω+1. The situation became accentuated when the 1970s work on covering
properties for inner models showed that the failure of �κ for singular κ would
require strong large cardinal hypotheses. In the 1980s expansion, the rela-
tive consistency of strong propositions about ℵω+1 entailing the failure of
�ℵω

were duly achieved, and with the emergence of pcf theory a new com-
binatorially elaborated setting was established as well. In recent years, the
conceptual space between �κ-like properties and their antithetical reflection
properties has become clarified through methods and principles that have
particular applicability at successors of singular cardinals.

Todd Eisworth in this chapter provides a well-organized account of the
modern theory for successors of singular cardinals, an account that covers
the full range from consistency results to combinatorics. After a first section
setting out three illustrative problems about ℵω+1 the second section takes
on one, stationary set reflection, as its theme. Let Refl(κ) be the assertion
that every stationary S ⊆ κ reflects, i.e. there is an α < κ such that S ∩ α
is stationary in α. A central tension is brought to the foreground with the
discussion of how �κ denies Refl(κ+) in a strong sense and how supercom-
pact cardinals, and even strong compact cardinals through indecomposable
ultrafilters, imply versions of stationary set reflection. The rest of the sec-
tion is devoted to establishing, as an entrée into the issues, Magidor’s 1982
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result: If there are infinitely many supercompact cardinals, then in a forcing
extension in which they become the ℵn’s, Refl(ℵω+1) holds.

The third section is given over to a detailed exegesis of the ideal I [λ].
Part of his deep combinatorial analysis, Shelah isolated I [λ] after strands
had appeared in his work as early as 1978, and I [λ] has grown in importance
to become a central concept. In accessible terms, S ⊆ λ is in I [λ] iff there is
a sequence ā = 〈aα : α < λ〉 of bounded subsets of λ and a closed unbounded
C ⊆ λ such that every δ ∈ S ∩ C is singular and has a cofinal A ⊆ δ of
ordertype cf(δ), each of whose initial segments appears in {aβ | β < δ}. This
articulates a subtle sense of fast approachability, and for singular µ, APµ

asserts that I [µ+] is an improper ideal, i.e. µ+ ∈ I [µ+]. �µ implies APµ,
and through Shelah’s incisive analysis of I [λ], one gets to the consistency of
the failure of APℵω

from a supercompact cardinal. The section is brought
to a close with Shelah’s result, a bulwark of his pcf theory, on the existence
of scales: With µ singular let A ⊆ µ be a set of regular cardinals cofinal in
µ of ordertype cf(µ) such that cf(µ) < min(A) as in pcf theory. Consider
ΠA with respect to the filter F = {X ⊆ cf(µ) | |cf(µ) − X | < cf(µ)} of
co-bounded sets. Then Shelah showed that 〈ΠA,<∗

F 〉 has a linearly ordered,
cofinal sequence of length µ+—a scale for µ. (In terms of pcf theory, ΠA/F
has true cofinality µ+.)

The fourth section provides an extensive exploration of applications of
scales and weak square principles. Attention soon focuses on the Foreman-
Magidor Very Weak Square at µ (VWSµ), particularly its close relationship
to I [µ+]. VWSµ is a square principle so weak that APµ implies it, and
moreover, it is consistent to have a supercompact cardinal together with
VWSµ holding for every singular µ. The rest of the section is devoted to how
scales with additional properties get us further across the divide between
weak square principles and reflection properties. A family consisting of non-
empty sets is free iff it has an injective choice function, and is κ-free iff
every subfamily of cardinality less that κ is free. NPT(κ, θ) is the assertion
that there is a κ-free, non-free family of κ non-empty sets each of cardinality
less than θ. That NPT(κ,ℵ1) fails for any singular cardinal κ is part of
Shelah’s work on singular compactness. The existence of “good” scales leads
to NPT(ℵω+1,ℵ1), a central result of important work of Magidor and Shelah
on the freeness of abelian groups. The notions of “very good” and even
“better” scales provide avenues for further combinatorial elucidation.

The last section discusses square-brackets partition relations, with the fo-
cus on Jónsson algebras. The existence of such algebras was an important
motivation of Shelah’s development of pcf theory, and early on Shelah estab-
lished that ℵω+1 carries a Jónsson algebra. The general question of whether
every successor of a singular cardinal carries a Jónsson algebra remains un-
solved, and the section sketches the expanse of Shelah’s work here.

16. Prikry-Type Forcings. In this chapter Moti Gitik presents the full
range of forcing techniques that have been developed to investigate powers of
singular cardinals and the Singular Cardinal Hypothesis. With his technical
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virtuosity and persistence Gitik has been the main contributor to the subject,
and to the organization and presentation of this chapter he brings to bear
his extensive knowledge, providing several simplifications of the previously
published work. To be noted is that being of the Israeli school, Gitik writes
“p > q” for p being a stronger condition than q.

The first half deals with the work on countable cofinality. An initial sec-
tion presents the basic Prikry forcing and its variants through to a strongly
compact version, all having the characteristic property of adjoining new co-
final subsets without adjoining bounded subsets or collapsing cardinals. The
next several sections then present the Gitik-Magidor extender-based forcing
for adjoining many Prikry sequences with optimal hypotheses. As a warm-
up, the simpler case when κ is already singular, κ = sup{κn | n ∈ ω}, is
presented. One posits extenders on each κn and uses the embeddings to de-
velop a system of ultrafilters Unα on κn for adjoining Prikry sequences tα.
The forcing itself relies on getting Cohen subsets of κ+ to guide the construc-
tion. Then the main case of an extender-based Prikry forcing with a single
extender on a regular κ is presented. This forcing elaborates the previous by
singularizing κ and confronts the added difficulty that the support of a con-
dition may have cardinality κ. Finally, the forcing that additionally brings
the whole situation down to render κ = ℵω with interwoven Levy collapses
is presented.

The latter half of the chapter begins with the work on uncountable cofi-
nality. First, the basics of Radin forcing for adjoining a closed unbounded
subset to a large cardinal consisting of formerly regular cardinals is carefully
presented in an extensive section. This forcing had originally been given in
terms of an elementary embedding j : V →M , and next, a presentation based
on a coherent sequence of ultrafilters is given, this providing a treatment also
encompassing Magidor forcing for changing to uncountable cofinality. Then
Carmi Merimovich’s extender-based Radin forcing is broached.

The last section handles iterations of general “Prikry-type forcings”. Such
an iteration had first occurred in Magidor’s 1973 result that it is consistent
that the least strongly compact cardinal is the least measurable cardinal, and
here Magidor’s proof is simplified. After discussing an interesting forcing due
to Jeffrey Leaning, the section turns to Easton support iterations of Prikry-
type forcings. It is observed that this provides another way of establishing
the consistency of the failure of SCH from the optimal hypothesis ∃κ(o(κ) =
κ++). The chapter ends with five open problems about powers of singular
cardinals.

VOLUME III

17. Beginning Inner Model Theory. In this first of several chapters on
inner model theory, William Mitchell authoritatively sets out the theory from
L[U ] and KDJ through to inner models of strong cardinals, the “coarse the-
ory” not requiring fine structure. He thus performs the service of laying out
the larger features and strategies of inner model theory that will frame the
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later chapters. There is iteration, comparison, coherence, and coiteration,
and at one end sharps and mice and the other end coherent sequences of
(non-overlapping) extenders. Beyond this, he provides two illuminating dis-
cussions about the further developments that involve fine structure. One is
on the advantages of the modern Baldwin-Mitchell presentation with partial
extenders even for the cases that he considers. The other is about what in
general the core model should be in set theory, separate from any specific
large cardinal assumptions.

18. The Covering Lemma. Mitchell here draws on his experience and
expertise to provide an incisive account of the covering leitmotiv for inner
models, which has been central to the development of inner model theory.
The Jensen argument for the Covering Lemma for L has not only stimulated
the formulation of new inner models in which the argument can be applied
but has proven to be robust through these models to establish various results
about the global affinity between inner models and the universe.

The first two sections discuss variants of the covering lemma and their
applications. What is brought out is that the basic Jensen argument as
a conceptual construction can be implemented in a range of inner models,
but that the conclusions that one can draw depends on the large cardinal
hypotheses involved and the complexity that one wants to sustain.

The third section outlines a proof, complete except for some fine structure
details, of the Jensen and Dodd-Jensen covering results for L and L[U ]. Al-
though proofs for these cases have been devised that do not appeal to fine
structure, it is deployed here in order to maintain generalizability. In fact,
the Baldwin-Mitchell approach with partial extenders is already adopted for
the technical advantages of local uniformity that it provides. One signifi-
cant feature of the L[U ] case is that a weak covering property is established
first and used to study ultrapower-generated indiscernibles leading to Prikry
generic sequences.

The last section is devoted largely to a proof of covering for Mitchell’s core
model K[U ] for coherent sequences U of ultrafilters. The previous proof has
now to be further elaborated on account of the possible generation of com-
plicated systems of indiscernibles, including possibly those leading to generic
sequences for the Magidor forcing for changing to uncountable cofinalities.
Drawing out what is possible from the covering argument, an elaborate con-
clusion is articulated and established. Gitik, for one direction of his cul-
minating equi-consistency result on the Singular Cardinals Hypothesis, had
applied this covering conclusion together with elements of Shelah’s pcf the-
ory to establish that if SCH fails, then in an inner model ∃κ(o(κ) ≥ κ++)
holds. This synthetic result is next presented as a crucial application. The
section, and chapter, concludes with a discussion of how the covering proof
and conclusion can be extended to a strong cardinal, and the progress made
with weaker versions of covering up to a Woodin cardinal and beyond.

19. An Outline of Inner Model Theory. In this chapter John Steel
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provides a general theory of extender models, the canonical inner models for
large cardinals, getting to his model Kc. Moreover, he provides a remarkable
application, to the effect that under ADL(R), HODL(R) up to a high rank Vδ

is an extender model. Since it was Steel who in the mid-1990s provided the
framework and made the crucial, final advances in this inner model theory,
this chapter carries the stamp of experience and authority. The next chapter
provides the construction of Steel’s core model K up to a Woodin cardinal, a
construction based onKc, and a range of combinatorial applications. Chapter
22 describes how iteration trees, a basic component of the Kc construction,
found their first substantial use in determinacy.

After covering the basics of extenders, an early section sets out the care-
fully wrought definition of a fine extender sequence ~E. These are coherent

sequences enhanced with acceptability for J
~E and the Baldwin-Mitchell idea

of having Eα be only an extender for subsets in J
~E�α
α . A potential premouse is

then a structure J
~E
α where ~E is a fine extender sequence. With the Chapter 9

preliminaries, fine structure considerations are imposed on potential premice
and fine structure preserving ultrapowers are schematically described.

The next section engages the project of comparing two potential premice
through coiteration. Iteration trees become central for handling overlapping
extenders, and iterability for comparison is articulated in terms of games and
iteration strategies for securing well-founded limits of models along branches.
Fine structural considerations have become crucial to carrying out the process
internally in extender models.

The succeeding section establishes the Dodd-Jensen Lemma about the
minimality of iterations copied across fine structure preserving maps, as well
as a weak Neeman-Steel version sufficient for present purposes. A further
section deals with crucial results about solidity and condensation. These
sections, elaborating the analysis starting with iterations trees, carve a fine
path through a thicket of detail.

With these preparations, a culminating section provides the Kc construc-
tion and the resulting Steel background certified core model Kc. The model is
an extender model L[ ~E] for a fine extender sequence ~E defined according to

the following stratagem: Given ~E�α, an F is next adjoined if it is “certified”

by a “background extender” F ∗, in that F is the restriction to J
~E�α
α of F ∗,

an extender in V with sufficiently strong properties to guarantee iterability
of ~E�α_〈F 〉. That such an ~E can be defined canonically is at the heart of
the construction.

The concluding two sections bring inner model theory and determinacy to-
gether for the analysis of HODL(R). Both sections proceed under the assump-
tion that there are infinitely many Woodin cardinals with a measurable car-
dinal above them, so that in particular ADL(R) holds. The main thrust of the
first section is that the reals in the minimal iterable inner model Mω satisfying
“There are infinitely many Woodin cardinals” are exactly the reals in ODL(R).
The last section builds on this work to establish, using the (full) Dodd-Jensen
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Lemma, that HODL(R) is “almost” an iterate M∞ of Mω. Specifically, for δ
the large projective ordinal (δ

∼

2
1)L(R), HODL(R)∩Vδ = M∞∩Vδ . This suffices

in particular to establish under ADL(R) that HODL(R) |= GCH. It is remark-
able that an inner model incipiently based on global definability can be shown
to have structure as given by local definability and extender analysis.

20. A Core Model Tool Box and Guide. Building on the general theory
of the previous chapter, Ernest Schimmerling develops its historical source,
Steel’s core model K up to a Woodin cardinal, and discusses combinatorial
applications of it across set theory. Having been one of the contributors to the
covering lemma theory for K and the initiating investigator of combinatorial
principles there, Schimmerling is centrally placed to provide a measured,
wide-ranging account.

The first half of the chapter is devoted to the basic theory of K. Going
“up to” a Woodin cardinal, the “anti-large cardinal hypothesis” that there is
no inner model with a Woodin cardinal is assumed. But moreover as Steel
initially did, an additional “technical hypothesis” that there is a measur-
able cardinal Ω is assumed. Ω becomes regulative for the construction of
K, schematically playing the role of the class On of ordinals. Regarding Kc

as now a set premouse of height Ω, one works with weasels, other such pre-
mice, and uses the crucial simplifying property that if they have no Woodin
cardinals, then their iteration trees have at most one cofinal well-founded
branch. A definition of K second-order on H(Ω) is first developed, and then
a first-order, recursive definition.

With K in hand, a useful “tools” section provides, without proof, a range
of properties of K, from covering, forcing absoluteness and rigidity to com-
binatorial principles.

The next section outlines a proof of the “countably closed” weak covering
property for K. The proof assumes familiarity with that of analogous results
as given e.g. in Chapters 9 and 18 and very much depends on the first-order
definition of K.

The final section provides, without proof, applications of K and generally,
core models at the level that involves iteration trees. One sees at a glance how
central this inner model theory has become, with the involvements described
in determinacy, trees, ideals, forcing axioms, and pcf theory.

21. Structural Consequences of AD. In this first of several chapters
on determinacy, Steve Jackson surveys the structural consequences of de-
terminacy for sets of reals. The chapter thus serves as a fitting sequel to
Moschovakis’s book Descriptive Set Theory (1980). The advances have been
in two directions, the extension of the scale theory beyond the projective sets
into a substantial class of sets of reals in L(R) and the analysis of the fine
combinatorial structure of cardinals provided by the computation of the pro-
jective ordinals. With both directions calibrated by the analysis of definable
sets in terms of definable well-ordered stratifications, the structure theory
has remarkable richness and complexity as well as overall coherence.
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An early section lays the basis with a review of basic notions: scales and
periodicity, the Coding Lemma, projective ordinals, Wadge reducibility—and
with some topics already going beyond the scope of the Moschovakis book—
Σ2

1 sets of reals and infinite-exponent partition relations.
The next section develops the scale theory provided by Suslin cardinals

under AD, the arguments mainly due to Martin. Let S(κ) denote the class
of κ-Suslin sets. A cardinal κ is Suslin iff S(κ)−

⋃
κ′<κ S(κ′) 6= ∅. That ℵ1

is a Suslin cardinal is a classical result, and PD implies that the projective
ordinals δ

1
n for odd n ∈ ω are Suslin. The late 1970s Martin-Steel result that

AD + V = L(R) implies that Σ2
1 is the largest class with the scale property

and Σ2
1 =

⋃
κ S(κ) provides the new, broad context. With S(κ) taken as

the analogue of the analytic sets, corresponding analogues of the projective
hierarchy and projective ordinals are formulated. The scale property is then
inductively propagated using Wadge reducibility and the weakly homoge-
neous trees available. Thus, the scale theory of the projective sets has been
successfully abstracted, with the arguments applied in a suitably articulated
setting.

The succeeding two sections present a schematic approach to the compu-
tation of the projective ordinals, which had been carried out by the author in
a tour de force in the latter 1980s. κ −→ (κ)λ asserts that if the increasing
functions from λ into κ are partitioned into two cells, then there is an H ⊆ κ
of cardinality κ such that all the increasing functions from λ into H are in
one cell. The strong partition property for κ is the assertion κ −→ (κ)κ and
the weak partition property for κ is the assertion ∀λ < κ((κ −→ (κ)λ). In the
early 1970s Martin established under AD the strong partition property for
ω1, a striking result at the time. Kunen then carried out a detailed analysis
of ultrapowers that led to the weak partition property for δ

1
3, which Martin

had previously shown under AD to be ℵω+1, the third uncountable regular
cardinal. In the section on “a theory of ω1”, this work is reorganized by
starting with the weak partition property for ω1 and establishing in turn
the upper bound δ

1
3 ≤ ℵω+1; the strong partition property for ω1; the lower

bound ℵω+1 ≤ δ
1
3; and the weak partition property for δ

1
3. This is done in

terms of generalizable “descriptions”, and the section on higher descriptions
starts with the weak partition property for δ

1
3 and proceeds analogously to

establish the upper bound δ
1
5 ≤ ℵωωω +1; the strong partition property for

δ
1
3; the lower bound ℵωωω +1 ≤ δ

1
3; and the weak partition property for δ

1
5.

In this indicated propagation with descriptions, the author’s computation of
δ

1
5 and larger projective ordinals has been given a fortunate perspicuity and

surveyability.
The final section explores the possibilities for extending throughout L(R)

the sort of fine analysis given by the computation of the projective ordinals.
A weak square principle �κ,λ is established toward the goal of getting at
global principles that might help propagate the inductive analysis via the
Suslin cardinals.

22. Determinacy in L(R). Woodin’s culminating result that AD is equi-
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consistent with the existence of infinitely many Woodin cardinals figures cen-
trally in this and the next chapters, which establish each direction of the
equi-consistency in turn. In this chapter Itay Neeman develops the theme of
getting determinacy from large cardinals. In getting technically optimal such
results through the use of “long” games, Neeman’s book The Determinacy of
Long Games (2004) was an important contribution along these lines. In this
chapter Neeman ultimately provides a complete, tailored proof of Woodin’s
result that if there are infinitely Woodin cardinals with a measurable cardinal
above them, then ADL(R). He first provides the historical and mathematical
lines of approach in terms of concepts and methods of wider applicability and
then proceeds with his own, well-crafted trajectory to the final conclusion.

The first several sections presents the basic, Martin-Steel theory of itera-
tion trees. Iterability for the needed case of linear compositions of trees of
length ω is articulated in terms of games and strategies and then established.
The importance of Woodin cardinals is then brought out for creating com-
plex iteration trees, the complexity discussed in terms of the author’s notion
of type for a set of formulas in place of the former Martin-Steel alternating
chains.

The next sections start the ascent to the determinacy of sets in L(R). The
first vehicle is the concept of a homogeneously Suslin set of reals, a projec-
tion of a homogeneous tree and hence determined. After recasting Martin’s
classical Π1

1-Determinacy result, the 1985 Martin-Steel breakthrough result
is presented, with its propagation of determinacy through the projective hi-
erarchy with Woodin cardinals and iteration trees.

The last several sections make the final ascent with the author’s specific ap-
proach, one based on getting determinacy by making Woodin cardinals count-
able with forcing rather than using stationary tower forcing as in Woodin’s
original proof. First, Woodin cardinals, through forcing and absoluteness, are
shown to establish the determinacy of an important class of sets of reals wider
than the homogeneously Suslin sets, the universally Baire sets of Qi Feng,
Magidor, and Woodin. Second, getting at the technical heart of the matter,
it is shown that given any real, models with many Woodin cardinals can be
iterated to absorb the real in a further generic extension. Finally, with a least
counter-example argument, AD is established in a “derived model” assuming
the existence of infinitely many Woodin cardinals—getting one direction of
Woodin’s equi-consistency result—and assuming further the existence of a
measurable cardinal above, AD is established in L(R) itself.

23. Large Cardinals from Determinacy. In this extensive, well-rounded,
and sophisticated chapter Peter Koellner and Hugh Woodin set out the lat-
ter’s work on getting large cardinals from determinacy hypotheses. The focal
results were in place by the early 1990s, but this is the first venue where
a full-fledged, systematic account is provided. With hindsight the authors
are able to present a well-motivated, self-contained development organized
around structural themes buttressing the extensive results.

The first two thirds of the chapter are framed as making an ascent to
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the Generation Theorem, an abstract theorem that provides a template for
generating Woodin cardinals from refined determinacy hypotheses. In fact,
the early sections add layer upon layer of complexity in an informative, well-
motivated manner to get at more and more large cardinal conclusions.

Section 2 casts Solovay’s seminal 1967 result that ω1 is measurable under
ZF + AD in a generalizable manner that draws out boundedness and cod-
ing techniques for getting normal ultrafilters. The generalizability is then
illustrated by showing that under ZF + AD the projective ordinal (δ

∼

2
1)L(R),

“the least stable in L(R)”, is a measurable cardinal in HODL(R). Gearing
up, Section 3 reviews the Moschovakis Coding Lemma and provides a strong,
uniform version that will become crucial. Section 4 then establishes, as a
precursor to the Generation Theorem, that under ZF + DC + AD a pivotal
ordinal ΘL(R) is a Woodin cardinal in HODL(R). First, reflection properties
are developed that will play the role played earlier by boundedness. Then
the notion of strong normality is used to establish that (δ

∼

2
1)L(R) is λ-strong

for cofinally many λ < ΘL(R). Reflection properties and uniform coding are
then worked to secure strong normality. Finally, with crucial appeals to AD
and special properties of HODL(R), the strongness properties established for
(δ
∼

2
1)L(R) are shown to relativize for T ⊆ Θ in HODL(R) to provide corre-

sponding λ-T -strong cardinals δT , thus leapfrogging up to get that ΘL(R) is
Woodin in HODL(R).

The heights are reached in Section 5 where the work of the previous section
is abstracted to establish two theorems on Woodin cardinals in a general
setting. The first shows that in certain strong determinacy contexts HOD
can contain many Woodin cardinals, and the second is the central Generation
Theorem. The aim of this theorem is to show that the construction of Section
4 can be driven by lightface determinacy alone. To simulate the previous use
of real parameters, the notion of strategic determinacy is introduced, a notion
that resembles boldface determinacy but can nonetheless hold in settings with
AC. Indeed, this notion is motivated by showing that it can hold in L[S, x],
where S is a class of ordinals and x is a real. With this in hand the Generation
Theorem is finally established, and a number of instantial cases are presented.

Section 6 applies the Generation Theorem to derive the optimal amount
of large cardinal strength from both lightface and boldface determinacy. The
main lightface result is that ZF + DC + ∆1

2-determinacy implies that there

is a Turing cone of reals x such that ω
L[x]
2 is a Woodin cardinal in HODL[x].

The task here is to show that ∆1
2-determinacy secures strategic determinacy.

The main boldface result is that ZF + AD implies that in a generalized
Prikry forcing extension, there are infinitely many Woodin cardinals in the
corresponding HOD. The task here is to show that the Generation Theorem
can be iteratively applied to generate infinitely many Woodin cardinals.

Section 7 attends to a reduction to second-order Peano Arithmetic. A first
localization of the Generation Theorem shows that ∆1

2-determinacy implies

that for a Turing cone of reals x, ω
L[x]
1 is a Woodin cardinal in L[x]. A second

localization then shows that the proof can in fact be carried out in second-
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order Peano Arithmetic, to establish that if that theory plus ∆1
2-determinacy

is consistent, then so is ZFC + “On is Woodin”, the latter assertion to be
understood schematically.

The synthetic final Section 8 describes the remarkable confluences, seen in
the later 1990s, of definable determinacy and inner model theory. First, ac-
tual equivalences between propositions of definable determinacy and propo-
sitions about the existence of inner models with Woodin cardinals are de-
scribed. Then, the earlier HOD analysis is revisited in light of the Steel work
on HODL(R), described in his Chapter 19. The full HODL(R) is not itself an
extender model, but can nonetheless be comprehended as a fine-structural
inner model of a new sort.

24. Forcing over Models of Determinacy. In this chapter Paul Larson
describes work of Woodin on forcing over models of determinacy, and we take
the opportunity to first describe that broad reach of that work. After his great
successes culminating in his synthetic equi-consistency results about AD and
large cardinals, Woodin in the mid-1990s entered a new, middle period of his
research with the investigation of Pmax forcing extensions of models of AD.
Quickly becoming a far-reaching theory of maximal and canonical forcing
extensions that model ZFC, the subject shed new light on the inner workings
of determinacy at the level of P (ω1) and the extent of structure in ZFC
extensions, even to the possible failure of the Continuum Hypothesis.

Woodin’s remarkable The Axiom of Determinacy, Forcing Axioms, and the
Non-Stationary Ideal (1999) in nearly one-thousand pages sets out of his work
into his middle period. The book’s Chapter 4 provides its main thrust, the
specification of a canonical, maximal model of ZFC in the following sense: As-
sume ADL(R) and that there is a Woodin cardinal with a measurable cardinal
above it. Then there is in L(R) a (countably closed and homogeneous) partial
order Pmax so that for G Pmax-generic over L(R), L(R)[G] models ZFC, and:
for any Π2 (i.e. ∀x∃y) sentence satisfied in the structure 〈H(ω2),∈,NSω1〉,
that sentence is already satisfied in 〈H(ω2),∈,NSω1〉

L(R)[G], the structure rel-
ativized to the generic extension.

With H(ω2) suitably accommodating P (ω1) and the intrinsic ideal NSω1

participating, 〈H(ω2),∈,NSω1〉 is arguably the next natural generalization
of second-order arithmetic, which is identifiable with 〈H(ω1),∈〉. A pivotal,
historical point about Pmax is that since ¬CH is equivalent to a Π2 sentence
of 〈H(ω2),∈〉 and there is a generic extension satisfying ¬CH yet preserving
the hypotheses of the above result, CH actually fails in L(R)[G]. Gener-
ally, various combinatorial propositions about ω1 are similarly consistent via
“mild” forcing and are expressible as Π2 assertions about 〈H(ω2),∈,NSω1〉,
and hence, these propositions hold in L(R)[G]. In this very substantial sense,
L(R)[G] is a canonical generic extension of L(R).

Woodin’s next chapters have to do with variants of Pmax that arrange the
consistency of various combinatorial propositions about ω1. He starts with
applications of an axiom that codifies his motivation for formulating Pmax:
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(*) ADL(R) and L(P(ω1)) is a Pmax-generic extension of L(R).

Woodin then develops a variant Qmax of Pmax that provides extensions in
which NSω1 is ℵ1-dense. Woodin had famously shown that NSω1 being ℵ1-
dense is equivalent in ZF to AD, and with Qmax he provides a systematic
treatment of this result.

Pushing the limits in another direction, Woodin in the penultimate chapter
investigates Pmax extensions of AD models larger than L(R). This enterprise
is fueled by a corresponding strong form AD+ of AD, and with it Woodin is
able to starting scaling combinatorial propositions about ω2 and even forms
of Chang’s Conjecture.

In his final chapter Woodin casts a light into the horizon with the formu-
lation of his Ω-logic. With this new logic and AD+, a more pristine approach
can be taken to ¬CH, one that can subsume Pmax extensions in a more direct,
albeit abstract, formulation. In work of the 21st century, Woodin will argue
for the negation of the Continuum Hypothesis on the basis of his Ω-logic and
a corresponding Ω Conjecture.

Larson in this final chapter of this Handbook offers a preparatory guide
to Woodin’s Pmax, one that is to be highly appreciated for providing a pa-
tient, accessible approach. The first seven sections present a complete, self-
contained analysis of the Pmax extension of L(R) in an illuminating manner,
proceeding incrementally by introducing hypotheses and methods as needed.
After setting out the theory of iterated generic elementary embeddings fun-
damental to Pmax, the partial order is formulated and its countable closure is
established. After developing A-iterability, a generalized iterability property,
it is applied to establish crucial structural results about the Pmax extension of
L(R). Then the heralded Π2 maximality with respect to 〈H(ω2),∈,NSω1〉 is
established, and assuming Woodin’s axiom (*), the notable minimality result
that any subset of ω1 added by a generic filter generates the entire extension.

The last several sections briefly consider Pmax extensions of larger models
under AD+; Woodin’s Ω-logic and Ω Conjecture; and several variations of
Pmax, starting with Woodin’s Pmax. This sampling reflects on the accom-
plishments with Pmax and suggests the expansive possibilities to be explored.
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