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FIVE STAGES OF ACCEPTING

CONSTRUCTIVE MATHEMATICS

ANDREJ BAUER

Abstract. On the odd day, a mathematician might wonder what construc-
tive mathematics is all about. They may have heard arguments in favor of
constructivism but are not at all convinced by them, and in any case they
may care little about philosophy. A typical introductory text about construc-
tivism spends a great deal of time explaining the principles and contains only

trivial mathematics, while advanced constructive texts are impenetrable, like
all unfamiliar mathematics. How then can a mathematician find out what
constructive mathematics feels like? What new and relevant ideas does con-
structive mathematics have to offer, if any? I shall attempt to answer these
questions.

From a psychological point of view, learning constructive mathematics is ago-
nizing, for it requires one to first unlearn certain deeply ingrained intuitions and
habits acquired during classical mathematical training. In her book On Death and
Dying [17] psychologist Elisabeth Kübler-Ross identified five stages through which
people reach acceptance of life’s traumatizing events: denial, anger, bargaining,
depression, and acceptance. We shall follow her path.

1. Denial

I have met mathematicians who summarily dismiss constructive mathematics as
nonsense because they misunderstand what constructivism says or they just make
a simple logical error. Let us deal with these sorts of misconceptions first.

1.1. Excluded middle. Constructive mathematics is mathematics done without
the law of excluded middle:

For every proposition P , either P or not P .

This is not to say that we deny the law, but rather that we may use only those
instances of it which we have proved. A good first exercise is to show from Peano
axioms that any two natural numbers are equal or not equal.

Excluded middle is also known as the law of excluded third, or tertium non datur
in Latin. One might think mistakenly that constructivism adopts the existence of
a “third” possibility:

There is a proposition Q which is neither true nor false.
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This statement is constructively false because it states both ¬Q (Q is not true)
and its negation ¬¬Q (Q is not false), which is impossible by the following law of
noncontradiction:

There is no proposition P such that P and ¬P .

We prove this as follows, using the fact that in constructive mathematics ¬P is an
abbreviation for P ⇒ ⊥:

Suppose there were a proposition P such that both P and ¬P .
Since ¬P is just P ⇒ ⊥, we may use modus ponens to conclude ⊥.
We have reached a contradiction, therefore there is no such P . �

Incidentally, this is not a proof by contradiction but rather a proof of negation, as
we shall explain next.

1.2. Proof by contradiction and proof of negation. Proof by contradiction,
or reductio ad absurdum in Latin, is the reasoning principle:

If a proposition P is not false, then it is true.

In symbolic form it states that ¬¬P ⇒ P for all propositions P , and is equivalent
to excluded middle. Confusingly, mathematicians call “proof by contradiction” any
argument which derives a contradiction from a statement believed to be false, but
there are two reasoning principles that have this form. One is indeed proof by
contradiction, and it goes as

Suppose ¬P , . . . (argument reaching contradiction) . . . , therefore P .

While the other is how a negation ¬P is proved:

Suppose P , . . . (argument reaching contradiction) . . . , therefore ¬P .

Because ¬P abbreviates P ⇒ ⊥, the rule for proving a negation is an instance of
the rule for proving an implication P ⇒ Q: assume P and derive Q. Admittedly,
the two arguments look and feel similar, but notice that in one case the conclusion
has a negation removed and in the other added. Unless we already believe in
¬¬P ⇔ P , we cannot get one from the other by exchanging P and ¬P . These
really are different reasoning principles.

Famous theorems which use proofs of negations are irrationality of
√
2, Cantor’s

diagonal argument showing that there is no surjection from a set to its powerset, and
Russell’s antinomy showing there is no set of all sets. So these are all constructively
valid theorems. Just to make sure, let us constructively prove Russell’s theorem.

Theorem 1.1 (Russell). There is no set of all sets.

Proof. Let us follow a classic text on set theory, such as that by Halmos [11, Sect. 2]
or Jech [13, 1.11]. Suppose V were the set of all sets, and consider its subset

R = {x ∈ V | x �∈ x}.

Observe that

(1) if R ∈ R, then by the definition of R also R �∈ R, which is absurd;
(2) if R �∈ R, then again by the definition of R also R ∈ R, which is absurd.

These two observations are both proofs of negation, the first one proving ¬(R ∈ R)
and the second ¬(R �∈ R). By the law of noncontradiction this cannot be the case,
therefore there is no set of all sets. �
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This is indeed a proof of negation: we assume that the set of all sets exists, and
we derive a contradiction. We could read the above splitting of the proof into two
observations as an application of excluded middle (either R ∈ R or R �∈ R), but we
do not have to!

The following proof is often presented as an exemplary application of excluded
middle.

Theorem 1.2. There exists irrational numbers a and b whose power ab is rational.

Classical proof. By excluded middle, the number
√
2
√
2
is rational or not. Take

a = b =
√
2 if it is, otherwise take a =

√
2
√
2
and b =

√
2. �

As examples go, this one is poorly chosen because the splitting into two cases is

inessential. The number
√
2
√
2
is irrational, a fact not easily proved, and therefore

we should have taken the second option right away. Here is a constructive proof:

Constructive proof of Theorem 1.2. (
√
2)log2 9 =

√
2log2 9 =

√
9 = 3. �

Of course, irrationality of log2 9 needs to be established, but the proof is no harder
than the one of irrationality of

√
2.

1.3. Axiom of choice. In constructive mathematics we cannot afford the axiom
of choice because it implies excluded middle. To prove this, we need a bit of set
theory. Recall that the unordered pair {a, b} is the set of those x’s which are equal
to a or to b:

{a, b} = {x | x = a ∨ x = b}.
To show that P (x) holds for all x ∈ {a, b}, it therefore suffices to check P (a)
and P (b).

In constructive mathematics we need to take care with the formulation of the
axiom of choice because there is a difference between a nonempty set, which is a
set A such that ¬(A = ∅), and an inhabited set, which is a set A such that there
exists x ∈ A. The axiom of choice states that any family of inhabited sets has a
choice function.

Theorem 1.3 (Diaconescu [8]). The axiom of choice implies excluded middle.

Proof. Consider an arbitrary proposition P . To decide P , define

A = {x ∈ {0, 1} | P ∨ (x = 0)} and B = {y ∈ {0, 1} | P ∨ (y = 1)}.

Every member of {A,B} is inhabited because 0 ∈ A and 1 ∈ B. By the axiom of
choice there is a function f : {A,B} → A ∪ B such that f(A) ∈ A and f(B) ∈ B.
Because f(A) ∈ {0, 1}, we have f(A) = 0 or f(A) = 1, and because f(B) ∈ {0, 1},
we have f(B) = 0 or f(B) = 1. We consider four cases organized as follows:

(1) if f(A) = 1, then 1 = f(A) ∈ A, so P ∨ (1 = 0), which is equivalent to P ;
(2) if f(B) = 0, then 0 = f(B) ∈ B, so P ∨ (0 = 1), which is equivalent to P ;
(3) if f(A) = 0 and f(B) = 1, then ¬P : if P were true, we would have

A = B = {0, 1}, and so 0 = f(A) = f(B) = 1, a contradiction.

In each case we decided whether P or ¬P holds. �
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There are different flavors of constructive mathematics, some of which adopt
countable choice: a family of inhabited sets indexed by the natural numbers has a
choice function. This form of choice suffices for many arguments that one encounters
in analysis, so not all is lost. We shall talk about mathematics done without the
axiom of choice later. For now let us show a typical inadvertent application of
choice which is easily avoided.

Theorem 1.4 (Lebesgue covering theorem). For every open cover A of a compact
metric space X, there exists ε > 0 such that every open ball of radius ε is contained
in a member of A.

Taken from Engelking [10, 4.3.31]. For every x ∈ X, take εx > 0 such that the
open ball B(x, 2εx) is contained in a member of A. The open cover {B(x, εx)}x∈X

has a finite subcover, i.e., there exists a finite set {x1, . . . , xk} ⊆ X such that

X = B(x1, εx1
) ∪ · · · ∪B(xk, εxk

).

One can readily see that the number ε = min(εx1
, . . . , εxk

) has the required property.
�

Can you spot the application of the axiom of choice? It is in the very first sentence,
when it says “for every x ∈ X, take εx > 0”. The mapping x → εx is a choice
function. Such hidden choice happens whenever we introduce a new symbol and
subscript it with another one to indicate a dependence, in our case εx. Had we
started with “for every x ∈ X, there is ε > 0”, we would not have chosen anything,
but we would also be stuck. The remedy in such situations is simple: do not choose!

Proof of Theorem 1.4 without choice. Consider the family of all open balls B(x, ε)
where x ∈ X, ε > 0, and B(x, 2ε) is contained in a member of A. This is an
open cover of X which therefore has a finite subcover, i.e., there is a finite set
{(x1, ε1), . . . , (xn, εk)} such that

X = B(x1, ε1) ∪ · · · ∪B(xk, εk).

One can readily see that the number ε = min(ε1, . . . , εk) has the required property.
�

Before proceeding to the next stage, let us clear up one last misconception.
Suppose that in a mathematical text we have the assumption that there exists x
such that φ(x). We customarily say “choose an x satisfying φ(x)” to give ourselves
an x satisfying φ. This is not an application of the axiom of choice, but rather
an elimination of an existential quantifier. Similarly, if we know that a set A is
inhabited and we say “choose x ∈ A”, it is not choice but existential quantifier
elimination again.

It seems that constructive mathematics is not entirely unreasonable: construc-
tivists do not deny excluded middle but are ambivalent about it; they agree that
there is no proposition which is both true and false, or one that is neither true nor
false; they are allowed to use negations and prove them by reaching a contradiction;
and they find certain forms of choice acceptable. We also have to admit that with
a bit of care some instances of excluded middle and choice can be removed, or just
turn out to be illusions created by insufficient training in logic.
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2. Anger

Constructivism may be self-consistent, but we still remember David Hilbert’s
words from 1927 [31]:

Taking the principle of excluded middle from the mathematician
would be the same, say, as proscribing the telescope to the as-
tronomer or to the boxer the use of his fists. To prohibit existence
statements and the principle of excluded middle is tantamount to
relinquishing the science of mathematics altogether. For compared
with the immense expanse of modern mathematics, what would the
wretched remnants mean, the few isolated results, incomplete and
unrelated, that the intuitionists have obtained without the use of
logical ε-axiom?

Hilbert’s attack was successful because at the time he was correct. The intuitionists
had in fact produced only “the few isolated results”, and had made things worse
for themselves by talking about the unclear concept of “choice sequences” and by
insisting that “all functions are continuous”. The Russian constructivists, led by
A. A. Markov, compounded the trouble by proving theorems which made a joke of
mathematical analysis; for instance in their version of constructivism there was an
unbounded continuous map [0, 1] → R. It is common knowledge that constructivism
failed.

It is much less known in the wider mathematical community that things changed
in 1967, a year after Brouwer’s death, when Erret Bishop published a book on
constructive analysis [5]. The importance of the work was best described by Michael
Beeson [4]:

The thrust of Bishop’s work was that both Hilbert and Brouwer had
been wrong about an important point on which they had agreed.
Namely both of them thought that if one took constructive mathe-
matics seriously, it would be necessary to “give up” the most im-
portant parts of modern mathematics (such as, for example, mea-
sure theory or complex analysis). Bishop showed that this was
simply false, and in addition that it is not necessary to intro-
duce unusual assumptions that appear contradictory to the unini-
tiated. The perceived conflict between power and security was illu-
sory! One only had to proceed with a certain grace, instead of with
Hilbert’s “boxer’s fists”.

How can this be, when some amount of excluded middle and the axiom of choice is
needed to prove such fundamental facts as the well-ordering of cardinals, existence
of maximal ideals, existence of vector space bases, Hilbert’s Nullstellensatz, com-
pactness of the interval, the intermediate value theorem, Tychonoff’s theorem, and
many others? How did Erret Bishop do the impossible, and why is constructivism
still alive?

Historical arguments are interesting, but a well-delivered mathematical punch
carries real strength. No sane mathematician would reject the fact that a subset of
a finite sets is finite, right?

Theorem 2.1. Excluded middle is equivalent to the statement that subsets of finite
sets are finite.
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Proof. Recall that a set A is finite when it can be put into bijective correspondence
with {0, 1, . . . , n} for some n ∈ N. That is, the elements of A are enumerated by a
finite list a0, a1, . . . , an−1 without repetition.

If excluded middle holds, we are in home territory: given a set A with an enu-
meration a0, . . . , an−1 and a subset B ⊆ A, each ai either is or is not in B. Thus,
to enumerate B, we just erase those ai’s which are not in B.

To prove the converse, assume that a subset of a finite set is always finite, and
consider any proposition P . The set A = {0} is finite, and B = {x ∈ A | P} is a
subset of it, and therefore finite. Let b0, . . . , bm be an enumeration of B. Either
m = 0 or m �= 0. In the first case B = ∅ and hence ¬P , while in the second case
0 ∈ B, therefore P . We have decided P . �

Apparently, constructivists think that a subset of a finite set need not be finite. A
cursory literature search reveals other bizarre statements considered in constructive
mathematics: “R has measure zero” [28, §6.4.3], “there is a bounded increasing
sequence without an accumulation point” [26], “ordinals form a set” [22], “there is
an injection of NN into N” [3], and so on.

A constructivist might point out that what counts as bizarre is subjective and
remind us that once upon a time the discovery of non-Euclidean geometries was
shelved in fear of rejection, that Weierstraß’s continuous but nowhere differentiable
function was and remains a curiosity, and that the Banach–Tarski theorem about
conjuring two balls from one is even today called a “paradox”. Still, we demand
a mathematical explanation of constructivism, not history lessons and subjective
opinions.

3. Bargaining

Classical mathematical training plants excluded middle so deeply into young
students’ minds that most mathematicians cannot even detect its presence in a
proof. In order to gain some sort of understanding of the constructivist position,
we should therefore provide a method for suspending belief in excluded middle.

If a geometer tried to disbelieve Euclid’s fifth postulate, they would find helpful
a model of non-Euclidean geometry—an artificial world of geometry whose altered
meanings of the words “line” and “point” caused the parallel postulate to fail.
Our situation is comparable, only more fundamental because we need to twist
the meaning of “truth” itself. We cannot afford a full mathematical account of
constructive worlds, but we still can distill their essence, as long as we remember
that important technicalities have been omitted.

3.1. Classical mathematics. It is well worth pointing out that constructive math-
ematics is a generalization of classical mathematics, as was emphasized by Fred
Richman [21], for a proof which avoids excluded middle and choice is still a classi-
cal proof. However, trying to learn constructive thinking in the classical world is
like trying to learn noncommutative algebra by studying abelian groups.

3.2. Realizability. In our first honestly constructive world only that is true which
can be computed. Let us imagine, as programmers do, that mathematical objects
are represented on a computer as data, and that functions are programs operating
on data. Furthermore, a logical statement is only considered valid when there is
a program witnessing its truth. We call such programs realizers, and we say that
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statements are realized by them. The Brouwer–Heyting–Kolmogorov rules explain
when a program realizes a statement:

(1) falsehood ⊥ is not realized by anything;
(2) truth � is realized by a chosen constant, say �;
(3) P ∧Q is realized by a pair (p, q) such that p is a realizer of P and q of Q;
(4) P ∨ Q is realized either by (0, p), where p realizes P , or by (1, q), where q

realizes Q;
(5) P ⇒ Q is realized by a program which maps realizers of P to realizers of Q;
(6) ∀x ∈ A .P (x) is realized by a program which maps (a representation of)

any a ∈ A to a realizer of P (a);
(7) ∃x ∈ A .P (x) is realized by a pair (p, q) such that p represents some a ∈ A

and q realizes P (a);
(8) a = b is realized by a p which represents both a and b.

The rules work for any reasonable notion of “program”. Turing machines would do,
but so would quantum computers and programs actually written by programmers
in practice. To get used to realizers, let us unravel the computational meaning of:

For every natural number there is a prime larger than it.

This is a “for all” statement, so its realizer is a program p which takes as input
a natural number n and outputs a realizer for “there is a prime larger than n”,
which is a pair (m, q) where m is again a number and q realizes “m is prime and
m > n”. If we forget about q, we see that p is essentially a program that computes
arbitrarily large primes. Because such a program exists, there are arbitrarily large
primes in the computable world.

A more interesting example is the statement

(1) ∀x ∈ R . x = 0 ∨ x �= 0.

If we define real numbers as the Cauchy completion of rational numbers, then a
real number x ∈ R is represented by a program p which takes as input k ∈ N and
outputs a rational number rk such that |x− rk| ≤ 2−k. Thus a realizer for (1) is a
program q which accepts a representation p for any x ∈ R and outputs either (0, s)
where s realizes x = 0, or (1, t) where t realizes x �= 0. Intuitively speaking, such
a q should not exist, for however good an approximation rk of x the program q
calculates, it may never be sure whether x = 0. To make a water-tight argument,
we shall use q to construct the Halting oracle, which does not exist. (The usual
proof of nonexistence of the Halting oracle is yet another example of a constructive
proof of negation.) Given a Turing machine T and an input n, define the sequence
r0, r1, r2, . . . of rational numbers by

rk =

{
2−j if T (n) halts at step j and j ≤ k,

2−k otherwise.

This is a Cauchy sequence because |rk − rm| ≤ 2−min(k,m) for all k,m ∈ N, and it
is computable because the value of rk may be calculated by a simulation of at most
k steps of execution of T (n). The limit x = limk rk satisfies

• x = 2−j > 0, if T (n) halts at step j,
• x = 0, if T (n) never halts.
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The program p which outputs rk on input k represents x because |x−rk| ≤ 2−k for
all k ∈ N. We may now decide whether T (n) halts by running q(p): if it outputs
(0, s), then T (n) does not halt, and if it outputs (1, t), then T (n) halts.

As an exercise you should figure out where in the above argument you need the
following (valid) instance of excluded middle: for every k ∈ N, either rk = 2−k or
rk = 2−j for some j < k.

Theorem 3.1. Excluded middle is not realized.

Proof. The statement (1) is an instance of excluded middle and it is not realized. �

The strategy to place constructivism inside a box is working! If one takes the
limited view that everything must be computed by machines, then excluded middle
fails because machines cannot compute everything. Our excluded middle is not
affected because we are not machines.

We may use the computable world to explain Theorem 2.1. Let us show that
the following instance of “subsets of finite sets are finite” is not realized:

(2) All countable subsets of {0, 1} are finite.

In computable mathematics a finite set is represented by a finite list of its elements,
and a countable set by a program which enumerates its elements, possibly with
repetitions. The subsets {}, {0}, {1} and {0, 1} are all countable and finite, so (2)
looks pretty true. Remember though that in the computable world “for all” means
not “it holds for every instance” but rather “there is a program computing witnesses
from instances”. A realizer for (2) is a program q which takes as input a program p
enumerating the elements of a subset of {0, 1} and outputs a finite list of all the
elements so enumerated. To see intuitively where the trouble lies, suppose p starts
enumerating zeroes:

0, 0, 0, 0, 0, 0, . . . .

The output list should contain 0, but should it contain 1? However long a prefix of
the enumeration we investigate, if it is all zeroes, then we cannot be sure whether 1
will appear later. For an actual proof we use the same trick as before: with q
in hand we could construct the Halting oracle. Given any Turing machine T and
input n, consider the program p which works as follows:

p(k) =

{
1 if T (n) halts in fewer than k steps,

0 otherwise.

The subset S ⊆ {0, 1} enumerated by p is constructed so that

• 1 ∈ S if T (n) halts,
• 1 �∈ S if T (n) does not halt.

Now scan the finite list computed by q(p): if it contains 1, then T (n) holds, other-
wise it does not.

3.3. Sheaves. Our second constructive model is the topos of sheaves on a topo-
logical space X. Recall that a sheaf of sets F on X is a collection of sets F (U), one
for each open subset U ⊆ X, together with an operation which to each x ∈ F (U)
assigns its restriction x|V⊆U ∈ F (V ) to a smaller open set V ⊆ U , such that:

(1) restriction is functorial: x|U⊆U = x and (x|V⊆U )|W⊆V = x|W⊆U ;
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(2) the gluing property holds: if (Ui)i∈I is an open cover of U ⊆ X and
xi ∈ F (Ui) are compatible elements (which means that xi|Ui∩Uj⊆Ui

=

xj |Ui∩Uj⊆Uj
for all i, j ∈ I), then there is a unique x ∈ F (U) such that

x|Ui⊆U = xi for all i ∈ I.

A map η : F → G between sheaves F and G is a collection of maps ηU : F (U) →
G(U), one for each open U ⊆ X, which commute with restrictions, ηU (x)|V⊆U =

ηV (x|V⊆U ). Sheaves and maps between them form a category which is a topos, i.e.,

a model of intuitionistic mathematics [18].
Examples of sheaves may be more helpful than their definition. A familiar one

is the sheaf of real-valued continuous maps CR which assigns the set

CR(U) = {f : U → R | f continuous}

to every open U ⊆ X. This is indeed a sheaf, for a continuous map remains
continuous when restricted to a smaller domain, and it may be defined locally on
the members of an open cover as long as the local definitions are compatible. A
prototypical example of a sheaf is the sheaf of local sections Sp of a topological
bundle p : E → X,

Sp(U) = {s : U → E | s continuous and p ◦ s = 1U}.

The sheaf CR arises as the sheaf of sections of the trivial bundle X × R → X, and
in fact every sheaf of sets is isomorphic to a sheaf of sections of an étale map.

We shall think of the topos of sheaves on X as a mathematical universe in which
objects exist locally and vary continuously. For example, a real number is not
just a single quantity, but rather one varying continuously on an open U ⊆ X—
it is an element of CR(U). The sheaf CR itself is a varying ring: for each open
U ⊆ X, the ring operations on CR(U) are induced by those of R, and restrictions
CR(U) → CR(V ) are ring homomorphisms. Other examples abound, as experts in
algebraic geometry and algebraic topology will readily confirm.

Truth varies as well, so that a statement may be true on one open set and false
on another. Restrictions and the gluing property of sheaves transfer to truth:

(1) if a statement is true on an open set U ⊆ X, then it is also true on a smaller
open set V ⊆ U ;

(2) if a statement is true on each member Ui of an open cover, then it is also
true on the union

⋃
i∈I Ui.

In the topos the truth values are the open subsets of X. The truth value of a
statement is the largest open set on which it holds, and the logic is dictated by the
topology of X:

• falsehood and truth are ∅ and X, the least and greatest open sets, respec-
tively;

• conjunction U ∧ V is U ∩ V , the largest open set contained in U and V ;
• disjunction U ∨ V is U ∪ V , the least open set containing U and V ;
• negation ¬U is the topological exterior ext(U), the largest open set disjoint
from U ;

• implication U ⇒ V is ext(U \ V ), the largest open set whose intersection
with U is contained in V .

Excluded middle amounts to saying that U ∪ ext(U) = X for all open U ⊆ X, a
condition equivalent to open and closed sets coinciding. Only a very special kind of
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space X satisfies this condition, for as soon as it is a T0-space (points are uniquely
determined by their neighborhoods), it has to be discrete.

An attentive reader will wonder how it is possible to have as many truth val-
ues as there are open subsets of X, when in Section 1.1 we proved that there is
no proposition which is neither false nor true. Is not an intermediate open set
∅ � U � X a truth value different from both ∅ and X? The mystery is resolved
when we remember that we should work inside the topos and ask not whether it is
different but where it is different. Saying “U is not true” is the same as negating
U , and saying “U is not false” is the same as negating it twice, hence the truth
value of

U is neither true nor false

is the open set

ext(U) ∩ ext(ext(U)),

which is empty. The mathematicians who live in the sheaf topos see that nowhere
is it the case that U is neither true nor false, and that is all they see. Only we, the
external observers, can comprehend the global fact that U is an intermediate truth
value.

To develop a bit of intuition about the world of sheaves, let us calculate the
truth value of the Archimedean axiom:

(3) For every real number x there is an integer k such that x < k.

Of course, the words “real number” and “integer” must be understood inside the
model. We already mentioned that the reals correspond to the sheaf CR of real-
valued continuous maps. Similarly, the integers in the model are the sheaf of integer-
valued continuous maps

CZ(U) = {f : U → Z | f continuous},
where Z is equipped with the discrete topology. To see whether (3) holds on an
open set U ⊆ X, we consider a real x : U → R and the statement

(4) There is an integer k such that x < k.

It looks like (4) can fail, for if U is connected, then a continuous map k : U → Z

must be constant, whereas x : U → R could be unbounded. However, this is not
the case. Because x is continuous, there is an open cover U =

⋃
i∈I Ui such that

the restrictions x|Ui
: Ui → R are bounded. On each Ui there is then a constant

k : Ui → Z which dominates x|Ui
so that (4) holds on each Ui. By the gluing

property it must hold on U , too. The Archimedean axiom holds in a sheaf topos
by virtue of the local nature of truth.

By pursuing the Archimedean axiom a bit further, we can explain how the axiom
of choice fails. We take the space X to be the open interval (0, 1) with Euclidean
topology and ask whether there exists a choice function which assigns to every real
an integral upper bound. Remembering to think locally, we seek an open cover
(0, 1) =

⋃
i∈I Ui such that each Ui has the desired choice function (a global choice

function need not exist because the local ones need not be compatible with each
other). If we had a choice function on an inhabited Ui, then its restriction to a
small interval (a, b) ⊆ Ui would constitute a choice function on (a, b), which it
cannot because it would have to assign an upper bound k ∈ CZ(a, b) to the real
number x ∈ CR(a, b) defined by x(t) = 1/(t− a). The interval (a, b) is connected so
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every k ∈ CZ(a, b) is constant and cannot bound x. Choice fails locally everywhere
because of the topological properties of open intervals.

The method of building constructive models of mathematics gave us a solution:
those who have contracted constructivism can be safely put away in one of the
constructive worlds of mathematics where they will bother no one.

4. Depression

In Raymond Smullyan’s story [24] there was a planet on which the concept of
humor was unknown and laughter was treated as a disease. Those who laughed
were sent to live in laugh-hospitals, away from normal people. As time passed ever
more people contracted laughter and the laugh-hospitals grew into whole laugh-
communities, until the few remaining normal people pretended to understand hu-
mor just so that they could join the rest. What if constructive models are like
the laugh-hospitals? What if not understanding constructivism is like not having a
sense of humor?

Apart from sheaves on a space there are many other toposes, each a model of con-
structive mathematics. They were invented by the great Alexander Grothendieck
for the purposes of studying algebraic geometry, but have since proved generally
useful in mathematics. The Dubuc topos [9] contains the 17th-century nilpotent
infinitesimals, but without the 17th-century confusion and paradoxes. Joyal’s the-
ory of combinatorial species [16] is just a topos in disguise, and so are various kinds
of graphs [19]. Simplicial sets, the home of homotopy theorists, form a presheaf
topos. The realizability toposes [12] are computer scientists’ Gardens of Eden in
which everything is computable by design. Even such mundane topics as the syntax
of programming languages get their own toposes [20].

Does anyone care about all these models of constructive mathematics? Well, if
excluded middle is the only price for achieving rigor in infinitesimal calculus, our
friends physicists just might be willing to pay it. After all they still use Newton’s
infinitesimals, despite our having lectured them about ε’s and δ’s since the time
of Cauchy and Weierstraß. And how often does a physicist start a calculation by
saying “suppose not”? The situation with computer scientists is worse, as some of
them actually help spread constructive mathematics with slogans such as “proposi-
tions are types” [36]. The recently discovered homotopy-theoretic interpretation of
Martin–Löf type theory [1, 34], a most extreme form of constructivism, has made
some homotopy theorists and category theorists into allies of constructive mathe-
matics. They even profess a new foundation of mathematics [30,35] in which logic
and sets are just two levels of an infinite hierarchy of homotopy types.

We turn to set theorists for advice. The axioms of Zermelo and Fraenkel stand as
firm as ever, they assure us, and are the de facto foundation of today’s mathematics.
We are told that even the builders of toposes and modelers of homotopy types
ultimately rely on set theory, and we need not renounce excluded middle to compute
with infinitesimals. The relief however does not last long. Set theorists go on to
explain that Grothendieck actually used set theory extended with universes, each of
which is an entire model of classical mathematics. Ever since Cohen’s work on the
independence of Cantor’s hypothesis [6,7], set theorists have been exploring not one,
but many worlds of classical mathematics. Would you like to have infinitesimals, or
make all sets of reals measurable, or do you fancy 2ℵ0 = ℵ42? A world of classical



492 ANDREJ BAUER

mathematics is readily built to order for you. Or should we call it a classical
laugh-hospital?

We initially set out to understand the difference between the classical and the
constructive world of mathematics, only to have discovered that there are not two
but many worlds, some of which simply cannot be discounted as logicians’ con-
trivances. Excluded middle as the dividing line between the worlds is immaterial in
comparison with having Cantor’s paradise shattered into an unbearable plurality
of mathematical universes.

5. Acceptance

As exciting as a multiverse of mathematics may be, the working mathematician
has no time to spend their career wandering from one world to another. Neverthe-
less, they surely are curious about the newly discovered richness of mathematics,
they welcome ideas coming from unfamiliar worlds, and they strive to make their
own work widely applicable. They will find it easier to accomplish these goals if they
speak the lingua franca of the mathematical multiverse—constructive mathematics.

Some aspects of constructive mathematics are just logical hygiene: avoid indirect
proofs in favor of explicit constructions, detect and eliminate needless uses of the
axiom of choice, know the difference between a proof of negation and a proof by
contradiction. Of course, constructivism goes deeper than that. The stringent
working conditions of constructive worlds require an economy of thought which
is disheartening at first but eventually pays off with vistas of new mathematical
landscapes that are proscribed by orthodox mathematics. We may at best offer a
few glimpses.

5.1. Mathematics without excluded middle. To demonstrate how one works
without excluded middle, we adapt to the constructive setting a theorem which
every student of mathematics learns.

Theorem 5.1 (Intermediate value theorem). If f : [0, 1] → R is a continuous map
and f(0) ≤ 0 ≤ f(1), then f(x) = 0 for some x ∈ [0, 1].

Classical proof. A common proof proceeds by bisection: start with the interval
[a0, b0] = [0, 1], let cn = 1

2 (an + bn), and set

(5) [an+1, bn+1] =

{
[cn, bn] if f(cn) < 0,

[an, cn] otherwise.

The intervals are defined so that f(an) ≤ 0 ≤ f(bn) for all n ∈ N. The intersection
of the descending chain [a0, b0] ⊃ [a1, b1] ⊃ · · · contains a single point x which by
continuity of f must be its zero. Indeed, for every ε > 0 there is n ∈ N such that
|f(x) − f(an)| < ε and |f(x) − f(bn)| < ε, therefore −ε < f(x) − f(bn) ≤ f(x) ≤
f(x)− f(an) < ε, which means that f(x) = 0. �

Unfortunately, the proof relies on excluded middle in the definition (5), as it pre-
supposes that every real is either negative or nonnegative. To get a constructive
version of the theorem we need to change something. We can try to eliminate
the use of excluded middle, reformulate the theorem to a classically equivalent but
constructively valid variant, weaken the conclusion, or strengthen the assumptions.
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In the present case it is not possible to eliminate excluded middle. Consider a
function which hovers around zero:

An arbitrarily small perturbation of the function may cause large movements
of its zeroes. To a constructive mathematician such a discontinuous phenomenon
signals that something is amiss, which indeed it is, but we are not going to prove
this. The intermediate value theorem fails constructively not because there are too
few zeroes, but because they may be too unstable.

Before reformulating the theorem, we verify that the closed interval is still con-
nected in constructive mathematics.

Proposition 5.2. If A and B are inhabited open subsets of [0, 1] such that A∪B =
[0, 1], then A ∩B is inhabited.

Proof. Because A and B are inhabited, there are a0 ∈ A and b0 ∈ B. Define
sequences (an)n∈N and (bn)n∈N, starting from a0 and b0, letting cn = 1

2 (an + bn),
and setting

(6) (an+1, bn+1) =

{
(cn, bn) if cn ∈ A,

(an, cn) if cn ∈ B.

The two cases in (6) cover all possibilities because A∪B = [0, 1], but they need not
be disjoint. At each step we have to choose one, and since the next choice depends
on the previous ones, we here rely on a generalization of countable choice known
as the dependent choice. By construction an ∈ A and bn ∈ B for all n ∈ N. Both
sequences converge to a common point x, which is in A or in B. If x ∈ A, then,
since A is open and (bn)n∈N converges to x, there is bm ∈ A, and we are done. If
x ∈ B, we argue symmetrically. �

Notice how we stated connectedness in a positive way that allows us to deduce
existence of a point. The common definition of connectedness “there is no partition
of [0, 1] into two open inhabited sets” is classically equivalent to our definition
but has a constructively weaker conclusion, namely that something does not exist.
Constructive mathematics encourages a positive attitude: instead of saying that A
is not empty, say that A has an element; instead of saying that x is not zero, say
that x is negative or positive; instead of saying that a finite set is one that is not
infinite, say that it is one that is in bijection with {0, . . . , n} for some n ∈ N; etc.

Here is a reformulation of the intermediate value theorem which is classically
equivalent to Theorem 5.1 but has a constructive proof.

Theorem 5.3. If f : [0, 1] → R is continuous and, for every x ∈ [0, 1], either
f(x) < 0 or f(x) > 0, then f is either everywhere positive or everywhere negative.

Proof. Actually, let us prove a more general statement: if A and B are disjoint
open sets such that A ∪B = [0, 1], then either A = [0, 1] or B = [0, 1], which is yet
another form of connectedness of [0, 1]. One of the sets contains 0, say 0 ∈ A. Then
B is not inhabited, or else A∩B would be inhabited as well by Proposition 5.2. A
set which is not inhabited is empty, therefore A = [0, 1]. If 0 ∈ B, we exchange the
roles of A and B.
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The theorem is obtained when we take the sets A = {y ∈ [0, 1] | f(y) < 0} and
B = {z ∈ [0, 1] | f(z) > 0}. �

We may weaken the intermediate value theorem to an approximate version.

Theorem 5.4 (Approximate intermediate value theorem). If f : [0, 1] → R is
continuous, f(0) ≤ 0 ≤ f(1), and ε > 0, then |f(x)| < ε for some x ∈ [0, 1].

Proof. Apply Proposition 5.2 to {x ∈ [0, 1] | f(x) < ε} and {x ∈ [0, 1] | −ε <
f(x)}, and take into account that every real number is smaller than ε or greater
than −ε. �

The approximate intermediate value theorem faithfully reflects computational prac-
tice: numerical bisection algorithms stop as soon as the desired accuracy ε is
achieved, lest numerical errors send them on a wild goose chase. This is no ac-
cident, for where numerical analysts run into numerical instability and topologists
detect discontinuity, constructive mathematicians find logical impossibility.

Lastly, we can strengthen the assumptions of the theorem and keep the conclusion
unchanged. A simple requirement is that f : [0, 1] → R be strictly monotone (if
x < y, then f(x) < f(y)).

Theorem 5.5 (Monotone intermediate value theorem). If f : [0, 1] → R is con-
tinuous, strictly monotone, and f(0) < 0 < f(1), then f(x) = 0 for a unique
x ∈ [0, 1].

Proof. This time it is easiest to construct x as a Dedekind cut. We outline a proof
here and refer the interested readers to [27] for details and an exhaustive study of
the constructive intermediate value theorem. The sets

L = {y ∈ [0, 1] | f(y) < 0} and U = {z ∈ [0, 1] | 0 < f(z)}
form a Dedekind cut in the constructive sense, because they are

(1) bounded : ∃y ∈ R . y ∈ L and ∃z ∈ R . z ∈ U ;
(2) rounded : y ∈ L ⇔ ∃y < z . z ∈ L and z ∈ U ⇔ ∃y < z . y ∈ U ;
(3) disjoint : L ∩ U = ∅; and
(4) located : y < z ⇒ y ∈ L ∨ z ∈ U .

The reals are Dedekind complete; therefore, there is a unique x ∈ [0, 1] such that
y < x < z for all y ∈ L and z ∈ U . Because f is continuous and strictly monotone,
it follows that f(x) = 0. �

The monotone intermediate value theorem suffices in many cases, for instance as
soon as we are able to isolate a zero in an interval where f is strictly monotone.

It should be clear from our short excursion into constructive analysis that lack
of excluded middle requires certain changes in formulations of theorems, but for
the most part it allows us to keep familiar concepts and techniques. In contrast,
giving up the axiom of choice requires a rethinking of fundamental notions.

5.2. Mathematics without choice. Tychonoff’s theorem [29] states that the
product of any family of compact topological spaces is compact. It has many
applications throughout mathematics and is equivalent to the axiom of choice. To
make it constructive, we need to rethink the notion of space itself.

Which is more important in a topological space, its points or its opens? This is a
silly question, but you would probably answer that the open sets are the essence of
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topology. This is true in a precise mathematical sense: the points of a sufficiently
nice space can be reconstructed from the open sets, but not vice versa. To see how
this works, recall that in a topological space (X, τX) the open neighborhoods of a
point x ∈ X form a completely prime filter, i.e., the set Fx = {U ∈ τX | x ∈ U} is:

(1) upward closed : if U ⊆ V ∈ τX and U ∈ Fx, then V ∈ Fx;
(2) downward directed : any finite collection of sets in Fx has a lower bound

in Fx;
(3) completely prime: for any set I, if

⋃
i∈I Ui ∈ Fx, then Uj ∈ Fx for some

j ∈ I.

If X is Hausdorff (and more generally sober), then every completely prime filter
arises as the neighborhood filter of a unique point. And a continuous map f :
X → Y takes a completely prime filter F in τX to the completely prime filter
{V ∈ τY | f∗(V ) ∈ F} in τY , which means that we can recover f from its inverse
image map f∗ : τY → τX . The upshot is that the points are not essential, and that
spaces and continuous maps can be defined purely in terms of the order-theoretic
structure of opens.

Definition 5.6. A locale is a partially ordered set (τ,≤τ ) with finite infima and all
suprema satisfying the distributivity law u ∧

∨
i∈I vi =

∨
i∈I(u∧ vi). The elements

of τ are called the opens and the completely prime filters the points. A locale map
from (τ,≤τ ) to (σ,≤σ) is given by a map f∗ : σ → τ in the opposite direction that
preserves finite infima and all suprema.

The definition captures the essential properties of open sets, namely closure
under finite intersections and arbitrary unions. We need not posit the existence
of the least and the largest opens because they are the empty infimum and the
empty supremum, respectively. (One is tempted to write “Five stages of accepting
the empty set”.) We think of f∗ : σ → τ as the inverse image map, although
the opens of a locale need not be actual subsets of anything and f∗ need not
be induced by a map on points. Quite the opposite—f∗ induces a map on the
points by taking a completely prime filter F ⊆ τ to the completely prime filter
{u ∈ σ | f∗(u) ∈ F} ⊆ σ.

Every topological space (X, τX) can be construed as a locale (τX ,⊆) of its open
sets, and every continuous map f : X → Y as a locale map f∗ : τY → τX . A
locale which arises as a topology of a space is called spatial. There are nonspatial
locales, for instance the locale Reg(R) of regular open subsets of (R,O(R)) (with
the Euclidean topology O(R)), i.e., those open sets which are the interiors of their
closures. In the locale (Reg(R),⊆) the infima and suprema are computed as

U ∧ V = U ∩ V and
∨

i∈I Ui = reg(
⋃

i∈I Ui),

where reg(U) is the interior of the closure of U . The locale Reg(R) is a sublocale
of R because the map reg : O(R) → Reg(R) is onto, and is thus a locale embedding
(remember that maps between locales are backwards). It is quite rich in its struc-
ture, but it has no points! Briefly, the regular open sets form a complete Boolean
algebra, with topological exterior acting as negation. A completely prime filter F
in Reg(R) would have to have a least element, namely the exterior of the largest
open that is not in F . Such a least element must be the empty set because in R

every inhabited regular open can be decomposed into two disjoint inhabited regular
opens. However, no filter contains the empty set.
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Doing topology without ever mentioning the points is possible but takes a bit of
exercise. For instance, a locale is compact when it has the finite subcover property:
if

∨
i∈I ui = 1, then ui1 ∨ · · · ∨ uin = 1 for some i1, . . . , in ∈ I. Some locale

constructions are best described algebraically: the product (τ,≤τ )× (σ,≤σ) is the
locale generated by pairs (u, v) where u ∈ τ and v ∈ σ, subject to equations

(u1, v1) ∧ (u2, v2) = (u1 ∧ u2, v1 ∧ v2)

and

(
∨

i∈I ui,
∨

j∈J vj) =
∨

i∈I

∨
j∈J (ui, vj).

An analogous construction works for products of any family of locales.
Why are we bothering with all this? Because we can trade the points for Ty-

chonoff’s theorem.

Theorem 5.7 (Localic Tychonoff). The product of any family of compact locales
is compact, constructively.

Proof. See [32]. A proof which uses classical logic but avoids the axiom of choice
can be found in [15]. �

Were the constructive Tychonoff’s theorem the only advantage of locales, there
would be little reason to accept them as a new notion of spaces. That they play
a significant role in mathematics was explained expertly by Peter Johnstone [14].
There is little we can add, except for mentioning a recent development which shows
that locales ought to be taken seriously in classical mathematics, too.

Measure theorists have come to accept that not all sets of reals are Lebesgue
measurable [33]. While it is possible to trade the axiom of choice for measurability
of all sets [25], the accepted norm is to keep choice and deal with the phenomenon
of nonmeasurability. A surprising alternative was proposed by Alex Simpson [23]:
if we use locales instead of spaces, we can have both, the axiom of choice and an
isometry-invariant measure on all sublocales of Rn, which agrees with the Lebesgue
measure on the measurable sets. This is possible because there are more sublocales
than subspaces—earlier we saw that R has a nontrivial sublocale without points—
and so the usual attempt at decomposition of a space into nonmeasurable parts
does not work anymore. Such parts have no common points but still overlap on
the “topological” glue that constitutes the space, so additivity of measure does not
apply.

The passage from spaces to locales has at least two additional benefits [23]: the
Banach–Tarski “paradoxical” decomposition of the unit ball [2] does not work with
locales even though we keep the axiom of choice, and the naive definition of random
reals does. Let us briefly explain the latter one. An appealing intuitive definition
of a random real x ∈ [0, 1] is that it has no special properties, i.e., that it avoids
every null set. This will not do, of course, since a singleton is a null set, and so no
particular real can be random. Thus, if we attempt to define the space of random
reals as the intersection of all full subsets of [0, 1], we are left with an empty space.
However, the intersection of all sublocales of [0, 1] with full measure is a nontrivial
sublocale of [0, 1] whose measure is still full. This is the locale of random sequences.
It is nonspatial, has no points, it disrupts the traditional notion of space, and it
captures our intuitive ideas about randomness in a way that usual spaces cannot.

If you are still reading these lines, you have perhaps advanced by one or two
stages, and my work is done. In the unlikely event that you have reached the
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terminal stage, I invite you to leave the overcrowded Cantor’s paradise and explore
the rest of mathematics.
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