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Abstract

This text contains my lecture notes for the graduate course “Weak Convergence”
given in September-October 2013 and then in March-May 2015. The course is
based on the book Convergence of Probability Measures by Patrick Billingsley,
partially covering Chapters 1-3, 5-9, 12-14, 16, as well as appendices. In this text
the formula label (∗) operates locally. The visible theorem labels often show the
theorem numbers in the book, labels involving PM refer to the other book by
Billingsley - ”Probability and Measure”.

I am grateful to Timo Hirscher whose numerous valuable suggestions helped me
to improve earlier versions of these notes.
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Introduction

Throughout these lecture notes we use the following notation

Φ(z) =
1√
2π

∫ z

−∞
e−u

2/2du.

Consider a symmetric simple random walk Sn = ξ1 + . . . + ξn with P(ξi = 1) = P(ξi =
−1) = 1/2. The random sequence Sn has no limit in the usual sense. However, by de
Moivre’s theorem (1733),

P(Sn ≤ z
√
n)→ Φ(z) as n→∞ for any z ∈ R.

This is an example of convergence in distribution Sn√
n
⇒ Z to a normally distributed

random variable. Define a sequence of stochastic processes Xn = (Xn
t )t∈[0,1] by linear

extrapolation between its values Xn
i/n(ω) = Si(ω)

σ
√
n

at the points t = i/n, see Figure 1.
The much more powerful functional CLT claims convergence in distribution towards the
Wiener process Xn ⇒ W .
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Figure 1: Scaled symmetric simple random walkXn
t (ω) for a fixed ω ∈ Ω and n = 4, 16, 64. frw

This course deals with weak convergence of probability measures on Polish spaces
(S,S). For us, the principal examples of Polish spaces (complete separable metric spaces)
are

the space C = C[0, 1] of continuous trajectories x : [0, 1]→ R (Section 4),
the space D = D[0, 1] of cadlag trajectories x : [0, 1]→ R (Section 6),
the space D[0,∞) of cadlag trajectories x : [0,∞)→ R (Section 9).

To prove the functional CLT Xn ⇒ W , we have to check that Ef(Xn) → Ef(W )
for all bounded continuous functions f : C[0, 1] → R, which is not practical to do
straightforwardly. Instead, one starts with the finite-dimensional distributions

(Xn
t1
, . . . , Xn

tk
)⇒ (Wt1 , . . . ,Wtk).

To prove the weak convergence of the finite-dimensional distributions, it is enough to
check the convergence of moment generating functions, thus allowing us to focus on a
special class of continuous functions fλ1,...,λk : Rk → R, where λi ≥ 0 and

fλ1,...,λk(x1, . . . , xk) = exp(λ1x1 + . . .+ λkxk).

For the weak convergence in the infinite-dimensional space C[0, 1], the usual additional
step is to verify tightness of the distributions of the family of processes (Xn). Loosely
speaking, tightness means that no probability mass escapes to infinity. By Prokhorov
theorem (Section 3), tightness implies relative compactness, which means that each sub-
sequence of Xn contains a further subsequence converging weakly. Since all possible
limits have the finite-dimensional distributions of W , we conclude that all subsequences
converge to the same limit W , and by this we establish the convergence Xn ⇒ W .

This approach makes it crucial to find tightness criteria in C[0, 1], D[0, 1], and then
in D[0,∞).

1 The Portmanteau and mapping theorems

1.1 Metric spaces

Consider a metric space S with metric ρ(x, y). For subsets A ⊂ S, denote the closure by
A−, the interior by A◦, and the boundary by ∂A = A− − A◦. We write

ρ(x,A) = inf{ρ(x, y) : y ∈ A}, Aε = {x : ρ(x,A) < ε}.
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Definition 1.1 Open balls B(x, r) = {y ∈ S : ρ(x, y) < r} form a base for S: each open
set in S is a union of open balls. Complements to the open sets are called closed sets.
The Borel σ-algebra S is formed from the open and closed sets in S using the operations
of countable intersection, countable union, and set difference.

Definition 1.2 A collection A of S-subsets is called a π-system if it is closed under
intersection, that is if A,B ∈ A, then A ∩ B ∈ A. We say that L is a λ-system if:
(i) S ∈ L, (ii) A ∈ L implies Ac ∈ L, (iii) for any sequence of disjoint sets An ∈ L,
∪nAn ∈ L.

Dyn Theorem 1.3 Dynkin’s π-λ lemma. If A is a π-system such that A ⊂ L, where L is a
λ-system, then σ(A) ⊂ L, where σ(A) is the σ-algebra generated by A.

Definition 1.4 A metric space S is called separable if it contains a countable dense
subset. It is called complete if every Cauchy (fundamental) sequence has a limit lying in
S. A complete separable metric space is called a Polish space.

Separability is a topological property, while completeness is a property of the metric
and not of the topology.

Definition 1.5 An open cover of A ⊂ S is a class of open sets whose union contains A.

M3 Theorem 1.6 These three conditions are equivalent:
(i) S is separable,
(ii) S has a countable base (a class of open sets such that each open set is a union of

sets in the class),
(iii) Each open cover of each subset of S has a countable subcover.

M3’ Theorem 1.7 Suppose that the subset M of S is separable.
(i) There is a countable class A of open sets with the property that, if x ∈ G∩M and

G is open, then x ∈ A ⊂ A− ⊂ G for some A ∈ A.
(ii) Lindelöf property. Each open cover of M has a countable subcover.

Definition 1.8 A set K is called compact if each open cover of K has a finite subcover. A
set A ⊂ S is called relatively compact if each sequence in A has a convergent subsequence
the limit of which may not lie in A.

M5 Theorem 1.9 Let A ⊂ S. The following three conditions are equivalent:
(i) A− is compact,
(ii) A is relatively compact,
(iii) A− is complete and A is totally bounded (that is for any ε > 0, A has a finite

ε-net the points of which are not required to lie in A).
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1.2 Convergence in distribution and weak convergence

p7 Definition 1.10 Let Pn, P be probability measures on (S,S). We say Pn ⇒ P weakly
converges as n→∞ if for any bounded continuous function f : S → R∫

S

f(x)Pn(dx)→
∫
S

f(x)P (dx), n→∞.

Definition 1.11 Let X be a (S,S)-valued random element defined on the probability
space (Ω,F ,P). We say that a probability measure P on S is the probability distribution
of X if P (A) = P(X ∈ A) for all A ∈ S.

p25 Definition 1.12 Let Xn, X be (S,S)-valued random elements defined on the probability
spaces (Ωn,Fn,Pn), (Ω,F ,P). We say Xn converge in distribution to X as n → ∞ and
write Xn ⇒ X, if for any bounded continuous function f : S → R,

En(f(Xn))→ E(f(X)), n→∞.

This is equivalent to the weak convergence Pn ⇒ P of the respective probability distri-
butions.

Example 1.13 The function f(x) = 1{x∈A} is bounded but not continuous, therefore if
Pn ⇒ P , then Pn(A) → P(A) does not always hold. For S = R, the function f(x) = x
is continuous but not bounded, therefore if Xn ⇒ X, then En(Xn) → E(X) does not
always hold.

Definition 1.14 Call A ∈ S a P -continuity set if P (∂A) = 0.

2.1 Theorem 1.15 Portmanteau’s theorem. The following five statements are equivalent.
(i) Pn ⇒ P .
(ii)

∫
f(x)Pn(dx)→

∫
f(x)P (dx) for all bounded uniformly continuous f : S → R.

(iii) lim supn→∞ Pn(F ) ≤ P (F ) for all closed F ∈ S.
(iv) liminfn→∞ P (G) ≥ P (G) for all open G ∈ S.
(v) Pn(A)→ P (A) for all P -continuity sets A.

Proof. (i) → (ii) is trivial.
(ii) → (iii). For a closed F ∈ S put

g(x) = (1− ε−1ρ(x, F )) ∨ 0.

This function is bounded and uniformly continuous since |g(x)−g(y)| ≤ ε−1ρ(x, y). Using

1{x∈F} ≤ g(x) ≤ 1{x∈F ε},

we derive (iii) from (ii):

lim sup
n→∞

Pn(F ) ≤ lim sup
n→∞

∫
g(x)Pn(dx) =

∫
g(x)P (dx) ≤ P (F ε)→ P (F ), ε→ 0.

(iii) → (iv) follows by complementation.
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(iii) + (iv) → (v). If P (∂A) = 0, then then the leftmost and rightmost probabilities
coincide:

P (A−) ≥ lim sup
n→∞

Pn(A−) ≥ lim sup
n→∞

Pn(A)

≥ liminf
n→∞

Pn(A) ≥ liminf
n→∞

Pn(A◦) ≥ P (A◦).

(v) → (i). By linearity we may assume that the bounded continuous function f satisfies
0 ≤ f ≤ 1. Then putting At = {x : f(x) > t} we get∫

S

f(x)Pn(dx) =

∫ 1

0

Pn(At)dt→
∫ 1

0

P (At)dt =

∫
S

f(x)P (dx).

Here the convergence follows from (v) since f is continuous, implying that ∂At = {x :
f(x) = t}, and since {x : f(x) = t} are P -continuity sets except for countably many t.
We also used the bounded convergence theorem.

Example 1.16 Let F (x) = P(X ≤ x). Then Xn = X + n−1 has distribution Fn(x) =
F (x−n−1). As n→∞, Fn(x)→ F (x−), so convergence only occurs at continuity points.

1.2 Corollary 1.17 A single sequence of probability measures can not weakly converge to
each of two different limits.

Proof. It suffices to prove that if
∫
S
f(x)P (dx) =

∫
S
f(x)Q(dx) for all bounded, uniformly

continuous functions f : S → R, then P = Q. Using the bounded, uniformly continuous
functions g(x) = (1− ε−1ρ(x, F )) ∨ 0 we get

P (F ) ≤
∫
S

g(x)P (dx) =

∫
S

g(x)Q(dx) ≤ Q(F ε).

Letting ε → 0 it gives for any closed set F , that P (F ) ≤ Q(F ) and by symmetry we
conclude that P (F ) = Q(F ). It follows that P (G) = Q(G) for all open sets G.

It remains to use regularity of any probability measure P : if A ∈ S and ε > 0, then
there exist a closed set Fε and an open set Gε such that Fε ⊂ A ⊂ Gε and P (Gε−Fε) < ε.
To this end we denote by GP the class of S-sets with the just stated property. If A is
closed, we can take F = A and G = F δ, where δ is small enough. Thus all closed sets
belong to GP , and we need to show that GP forms a σ-algebra. Given An ∈ GP , choose
closed sets Fn and open sets Gn such that Fn ⊂ An ⊂ Gn and P (Gn − Fn) < 2−n−1ε.
If G = ∪nGn and F = ∪n≤n0Fn with n0 chosen so that P (∪nFn − F ) < ε/2, then
F ⊂ ∪nAn ⊂ G and P (G− F ) < ε. Thus GP is closed under the formation of countable
unions. Since it is closed under complimentation, GP is a σ-algebra.

2.7 Theorem 1.18 Mapping theorem. Let Xn and X be random elements of a metric space
S. Let h : S → S′ be a S/S ′-measurable mapping and Dh be the set of its discontinuity
points. If Xn ⇒ X and P(X ∈ Dh) = 0, then h(Xn)⇒ h(X).

In other terms, if Pn ⇒ P and P (Dh) = 0, then Pnh
−1 ⇒ Ph−1.

Proof. We show first that Dh is a Borel subset of S. For any pair (ε, δ) of positive
rationals, the set

Aεδ = {x ∈ S : there exist y, z ∈ S such that ρ(x, y) < δ, ρ(x, z) < δ, ρ′(hy, hz) ≥ ε}
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is open. Therefore, Dh = ∪ε ∩δ Aεδ ∈ S. Now, for each F ∈ S ′,

lim sup
n→∞

Pn(h−1F ) ≤ lim sup
n→∞

Pn((h−1F )−) ≤ P ((h−1F )−)

≤ P (h−1(F−) ∪Dh) = P (h−1(F−)).

To see that (h−1F )− ⊂ h−1(F−)∪Dh take an element x ∈ (h−1F )−. There is a sequence
xn → x such that h(xn) ∈ F , and therefore, either h(xn) → h(x) or x ∈ Dh. By the
Portmanteau theorem, the last chain of inequalities implies Pnh

−1 ⇒ Ph−1.

Example 1.19 Let Pn ⇒ P . If A is a P -continuity set and h(x) = 1{x∈A}, then by the
mapping theorem, Pnh

−1 ⇒ Ph−1.

1.3 Convergence in probability and in total variation. Local
limit theorems

Definition 1.20 Suppose Xn and X are random elements of S defined on the same
probability space. If P(ρ(Xn, X) < ε)→ 1 for each positive ε, we say Xn converge to X

in probability and write Xn
P→ X.

inP Exercise 1.21 Convergence in probability Xn P→ X is equivalent to the weak conver-

gence ρ(Xn, X) ⇒ 0. Moreover, (Xn
1 , . . . , X

n
k )

P→ (X1, . . . , Xk) if and only if Xn
i

P→ Xi

for all i = 1, . . . , k.

3.2 Theorem 1.22 Suppose (Xn, Xu,n) are random elements of S × S. If Xu,n ⇒ Zu as
n→∞ for any fixed u, and Zu ⇒ X as u→∞, and

lim
u→∞

lim sup
n→∞

P(ρ(Xu,n, Xn) ≥ ε) = 0, for each positive ε,

then Xn ⇒ X.

Proof. Let F ∈ S be closed and define Fε as the set {x : ρ(x, F ) ≤ ε}. Then

P(Xn ∈ F ) = P(Xn ∈ F,Xu,n /∈ Fε) + P(Xn ∈ F,Xu,n ∈ Fε)
≤ P(ρ(Xu,n, Xn) ≥ ε) + P(Xu,n ∈ Fε).

Since Fε is also closed and Fε ↓ F as ε ↓ 0, we get

lim sup
n→∞

P(Xn ∈ F ) ≤ lim sup
ε→0

lim sup
u→∞

lim sup
n→∞

P(Xu,n ∈ Fε)

≤ lim sup
ε→0

P(X ∈ Fε) = P(X ∈ F ).

3.1 Corollary 1.23 Suppose (Xn, Yn) are random elements of S×S. If Yn ⇒ X as n→∞
and ρ(Xn, Yn) ⇒ 0, then Xn ⇒ X. Taking Yn ≡ X, we conclude that convergence in
probability implies convergence in distribution.

Definition 1.24 Convergence in total variation Pn
TV→ P means

sup
A∈S
|Pn(A)− P (A)| → 0.
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(3.10) Theorem 1.25 Scheffe’s theorem. Suppose Pn and P have densities fn and f with re-
spect to a measure µ on (S,S). If fn → f almost everywhere with respect to µ, then

Pn
TV→ P and therefore Pn ⇒ P .

Proof. For any A ∈ S

|Pn(A)− P (A)| =
∣∣∣ ∫

A

(fn(x)− f(x))µ(dx)
∣∣∣ ≤ ∫

S

|f(x)− fn(x)|µ(dx)

= 2

∫
S

(f(x)− fn(x))+µ(dx),

where the last equality follows from

0 =

∫
S

(f(x)− fn(x))µ(dx) =

∫
S

(f(x)− fn(x))+µ(dx)−
∫
S

(f(x)− fn(x))−µ(dx).

On the other hand, by the dominated convergence theorem,
∫

(f(x)− fn(x))+µ(dx)→ 0.

E3.3 Example 1.26 According to Theorem 1.25 the local limit theorem implies the integral
limit theorem Pn ⇒ P . The reverse implication is false. Indeed, let P = µ be Lebesgue
measure on S = [0, 1] so that f ≡ 1. Let Pn be the uniform distribution on the set

Bn =
n−1⋃
k=0

(kn−1, kn−1 + n−3)

with density fn(x) = n21{x∈Bn}. Since µ(Bn) = n−2, the Borel-Cantelli lemma implies
that µ(Bn i.o.) = 0. Thus fn(x) → 0 for almost all x and there is no local theorem. On
the other hand, |Pn[0, x]− x| ≤ n−1 implying Pn ⇒ P .

3.3 Theorem 1.27 Let S = Rk. Denote by Ln ⊂ Rk a lattice with cells having dimensions
(δ1(n), . . . , δk(n)) so that the cells of the lattice Ln all having the form

Bn(x) = {y : x1 − δ1(n) < y1 ≤ x1, . . . , xk − δk(n) < yk ≤ xk}, x ∈ Ln

have size vn = δ1(n) · · · δk(n). Suppose that (Pn) is a sequence of probability measures on
Rk, where Pn is supported by Ln with probability mass function pn(x).

Suppose that P is a probability measure on Rk having density f with respect to
Lebesgue measure. Assume that all δi(n) → 0 as n → 0. If pn(xn)

vn
→ f(x) whenever

xn ∈ Ln and xn → x, then Pn ⇒ P .

Proof. Define a probability density fn on Rk by setting fn(y) = pn(x)
vn

for y ∈ Bn(x). It

follows that fn(y)→ f(y) for all y ∈ Rk. Let a random vector Yn have the density fn and
X have the density f . By Theorem 1.25, Yn ⇒ X. Define Xn on the same probability
space as Yn by setting Xn = x if Yn lies in the cell Bn(x). Since ‖Xn − Yn‖ ≤ ‖δ(n)‖, we
conclude using Corollary 1.23 that Xn ⇒ X.
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E3.4 Example 1.28 If Sn is the number of successes in n Bernoulli trials, then according to
the local form of the de Moivre-Laplace theorem,

P(Sn = i)
√
npq =

(
n

i

)
piqn−i

√
npq → 1√

2π
e−z

2/2

provided i varies with n in such a way that i−np√
npq
→ z. Therefore, Theorem 1.27 applies

to the lattice

Ln =
{i− np
√
npq

, i ∈ Z
}

with vn = 1√
npq

and the probability mass function pn( i−np√
npq

) = P(Sn = i) for i = 0, . . . , n.

As a result we get the integral form of the de Moivre-Laplace theorem:

P
(Sn − np√

npq
≤ z
)
→ Φ(z) as n→∞ for any z ∈ R.

2 Convergence of finite-dimensional distributions

2.1 Separating and convergence-determining classes

p18 Definition 2.1 Call a subclass A ⊂ S a separating class if any two probability measures
with P (A) = Q(A) for all A ∈ A, must be identical: P (A) = Q(A) for all A ∈ S.

Call a subclass A ⊂ S a convergence-determining class if, for every P and every
sequence (Pn), convergence Pn(A) → P (A) for all P -continuity sets A ∈ A implies
Pn ⇒ P .

PM.42 Lemma 2.2 If A ⊂ S is a π-system and σ(A) = S, then A is a separating class.

Proof. Consider a pair of probability measures such that P (A) = Q(A) for all A ∈ A.
Let L = LP,Q be the class of all sets A ∈ S such that P (A) = Q(A). Clearly, S ∈ L. If
A ∈ L, then Ac ∈ L since P (Ac) = 1−P (A) = 1−Q(A) = Q(Ac). If An are disjoint sets
in L, then ∪nAn ∈ L since

P (∪nAn) =
∑
n

P (An) =
∑
n

Q(An) = Q(∪nAn).

Therefore L is a λ-system, and since A ⊂ L, Theorem 1.3 gives σ(A) ⊂ L, and L = S.

2.3 Theorem 2.3 Suppose that P is a probability measure on a separable S, and a subclass
AP ⊂ S satisfies

(i) AP is a π-system,
(ii) for every x ∈ S and ε > 0, there is an A ∈ AP for which x ∈ A◦ ⊂ A ⊂ B(x, ε).

If Pn(A)→ P (A) for every A ∈ AP , then Pn ⇒ P .

Proof. If A1, . . . , Ar lie in AP , so do their intersections. Hence, by the inclusion-exclusion
formula and a theorem assumption,

Pn

( r⋃
i=1

Ai

)
=
∑
i

Pn(Ai)−
∑
ij

Pn(Ai ∩ Aj) +
∑
ijk

Pn(Ai ∩ Aj ∩ Ak)− . . .

→
∑
i

P (Ai)−
∑
ij

P (Ai ∩ Aj) +
∑
ijk

P (Ai ∩ Aj ∩ Ak)− . . . = P
( r⋃
i=1

Ai

)
.
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If G ⊂ S is open, then for each x ∈ G, x ∈ A◦x ⊂ Ax ⊂ G holds for some Ax ∈ AP . Since
S is separable, by Theorem 1.6 (iii), there is a countable sub-collection (A◦xi) that covers
G. Thus G = ∪iAxi , where all Axi are AP -sets.

With Ai = Axi we have G = ∪iAi. Given ε, choose r so that P
(
∪ri=1 Ai

)
> P (G)− ε.

Then,

P (G)− ε < P
( r⋃
i=1

Ai

)
= lim

n
Pn

( r⋃
i=1

Ai

)
≤ liminf

n
Pn(G).

Now, letting ε→ 0 we find that for any open set liminfn Pn(G) ≥ P (G).

2.4 Theorem 2.4 Suppose that S is separable and consider a subclass A ⊂ S. Let Ax,ε be
the class of A ∈ A satisfying x ∈ A◦ ⊂ A ⊂ B(x, ε), and let ∂Ax,ε be the class of their
boundaries. If

(i) A is a π-system,
(ii) for every x ∈ S and ε > 0, ∂Ax,ε contains uncountably many disjoint sets,

then A is a convergence-determining class.

Proof. For an arbitrary P let AP be the class of P -continuity sets in A. We have to
show that if Pn(A)→ P (A) holds for every A ∈ AP , then Pn ⇒ P . Indeed, by (i), since
∂(A ∩ B) ⊂ ∂(A) ∪ ∂(B), AP is a π-system. By (ii), there is an Ax ∈ Ax,ε such that
P (∂Ax) = 0 so that Ax ∈ AP . It remains to apply Theorem 2.3.

2.2 Weak convergence in product spaces

dpr Definition 2.5 Let P be a probability measure on S = S′×S′′ with the product metric

ρ((x′, x′′), (y′, y′′)) = ρ′(x′, y′) ∨ ρ′′(x′′, y′′).

Define the marginal distributions by P ′(A′) = P (A′ × S′′) and P ′′(A′′) = P (S′ × A′′). If
the marginals are independent, we write P = P ′×P ′′. We denote by S ′×S ′′ the product
σ-algebra generated by the measurable rectangles A′ × A′′ for A′ ∈ S ′ and A′′ ∈ S ′′.

M10 Lemma 2.6 If S = S′ × S′′ is separable, then the three Borel σ-algebras are related by
S = S ′ × S ′′.

Proof. Consider the projections π′ : S → S′ and π′′ : S → S′′ defined by π′(x′, x′′) = x′

and π′′(x′, x′′) = x′′, each is continuous. For A′ ∈ S ′ and A′′ ∈ S ′′, we have

A′ × A′′ = (π′)−1A′ ∩ (π′′)−1A′′ ∈ S,

since the two projections are continuous and therefore measurable. Thus S ′ × S ′′ ⊂ S.
On the other hand, if S is separable, then each open set in S is a countable union of the
balls

B((x′, x′′), r) = B′(x′, r)×B′′(x′′, r)

and hence lies in S ′ × S ′′. Thus S ⊂ S ′ × S ′′.
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2.8 Theorem 2.7 Consider probability measures Pn and P on a separable metric space S =
S′ × S′′.

(a) Pn ⇒ P implies P ′n ⇒ P ′ and P ′′n ⇒ P ′′.
(b) Pn ⇒ P if and only if Pn(A′ × A′′) → P (A′ × A′′) for each P ′-continuity set A′

and each P ′′-continuity set A′′.
(c) P ′n × P ′′n ⇒ P if and only if P ′n ⇒ P ′, P ′′n ⇒ P ′′, and P = P ′ × P ′′.

Proof. (a) Since P ′ = P (π′)−1, P ′′ = P (π′′)−1 and the projections π′, π′′ are continuous,
it follows by the mapping theorem that Pn ⇒ P implies P ′n ⇒ P ′ and P ′′n ⇒ P ′′.

(b) Consider the π-system A of measurable rectangles A′×A′′: A′ ∈ S ′ and A′′ ∈ S ′′.
Let AP be the class of A′ × A′′ ∈ A such that P ′(∂A′) = P ′′(∂A′′) = 0. Since

∂(A′ ∩B′) ⊂ (∂A′) ∪ (∂B′), ∂(A′′ ∩B′′) ⊂ (∂A′′) ∪ (∂B′′),

it follows that AP is a π-system:

A′ × A′′, B′ ×B′′ ∈ AP ⇒ (A′ × A′′) ∩ (B′ ×B′′) ∈ AP .

And since
∂(A′ × A′′) ⊂ ((∂A′)× S′′) ∪ (S′ × (∂A′′)),

each set in AP is a P -continuity set. Since B′(x′, r) in have disjoint boundaries for
different values of r, and since the same is true of the B′′(x′′, r), there are arbitrarily
small r for which B(x, r) = B′(x′, r)× B′′(x′′, r) lies in AP . It follows that Theorem 2.3
applies to AP : Pn ⇒ P if and only if Pn(A)→ P (A) for each A ∈ AP .

The statement (c) is a consequence of (b).

P2.7 Exercise 2.8 The uniform distribution on the unit square and the unit distribution on
the its diaginal have identical marginal distributions. Use this fact to demonstrate that
the reverse to (a) in Theorem 2.7 is false.

Exercise 2.9 Let (Xn, Yn) be a sequence of two-dimensional random vectors. Show that
if (Xn, Yn)⇒ (X, Y ), then besides Xn ⇒ X and Yn ⇒ Y , we have Xn + Yn ⇒ X + Y .

Give an example of (Xn, Yn) such that Xn ⇒ X and Yn ⇒ Y but the sum Xn + Yn
has no limit distribution.

2.3 Weak convergence in Rk and R∞
wcR

Let Rk denote the k-dimensional Euclidean space with elements x = (x1, . . . , xk) and the
ordinary metric

‖x− y‖ =
√

(x1 − y1)2 + . . .+ (xk − yk)2.

Denote by Rk the corresponding class of k-dimensional Borel sets. Put Ax = {y :
y1 ≤ x1, . . . , yk ≤ xk}, x ∈ Rk. The probability measures on (Rk,Rk) are completely
determined by their distribution functions F (x) = P (Ax) at the points of continuity
x ∈ Rk.

Mtest Lemma 2.10 The Weierstrass M-test. Suppose that sequences of real numbers xni → xi
converge for each i, and for all (n, i), |xni | ≤ Mi, where

∑
iMi < ∞. Then

∑
i xi < ∞,∑

i x
n
i <∞, and

∑
i x

n
i →

∑
i xi.
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Proof. The series of course converge absolutely, since
∑

iMi <∞. Now for any (n, i0),∣∣∣∑
i

xni −
∑
i

xi

∣∣∣ ≤∑
i≤i0

|xni − xi|+ 2
∑
i>i0

Mi.

Given ε > 0, choose i0 so that
∑

i>i0
Mi < ε/3, and then choose n0 so that n > n0 implies

|xni − xi| < ε
3i0

for i ≤ i0. Then n > n0 implies |
∑

i x
n
i −

∑
i xi| < ε.

E1.2 Lemma 2.11 Let R∞ denote the space of the sequences x = (x1, x2 . . .) of real numbers
with metric

ρ(x, y) =
∞∑
i=1

1 ∧ |xi − yi|
2i

.

Then ρ(xn, x)→ 0 if and only if |xni − xi| → 0 for each i.

Proof. If ρ(xn, x)→ 0, then for each i we have 1∧|xni −xi| → 0 and therefore |xni −xi| → 0.
The reverse implication holds by Lemma 2.10.

Definition 2.12 Let πk : R∞ → Rk be the natural projections πk(x) = (x1, . . . , xk),
k = 1, 2, . . ., and let P be a probability measure on (R∞,R∞). The probability measures
Pπ−1

k defined on (Rk,Rk) are called the finite-dimensional distributions of P .

p10 Theorem 2.13 The space R∞ is separable and complete. Let P and Q be two probability
measures on (R∞,R∞). If Pπ−1

k = Qπ−1
k for each k, then P = Q.

Proof. Convergence in R∞ implies coordinatewise convergence, therefore πk is continuous
so that the sets

Bk(x, ε) =
{
y ∈ R∞ : |yi−xi| < ε, i = 1, . . . , k

}
= π−1

k

{
y ∈ Rk : |yi−xi| < ε, i = 1, . . . , k

}
are open. Moreover, y ∈ Bk(x, ε) implies ρ(x, y) < ε + 2−k. Thus Bk(x, ε) ⊂ B(x, r) for
r > ε + 2−k. This means that the sets Bk(x, ε) form a base for the topology of R∞. It
follows that the space is separable: one countable, dense subset consists of those points
having only finitely many nonzero coordinates, each of them rational.

If (xn) is a fundamental sequence, then each coordinate sequence (xni ) is fundamental
and hence converges to some xi, implying xn → x. Therefore, R∞ is also complete.

Let A be the class of finite-dimensional sets {x : πk(x) ∈ H} for some k and some
H ∈ Rk. This class of cylinders is closed under finite intersections. To be able to apply
Lemma 2.2 it remains to observe that A generates R∞: by separability each open set
G ⊂ R∞ is a countable union of sets in A, since the sets Bk(x, ε) ∈ A form a base.

E2.4 Theorem 2.14 Let Pn, P be probability measures on (R∞,R∞). Then Pn ⇒ P if and
only if Pnπ

−1
k ⇒ Pπ−1

k for each k.

Proof. Necessity follows from the mapping theorem. Turning to sufficiency, let A, again,
be the class of finite-dimensional sets {x : πk(x) ∈ H} for some k and some H ∈ Rk. We
proceed in three steps.

12



Step 1. Show thatA is a convergence-determining class. This is proven using Theorem
2.4. Given x and ε, choose k so that 2−k < ε/2 and consider the collection of uncountably
many finite-dimensional sets

Aη = {y : |yi − xi| < η, i = 1, . . . , k} for 0 < η < ε/2.

We have Aη ∈ Ax,ε. On the other hand, ∂Aη consists of the points y such that |yi−xi| ≤ η
with equality for some i, hence these boundaries are disjoint. And since R∞ is separable,
Theorem 2.4 applies.

Step 2. Show that ∂(π−1
k H) = π−1

k ∂H.
From the continuity of πk it follows that ∂(π−1

k H) ⊂ π−1
k ∂H. Using special properties

of the projections we can prove inclusion in the other direction. If x ∈ π−1
k ∂H, so that

πkx ∈ ∂H, then there are points α(u) ∈ H, β(u) ∈ Hc such that α(u) → πkx and β(u) → πkx
as u→∞. Since the points (α

(u)
1 , . . . , α

(u)
k , xk+1, . . .) lie in π−1

k H and converge to x, and

since the points (β
(u)
1 , . . . , β

(u)
k , xk+1, . . .) lie in (π−1

k H)c and converge to x, we conclude
that x ∈ ∂(π−1

k H).
Step 3. Suppose that Pπ−1

k (∂H) = 0 implies Pnπ
−1
k (H) → Pπ−1

k (H) and show that
Pn ⇒ P .

If A ∈ A is a finite-dimensional P -continuity set, then we have A = π−1
k H and

Pπ−1
k (∂H) = P (π−1

k ∂H) = P (∂π−1
k H) = P (∂A) = 0.

Thus by assumption, Pn(A)→ P (A) and according to step 1, Pn ⇒ P .

2.4 Kolmogorov’s extension theorem

Kcon Definition 2.15 We say that the system of finite-dimensional distributions µt1,...,tk is
consistent if the joint distribution functions

Ft1,...,tk(z1, . . . , zk) = µt1,...,tk((−∞, z1]× . . .× (−∞, zk])

satisfy two consistency conditions
(i) Ft1,...,tk,tk+1

(z1, . . . , zk,∞) = Ft1,...,tk(z1, . . . , zk),
(ii) if π is a permutation of (1, . . . , k), then

Ftπ(1),...,tπ(k)(zπ(1), . . . , zπ(k)) = Ft1,...,tk(z1, . . . , zk).

ket Theorem 2.16 Let µt1,...,tk be a consistent system of finite-dimensional distributions.
Put Ω = {functions ω : [0, 1] → R} and F is the σ-algebra generated by the finite-
dimensional sets {ω : ω(ti) ∈ Bi, i = 1, . . . , n}, where Bi are Borel subsets of R. Then
there is a unique probability measure P on (Ω,F) such that a stochastic process defined
by Xt(ω) = ω(t) has the finite-dimensional distributions µt1,...,tk .

Without proof. Kolmogorov’s extension theorem does not directly imply the existence of
the Winer process because the σ-algebra F is not rich enough to ensure the continuity
property for trajectories. However, it is used in the proof of Theorem 7.17 establishing
the existence of processes with cadlag trajectories.
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3 Tightness and Prokhorov’s theorem
secP

3.1 Tightness of probability measures

Convergence of finite-dimensional distributions does not always imply weak convergence.
This makes important the following concept of tightness.

Definition 3.1 A family of probability measures Π on (S,S) is called tight if for every
ε there exists a compact set K ⊂ S such that P (K) > 1− ε for all P ∈ Π.

1.3 Lemma 3.2 If S is separable and complete, then each probability measure P on (S,S)
is tight.

Proof. Separability: for each k there is a sequence Aki of open 1/k-balls covering S.
Choose nk large enough that P (Bk) > 1−ε2−k where Bk = Ak1∪. . .∪Aknk . Completeness:
the totally bounded set B1 ∩ B2 ∩ . . . has compact closure K. But clearly P (Kc) ≤∑

k P (Bc
k) < ε.

Exercise 3.3 Check whether the following sequence of distributions on R

Pn(A) = (1− n−1)1{0∈A} + n−11{n2∈A}, n ≥ 1,

is tight or it “leaks” towards infinity. Notice that the corresponding mean value is n.

Definition 3.4 A family of probability measures Π on (S,S) is called relatively compact
if any sequence of its elements contains a weakly convergent subsequence. The limiting
probability measures might be different for different subsequences and lie outside Π.

p72 Definition 3.5 Let P be the space of probability measures on (S,S). The Prokhorov
distance π(P,Q) between P,Q ∈ P is defined as the infimum of those positive ε for which

P (A) ≤ Q(Aε) + ε, Q(A) ≤ P (Aε) + ε, for all A ∈ S.

Lemma 3.6 The Prokhorov distance π is a metric on P .

Proof. Obviously π(P,Q) = π(Q,P ) and π(P, P ) = 0. If π(P,Q) = 0, then for any
F ∈ S and ε > 0, P (F ) ≤ Q(F ε) + ε. For closed F letting ε→ 0 gives P (F ) ≤ Q(F ). By
symmetry, we have P (F ) = Q(F ) implying P = Q.

To verify the triangle inequality notice that if π(P,Q) < ε1 and π(Q,R) < ε2, then

P (A) ≤ Q(Aε1) + ε1 ≤ R((Aε1)ε2) + ε1 + ε2 ≤ R(Aε1+ε2) + ε1 + ε2.

Thus, using the symmetric relation we obtain π(P,R) < ε1 + ε2. Therefore, π(P,R) ≤
π(P,Q) + π(Q,R).

6.8 Theorem 3.7 Suppose S is a complete separable metric space. Then weak convergence
is equivalent to π-convergence, (P , π) is separable and complete, and Π ⊂ P is relatively
compact iff its π-closure is π-compact.

Without proof.
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2.6 Theorem 3.8 A necessary and sufficient condition for Pn ⇒ P is that each subsequence
Pn′ contains a further subsequence Pn′′ converging weakly to P .

Proof. The necessity is easy but useless. As for sufficiency, if Pn ; P , then
∫
S
f(x)Pn(dx) 9∫

S
f(x)P (dx) for some bounded, continuous f . But then, for some ε > 0 and some sub-

sequence Pn′ , ∣∣∣ ∫
S

f(x)Pn′(dx)−
∫
S

f(x)P (dx)
∣∣∣ ≥ ε for all n′,

and no further subsequence can converge weakly to P .

5.1 Theorem 3.9 Prokhorov’s theorem, the direct part. If a family of probability measures
Π on (S,S) is tight, then it is relatively compact.

Proof. See the next subsection.

5.2 Theorem 3.10 Prokhorov’s theorem, the reverse part. Suppose S is a complete separable
metric space. If Π is relatively compact, then it is tight.

Proof. Consider open sets Gn ↑ S. For each ε there is an n such that P (Gn) > 1− ε for
all P ∈ Π. To show this we assume the opposite: Pn(Gn) ≤ 1 − ε for some Pn ∈ Π. By
the assumed relative compactness, Pn′ ⇒ Q for some subsequence and some probability
measure Q. Then

Q(Gn) ≤ liminf
n′

Pn′(Gn) ≤ liminf
n′

Pn′(Gn′) ≤ 1− ε

which is impossible since Gn ↑ S.
If Aki is a sequence of open balls of radius 1/k covering S (separability), so that

S = ∪iAki for each k. From the previous step it follows that, that there is an nk such
that P (∪i≤nkAki) > 1− ε2−k for all P ∈ Π. Let K be the closure of the totally bounded
set ∩k≥1 ∪i≤nk Aki, then K is compact (completeness) and P (K) > 1− ε for all P ∈ Π.

3.2 Proof of Prokhorov’s theorem

This subsection contains a proof of the direct half of Prokhorov’s theorem. Let (Pn) be
a sequence in the tight family Π. We are to find a subsequence (Pn′) and a probability
measure P such that Pn′ ⇒ P . The proof, like that of Helly’s theorem will depend on a
diagonal argument.

Choose compact sets K1 ⊂ K2 ⊂ . . . such that Pn(Ki) > 1 − i−1 for all n and i.
The set K∞ = ∪iKi is separable: compactness = each open cover has a finite subcover,
separability = each open cover has a countable subcover. Hence, by Theorem 1.7, there
exists a countable class A of open sets with the following property: if G is open and
x ∈ K∞ ∩ G, then x ∈ A ⊂ A− ⊂ G for some A ∈ A. Let H consist of ∅ and the finite
unions of sets of the form A− ∩Ki for A ∈ A and i ≥ 1.

Consider the countable class H = (Hj). For (Pn) there is a subsequence (Pn1) such
that Pn1(H1) converges as n1 →∞. For (Pn1) there is a further subsequence (Pn2) such
that Pn2(H2) converges as n2 →∞. Continuing in this way we get a collection of indices
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(n1k) ⊃ (n2k) ⊃ . . . such that Pnjk(Hj) converges as k → ∞ for each j ≥ 1. Putting
n′j = njj we find a subsequence (Pn′) for which the limit

α(H) = lim
n′
Pn′(H) exists for each H ∈ H.

Furthermore, for open sets G ⊂ S and arbitrary sets M ⊂ S define

β(G) = sup
H⊂G

α(H), γ(M) = inf
G⊃M

β(G).

Our objective is to construct on (S,S) a probability measure P such that P (G) = β(G)
for all open sets G. If there does exist such a P , then the proof will be complete: if
H ⊂ G, then

α(H) = lim
n′
Pn′(H) ≤ liminf

n′
Pn′(G),

whence P (G) ≤ liminfn′ Pn′(G), and therefore Pn′ ⇒ P . The construction of the proba-
bility measure P is divided in seven steps.

Step 1: if F ⊂ G, where F is closed and G is open, and if F ⊂ H, for some H ∈ H,
then F ⊂ H0 ⊂ G, for some H0 ∈ H.

Since F ⊂ Ki0 for some i0, the closed set F is compact. For each x ∈ F , choose an
Ax ∈ A such that x ∈ Ax ⊂ A−x ⊂ G. The sets Ax cover the compact F , and there is a
finite subcover Ax1 , . . . , Axk . We can take H0 = ∪kj=1(A−xj ∩Ki0).

Step 2: β is finitely subadditive on the open sets.
Suppose that H ⊂ G1 ∪G2, where H ∈ H and G1, G2 are open. Define

F1 =
{
x ∈ H : ρ(x,Gc

1) ≥ ρ(x,Gc
2)
}
,

F2 =
{
x ∈ H : ρ(x,Gc

2) ≥ ρ(x,Gc
1)
}
,

so that H = F1 ∪ F2 with F1 ⊂ G1 and F2 ⊂ G2. According to Step 1, since Fi ⊂ H, we
have Fi ⊂ Hi ⊂ Gi for some Hi ∈ H.

The function α(H) has these three properties

α(H1) ≤ α(H2) if H1 ⊂ H2,

α(H1 ∪H2) = α(H1) + α(H2) if H1 ∩H2 = ∅,
α(H1 ∪H2) ≤ α(H1) + α(H2).

It follows first,

α(H) ≤ α(H1 ∪H2) ≤ α(H1) + α(H2) ≤ β(G1) + β(G2),

and then
β(G1 ∪G2) = sup

H⊂G1∪G2

α(H) ≤ β(G1) + β(G2).

Step 3: β is countably subadditive on the open sets.
If H ⊂ ∪nGn, then, since H is compact, H ⊂ ∪n≤n0Gn for some n0, and finite

subadditivity imples

α(H) ≤
∑
n≤n0

β(Gn) ≤
∑
n

β(Gn).
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Taking the supremum over H contained in ∪nGn gives β(∪nGn) ≤
∑

n β(Gn).
Step 4: γ is an outer measure.
Since γ is clearly monotone and satisfies γ(∅) = 0, we need only prove that it is

countably subadditive. Given a positive ε and arbitrary Mn ⊂ S, choose open sets Gn

such that Mn ⊂ Gn and β(Gn) < γ(Mn) + ε/2n. Apply Step 3

γ(
⋃
n

Mn) ≤ β(
⋃
n

Gn) ≤
∑
n

β(Gn) ≤
∑
n

γ(Mn) + ε,

and let ε→ 0 to get γ(
⋃
nMn) ≤

∑
n γ(Mn).

Step 5: β(G) ≥ γ(F ∩G) + γ(F c ∩G) for F closed and G open.
Choose H3, H4 ∈ H for which

H3 ⊂ F c ∩G and α(H3) > β(F c ∩G)− ε,
H4 ⊂ Hc

3 ∩G and α(H4) > β(Hc
3 ∩G)− ε.

Since H3 and H4 are disjoint and are contained in G, it follows from the properties of the
functions α, β, and γ that

β(G) ≥ α(H3 ∪H4) = α(H3) + α(H4) > β(F c ∩G) + β(Hc
3 ∩G)− 2ε

≥ γ(F c ∩G) + γ(F ∩G)− 2ε.

Now it remains to let ε→ 0.
Step 6: if F ⊂ S is closed, then F is in the class M of γ-measurable sets.
By Step 5, β(G) ≥ γ(F ∩ L) + γ(F c ∩ L) if F is closed, G is open, and G ⊃ L.

Taking the infimum over these G gives γ(L) ≥ γ(F ∩ L) + γ(F c ∩ L) confirming that F
is γ-measurable.

Step 7: S ⊂ M, and the restriction P of γ to S is a probability measure satisfying
P (G) = γ(G) = β(G) for all open sets G ⊂ S.

Since each closed set lies in M and M is a σ-algebra, we have S ⊂ M. To see that
the P is a probability measure, observe that each Ki has a finite covering by A-sets and
therefore Ki ∈ H. Thus

1 ≥ P (S) = β(S) ≥ sup
i
α(Ki) ≥ sup

i
(1− i−1) = 1.

3.3 Skorokhod’s representation theorem

6.7 Theorem 3.11 Suppose that Pn ⇒ P and P has a separable support. Then there ex-
ist random elements Xn and X, defined on a common probability space (Ω,F ,P), such
that Pn is the probability distribution of Xn, P is the probability distribution of X, and
Xn(ω)→ X(ω) for every ω.

Proof. We split the proof in four steps.
Step 1: show that for each ε, there is a finite S-partition B0, B1, . . . , Bk of S such

that
P (B0) < ε, P (∂Bi) = 0, diam(Bi) < ε, i = 1, . . . , k.

Let M be a separable S-set for which P (M) = 1. For each x ∈M , choose rx so that
0 < rx < ε/2 and P (∂B(x, rx)) = 0. Since M is a separable, it can be covered by a
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countable subcollection A1, A2, . . . of the balls B(x, rx). Choose k so that P (∪ki=1Ai) >
1− ε. Take

B0 =
( k⋃
i=1

Ai
)c
, B1 = A1, Bi = Ac1 ∩ . . . ∩ Aci−1 ∩ Ai,

and notice that ∂Bi ⊂ ∂A1 ∪ . . . ∪ ∂Ak.
Step 2: definition of nj.
Take εj = 2−j. By step 1, there are S-partitions Bj

0, B
j
1, . . . , B

j
k such that

P (Bj
0) < εj, P (∂Bj

i ) = 0, diam(Bj
i ) < εj, i = 1, . . . , kj.

If some P (Bj
i ) = 0, we redefine these partitions by amalgamating such Bj

i with Bj
0, so

that P (·|Bj
i ) is well defined for i ≥ 1. By the assumption Pn ⇒ P , there is for each j an

nj such that
Pn(Bj

i ) ≥ (1− εj)P (Bj
i ), i = 0, 1, . . . , kj, n ≥ nj.

Putting n0 = 1, we can assume n0 < n1 < · · · .
Step 3: construction of X, Yn, Yni, Zn, ξ.
Define mn = j for nj ≤ n < nj+1 and write m instead of mn. By Theorem 2.16 we can

find an (Ω,F ,P) supporting random elements X, Yn, Yni, Zn of S and a random variable
ξ, all independent of each other and having distributions satisfying: X has distribution
P , Yn has distribution Pn,

P(Yni ∈ A) = Pn(A|Bm
i ), P(ξ ≤ ε) = ε,

εmP(Zn ∈ A) =
km∑
i=0

Pn(A|Bm
i )
(
Pn(Bm

i )− (1− εm)P (Bm
i )
)
.

Note that P(Yni ∈ Bm
i ) = 1.

Step 4: construction of Xn.
Put Xn = Yn for n < n1. For n ≥ n1, put

Xn = 1{ξ≤1−εm}

km∑
i=0

1{X∈Bmi }Yni + 1{ξ>1−εm}Zn.

By step 3, we Xn has distribution Pn because

P(Xn ∈ A) = (1− εm)
km∑
i=0

P(X ∈ Bm
i , Yni ∈ A) + εmP(Zn ∈ A)

= (1− εm)
km∑
i=0

P(X ∈ Bm
i )Pn(A|Bm

i )

+
km∑
i=0

Pn(A|Bm
i )
(
Pn(Bm

i )− (1− εm)P (Bm
i )
)

= Pn(A).

Let

Ej = {X /∈ Bj
0; ξ ≤ 1− εj} and E = liminf

j
Ej =

∞⋃
j=1

∞⋂
i=j

Ei.
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Since P(Ec
j ) < 2εj, by the Borel-Cantelli lemma, P(Ec) = P(Ec

j i.o.) = 0 implying P(E) =
1. If ω ∈ E, then both Xn(ω) and X(ω) lie in the same Bm

i having diameter less than
εm. Thus, ρ(Xn(ω), X(ω)) < εm and Xn(ω) → X(ω) for ω ∈ E. It remains to redefine
Xn as X outside E.

Corollary 3.12 The mapping theorem. Let h : S → S′ be a continuous mapping between
two metric spaces. If Pn ⇒ P on S and P has a separable support, then Pnh

−1 ⇒ Ph−1

on S′.

Proof. Having Xn(ω) → X(ω) we get h(Xn(ω)) → h(X(ω)) for every ω. It follows, by
Corollary 1.23 that h(Xn)⇒ h(X) which is equivalent to Pnh

−1 ⇒ Ph−1.

4 Functional Central Limit Theorem on C = C[0, 1]
secC

4.1 Weak convergence in C

Definition 4.1 An element of the set C = C[0, 1] is a continuous function x = x(t).
The distance between points in C is measured by the uniform metric

ρ(x, y) = ‖x− y‖ = sup
0≤t≤1

|x(t)− y(t)|.

Denote by C the Borel σ-algebra of subsets of C.

Exercise 4.2 Draw a picture for an open ball B(x, r) in C.
For any real number a and t ∈ [0, 1] the set {x : x(t) < a} is an open subset of C.

E1.3 Example 4.3 Convergence ρ(xn, x)→ 0 means uniform convergence of continuous func-
tions, it is stronger than pointwise convergence. Consider the function zn(t) that increases
linearly from 0 to 1 over [0, n−1], decreases linearly from 1 to 0 over [n−1, 2n−1], and equals
0 over [2n−1, 1]. Despite zn(t)→ 0 for any t we have ‖zn‖ = 1 for all n.

p11 Theorem 4.4 The space C is separable and complete.

Proof. Separability. Let Lk be the set of polygonal functions that are linear over each
subinterval [ i−1

k
, i
k
] and have rational values at the end points. We will show that the

countable set ∪k≥1Lk is dense in C. For given x ∈ C and ε > 0, choose k so that

|x(t)− x(i/k)| < ε for all t ∈ [(i− 1)/k, i/k], 1 ≤ i ≤ k

which is possible by uniform continuity. Then choose y ∈ Lk so that |y(i/k)−x(i/k)| < ε
for each i. It remains to check that ρ(x, y) ≤ 2ε.

Completeness. Let (xn) be a fundamental sequence so that

εn = sup
m>n

sup
0≤t≤1

|xn(t)− xm(t)| → 0, n→∞.

Then for each t, the sequence (xn(t)) is fundamental on R and hence has a limit x(t).
Letting m→∞ in the inequality |xn(t)− xm(t)| ≤ εn gives |xn(t)− x(t)| ≤ εn. Thus xn
converges uniformly to x ∈ C.
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Definition 4.5 Convergence of finite-dimensional distributions Xn fdd−→ X means that
for all t1, . . . , tk

(Xn
t1
, . . . , Xn

tk
)⇒ (Xt1 , . . . , Xtk).

Exercise 4.6 The projection πt1,...,tk : C → Rk defined by πt1,...,tk(x) = (x(t1), . . . , x(tk))
is a continuous map.

Example 4.7 By the mapping theorem, if Xn ⇒ X, then Xn fdd−→ X. The reverse in

not true. Consider zn(t) from Example 4.3 and put Xn = zn, X = 0 so that Xn fdd−→ X.
Take h(x) = supt x(t). It satisfies |h(x) − h(y)| ≤ ρ(x, y) and therefore is a continuous
function on C. Since h(zn) ≡ 1, we have h(Xn) ; h(X), and according to the mapping
theorem Xn ; X.

Definition 4.8 Define a modulus of continuity of a function x : [0, 1]→ R by

wx(δ) = w(x, δ) = sup
|s−t|≤δ

|x(s)− x(t)|, δ ∈ (0, 1].

For any x : [0, 1] → R its modulus of cotinuity wx(δ) is non-decreasing over δ. Clearly,
x ∈ C if and only if wx(δ) → 0 as δ → 0. The limit jx = limδ→0wx(δ) is the absolute
value of the largest jump of x.

Exercise 4.9 Show that for any fixed δ ∈ (0, 1] we have |wx(δ) − wy(δ)| ≤ 2ρ(x, y)
implying that wx(δ) is a continuous function on C.

Example 4.10 For zn ∈ C defined in Example 4.3 we have w(zn, δ) = 1 for n ≥ δ−1.

Exercise 4.11 Given a probability measure P on the measurable space (C, C) there
exists a random process X on a probability space (Ω,F ,P) such that P(X ∈ A) = P (A)
for any A ∈ C.

7.5 Theorem 4.12 Let Pn, P be probability measures on (C, C). Suppose Pnπ
−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

holds for all tuples (t1, . . . , tk) ⊂ [0, 1]. If for every positive ε

(i) lim
δ→0

lim sup
n→∞

Pn(x : wx(δ) ≥ ε) = 0,

then Pn ⇒ P .

Proof. The proof is given in terms of convergence in distribution using Theorem 1.22.
For u = 1, 2, . . ., define Mu : C → C in the following way. Let (Mux)(t) agree with

x(t) at the points 0, 1/u, 2/u, . . . , 1 and be defined by linear interpolation between these
points. Observe that ρ(Mux, x) ≤ 2wx(1/u).

Further, for a vector α = (α0, α1, . . . , αn) define (Luα)(t) as an element of C such
that it has values αi at points t = i/n and is linear in between. Clearly, ρ(Luα,Luβ) =
maxi |αi − βi| so that Lu : C → C is continuous.

Let ti = i/u. Observe that Mu = Luπt0,...,tu . Since πt0,...,tuX
n ⇒ πt0,...,tuX and Lu is

continuous, the mapping theorem gives MuX
n ⇒MuX as n→∞. Since

lim sup
u→∞

ρ(MuX,X) ≤ 2 lim sup
u→∞

w(X, 1/u) = 0,
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we have MuX → X in probability and therefore MuX ⇒ X.
Finally, due to ρ(MuX

n, Xn) ≤ 2w(Xn, 1/u) and condition (i) we have

lim sup
u→∞

lim sup
n→∞

P
(
ρ(MuX

n, Xn) ≥ ε
)
≤ lim sup

u→∞
lim sup
n→∞

P(2w(Xn, 1/u) ≥ ε) = 0.

It remains to apply Theorem 1.22.

p12 Lemma 4.13 Let P and Q be two probability measures on (C, C). If Pπ−1
t1,...,tk

= Qπ−1
t1,...,tk

for all 0 ≤ t1 < . . . < tk ≤ 1, then P = Q.

Proof. Denote by Cf the collection of finite-dimensional sets of the form

π−1
t1,...,tk

(H) = {y ∈ C : (y(t1), . . . , y(tk)) ∈ H},

where 0 ≤ t1 < . . . < tk ≤ 1 and a Borel subset H ⊂ Rk. Due to the continuity of the
projections we have Cf ⊂ C.

It suffices to check, using Lemma 2.2, that Cf is a separating class. Clearly, Cf is
closed under formation of finite intersections. To show that σ(Cf ) = C, observe that a
closed ball centered at x of radius a can be represented as ∩r(y : |y(r)−x(r)| ≤ a), where
r ranges over rationals in [0,1]. It follows that σ(Cf ) contains all closed balls, hence the
open balls, and hence the σ-algebra generated by the open balls. By separability, the
σ-algebra generated by the open balls, the so-called ball σ-algebra, coincides with the
Borel σ-algebra generated by the open sets.

7.1 Theorem 4.14 Let Pn be probability measures on (C, C). If their finite-dimensional
distributions converge weakly Pnπ

−1
t1,...,tk

⇒ µt1,...,tk , and if Pn is tight, then
(a) there exists a probability measure P on (C, C) with Pπ−1

t1,...,tk
= µt1,...,tk , and

(b) Pn ⇒ P .

Proof. Tightness implies relative compactness which in turn implies that each subse-
quence (Pn′) ⊂ (Pn) contains a further subsequence (Pn′′) ⊂ (Pn′) converging weekly to
some probability measure P . By the mapping theorem Pn′′π

−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

. Thus
by hypothesis, Pπ−1

t1,...,tk
= µt1,...,tk . Moreover, by Lemma 4.13, the limit P must be the

same for all converging subsequences, thus applying Theorem 3.8 we may conclude that
Pn ⇒ P .

4.2 Wiener measure and Donsker’s theorem

p87 Definition 4.15 Let ξi be a sequence of r.v. defined on the same probability space
(Ω,F ,P). Put Sn = ξ1 + . . . ξn and let Xn

t (ω) as a function of t be the element of C

defined by linear extrapolation between its values Xn
i/n(ω) = Si(ω)

σ
√
n

at the points t = i/n.

8.2’ Theorem 4.16 Let Xn = (Xn
t : 0 ≤ t ≤ 1) be defined by Definition 4.15 and let Pn be

the probability distribution of Xn. If ξi are iid with zero mean and finite variance σ2, then
(a) Pnπ

−1
t1,...,tk

⇒ µt1,...,tk , where µt1,...,tk are Gaussian distributions on Rk satisfying

µt1,...,tk
{

(x1, . . . , xk) : xi − xi−1 ≤ αi, i = 1, . . . , k
}

=
k∏
i=1

Φ
( αi√

ti − ti−1

)
, where x0 = 0,

(b) the sequence (Pn) of probability measures on (C, C) is tight.
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Proof. The claim (a) follows from the classical CLT and independence of increments of
Sn. For example, if 0 ≤ s ≤ t ≤ 1, then

(Xn
s , X

n
t −Xn

s ) =
1

σ
√
n

(Sbnsc, Sbntc − Sbnsc) + εns,t,

εns,t =
1

σ
√
n

({ns}ξbnsc+1, {nt}ξbntc+1 − {ns}ξbnsc+1),

where {nt} stands for the fractional part of nt. By the classical CLT and Theorem 2.7c,
1

σ
√
n
(Sbnsc, Sbntc − Sbnsc) has µs,t as a limit distribution. Applying Corollary 1.23 to εns,t,

we derive Pnπ
−1
s,t ⇒ µs,t.

The proof of (b) is postponed until the next subcection.

Definition 4.17 Wiener measure W is a probability measure on C with Wπ−1
t1,...,tk

=
µt1,...,tk given by the formula in Theorem 4.16 part (a). The standard Wiener process W
is the random element on (C, C,W) defined by Wt(x) = x(t).

The existence of W follows from Theorems 4.14 and 4.16.

8.2 Theorem 4.18 Let Xn = (Xn
t : 0 ≤ t ≤ 1) be defined by Definition 4.15. If ξi are iid

with zero mean and finite variance σ2, then Xn converges in distribution to the standard
Wiener process.

Proof 1. This is a corollary of Theorems 4.14 and 4.16.

Proof 2. An alternative proof is based on Theorem 4.12. We have to verify that condition
(i) of Theorem 4.12 holds under the assumptions of Theorem 4.16. To this end take
tj = jδ, j = 0, . . . , δ−1 assuming nδ > 1. Then

P(w(Xn, δ) ≥ 3ε) ≤
1/δ∑
j=1

P
(

sup
tj−1≤s≤tj

|Xn
s −Xn

tj−1
| ≥ ε

)

=

1/δ∑
j=1

P
(

max
(j−1)nδ≤k≤jnδ

|Sk − S(j−1)nδ|
σ
√
n

≥ ε
)

=

1/δ∑
j=1

P
(

max
k≤nδ
|Sk| ≥ εσ

√
n
)

= δ−1P
(

max
k≤nδ
|Sk| ≥ εσ

√
n
)
≤ 3δ−1 max

k≤nδ
P
(
|Sk| ≥ εσ

√
n/3
)
,

where the last is Etemadi’s inequality:

P
(

max
k≤n
|Sk| ≥ α

)
≤ 3 max

k≤n
P
(
|Sk| ≥ α/3

)
.

Remark: compare this with Kolmogorov’s inequality P(maxk≤n |Sk| ≥ α) ≤ nσ2

α2 .
It suffices to check that assuming σ = 1,

lim
λ→∞

lim sup
n→∞

λ2 max
k≤n

P
(
|Sk| ≥ ελ

√
n
)

= 0.
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Indeed, by the classical CLT,

P(|Sk| ≥ ελ
√
k) < 4(1− Φ(ελ)) ≤ 6

ε4λ4

for sufficiently large k ≥ k(λε). It follows,

lim sup
n→∞

λ2 max
k(λε)≤k≤n

P
(
|Sk| ≥ ελ

√
n
)
≤ lim sup

n→∞
λ2 max

k≥k(λε)

P
(
|Sk| ≥ ελ

√
k
)
≤ 6

ε4λ2
.

On the other hand, by Chebyshev’s inequality,

lim sup
n→∞

λ2 max
k≤k(λε)

P
(
|Sk| ≥ ελ

√
n
)
≤ lim sup

n→∞

λ2k(λε)

ε2λ2n
= 0

finishing the proof of (i) of Theorem 4.12.

Example 4.19 Turning to the symmetric simple random walk, putMn = max(S0, . . . , Sn).
As we show later in Theorem 5.1, for any b ≥ 0,

P(Mn ≤ b
√
n)→ 2√

2π

∫ b

0

e−u
2/2du.

From h(Xn) ⇒ h(W ) with h(x) = supt x(t) we conclude that sup0≤t≤1Wt is distributed

as |W1|. The same limit holds for Mn = max(S0

σ
, S1−µ

σ
. . . , Sn−nµ

σ
) for sums of iid r.v. with

mean µ and standard deviation σ. For this reason the functional CLT is also called an
invariance principle: the general limit can be computed via the simplest relevant case.

Exercise 4.20 Check if the following functionals are continuous on C:

sup
{0≤s,t≤1}

|x(t)− x(s)|,
∫ 1

0

x(t)dt.

4.3 Tightness in C

7.2 Theorem 4.21 The Arzela-Ascoli theorem. The set A ⊂ C is relatively compact if and
only if

(i) sup
x∈A
|x(0)| <∞,

(ii) lim
δ→0

sup
x∈A

wx(δ) = 0.

Proof. Necessity. If the closure of A is compact, then (i) obviously must hold. For a
fixed x the function wx(δ) monotonely converges to zero as δ ↓ 0. Since for each δ the
function wx(δ) is continuos in x this convergence is uniform over x ∈ K for any compact
K. It remains to see that taking K to be the closure of A we obtain (ii).

Sufficiency. Suppose now that (i) and (ii) hold. For a given ε > 0, choose n large
enough for supx∈Awx(1/n) < ε. Since

|x(t)| ≤ |x(0)|+
n∑
i=1

|x(ti/n)− x(t(i− 1)/n)| ≤ |x(0)|+ n sup
x∈A

wx(1/n),
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Figure 2: The Arzela-Ascoli theorem: constructing a 2ε-net. aras

we derive α := supx∈A ‖x‖ <∞. The idea is to use this and (ii) to prove that A is totally
bounded, since C is complete, it will follow that A is relatively compact. In other words,
we have to find a finite Bε ⊂ C forming a 2ε-net for A.

Let −α = α0 < α1 < . . . < αk = α be such that αj −αj−1 ≤ ε. Then Bε can be taken
as a set of the continuous polygonal functions y : [0, 1] → [−α, α] that linearly connect
the pairs of points ( i−1

n
, αji−1

), ( i
n
, αji). See Figure 2. Let x ∈ A. It remains to show that

there is a y ∈ Bε such that ρ(x, y) ≤ 2ε. Indeed, since |x(i/n)| ≤ α, there is a y ∈ Bε

such that |x(i/n) − y(i/n)| < ε for all i = 0, 1, . . . , n. Both y(i/n) and y((i − 1)/n) are
within 2ε of x(t) for t ∈ [(i− 1)/n, i/n]. Since y(t) is a convex combination of y(i/n) and
y((i− 1)/n), it too is within 2ε of x(t). Thus ρ(x, y) ≤ 2ε and Bε is a 2ε-net for A.

Exercise 4.22 Draw a curve x ∈ A (cf Figure 2) for which you can not find a y ∈ Bε

such that ρ(x, y) ≤ ε.

The next theorem explains the nature of condition (i) in Theorem 4.12.

7.3 Theorem 4.23 Let Pn be probability measures on (C, C). The sequence (Pn) is tight if
and only if the following two conditions hold:

(i) lim
a→∞

lim sup
n→∞

Pn(x : |x(0)| ≥ a) = 0,

(ii) lim
δ→0

lim sup
n→∞

Pn(x : wx(δ) ≥ ε) = 0, for each positive ε.

Proof. Suppose (Pn) is tight. Given a positive η, choose a compact K such that Pn(K) >
1 − η for all n. By the Arzela-Ascoli theorem we have K ⊂ (x : |x(0)| ≤ a) for large
enough a and K ⊂ (x : wx(δ) ≤ ε) for small enough δ. Hence the necessity.

According to condition (i), for each positive η, there exist large aη and nη such that

Pn(x : |x(0)| ≥ aη) ≤ η, n ≥ nη,

and condition (ii) implies that for each positive ε and η, there exist a small δε,η and a
large nε,η such that

Pn(x : wx(δε,η) ≥ ε) ≤ η, n ≥ nε,η,

Due to Lemma 3.2 for any finite k the measure Pk is tight, and so by the necessity there is
a ak,η such that Pk(x : |x(0)| ≥ ak,η) ≤ η, and there is a δk,ε,η such that Pk(x : wx(δk,ε,η) ≥
ε) ≤ η.
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Thus in proving sufficiency, we may put nη = nε,η = 1 in the above two conditions. Fix
an arbitrary small positive η. Given the two improved conditions, we have Pn(B) ≥ 1−η
and Pn(Bk) ≥ 1− 2−kη with B = (x : |x(0)| < aη) and Bk = (x : wx(δ1/k,2−kη) < 1/k). If
K is the closure of intersection of B ∩B1 ∩B2 ∩ . . ., then Pn(K) ≥ 1− 2η. To finish the
proof observe that K is compact by the Arzela-Ascoli theorem.

Example 4.24 Consider the Dirac probability measure Pn concentrated on the point
zn ∈ C from Example 4.3. Referring to Theorem 4.23 verify that the sequence (Pn) is
not tight.

Proof of Theorem 4.16 part b. The stated tightness follows from Theorem 4.23.
Indeed, condition (i) in Theorem 4.23 is trivially fulfilled as Xn

0 ≡ 0. Furthermore,
condition (i) of Theorem 4.12 (established in the proof 2 of Theorem 4.18) translates into
(ii) in Theorem 4.23.

5 Applications of the functional CLT

5.1 The minimum and maximum of the Brownian path

(9.10) Theorem 5.1 Consider the standard Wiener process W and let

m = inf
t
Wt, M = sup

t
Wt.

If a ≤ 0 ≤ b and a ≤ a′ < b′ ≤ b, then

P(a < m ≤M < b; a′ < W1 < b′)

=
∞∑

k=−∞

(
Φ(2k(b− a) + b′)− Φ(2k(b− a) + a′)

)
−

∞∑
k=−∞

(
Φ(2k(b− a) + 2b− a′)− Φ(2k(b− a) + 2b− b′)

)
,

so that with a′ = a and b′ = b we get

P(a < m ≤M < b) =
∞∑

k=−∞

(−1)k
(

Φ(k(b− a) + b)− Φ(k(b− a) + a)
)
.

Proof. Let Sn be the symmetric simple random walk and put mn = min(S0, . . . , Sn),
Mn = max(S0, . . . , Sn). Since the mapping of C into R3 defined by

x→
(

inf
t
x(t), sup

t
x(t), x(1)

)
is continuous, the functional CLT entails n−1/2(mn,Mn, Sn) ⇒ (m,M,W1). The theo-
rem’s main statement will be obtained in two steps.
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Step 1: show that for integers satisfying i ≤ 0 ≤ j and i ≤ i′ < j′ ≤ j,

P(i < mn ≤Mn < j; i′ < Sn < j′)

=
∞∑

k=−∞

P(2k(j − i) + i′ < Sn < 2k(j − i) + j′)

−
∞∑

k=−∞

P(2k(j − i) + 2j − j′ < Sn < 2k(j − i) + 2j − i′).

In other words, we have to show that for i < 0 < j, i < l < j

P(i < mn ≤Mn < j; Sn = l) =
∞∑

k=−∞

P(Sn = 2k(j − i) + l)

−
∞∑

k=−∞

P(Sn = 2k(j − i) + 2j − l).

(Observe that here both series are just finite sums as |Sn| ≤ n.) This equality is proved
by induction on n. For n = 1, if j > 1, then

P(i < m1 ≤M1 < j; S1 = 1) = P(S1 = 1)

=
∞∑

k=−∞

P(S1 = 2k(j − i) + 1)−
∞∑

k=−∞

P(S1 = 2k(j − i) + 2j − 1),

and if i < −1, then

P(i < m1 ≤M1 < j; S1 = −1) = P(S1 = −1)

=
∞∑

k=−∞

P(S1 = 2k(j − i)− 1)−
∞∑

k=−∞

P(S1 = 2k(j − i) + 2j + 1).

Assume as induction hypothesis that the statement holds for (n−1, i, j, l) with all relevant
triplets (i, j, l). Then, conditioning on the first step of the random walk, we get the stated
equality

P(i < mn ≤Mn < j; Sn = l)

=
1

2
P(i− 1 < mn−1 ≤Mn−1 < j − 1; Sn−1 = l − 1)

+
1

2
P(i+ 1 < mn−1 ≤Mn−1 < j + 1; Sn−1 = l + 1)

=
∞∑

k=−∞

(1

2
P(Sn−1 = 2k(j − i) + l − 1) +

1

2
P(Sn−1 = 2k(j − i) + l + 1)

)
−

∞∑
k=−∞

(1

2
P(Sn−1 = 2k(j − i) + 2j − l + 1) +

1

2
P(Sn−1 = 2k(j − i) + 2j − l − 1)

)
=

∞∑
k=−∞

P(Sn = 2k(j − i) + l)−
∞∑

k=−∞

P(Sn = 2k(j − i) + 2j − l).
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Step 2: show that for c > 0 and a < b,
∞∑

k=−∞

P
(

2kbc
√
nc+ ba

√
nc <Sn < 2kbc

√
nc+ bb

√
nc
)

→
∞∑

k=−∞

(
Φ(2kc+ b)− Φ(2kc+ a)

)
, n→∞.

This is obtained using the CLT. The interchange of the limit with the summation
over k follows from

lim
k0→∞

∑
|k|>k0

P
(

2kbc
√
nc+ ba

√
nc < Sn < 2kbc

√
nc+ bb

√
nc
)

= 0,

which in turn can be justified by the following series form of Scheffe’s theorem. If∑
k skn =

∑
k sk = 1, the terms being nonnegative, and if skn → sk for each k, then∑

k rkskn →
∑

k rksk provided rk is bounded. To apply this in our case we should take

skn = P
(

2kb
√
nc − b

√
nc < Sn ≤ 2kb

√
nc+ b

√
nc
)
, sk = Φ(2k + 1)− Φ(2k − 1).

(9.14) Corollary 5.2 Consider the standard Wiener process W . If a ≤ 0 ≤ b, then

P(sup
t
Wt < b) = 2Φ(b)− 1,

P(inf
t
Wt > a) = 1− 2Φ(a),

P(sup
t
|Wt| < b) = 2

∞∑
k=−∞

(
Φ((4k + 1)b)− Φ((4k − 1)b)

)
.

5.2 The arcsine law

p247 Lemma 5.3 For x ∈ C and a Borel measurable, bounded v : R → R, put h(x) =∫ 1

0
v(x(t))dt. If v is continuous except on a set Dv with λ(Dv) = 0, where λ is the

Lebesgue measure, then h is C-measurable and is continuous except on a set of Wiener
measure 0.

Proof. Since both mappings x→ x(t) and t→ x(t) are continuous, the mapping (x, t)→
x(t) is continuous in the product topology and therefore Borel measurable. It follows that

the mapping ψ(x, t) = v(x(t)) is also measurable. Since ψ is bounded, h(x) =
∫ 1

0
ψ(x, t)dt

is C-measurable, see Fubini’s theorem.
Let E = {(x, t) : x(t) ∈ Dv}. If W is Wiener measure on (C, C), then by the

hypothesis λ(Dv) = 0,

W{x : (x, t) ∈ E} = W{x : x(t) ∈ Dv} = 0 for each t ∈ [0, 1].

It follows by Fubini’s theorem applied to the measure W × λ on C × [0, 1] that λ{t :
(x, t) ∈ E} = 0 for all x outside a set Av ∈ C satisfying W(Av) = 0. Suppose that
‖xn − x‖ → 0. If x /∈ Av, then x(t) /∈ Dv for almost all t and hence v(xn(t)) → v(x(t))
for almost all t. It follows by the bounded convergence theorem that

if x /∈ Av and ‖xn − x‖ → 0, then

∫ 1

0

v(xn(t))dt→
∫ 1

0

v(x(t))dt.
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M15 Lemma 5.4 Each of the following three mappings hi : C → R

h1(x) = sup{t : x(t) = 0, t ∈ [0, 1]},
h2(x) = λ{t : x(t) > 0, t ∈ [0, 1]},
h3(x) = λ{t : x(t) > 0, t ∈ [0, h1(x)]}

is C-measurable and continuous except on a set of Wiener measure 0.

Proof. Using the previous lemma with v(z) = 1{z∈(0,∞)} we obtain the assertion for h2.
Turning to h1, observe that

{x : h1(x) < α} = {x : x(t) > 0, t ∈ [α, 1]} ∪ {x : x(t) < 0, t ∈ [α, 1]}

is open and hence h1 is measurable. If h1 is discontinuous at x, then there exist 0 < t0 <
t1 < 1 such that x(t1) = 0 and

either x(t) > 0 for all t ∈ [t0, 1] \ {t1} or x(t) < 0 for all t ∈ [t0, 1] \ {t1}.

That h1 is continuous except on a set of Wiener measure 0 will therefore follow if we
show that, for each t0, the random variables

M0 = sup{Wt, t ∈ [t0, 1]} and inf{Wt, t ∈ [t0, 1]}

have continuous distributions. Since Wt−Wt0 for t ∈ [t0, 1] is distributed as the standard
Wiener process with a linearly transformed time scale, M ′ = M0 −Wt0 has a continuous
distribution, see Theorem 5.1. Because M ′ and Wt0 are independent, we conclude that
their sum also has a continuous distribution. The infimum is treated the same way.

Finally, for h3, use the representation

h3(x) = ψ(x, h1(x)), where ψ(x, t) =

∫ t

0

v(x(u))du with v(z) = 1{z∈(0,∞)}.

(9.23) Theorem 5.5 Consider the standard Wiener process W and let
T = h1(W ) be the time at which W last passes through 0,
U = h2(W ) be the total amount of time W spends above 0, and
V = h3(W ) be the total amount of time W spends above 0 in the interval [0, T ].

so that
U = V + (1− T )1{W1≥0}.

Then the triplet (T, V,W1) has the joint density

f(t, v, z) = 1{0<v<t<1}g(t, z), g(t, z) =
1

2π

|z|
t3/2(1− t)3/2

e−
z2

2(1−t) .

In particular, the conditional distribution of V given (T,W1) is uniform on [0, T ], and

P(T ≤ t) = P(U ≤ t) =
2

π
arcsin(

√
t), 0 < t < 1.
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Proof. The main idea is to apply the invariance principle via the symmetric simple
random walk Sn. We will use three properties of Sn and its path functionals (Tn, Un, Vn).
First, we need the local limit theorem for pn(i) = P(Sn = i) similar to that of Example
1.28:

if
i√
n
→ z and i ≡ n (mod 2), then

√
n

2
pn(i)→ 1√

2π
e−z

2/2.

Second, we need the fact that

P(S1 ≥ 1, . . . , Sn−1 ≥ 1, Sn = i) =
i

n
pn(i), i ≥ 1.

The third fact we need is that if S2n = 0, then U2n = V2n and

P(V2n = 2j|S2n = 0) =
1

n+ 1
, j = 0, 1, . . . , n.

Using these three facts we obtain that for 0 ≤ 2j ≤ 2k < n and i ≥ 1,

P(Tn = 2k,V2n = 2j, Sn = i)

= P(S2k = 0, V2n = 2j, S2k+1 ≥ 1, . . . , Sn−1 ≥ 1, Sn = i)

= P(S2k = 0)P(V2k = 2j|S2k = 0)P(S2k+1 ≥ 1, . . . , Sn−1 ≥ 1, Sn = i|S2k = 0)

= p2k(0)
1

k + 1

i

n− 2k
pn−2k(i).

We apply Theorem 1.27 to the three-dimensional lattice of points (2k
n
, 2j
n
, i√

n
) for which

i ≡ n (mod 2). The volume of the corresponding cell is 2
n
· 2
n
· 2√

n
= 8n−5/2. If

2k

n
→ t,

2j

n
→ v,

i√
n
→ z, 0 < v < t < 1, z > 0,

then

n5/2

8
P(Tn = 2k,V2n = 2j, Sn = i)

=

√
n√
2k

√
2k

2
p2k(0)

n

2(k + 1)

i√
n

n

n− 2k

√
n√

n− 2k

√
n− 2k

2
pn−2k(i)

→ 1√
2π

1

t3/2
z

1

(1− t)3/2

1√
2π
e−

z2

2(1−t) = g(t, z).

The same result holds for negative z by symmetry.
The joint density of (T,W1) is tg(t, z)1{0<t<1}, hence the marginal density for T equals

fT (t) =

∫ ∞
−∞

tg(t, z)dz =

∫ ∞
0

e−
z2

2(1−t)
zdz

π(1− t)3/2t1/2
=

1

π(1− t)1/2t1/2

implying

P(T ≤ t) =
2

π
arcsin(

√
t), 0 < t < 1.
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Notice also that

G(u) :=

∫ ∞
−∞

∫ 1

u

g(t, z)dtdz =

∫ 1

u

∫ ∞
0

e−
z2

2(1−t)
zdz

π(1− t)3/2t3/2
dt

=

∫ 1

u

dt

π(1− t)1/2t3/2
= − 2

π

∫ 1

u

dt−1/2

√
1− t

=
2

π

∫ u−1/2

1

ydy√
y2 − 1

=
2

π

√
u−1 − 1.

If (T,W1) = (t, z), then U is distributed uniformly over [1− t, 1] for z ≥ 0, and uniformly
over [0, t] for z < 0:

P(U ≤ u|T = t,W1 = z) =
u− 1 + t

t
1{u∈[1−t,1],z≥0} +

u

t
1{u∈[0,t],z<0} + 1{u∈(t,1],z<0}.

Thus the marginal distribution function of U equals

P(U ≤ u) = E
(u− 1 + T

T
1{u∈[1−T,1],W1≥0} +

u

T
1{u∈[0,T ],W1<0} + 1{u∈(T,1],W1<0}

)
=

∫ ∞
0

∫ 1

1−u
(u− 1 + t)g(t, z)dtdz +

∫ 0

−∞

∫ 1

u

ug(t, z)dtdz +

∫ 0

−∞

∫ u

0

tg(t, z)dtdz

=
1

2

∫ 1

1−u
fT (t)dt+

u− 1

2
G(1− u) +

u

2
G(u) +

1

2

∫ u

0

fT (t)dt

=
1

2
P(T > 1− u) +

1

2
P(T ≤ u) =

2

π
arcsin(

√
u).

5.3 The Brownian bridge

Definition 5.6 The transformed standard Wiener process W ◦
t = Wt − tW1, t ∈ [0, 1], is

called the standard Brownian bridge.

Exercise 5.7 Show that the standard Brownian bridge W ◦ is a Gaussian process with
zero mean and covariance E(W ◦

sW
◦
t ) = s(1− t) for s ≤ t.

Example 5.8 Define h : C → C by h(x(t)) = x(t)−tx(1). This is a continuous mapping
since ρ(h(x), h(y)) ≤ 2ρ(x, y), and h(Xn)⇒ W ◦ by Theorem 4.18.

(9.32) Theorem 5.9 Let Pε be the probability measure on (C, C) defined by

Pε(A) = P(W ∈ A|0 ≤ W1 ≤ ε), A ∈ C.

Then Pε ⇒W◦ as ε→ 0, where W◦ is the distribution of the Brownian bridge W ◦.

Proof. We will prove that for every closed F ∈ C

lim sup
ε→0

P(W ∈ F |0 ≤ W1 ≤ ε) ≤ P(W ◦ ∈ F ).

Using W ◦
t = Wt − tW1 we get E(W ◦

t W1) = 0 for all t. From the normality we conclude
that W1 is independent of each (W ◦

t1
, . . . ,W ◦

tk
). Therefore,

P(W ◦ ∈ A,W1 ∈ B) = P(W ◦ ∈ A)P(W1 ∈ B), A ∈ Cf , B ∈ R,
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and since Cf is a separating class, it follows

P(W ◦ ∈ A|0 ≤ W1 ≤ ε) = P(W ◦ ∈ A), A ∈ C, B ∈ R.

Observe that ρ(W,W ◦) = |W1|. Thus,

{|W1| ≤ δ} ∩ {W ∈ F} ⊂ {W ◦ ∈ Fδ}, where Fδ = {x : ρ(x, F ) ≤ δ}.

Therefore, if ε < δ

P(W ∈ F |0 ≤ W1 ≤ ε) ≤ P(W ◦ ∈ Fδ|0 ≤ W1 ≤ ε) = P(W ◦ ∈ Fδ),

leading to the required result

lim sup
ε→0

P(W ∈ F |0 ≤ W1 ≤ ε) ≤ lim sup
δ→0

P(W ◦ ∈ Fδ) = P(W ◦ ∈ F ).

(9.39) Theorem 5.10 Distribution functions for several functionals of the Brownian bridge:

P
(
a < inf

t
W ◦
t ≤ sup

t
W ◦
t ≤ b

)
=

∞∑
k=−∞

(
e−2k2(b−a)2 − e−2(b+k(b−a))2

)
, a < 0 < b,

P
(

sup
t
|W ◦

t | ≤ b
)

= 1 + 2
∞∑
k=1

(−1)ke−2k2b2 , b > 0,

P
(

sup
t
W ◦
t ≤ b

)
= P

(
inf
t
W ◦
t > −b

)
= 1− e−2b2 , b > 0,

P
(
h2(W ◦) ≤ u

)
= u, u ∈ [0, 1].

Proof. The main idea of the proof is the following. Suppose that h : C → Rk is a
measurable mapping and that the set Dh of its discontinuities satisfies W◦(Dh) = 0. It
follows by Theorem 5.9 and the mapping theorem that

P(h(W ◦) ≤ α) = lim
ε→0

P(h(W ) ≤ α|0 ≤ W1 ≤ ε).

Using either this or alternatively,

P(h(W ◦) ≤ α) = lim
ε→0

P(h(W ) ≤ α| − ε ≤ W1 ≤ 0)

one can find explicit forms for distributions connected with W ◦.
Turning to Theorem 5.1 with a < 0 < b and a′ = 0, b′ = ε we get

P(a < m ≤M < b; 0 < W1 < ε)

=
∞∑

k=−∞

(
Φ(2k(b− a) + ε)− Φ(2k(b− a))

)
−

∞∑
k=−∞

(
Φ(2k(b− a) + 2b)− Φ(2k(b− a) + 2b− ε)

)
.
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This implies the first statement as

Φ(z + ε)− Φ(z)

ε
→ e−z

2/2

√
2π

.

As for the last statement, we need to show, in terms of U = h2(W ), that

lim
ε→0

P(U ≤ u| − ε ≤ W1 ≤ 0) = u,

or, in terms of V = h3(W ), that

lim
ε→0

P(V ≤ u| − ε ≤ W1 ≤ 0) = u.

Recall that the distribution of V for given T and W1 is uniform on (0, T ), in other words,
L = V/T is uniformly distributed on (0, 1) and is independent of (T,W1). Thus,

P(V ≤ u| − ε ≤ W1 ≤ 0) = P(TL ≤ u| − ε ≤ W1 ≤ 0)

=

∫ 1

0

P(T ≤ u/s| − ε ≤ W1 ≤ 0)ds

= u+

∫ 1

u

P(T ≤ u/s| − ε ≤ W1 ≤ 0)ds.

It remains to see that∫ 1

u

P(T ≤ u/s| − ε ≤ W1 ≤ 0)ds =
1

Φ(ε)− Φ(0)

∫ 1

u

P(T ≤ u/s;−ε ≤ W1 ≤ 0)ds

≤ cε−1

∫ 1

u

P(T ≤ r;−ε ≤ W1 ≤ 0)
dr

r2
≤ cε−1u−2

∫ 1

u

∫ r

0

∫ ε

0

tg(t, z)dzdtdr

≤ c1εu
−2

∫ 1

0

dt

t1/2(1− t)1/2
→ 0, ε→ 0.

6 The space D = D[0, 1]
secD

6.1 Cadlag functions

Definition 6.1 Let D = D[0, 1] be the space of functions x : [0, 1] → R that are right
continuous and have left-hand limits.

Exercise 6.2 If xn ∈D and ‖xn − x‖ → 0, then x ∈D.

For x ∈D and T ⊂ [0, 1] we will use notation

wx(T ) = w(x, T ) = sup
s,t∈T
|x(t)− x(s)|,

and write wx[t, t+δ] instead of wx([t, t+δ]). This should not be confused with the earlier
defined modulus of continuity

wx(δ) = w(x, δ) = sup
0≤t≤1−δ

wx[t, t+ δ],

Clearly, if T1 ⊂ T2, then wx(T1) ≤ wx(T2). Hence wx(δ) is monotone over δ.
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frp Example 6.3 Consider xn(t) = the fractional part of nt. It has regular downward jumps
of size 1. For example, x1(t) = t for t ∈ [0, 1), and x1(1) = 0. Another example: x2(t) = 2t
for t ∈ [0, 1/2), x2(t) = 2t− 1 for t ∈ [1/2, 1), and x2(1) = 0. Placing an interval [t, t+ δ]
around a jump, we find wxn(δ) ≡ 1.

L12.1 Lemma 6.4 For each x ∈D and each ε > 0 there exist points 0 = t0 < t1 < . . . < tv = 1
such that

wx[ti−1, ti) < ε, i = 1, 2, . . . , v.

It follows, that there exist at most finitely many points t at which |x(t) − x(t−)| ≥ ε,
therefore x has at most countably many jumps. It follows also that x is bounded, and also
that x can be uniformly approximated by simple functions constant over intervals, so that
it is Borel measurable.

Proof. Let t◦ = t◦(ε) be the supremum of those t ∈ [0, 1] for which [0, t) can be de-
composed into finitely many subintervals satisfying wx[ti−1, ti) < ε. To show that t◦ = 1
observe first that t◦ > 0, because x(0) = x(0+). Since x(t◦−) exists, the interval [0, t◦)
can itself be so decomposed. Now relation x(t◦) = x(t◦+) makes t◦ < 1 impossible.

Exercise 6.5 Find a bounded function x /∈ D with the following property: for any set
0 = t0 < t1 < . . . < tv = 1 there exists an i such that wx[ti−1, ti) ≥ 1.

Definition 6.6 Let δ ∈ (0, 1). A set 0 = t0 < t1 < . . . < tv = 1 is called δ-sparse if
ti − ti−1 > δ for i = 1, . . . , v. Define an analog of the modulus of continuity wx(δ) by

w′x(δ) = w′(x, δ) = inf
{ti}

max
1≤i≤v

wx[ti−1, ti),

where the infimum extends over all δ-sparse sets {ti}. The function w′x(δ) is called a
cadlag modulus of x.

Exercise 6.7 Using Lemma 6.4 show that a function x : [0, 1]→ R belongs to D if and
only if w′x(δ)→ 0.

Exercise 6.8 Compute w′x(δ) for x = 1[0,a).

p123 Lemma 6.9 For any x, w′x(δ) is non-decreasing over δ, and w′x(δ) ≤ wx(2δ). Moreover,
for any x ∈D,

jx ≤ wx(δ) ≤ 2w′x(δ) + jx, jx = sup
0<t≤1

|x(t)− x(t−)|.

Proof. Taking a δ-sparse set with ti − ti−1 ≤ 2δ we get w′x(δ) ≤ wx(2δ). To see that
wx(δ) ≤ 2w′x(δ) + jx take a δ-sparse set such that wx[ti−1, ti) ≤ w′x(δ) + ε for all i. If
|t− s| ≤ δ, then s, t ∈ [ti−1, ti+1) for some i and |x(t)− x(s)| ≤ 2(w′x(δ) + ε) + jx.

(12.28) Lemma 6.10 Put

w′′x(δ) = w′′(x, δ) = sup
t1≤t≤t2≤t1+δ

{|x(t)− x(t1)| ∧ |x(t2)− x(t)|}.

For any x, w′′x(δ) is non-decreasing over δ, and w′′x(δ) ≤ w′x(δ).
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0 1

delta

Figure 3: Exercise 6.13. wx

Proof. Suppose that w′x(δ) < w and {τi} be a δ-sparse set such that wx[τi−1, τi) < w for
all i. If t1 ≤ t ≤ t2 ≤ t1 + δ, then either |x(t) − x(t1)| < w or |x(t2) − x(t)| < w. Thus
w′′x(δ) < w and letting w ↓ w′x(δ) we obtain w′′x(δ) ≤ w′x(δ).

Example 6.11 For the functions xn(t) = 1{t∈[0,n−1)} and yn = 1{t∈[1−n−1,1]} we have
w′′xn(δ) = w′′yn(δ) = 0, although w′xn(δ) = w′yn(δ) = 1 for n ≥ δ−1.

Exercise 6.12 Consider xn(t) from Example 6.3. Find w′xn(δ) and w′′xn(δ) for all (n, δ).

xwx Exercise 6.13 Find w′′x(δ) for the curve x and the value δ shown on the Figure 3.

(12.32) Lemma 6.14 For any x ∈D and δ ∈ (0, 1),

w′x(δ/2)

24
≤ w′′x(δ) ∨ |x(δ)− x(0)| ∨ |x(1−)− x(1− δ)| ≤ w′x(δ).

Proof. The second inequality follows from the definition of w′x(δ) and Lemma 6.10. For
the first inequality it suffices to show that

(i) wx[t1, t2) ≤ 2(w′′x(δ) + |x(t2)− x(t1)|), if t2 ≤ t1 + δ,

(ii) w′x(δ/2) ≤ 6
(
w′′x(δ) ∨ wx[0, δ) ∨ wx[1− δ, 1)

)
,

as these two relations imply

w′x(δ/2)

6
≤ w′′x(δ) ∨ wx[0, δ) ∨ wx[1− δ, 1)

≤ (2w′′x(δ) + 2|x(δ)− x(0)|) ∨ (2w′′x(δ) + 2|x(1−)− x(1− δ)|)
≤ (4w′′x(δ)) ∨ (4|x(δ)− x(0)|) ∨ (4|x(1−)− x(1− δ)|).

Here we used the trick

wx[1− δ, 1) = lim
t↑1

wx[1− δ, t) ≤ 2w′′x(δ) + 2 lim
t↑1
|x(t)− x(1− δ)|.

To see (i), note that, if t1 ≤ t < t2 ≤ t1 + δ, then either |x(t) − x(t1)| ≤ w′′x(δ), or
|x(t2)− x(t)| ≤ w′′x(δ). In the latter case, we have

|x(t)− x(t1)| ≤ |x(t)− x(t2)|+ |x(t2)− x(t1)| ≤ w′′x(δ) + |x(t2)− x(t1)|.
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Therefore, for t2 ≤ t1 + δ,

sup
t1≤t<t2

|x(t)− x(t1)| ≤ w′′x(δ) + |x(t2)− x(t1)|,

hence
sup

t1≤s,t<t2
|x(t)− x(s)| ≤ 2(w′′x(δ) + |x(t2)− x(t1)|).

We prove (ii) in four steps.
Step 1. We will need the following inequality

|x(s)−x(t1)|∧|x(t2)−x(t)| ≤ 2w′′x(δ) if t1 ≤ s < t ≤ t2 ≤ t1+δ. (∗)

To see this observe that, by the definition of w′′x(δ), either |x(s)− x(t1)| ≤ w′′x(δ) or both
|x(t2)− x(s)| ≤ w′′x(δ) and |x(t)− x(s)| ≤ w′′x(δ). In the second case, using the triangular
inequality we get |x(t2)− x(t)| ≤ 2w′′x(δ) .

Step 2. Putting

α := w′′x(δ) ∨ wx[0, δ) ∨ wx[1− δ, 1), Tx,α := {t : x(t)− x(t−) > 2α},

show that there exist points 0 = s0 < s1 < . . . < sr = 1 such that si − si−1 ≥ δ and

Tx,α ⊂ {s0, . . . , sr}.

Suppose u1, u2 ∈ Tx,α and 0 < u1 < u2 < u1 + δ. Then there are disjoint intervals
(t1, s) and (t, t2) such that u1 ∈ (t1, s), u2 ∈ (t, t2), and t2 − t1 < δ. As both these
intervals are short enough, we have a contradiction with (∗). Thus (0, 1) can not contain
two points from Tx,α, within δ of one another. And neither [0, δ) nor [1−δ, 1) can contain
a point from Tx,α.

Step 3. Recursively adding middle points for the pairs (si−1, si) such that si−si−1 > δ
we get and enlarged set {s0, . . . , sr} (with possibly a larger r) satisfying

Tx,α ⊂ {s0, . . . , sr}, δ/2 < si − si−1 ≤ δ, i = 1, . . . , r.

Step 4. It remains to show that w′x(δ/2) ≤ 6α. Since {s0, . . . , sr} from step 3 is a
(δ/2)-sparse set, it suffices to verify that

wx[si−1, si) ≤ 6α, i = 1, . . . , r.

The proof will be completed after we demonstrate that

|x(t2)− x(t1)| ≤ 6α for si−1 ≤ t1 < t2 < si.

Define σ1 and σ2 by

σ1 = sup{σ ∈ [t1, t2] : sup
t1≤u≤σ

|x(u)− x(t1)| ≤ 2α},

σ2 = inf{σ ∈ [t1, t2] : sup
σ≤u≤t2

|x(t2)− x(u)| ≤ 2α}.

If σ1 < σ2, then there are σ1 < s < t < σ2 violating (∗) due to the fact that by definition
of α, we have w′′x(δ) ≤ α. Therefore, σ2 ≤ σ1 and it follows that |x(σ1−) − x(t1)| ≤ 2α
and |x(t2)− x(σ1)| ≤ 2α. Since σ1 ∈ (si−1, si), we have |x(σ1)− x(σ1−)| ≤ 2α implying

|x(t2)− x(t1)| ≤ |x(t2)− x(σ1)|+ |x(σ1)− x(σ1−)|+ |x(σ1−)− x(t1)| ≤ 6α.
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6.2 Two metrics in D and the Skorokhod topology

Example 6.15 Consider x(t) = 1{t∈[a,1]} and y(t) = 1{t∈[b,1]} for a, b ∈ (0, 1). If a 6= b,
then ‖x− y‖ = 1 even when a is very close to b. For the space D, the uniform metric is
not good and we need another metric.

Definition 6.16 Let Λ denote the class of strictly increasing continuous mappings λ :
[0, 1] → [0, 1] with λ0 = 0, λ1 = 1. Denote by 1 ∈ Λ the identity map 1t ≡ t, and put
‖λ‖◦ = sups<t

∣∣ log λt−λs
t−s

∣∣}. The smaller is ‖λ‖◦ the closer to 1 are the slopes of λ:

e−‖λ‖
◦ ≤ λt− λs

t− s
≤ e‖λ‖

◦
.

Exercise 6.17 Let λ, µ ∈ Λ. Show that

‖λµ− λ‖ ≤ ‖µ− 1‖ · e‖λ‖◦ .

Definition 6.18 For x, y ∈D define

d(x, y) = inf
λ∈Λ
{‖λ− 1‖ ∨ ‖x− yλ‖},

d◦(x, y) = inf
λ∈Λ
{‖λ‖◦ ∨ ‖x− yλ‖},

Exercise 6.19 Show that d(x, y) ≤ ‖x− y‖ and d◦(x, y) ≤ ‖x− y‖.

Example 6.20 Consider x(t) = 1{t∈[a,1]} and y(t) = 1{t∈[b,1]} for a, b ∈ (0, 1). Clearly, if
λ(a) = b, then ‖x− yλ‖ = 0 and otherwise ‖x− yλ‖ = 1. Thus

d(x, y) = inf{‖λ− 1‖ : λ ∈ Λ, λ(a) = b} = |a− b|,

d◦(x, y) =
(

inf{‖λ‖◦ : λ ∈ Λ, λ(a) = b}
)
∧ 1 =

(∣∣ log
a

b

∣∣ ∨ ∣∣ log
1− a
1− b

∣∣) ∧ 1,

so that d(x, y)→ 0 and d◦(x, y)→ 0 as b→ a.

abc Exercise 6.21 Given 0 < b < a < c < 1, find d(x, y) for

x(t) = 2 · 1{t∈[a,1]}, y(t) = 1{t∈[b,1]} + 1{t∈[c,1]}.

Does d(x, y)→ 0 as b→ a and c→ a?

p126 Lemma 6.22 Both d and d◦ are metrics in D, and d ≤ ed
◦ − 1.

Proof. Note that d(x, y) is the infimum of those ε > 0 for which there exists a λ ∈ Λ with

sup
t
|λt− t| = sup

t
|t− λ−1t| < ε,

sup
t
|x(t)− y(λt)| = sup

t
|x(λ−1t)− y(t)| < ε.
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Of course d(x, y) ≥ 0, d(x, y) = 0 implies x = y, and d(x, y) = d(y, x). To see that d is a
metric we have to check the triangle inequality d(x, z) ≤ d(x, y) + d(y, z). It follows from

‖λ1λ2 − 1‖ ≤ ‖λ1 − 1‖+ ‖λ2 − 1‖,
‖x− zλ1λ2‖ ≤ ‖x− yλ2‖+ ‖y − zλ1‖.

Symmetry and the triangle inequality for d◦ follows from ‖λ−1‖◦ = ‖λ‖◦ and the inequality

‖λ1λ2‖◦ ≤ ‖λ1‖◦ + ‖λ2‖◦.

That d◦(x, y) = 0 implies x = y follows from d ≤ ed
◦ − 1 which is a consequence of

‖x− yλ‖ ≤ e‖x−yλ‖ − 1 and

‖λ− 1‖ = sup
0≤t≤1

t
∣∣∣λt− λ0

t− 0
− 1
∣∣∣ ≤ e‖λ‖

◦ − 1.

The last inequality uses |u− 1| ≤ e| log u| − 1 for u > 0.

Example 6.23 Consider jx, the maximum jump in x ∈ D. Clearly, |jx − jy| < ε if
‖x − y‖ < ε/2, and so jx is continuous in the uniform topology. It is also continuous in
the Skorokhod topology. Indeed, if d(x, y) < ε/2, then there is a λ such that ‖λ−1‖ < ε/2
and ‖x−yλ‖ < ε/2. Since jy = jyλ, we conclude using continuity in the uniform topology
|jx − jy| = |jx − jyλ| < ε.

d-d Lemma 6.24 If d(x, y) = δ2 and δ ≤ 1/3, then d◦(x, y) ≤ 4δ + w′x(δ).

Proof. We prove that if d(x, y) < δ2 and δ ≤ 1/3, then d◦(x, y) < 4δ + w′x(δ). Choose
µ ∈ Λ such that ‖µ−1‖ < δ2 and ‖xµ−1−y‖ < δ2. Take {ti} to be a δ-sparse set satisfying
wx[ti−1, ti) ≤ w′x(δ) + δ for each i. Take λ to agree with µ at the points {ti} and to be
linear in between. Since µ−1λti = ti, we have t ∈ [ti−1, ti) if and only if µ−1λt ∈ [ti−1, ti),
and therefore

|x(t)− y(λt)| ≤ |x(t)− x(µ−1λt)|+ |x(µ−1λt)− y(λt)| < w′x(δ) + δ + δ2 ≤ 4δ + w′x(δ).

Now it is enough to verify that ‖λ‖◦ < 4δ. Draw a picture to see that the slopes of λ are

always between δ±2(δ2)
δ

= 1± 2δ. Since | log(1± 2δ)| < 4δ for sufficiently small δ, we get
‖λ‖◦ < 4δ.

12.1 Theorem 6.25 The metrics d and d◦ are equivalent and generate the same, so called
Skorokhod topology.

Proof. By definition d(xn, x) → 0 (d◦(xn, x) → 0) if and only if there is a sequence
λn ∈ Λ such that ‖λn− 1‖ → 0 (‖λn‖◦ → 0) and ‖xnλn− x‖ → 0. If d◦(xn, x)→ 0, then
d(xn, x)→ 0 due to d ≤ ed

◦ − 1. The reverse implication follows from Lemma 6.24.

Definition 6.26 Denote by D the Borel σ-algebra formed from the open and closed
sets in (D, d), or equivalently (D, d◦), using the operations of countable intersection,
countable union, and set difference.
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(12.14) Lemma 6.27 Skorokhod convergence xn → x in D implies xn(t) → x(t) for continuity
points t of x. Moreover, if x is continuous on [0, 1], then Skorokhod convergence implies
uniform convergence.

Proof. Let λn ∈ Λ be such that ‖λn − 1‖ → 0 and ‖xn − xλn‖ → 0. The first assertion
follows from

|xn(t)− x(t)| ≤ |xn(t)− x(λnt)|+ |x(λnt)− x(t)|.
The second assertion is obtained from

‖xn − x‖ ≤ ‖xn − xλn‖+ wx(‖λn − 1‖).

Example 6.28 Put xn(t) = 1{t∈[a−2−n,1]}+ 1{t∈[a+2−n,1]} and xn(t) = 2 · 1{t∈[a,1]} for some
a ∈ (0, 1). We have xn(t) → x(t) for continuity points t of x, however xn does not
converge to x in the Skorokhod topology.

Exercise 6.29 Fix δ ∈ (0, 1) and consider w′x(δ) as a function of x ∈D. It is continuous
with respect to the uniform metric since

|w′x(δ)− w′y(δ)| ≤ 2||x− y||

due to wx[ti−1, ti) ≤ wy[ti−1, ti) + 2||x− y|| and vice versa.
However w′x(δ) is not continuous with respect to (D, d). Verify this using xn =

1[0,δ+2−n) and x = 1[0,δ).

6.3 Separability and completeness of D

L12.3 Lemma 6.30 Given 0 = s0 < s1 < . . . < sk = 1 define a non-decreasing map
κ : [0, 1]→ [0, 1] by setting

κt =

{
sj−1 for t ∈ [sj−1, sj), j = 1, . . . , k,
1 for t = 1.

If maxj(sj − sj−1) ≤ δ, then d(xκ, x) ≤ δ ∨ w′x(δ) for any x ∈D.

Proof. Given ε > 0 find a δ-sparse set {ti} satisfying wx[ti−1, ti) ≤ w′x(δ) + ε for each i.
Let λ ∈ Λ be linear between λti = sj for ti ∈ (sj−1, sj], j = 1, . . . , k and λ0 = 0. Since
‖λ− 1‖ ≤ δ, it suffices to show that |x(κt)− x(λ−1t)| ≤ w′x(δ) + ε. This holds if t is 0 or
1, and it is enough to show that, for t ∈ (0, 1), both κt and λ−1t lie in the same [ti−1, ti).
We prove this by showing that κt < ti is equivalent to λ−1t < ti, i = 1, . . . , k. Suppose
that ti ∈ (sj−1, sj]. Then

κt < ti ⇒ κt < sj ⇒ κt ≤ sj−1 ⇒ κt < ti.

Thus κt < ti is equivalent to κt < sj which in turn is equivalent to t < sj. On the other
hand, λti = sj, and hence t < sj is equivalent to t < λti or λ−1t < ti.

Example 6.31 Let xn(t) = 1{t∈[t0,t0+2−n)}. Since d(xn, xn+1) = 2−n − 2−n−1 = 2−n−1,
the sequence (xn) is fundamental. However, it is not d-convergent. Indeed, xn(t) → 0
for all t 6= t0 and Skorokhod convergence xn → x in D by Lemma 6.27, should imply
x(t) = 0 for all points of continuity of x. Since x ∈D has at most countably many points
of discontinuities, by right continuity we conclude that x ≡ 0. Moreover, since the limit
x ≡ 0 is continuous, we must have ‖xn − x‖ → 0. But ‖xn‖ ≡ 1.
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12.2 Theorem 6.32 The space D is separable under d and d◦, and is complete under d◦.

Proof. Separability for d. Put sj = j/k, j = 1, . . . , k. Let Bk be the set of functions
having a constant, rational value over each [sj−1, sj) and a rational value at t = 1. Then
B = ∪Bk is countable. Now it is enough to prove that given x ∈ D and ε > 0 we can
find some y ∈ B such that d(x, y) < 2ε. Choosing k such that k−1 < ε and w′x(k

−1) < ε
we can find y ∈ Bk satisfying d(xκ, y) < ε, for κ defined as in Lemma 6.30. It remains to
see that d(xκ, x) < ε according to Lemma 6.30.

Completeness. We show that any d◦-fundamental sequence xn ∈D contains a subse-
quence yk = xnk that is d◦-convergent. Choose nk in such a way that d◦(yk, yk+1) < 2−k.
Then Λ contains µk such that ‖µk‖◦ < 2−k and ‖ykµk − yk+1‖ < 2−k.

We suggest a choice of λk ∈ Λ such that ‖λk‖◦ → 0 and ‖ykλk − y‖ → 0 for some
y ∈D. To this end put µk,m = µkµk+1 . . . µk+m. From

‖µk,m+1 − µk,m‖ ≤ ‖µk+m+1 − 1‖ · e‖µkµk+1...µk+m‖◦

≤ (e‖µk+m+1‖◦ − 1) · e‖µk‖◦+...+‖µk+m‖◦

≤ 2−k−m · e2−k+...+2−k−m < 2−k−m+2

we conclude that for a fixed k the sequence of functions µk,m is uniformly fundamental.
Thus there exists a λk such that ‖µk,m − λk‖ → 0 as m→∞. To prove that λk ∈ Λ we
use

log
∣∣∣µk,mt− µk,ms

t− s

∣∣∣ ≤ ‖µkµk+1 . . . µk+m‖◦ < 2−k+1.

Letting here m→∞ we get ‖λk‖◦ ≤ 2−k+1. Since ‖λk‖◦ is finite we conclude that λk is
strictly increasing and therefore λk ∈ Λ.

Finally, observe that

‖ykλk − yk+1λk+1‖ = ‖ykµkλk+1 − yk+1λk+1‖ = ‖ykµk − yk+1‖ < 2−k.

It follows, that the sequence ykλk ∈D is uniformly fundamental and hence ‖ykλk−y‖ → 0
for some y. Observe that y must lie in D. Since ‖λk‖◦ → 0, we obtain d◦(yk, y)→ 0.

6.4 Relative compactness in the Skorokhod topology

First comes an analogue of the Arzela-Ascoli theorem in terms of w′x(δ), and then a
convenient alternative in terms of w′′x(δ).

12.3 Theorem 6.33 A set A ⊂D is relatively compact in the Skorokhod topology iff

(i) sup
x∈A
‖x‖ <∞,

(ii) lim
δ→0

sup
x∈A

w′x(δ) = 0.

Proof of sufficiency. Put α = supx∈A ‖x‖. For a given ε > 0,
put Hε = {αi}, where −α = α0 < α1 < . . . < αk = α and αj − αj−1 ≤ ε,
and choose δ < ε so that w′x(δ) < ε for all x ∈ A.
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According to Lemma 6.30 for any κ = κ{sj} satisfying maxj(sj−1 − sj) ≤ δ, we have
d(xκ, x) ≤ ε for all x ∈ A. Take Bε be the set of y ∈ D that assume on each [sj−1, sj)
a constant value form Hε and y(1) ∈ Hε. For any x ∈ A there is a y ∈ Bε such that
d(xκ, y) ≤ ε. Thus Bε forms a 2ε-net for A in the sense of d and A is totally bounded in
the sense of d.

But we must show that A is totally bounded in the sense of d◦, since this is the metric
under which D is complete. This is true as according Lemma 6.24, the set Bδ2 is an
ε′-net for A where ε′ = 4δ + supx∈Aw

′
x(δ) can be chosen arbitrary small.

12.4 Theorem 6.34 A set A ⊂D is relatively compact in the Skorokhod topology iff

(i) sup
x∈A
‖x‖ <∞,

(ii)


limδ→0 supx∈Aw

′′
x(δ) = 0,

limδ→0 supx∈A |x(δ)− x(0)| = 0,
limδ→0 supx∈A |x(1−)− x(1− δ)| = 0.

Proof. It is enough to show that (ii) of Theorem 6.34 is equivalent to (ii) of Theorem
6.33. This follows from Lemma 6.14.

7 Probability measures on D and random elements

7.1 Finite-dimensional distributions on D

Finite-dimensional set play in D the same role they do in C.

Definition 7.1 For T ⊂ [0, 1], define in D the subclass Df (T ) of finite-dimensional sets
π−1
t1,...,tk

(H), where k is arbitrary, ti belong to T , and H ∈ Rk.

12.5 Theorem 7.2 Consider projection mappings πt1,...,tk : D → Rk, then the following three
statements hold.

(a) The projections π0 and π1 are continuous, for t ∈ (0, 1), πt is continuous at x if
and only if x is continuous at t.

(b) Each πt1,...,tk is a measurable map.
(c) If T contains 1 and is dense in [0, 1], then σ{πt : t ∈ T} = σ{Df (T )} = D and

Df (T ) is a separating class.

Proof. (a) Since each λ ∈ Λ fixes 0 and 1, π0 and π1 are continuous: for i = 0, 1,

d(x, y) ≥ inf
λ∈Λ
‖x− yλ‖ ≥ |x(i)− y(i)| = |πi(x)− πi(y)|.

Suppose that 0 < t < 1. If x is continuous at t, then by Lemma 6.27, πt is continuous
at x. Suppose, on the other hand, that x is discontinuous at t. If λn ∈ Λ carries t to
t − 1/n and is linear on [0, t] and [t, 1], and if xn(s) = x(λns), then d(xn, x) → 0 but
xn(t) 9 x(t).
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(b) A mapping into Rk is measurable if each component mapping is. Therefore it
suffices to show that πt is measurable. Since π1 is continuous, we may assume t < 1. We
use the pointwise convergence

hε(x) := ε−1

∫ t+ε

t

xsds→ πt(x), ε→ 0, x ∈D.

If xn → x in the Skorokhod topology, then xnt → xt for continuity points t of x. The
almost sure convergence xn → x and the uniform boundedness of (xn) imply hε(x

n) →
hε(x). Thus for each ε, hε is continuous and therefore measurable, implying that its limit
πt is also measurable.

(c) By right-continuity and the assumption that T is dense, it follows that π0 is
measurable with respect to σ{Df (T )}. So we may as well assume that 0 ∈ T .

Suppose s0, . . . , sk are points in T satisfying 0 = s0 < . . . < sk = 1. For α =
(α0, . . . , αk) ∈ Rk+1 define V α ∈D by

(V α)(t) =

{
αj−1 for t ∈ [sj−1, sj), j = 1, . . . , k,
αk for t = 1.

Clearly, V : Rk+1 → D is continuous implying that κ = V πs0,...,sk is measurable
σ{Df (T )}/D.

Since T is dense, for any n we can choose sn0 , . . . , s
n
k so that maxi(s

n
i − sni−1) < n−1.

Put κn = V πsn0 ,...,snk . With this choice define a map An : D → D by Anx = xκn. By
Lemma 6.30, Anx → x for each x. We conclude that the identity map is measurable
σ{Df (T )}/D and therefore D ⊂ σ{Df (T )}. Finally, since Df (T ) is a π-system, it is a
separating class.

Definition 7.3 Let Dc be the set of count paths: nondecreasing functions x ∈ D with
x(t) ∈ Z for each t, and x(t)− x(t−) = 1 at points of discontinuity.

Exercise 7.4 Find d(x, y) for x, y ∈ Dc in terms of the jump points of these two count
paths. How a fundamental sequence (xn) in Dc look like for large n? Show that Dc is
closed in the Skorokhod topology.

Lemma 7.5 Let T0 = {t1, t2, . . .} be a countable, dense set in [0, 1], and put π(x) =
(x(t1), x(t2), . . .).

(a) The mapping π : D → R∞ is D/R∞-measurable.
(b) If x, xn ∈ Dc are such that π(xn)→ π(x), then xn → x in the Skorokhod topology.

Proof. (a) In terms of notation of Section 2.3,

π−1(π−1
k H) = π−1

t1,...,tk
H ∈ D for H ∈ Rk,

and the finite-dimensional sets π−1
k H generate R∞.

(b) Convergence π(xn) → π(x) implies xn(ti) → x(ti), which in turn means that
xn(ti) = x(ti) for n > ni, for all i = 1, 2, . . .. A function in x ∈ Dc has only finitely many
discontinuities, say 0 < s1 < . . . < sk ≤ 1. For a given ε choose points ui and vi in T0 in
such a way that ui < si ≤ vi < ui + ε and the intervals [vi−1, ui], i = 1, . . . , k are disjoint,
with v0 = 0. Then for n exceeding some n0, xn agrees with x over each [vi−1, ui] and
has a single jump in each [ui, vi]. If λn ∈ Λ carries si to the point in [ui, vi] where xn
has a jump and is defined elsewhere by linearity, then ‖λn − 1‖ ≤ ε and xn(λnt) ≡ x(t)
implying d(xn, x) ≤ ε for n > n0.
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12.6 Theorem 7.6 Let T0 be a countable, dense set in [0, 1]. If Pn(Dc) = P (Dc) = 1 and
Pnπ

−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

for all k-tuples in T0, then Pn ⇒ P .

Proof. The idea is, in effect, to embed Dc in R∞ and apply Theorem 2.14. By hypothesis,
Pnπ

−1π−1
k ⇒ Pπ−1π−1

k , but since in R∞ weak convergence is the same thing as weak
convergence of finite-dimensional distributions, it follows that Pnπ

−1 ⇒ Pπ−1 in R∞.
For A ⊂D, define A∗ = π−1(πA)−. If A ∈ D, then

lim sup
n

Pn(A) ≤ lim sup
n

Pn(A∗) = lim sup
n

Pn(π−1(πA)−) ≤ P (π−1(πA)−) = P (A∗).

Therefore, if F ∈ D is closed, then

lim sup
n

Pn(F ) = lim sup
n

Pn(F ∩Dc) ≤ P ((F ∩Dc)
∗) = P ((F ∩Dc)

∗ ∩Dc).

It remains to show that if F ∈ D is closed, then (F ∩ Dc)
∗ ∩ Dc ⊂ F . Take an

x ∈ (F ∩ Dc)
∗ ∩ Dc. Since x ∈ (F ∩ Dc)

∗, we have π(x) ∈ (π(F ∩ Dc))
− and there is a

sequence xn ∈ F ∩ Dc such that π(xn) → π(x). Because x ∈ Dc, the previous lemma
gives xn → x in the Skorokhod topology. Since xn ∈ F and F ∈ D is closed, we conclude
that x ∈ F .

E12.3 Corollary 7.7 Suppose for each n, ξn1, . . . , ξnn are iid indicator r.v. with P(ξni = 1) =
α/n. If Xn

t =
∑

i≤nt ξni, then Xn ⇒ X in D, where X is the Poisson process with
parameter α.

Proof. The random process Xn
t =

∑
i≤nt ξni has independent increments. Its finite-

dimensional distributions weakly converge to that of the Poisson process X with

P(Xt −Xs = k) =
αk(t− s)k

k!
e−α(t−s) for 0 ≤ s < t ≤ 1.

Exercise 7.8 Suppose that ξ is uniformly distributed over [1
3
, 2

3
], and consider the ran-

dom functions

Xt = 2 · 1{t∈[ξ,1]}, Xn
t = 1{t∈[ξ−n−1,1]} + 1{t∈[ξ+n−1,1]}.

Show that Xn ; X, even though (Xn
t1
, . . . , Xn

tk
) ⇒ (Xt1 , . . . , Xtk) for all (t1, . . . , tk).

Why does Theorem 7.6 not apply?

13.0 Lemma 7.9 Let P be a probability measure on (D,D). Define TP ⊂ [0, 1] as the collec-
tion of t such that the projection πt is P -almost surely continuous. The set TP contains
0 and 1, and its complement in [0, 1] is at most countable. For t ∈ (0, 1), t ∈ TP is
equivalent to P{x : x(t) 6= x(t−)} = 0.

Proof. Put Jt = {x : x(t) 6= x(t−)}. We have to show that P (Jt) > 0 is possible for at
most countably many t. Let Jt(ε) = {x : |x(t)− x(t−)| > ε}. For fixed, positive ε and δ,
there can be at most finitely many t for which P (Jt(ε)) ≥ δ. Indeed, if P (Jtn(ε)) ≥ δ for
infinitely many distinct tn, then

P (Jtn(ε) i.o.) = P (lim sup
n

Jtn(ε)) ≥ lim sup
n→∞

P (Jtn(ε)) ≥ δ,
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contradicting the fact that for a single x ∈ D the jumps can exceed ε at only finitely
many points. Thus P (Jt(ε)) > 0 is possible for at most countably many t. The desired
result follows from

{t : P (Jt) > 0} =
⋃
n

{t : P (Jt(n
−1)) > 0},

which in turn is a consequence of P (Jt(ε)) ↑ P (Jt).

13.1 Theorem 7.10 Let Pn, P be probability measures on (D,D). If the sequence (Pn) is
tight and Pnπ

−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

holds whenever t1, . . . , tk lie in TP , then Pn ⇒ P .

Proof. We will show that if a subsequence (Pn′) ⊂ (Pn) converges weakly to some Q, then
Q = P . Indeed, if t1, . . . , tk lie in TQ, then πt1,...,tk is continuous on a set of Q-measure
1, and therefore, Pn′ ⇒ Q implies by the mapping theorem that Pn′π

−1
t1,...,tk

⇒ Qπ−1
t1,...,tk

.
On the other hand, if t1, . . . , tk lie in TP , then Pn′π

−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

by the assumption.
Therefore, if t1, . . . , tk lie in TQ ∩ TP , then Qπ−1

t1,...,tk
= Pπ−1

t1,...,tk
. It remains to see that

Df (TQ ∩ TP ) is a separating class by applying Lemma 7.9 and Theorem 7.2.

7.2 Tightness criteria in D

13.2 Theorem 7.11 Let Pn be probability measures on (D,D). The sequence (Pn) is tight if
and only if the following two conditions hold:

(i) lim
a→∞

lim sup
n→∞

Pn(x : ‖x‖ ≥ a) = 0,

(ii) lim
δ→0

lim sup
n→∞

Pn(x : w′x(δ) ≥ ε) = 0, for each positive ε.

Condition (ii) is equivalent to

(ii′) ∀ε, η > 0;∃δ, n0 > 0 : Pn(x : w′x(δ) ≥ ε) ≤ η, for n > n0.

Proof. This theorem is proven similarly to Theorem 4.23 using Theorem 6.33. Equivalence
of (ii) and (ii′) is due to monotonicity of w′x(δ).

13.2’ Theorem 7.12 Let Pn be probability measures on (D,D). The sequence (Pn) is tight if
and only if the following two conditions hold:

(i) lim
a→∞

lim sup
n→∞

Pn(x : ‖x‖ ≥ a) = 0,

(ii) ∀ε, η > 0;∃δ, n0 > 0 :


Pn(x : w′′x(δ) ≥ ε) ≤ η,
Pn(x : |x(δ)− x(0)| ≥ ε) ≤ η,
Pn(x : |x(1−)− x(1− δ)| ≥ ε) ≤ η,

for n > n0.

Proof. This theorem is proven similarly to Theorem 7.11 using Theorem 6.34 and Lemma
6.14.

C13 Lemma 7.13 Turn to Theorems 7.11 and 7.12. Under (ii) condition (i) is equivalent to
the following weaker version:

(i ′) for each t in a set T that is dense in [0, 1] and contains 1,

lim
a→∞

lim sup
n→∞

Pn(x : |x(t)| ≥ a) = 0,
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Proof. The implication (i) ⇒ (i′) is trivial. Assume (ii) of Theorem 7.11 and (i′). For
a given δ ∈ (0, 1) choose from T points 0 < s1 < . . . < sk = 1 such that max{s1, s2 −
s1, . . . , sk − sk−1} < δ. By hypothesis (i′), there exists an a such that

Pn(x : max
j
|x(sj)| ≥ a) < η, n > n0 (∗)

For a given x, take a δ-sparse set (t0, . . . , tv) such that all wx[ti−1, ti) < w′x(δ) + 1. Since
each [ti−1, ti) contains an sj, we have

‖x‖ ≤ max
j
|x(sj)|+ w′x(δ) + 1.

Using (ii′) of Theorem 7.11 and (∗), we get Pn(x : ‖x‖ ≥ a+ 2) < 2η implying (i).

7.3 A key condition on 3-dimensional distributions

The following condition plays an important role.

kc Definition 7.14 For a probability measure P on D, we will write P ∈ Hα,β, if there
exist α > 1, β ≥ 0, and a nondecreasing continuous H : [0, 1]→ R such that for all ε > 0
and all 0 ≤ t1 ≤ t2 ≤ t3 ≤ 1,

Pπ−1
t1,t2,t3

{(z1, z2, z3) : |z2 − z1| ≥ ε, |z3 − z2| ≥ ε} ≤ ε−2β(H(t3)−H(t1))α.

For a random element X on D with probability distribution P , this condition P ∈ Hα,β

means that for all ε > 0 and all 0 ≤ r ≤ s ≤ t ≤ 1

P
(
|Xs −Xr| ≥ ε, |Xt −Xs| ≥ ε

)
≤ ε−2β(H(t)−H(r))α.

10.3 Lemma 7.15 Let a random element X on D has a probability distribution P ∈ Hα,β.
Then there is a constant Kα,β depending only on α and β such that

P
(

sup
r≤s≤t

(
|Xs −Xr| ∧ |Xt −Xs|

)
≥ ε
)
≤ Kα,β

ε2β
(H(1)−H(0))α.

Proof. The stated estimate is obtained in four consecutive steps.
Step 1. Let Tk = {i/2k, 0 ≤ i ≤ 2k} and

Ak = max
(
|Xs −Xr| ∧ |Xt −Xs| over the adjacent triplets r ≤ s ≤ t in Tk

)
,

Bk = max
(
|Xs −Xr| ∧ |Xt −Xs| over r ≤ s ≤ t from Tk

)
.

We will show that Bk ≤ 2(A1 + . . .+Ak). To this end, for each t ∈ Tk define a tn ∈ Tk−1

by

tn =


t if t ∈ Tk−1,
t− 2−k if t /∈ Tk−1 and |Xt −Xt−2−k | ≤ |Xt −Xt+2−k |,
t+ 2−k if t /∈ Tk−1 and |Xt −Xt−2−k | > |Xt −Xt+2−k |,

so that |Xt −Xtn| ≤ Ak. Then for any triplet r ≤ s ≤ t from Tk,

|Xs −Xr| ≤ |Xs −Xsn|+ |Xsn −Xrn|+ |Xr −Xrn| ≤ |Xsn −Xrn|+ 2Ak,

|Xt −Xs| ≤ |Xtn −Xsn|+ 2Ak.
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Since here rn ≤ sn ≤ tn lie in Tk−1, it follows that |Xs −Xr| ∧ |Xt −Xs| ≤ Bk−1 + 2Ak,
and therefore,

Bk ≤ Bk−1 + 2Ak ≤ 2(A1 + . . .+ Ak), k ≥ 1.

Step 2. Consider a special case when H(t) ≡ t. Using the right continuity of the
paths we get from step 1 that

sup
r≤s≤t

(
|Xs −Xr| ∧ |Xt −Xs|

)
≤ 2

∞∑
k=1

Ak.

This implies that for any θ ∈ (0, 1),

P
(

sup
r≤s≤t

(
|Xs −Xr| ∧ |Xt −Xs|

)
≥ 2ε

)
≤ P

( ∞∑
k=1

Ak ≥ ε
)

≤ P
( ∞∑
k=1

Ak ≥ ε(1− θ)
∞∑
k=1

θk
)
≤

∞∑
k=1

P
(
Ak ≥ ε(1− θ)θk

)
≤

∞∑
k=1

2k−1∑
i=1

P
(
|Xi/2k −X(i−1)/2k | ∧ |X(i+1)/2k −Xi/2k | ≥ ε(1− θ)θk

)
.

Applying the key condition with H(t) ≡ t we derive from the previous relation choosing
a θ ∈ (0, 1) satisfying θ2β > 21−α, that the stated estimate holds in the special case

P
(

sup
r≤s≤t

(
|Xs −Xr| ∧ |Xt −Xs|

)
≥ 2ε

)
≤

∞∑
k=1

2k
2(1−k)α

(ε(1− θ)θk)2β

=
2α

ε2β(1− θ)2β

∞∑
k=1

(θ−2β21−α)k.

Step 3. For a strictly increasing H(t) take a so that a2βH(1)α = 1, and define a new
process Yt by Yt = aXb(t), where the time change b(t) is such that H(b(t)) = tH(1). Since

P
(
|Ys − Yr| ≥ ε; |Yt − Ys| ≥ ε

)
= P

(
|Xb(s) −Xb(r)| ≥ a−1ε; |Xb(t) −Xb(s)| ≥ a−1ε

)
≤ ε−2β(t− r)α,

we can apply the result of the step 2 to the new process and prove the statement of the
lemma under the assumption of step 3.

Step 4. If H(t) is not strictly increasing, put Hv(t) = H(t) + vt for an arbitrary small
positive v. We have

P
(
|Xs −Xr| ≥ ε; |Xt −Xs| ≥ ε

)
≤ ε−2β(Hv(t)−Hv(r))

α,

and according to step 3

P
(

sup
r≤s≤t

(
|Xs −Xr| ∧ |Xt −Xs|

)
≥ ε
)
≤ Kα,β

ε2β
(H(1) + v −H(0))α.

It remains to let v go to 0. Lemma 7.15 is proven.
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p143 Lemma 7.16 If P ∈ Hα,β, then given a positive ε,

P (x : w′′x(δ) ≥ ε) ≤ 2Kα,β

ε2β
(H(1)−H(0))(wH(2δ))α−1,

so that P (x : w′′x(δ) ≥ ε)→ 0 as δ → 0.

Proof. Take ti = iδ for 0 ≤ i ≤ b1/δc and td1/δe = 1. If |t − r| ≤ δ, then r and t lie in
the same [ti−1, ti+1] for some 1 ≤ i ≤ d1/δe − 1. According to Lemma 7.15, for X with
distribution P ,

P
(

sup
ti−1≤r≤s≤t≤ti+1

(
|Xs −Xr| ∧ |Xt −Xs|

)
≥ ε
)
≤ Kα,β

ε2β
(H(ti+1)−H(ti−1))α,

and due to monotonicity of H,

P
(
w′′(X, δ) ≥ ε

)
≤
d1/δe−1∑
i=1

Kα,β

ε2β
(H(ti+1)−H(ti−1))α

≤ Kα,β

ε2β

(
sup

0≤t≤1−2δ
(H(t+ 2δ)−H(t))α−1

)
2(H(1)−H(0))

=
2Kα,β

ε2β
(H(1)−H(0))(wH(2δ))α−1.

It remains to recall that the modulus of continuity wH(2δ) of the uniformly continuous
function H converges to 0 as δ → 0.

7.4 A criterion for existence

13.6 Theorem 7.17 There exists in D a random element with finite dimensional distributions
µt1,...,tk provided the following three conditions:

(i) the finite dimensional distributions µt1,...,tk are consistent, see Definition 2.15,
(ii) there exist α > 1, β ≥ 0, and a nondecreasing continuous H : [0, 1] → R such

that for all ε > 0 and all 0 ≤ t1 ≤ t2 ≤ t3 ≤ 1,

µt1,t2,t3{(z1, z2, z3) : |z2 − z1| ≥ ε, |z3 − z2| ≥ ε} ≤ ε−2β(H(t3)−H(t1))α,

(iii) µt,t+δ{(z1, z2) : |z2 − z1| ≥ ε} → 0 as δ ↓ 0 for each t ∈ [0, 1).

Proof. The main idea, as in the proof of Theorem 4.14 (a), is to construct a sequence
(Xn) of random elements in D such that the corresponding sequence of distributions (Pn)
is tight and has the desired limit finite dimensional distributions µt1,...,tk .

Let vector (Xn,0, . . . , Xn,2n) have distribution µt0,...,t2n , where ti ≡ tni = i2−n, and
define

Xn
t =

{
Xn,i for t ∈ [i2−n, (i+ 1)2−n), i = 0, . . . , 2n − 1,
Xn,2n for t = 1.

The rest of the proof uses Theorem 7.12 and is divided in four steps.
Step 1. For all ε > 0 and r, s, t ∈ Tn = {t0, . . . , t2n} we have by (ii),

P
(
|Xn

s −Xn
r | ≥ ε, |Xn

t −Xn
s | ≥ ε

)
≤ ε−2β(H(t)−H(r))α.
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It follows that in general for 0 ≤ r ≤ s ≤ t ≤ 1

P
(
|Xn

s −Xn
r | ≥ ε, |Xn

t −Xn
s | ≥ ε

)
≤ ε−2β(H(t)−H(r − 2−n))α,

where H(t) = H(0) for t < 0. Slightly modifying Lemma 7.16 we obtain that given a
positive ε, there is a constant Kα,β,ε

Pn(x : w′′x(δ) ≥ ε) ≤ Kα,β,ε(H(1)−H(0))(wH(3δ))α−1, for δ ≥ 2−n.

This gives the first part of (ii) in Theorem 7.12.
Step 2. If 2−k ≤ δ, then

‖Xn‖ ≤ max
t∈Tk
|Xn

t |+ w′′(Xn, δ).

Since the distributions of the first term on the right all coincide for n ≥ k, it follows by
step 1 that condition (i) in Theorem 7.12 is satisfied.

Step 3. To take care of the second and third parts of (ii) in Theorem 7.12, we fix some
δ0 ∈ (0, 1/2), and temporarily assume that for δ ∈ (0, δ0),

µ0,δ{(z1, z2) : z1 = z2} = 1, µ1−δ,1{(z1, z2) : z1 = z2} = 1. (∗)

In this special case, the second and third parts of (ii) in Theorem 7.12 hold and we
conclude that the sequence of distributions Pn of Xn is tight.

By Prokhorov’s theorem, (Xn) has a subsequence weakly converging in distribution
to a random element X of D with some distribution P . We want to show that Pπ−1

t1,...,tk
=

µt1,...,tk . Because of the consistency hypothesis, this holds for dyadic rational ti ∈ ∪nTn.
The general case is obtained using the following facts:

Pnπ
−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

,

Pnπ
−1
t1,...,tk

= µtn1,...,tnk , for some tni ∈ Tn, provided k ≤ 2n,

µtn1,...,tnk ⇒ µt1,...,tk .

The last fact is a consequence of (iii). Indeed, by Kolmogorov’s extension theorem, there
exists a stochastic process Z with vectors (Zt1 , . . . , Ztk) having distributions µt1,...,tk . Then

by (iii), Zt+δ
P→ Zt as δ ↓ 0. Using Exercise 1.21 we derive (Ztn1 , . . . , Ztnk)

P→ (Zt1 , . . . , Ztk)
implying µtn1,...,tnk ⇒ µt1,...,tk .

Step 4. It remains to remove the restriction (∗). To this end take

λt =


0 for t ≤ δ0,
t−δ0

1−2δ0
for δ0 < t < 1− δ0,

1 for t ≥ 1− δ0.

Define νs1,...,sk as µt1,...,tk for si = λti. Then the νs1,...,sk satisfy the conditions of the
theorem with a new H, as well as (∗), so that there is a random element Y of D with
these finite-dimensional distributions. Finally, setting Xt = Yδ0+t(1−2δ0) we get a process
X with the required finite dimensional distributions Pπ−1

t1,...,tk
= µt1,...,tk .
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E13.1 Example 7.18 Construction of a Levy process. Let νt be a measure on the line for
which νt(R) = H(t) is nondecreasing and continuous, t ∈ [0, 1]. Suppose for s ≤ t,
νs(A) ≤ νt(A) for all A ∈ R so that νt − νs is a measure with total mass H(t) − H(s).
Then there is an infinitely divisible distribution having mean 0, variance H(t) − H(s),
and characteristic function

φs,t = exp

∫ ∞
−∞

eiuz − 1− iuz
z2

(νt − νs)(dz).

We can use Theorem 7.17 to construct a random element X of D for which the increments
are independent with E(eiu(Xt−Xs)) = φs,t. Indeed, since φr,t = φr,sφs,t for r ≤ s ≤ t, the
implied finite-dimensional distributions µt1,...,tk are consistent. Further, by Chebyshev’s
inequality and independence, condition (ii) of Theorem 7.17 is valid with α = β = 2:

µt1,t2,t3{(z1, z3, z3) : |z2 − z1| ≥ ε, |z3 − z2| ≥ ε} ≤ H(t2)−H(t1)

ε2
· H(t3)−H(t2)

ε2

≤ ε−4(H(t3)−H(t1))2.

Another application of Chebyshev’s inequality gives

µt,t+δ{(z1, z2) :|z2 − z1| ≥ ε} ≤ H(t+ δ)−H(t)

ε2
→ 0, δ ↓ 0.

8 Weak convergence on D

8.1 Criteria for weak convergence in D

13.3 Theorem 8.1 Let Pn, P be probability measures on (D,D). Suppose Pnπ
−1
t1,...,tk

⇒ Pπ−1
t1,...,tk

holds whenever t1, . . . , tk lie in TP . If for every positive ε

(i) lim
δ→0

P (x : |x(1)− x(1− δ)| ≥ ε) = 0,

(ii) lim
δ→0

lim sup
n→∞

Pn(x : w′′x(δ) ≥ ε) = 0,

then Pn ⇒ P .

Proof. This result should be compared with Theorem 4.12 dealing with the space C.
We prove tightness by checking conditions (i′) in Lemma 7.13 and (ii) in Theorem

7.12. For each t ∈ TP , the weakly convergent sequence Pnπ
−1
t is tight which implies (i′)

with TP in the role of T .
As to (ii) in Theorem 7.12 we have to verify only the second and third parts. By right

continuity of the paths we have limδ→0 P (x : |x(δ)− x(0)| ≥ ε) = 0, while by hypothesis,
Pnπ

−1
0,δ ⇒ Pπ−1

0,δ so that for δ ∈ TP ,

lim sup
n→∞

Pn(x : |x(δ)− x(0)| ≥ ε) ≤ P (x : |x(δ)− x(0)| ≥ ε).

The second part follows.
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Turning to the third part of (ii) in Theorem 7.12, the symmetric to the last argument
brings for 1− δ ∈ TP ,

lim sup
n→∞

Pn(x : |x(1)− x(1− δ)| ≥ ε) ≤ P (x : |x(1)− x(1− δ)| ≥ ε).

Using∗

{x : |x(1−)− x(1− δ)| ≥ ε} ⊂ {x : |x(1)− x(1− δ)| ≥ ε/2} ∪ {x : w′′x(δ) > ε/2},

we obtain

lim sup
n→∞

Pn(x : |x(1−)− x(1− δ)| ≥ ε) ≤ P (x : |x(1)− x(1− δ)| ≥ ε/2)

+ lim sup
n→∞

Pn(x : w′′x(δ) ≥ ε/2),

and the third part readily follows from conditions (i) and (ii).

13.5 Theorem 8.2 For Xn ⇒ X on D it suffices that
(i) (Xn

t1
, . . . , Xn

tk
) ⇒ (Xt1 , . . . , Xtk) for points ti ∈ TP , where P is the probability

distribution of X,
(ii) X1 −X1−δ ⇒ 0 as δ → 0,
(iii) there exist α > 1, β > 0, and a nondecreasing continuous function H : [0, 1]→ R

such that

E
(
|Xn

s −Xn
r |β|Xn

t −Xn
s |β
)
≤ (H(t)−H(r))α for 0 ≤ r ≤ s ≤ t ≤ 1.

Proof. By Theorem 8.1, it is enough to show that

lim
δ→0

lim sup
n→∞

P
(
w′′(Xn, δ) ≥ ε

)
= 0.

This follows from Lemma 7.16 as (iii) implies that Xn has a distribution Pn ∈ Hα,β.

8.2 Functional CLT on D

The identity map c : C → D is continuous and therefore measurable C/D. If W is
Wiener measure on (C, C), then Wc−1 is Wiener measure on (D,D). We denote this new
measure by W rather than Wc−1. Clearly, W(C) = 1. Let also denote by W a random
element of D with distribution W.

14.1 Theorem 8.3 Let ξ1, ξ2, . . . be iid r.v. defined on (Ω,F ,P). If ξi have zero mean and

variance σ2 and Xn
t =

ξ1+...+ξbntc
σ
√
n

, then Xn ⇒ W .

Proof. We apply Theorem 8.2. Following the proof of Theorem 4.16 (a) one gets the
convergence of the fdd (i) even for the Xn as they are defined here. Condition (ii) follows
from the fact that the Wiener process Wt has no jumps. We finish the proof by showing
that (iii) holds with α = β = 2 and H(t) = 2t. Indeed,

E
(
|Xn

s −Xn
r |2|Xn

t −Xn
s |2
)

= 0 for 0 ≤ t− r < n−1,

∗An argument suggested by Timo Hirscher.
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as either Xn
s = Xn

r or Xn
t = Xn

s . On the other hand, for t− r ≥ n−1, by independence,

E
(
|Xn

s −Xn
r |2|Xn

t −Xn
s |2
)

=
bnsc − bnrc

n
· bntc − bnsc

n

≤
(bntc − bnrc

n

)2

≤ (2(t− r))2.

p148 Example 8.4 Define (ξn) on ([0, 1],B[0,1], λ) using the Rademacher functions ξn(ω) =
2wn − 1 in terms of the dyadic representation ω = ω1ω2 . . .. Then (ξn) is a sequence
of independent coin tossing outcomes with values ±1. Theorem 8.3 holds with σ = 1:(
ξ1+...+ξbntc√

n

)
t∈[0,1]

⇒ W.

M21 Lemma 8.5 Consider a probability space (Ω,F ,P) and let P0 be a probability measure
absolutely continuous with respect to P. Let F0 ⊂ F be an algebra of events such that for
some An ∈ σ(F0)

P(An|E)→ α, for all E ∈ F0 with P(E) > 0.

Then P0(An)→ α.

Proof. We have P0(A) =
∫
A
g0(ω)P(dω), where g0 = dP0/dP. It suffices to prove that∫
An

g(ω)P(dω)→ α

∫
Ω

g(ω)P(dω) (∗)

if g is F -measurable and P-integrable. We prove (∗) in three steps.
Step 1. Write F1 = σ(F0) and denote by F2 the class of events E for which

P(An ∩ E)→ αP(E).

We show that F1 ⊂ F2. To be able to apply Theorem 1.3 we have to show that F2 is a
λ-system. Indeed, suppose for a sequence of disjoint sets Ei we have

P(An ∩ Ei)→ αP(Ei).

Let E = ∪iEi, then by Lemma 2.10,

P(An ∩ E) =
∑
i

P(An ∩ Ei)→ α
∑
i

P(Ei) = αP(E).

Step 2. Show that (∗) holds for F1-measurable functions g. Indeed, due to step
1, relation (∗) holds if g is the indicator of an F1-set. and hence if it is a simple F1-
measurable function. If g is F1-measurable and P-integrable function, choose simple
F1-measurable functions gk that satisfy |gk| ≤ |g| and gk → g. Now∣∣∣ ∫

An

g(ω)P(dω)−α
∫

Ω

g(ω)P(dω)
∣∣∣ ≤ ∣∣∣ ∫

An

gk(ω)P(dω)−α
∫

Ω

gk(ω)P(dω)
∣∣∣+(1+α)E|g−gk|.

Let first n→∞ and then k →∞ and apply the dominated convergence theorem.
Step 3. Finally, take g to be a F -measurable and P-integrable. We use conditional

expectation g1 = E(g|F1)∫
An

g(ω)P(dω) = E(g1{An}) = E(g11{An})→ αE(g1) = α

∫
Ω

g(ω)P(dω).
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14.2 Theorem 8.6 Let ξ1, ξ2, . . . be iid r.v. defined on (Ω,F ,P) having zero mean and vari-

ance σ2. Put Xn
t =

ξ1+...+ξbntc
σ
√
n

. If P0 is a probability measure absolutely continuous with
respect to P, then Xn ⇒ W with respect to P0.

Proof. Step 1. Choose kn such that kn →∞ and k = o(n) as n→∞ and put

X̄n
t =

1

σ
√
n

bntc∑
i=kn

ξi,

Yn =
1

σ
√
n

max
1≤k<kn

|ξ1 + . . .+ ξk|.

By Kolmogorov’s inequality, for any a > 0,

P(Yn ≥ a)→ 0, n→∞,

and therefore

d(Xn, X̄n) ≤ ‖Xn − X̄n‖ = Yn ⇒ 0 with respect to P.

Applying Theorem 8.3 and Corollary 1.23 we conclude that X̄n ⇒ W with respect to P.
Step 2: show using Lemma 8.5, that X̄n ⇒ W with respect to P0. If A ∈ D is a

W-continuity set, then P(An) → α for An = {X̄n ∈ A} and α = W(A). Let F0 be the
algebra of the cylinder sets {(ξ1, . . . , ξk) ∈ H}. If E ∈ F0, then An are independent of E
for large n and by Lemma 8.5, P0(X̄n ∈ A)→W(A).

Step 3. Since 1{Yn≥a} → 0 almost surely with respect to P, the dominated convergence
theorem gives

P0(Yn ≥ a) =

∫
g0(ω)1{Yn≥a}P(dω)→ 0.

Arguing as in step 1 we conclude that d(Xn, X̄n)⇒ 0 with respect to P0.
Step 4. Applying once again Corollary 1.23 we conclude that Xn ⇒ W with respect

to P0.

p148’ Example 8.7 Define ξn on ([0, 1],B[0,1], λp) with

λp(du) = aua−1du, a = − log2(1− p), p ∈ (0, 1)

again, as in Example 8.4, using the Rademacher functions. This corresponds to dependent
coin tossings with ∫ 2−n

0

λp(du) = (1− p)n

being the probability of having n failures in n tossings. By Theorem 8.6, even in this

case
(
ξ1+...+ξbntc√

n

)
t∈[0,1]

⇒ W.
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1

0 1

1

Figure 4: An example of the empirical distribution function with n = 10 for the uniform
distribution (left panel) and the corresponding empirical process (right panel). empp

8.3 Empirical distribution functions

Definition 8.8 Let ξ1(ω), . . . , ξn(ω) be iid with a distribution function F over [0, 1]. The
corresponding empirical process is defined by Y n

t =
√
n(Fn(t)− F (t)), where

Fn(t) = n−1(1{ξ1≤t} + . . .+ 1{ξn≤t})

is the empirical distribution function.

Lemma 8.9 Let (Zn
1 , . . . , Z

n
r ) have the multinomial distribution Mn(n, p1, . . . , pr). Then

the normalized vector
(
Zn1 −np1√

n
, . . . , Z

n
r −npr√
n

)
converges in distribution to the multivariate

normal distribution with zero means and the covariance matrix

V =


p1(1− p1) −p1p2 −p1p3 . . . −p1pr
−p2p1 p2(1− p2) −p2p3 . . . −p2pr
−p3p1 −p3p2 p3(1− p3) . . . −p3pr
. . . . . . . . . . . . . . .
−prp1 −prp2 −prp3 . . . pr(1− pr)

 .

Proof. To apply the continuity property of the multivariate characteristic functions con-
sider

E exp
(
iθ1

Zn
1 − np1√

n
+ . . .+ iθr

Zn
r − npr√

n

)
=
( r∑
j=1

pje
iθ̃j/
√
n
)n
,

where θ̃j = θj − (θ1p1 + . . .+ θrpr). Similarly to the classical case we have( r∑
j=1

pje
iθ̃j/
√
n
)n

=
(

1− 1

2n

r∑
j=1

pj θ̃
2
j+o(n

−1)
)n
→ e−

1
2

∑r
j=1 pj θ̃

2
j = e−

1
2

(
∑r
j=1 pjθ

2
j−(

∑r
j=1 pjθj)

2).

It remains to see that the right hand side equals e−
1
2
θVθt which follows from the repre-

sentation

V =

 p1 0
. . .

0 pr

−
 p1

...
pr

(p1, . . . , pr

)
.
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14.3 Theorem 8.10 If ξ1, ξ2, . . . are iid [0, 1]-valued r.v. with a distribution function F ,
then the empirical process weakly converges Y n ⇒ Y to a random element (Yt)t∈[0,1] =
(W ◦

F (t))t∈[0,1], where W ◦ is the standard Brownian bridge. The limit Y is a Gaussian

process specified by E(Yt) = 0 and E(YsYt) = F (s)(1− F (t)) for s ≤ t.

Proof. We start with the uniform case, F (t) ≡ t for t ∈ [0, 1], by showing Y n ⇒ W ◦,
where W ◦ is the Brownian bridge with E(W ◦

sW
◦
t ) = s(1− t) for s ≤ t. Let

Un
t = nFn(t) = 1{ξ1≤t} + . . .+ 1{ξn≤t}

be the number of ξ1, . . . , ξn falling inside [0, t]. Since the increments of Un
t are described by

multinomial joint distributions, by the previous lemma, the fdd of Y n
t =

Unt −nt√
n

converge
to those of W ◦.

By Theorem 8.2 it suffices to prove for t1 ≤ t ≤ t2 that

E
(

(Y n
t − Y n

t1
)2(Y n

t2
− Y n

t )2
)
≤ (t− t1)(t2 − t) ≤ (t2 − t1)2.

In terms of αi = 1{ξi∈(t1,t]} + t1 − t and βi = 1{ξi∈(t,t2]} + t − t2 the first inequality is
equivalent to

E
(( n∑

i=1

αi
)2( n∑

i=1

βi
)2
)
≤ n2(t− t1)(t2 − t).

As we show next, this follows from E(αi) = E(βi) = 0, independence (αi, βi) ⊥⊥ (αj, βj) for
i 6= j, and the following formulae for the second order moments. Let us write p1 = t− t1,
and p2 = t2 − t. Since

αi =

{
1− p1 w.p. p1,
−p1 w.p. 1− p1,

βi =

{
1− p2 w.p. p2,
−p2 w.p. 1− p2,

and

αiβi =


−(1− p1)p2 w.p. p1,
−p1(1− p2) w.p. p2,

p1p2 w.p. 1− p1 − p2,

we have

E(α2
i ) = p1(1− p1), E(β2

i ) = p2(1− p2), E(αiβi) = −p1p2,

E(α2
iβ

2
i ) = p1(1− p1)2p2

2 + p2p
2
1(1− p2)2 + (1− p1 − p2)p2

1p
2
2 = p1p2(p1 + p2 − 3p1p2)

and

E
(( n∑

i=1

αi
)2( n∑

i=1

βi
)2
)

= nE(α2
iβ

2
i ) + n(n− 1)E(α2

i )E(β2
i ) + 2n(n− 1)(E(αiβi))

2

≤ n2p1p2(p1 + p2 − 3p1p2 + 1− p1 − p2 + 3p1p2)

= n2p1p2 = n2(t− t1)(t2 − t).

This proves the theorem for the uniform case. For a general continuous and strictly
increasing F (t) we use the transformation ηi = F (ξi) into uniformly distributed r.v. If
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1

0 1

Figure 5: The time transformation ψ : D → D. Along the y-axis an original path
x(t) is depicted, along the x-axis the time transformed path (ψx)(t) = x(F (t)) is given.
The jumps of F translate into path jumps, the constant parts of F translate into the
horizontal pieces of the transformed path. titr

Gn(t) = Gn(t, ω) is the empirical distribution function of (η1(ω), . . . , ηn(ω)) and Zn
t =√

n(Gn(t)− t), then Zn ⇒ W ◦.
Observe that

Gn(F (t)) =
1{η1≤F (t)} + . . .+ 1{ηn≤F (t)}

n
=

1{F (ξ1)≤F (t)} + . . .+ 1{F (ξn)≤F (t)}

n
= Fn(t).

Define ψ : D → D by (ψx)(t) = x(F (t)). If xn → x in the Skorokhod topology and
x ∈ C, then the convergence is uniform, so that ψxn → ψx uniformly and hence in the
Skorokhod topology. By the mapping theorem ψ(Zn)⇒ ψ(W ◦). Therefore,

Y n = (Y n
t )t∈[0,1] = (Zn

F (t))t∈[0,1] = ψ(Zn)⇒ ψ(W ◦) = (W ◦
F (t))t∈[0,1] = Y.

Finally, for F (t) with jumps and constant parts (see Figure 5) the previous argument
works provided there exists an iid sequence η1, η2, . . . of uniformly distributed r.v. as well
as iid ξ′1, ξ

′
2, . . . with distribution function F , such that

{ηi ≤ F (t)} ≡ {ξ′i ≤ t}, t ∈ [0, 1], i ≥ 1.

This is achieved by starting with uniform η1, η2, . . . on possibly another probability space
and putting ξ′i = φ(ηi), where φ(u) = inf{t : u ≤ F (t)} is the quantile function satisfying

{φ(u) ≤ t} = {u ≤ F (t)}.

Example 8.11 Kolmogorov-Smirnov test. Let F be continuous. By the mapping theo-
rem we obtain

√
n sup

t
|Fn(t)− F (t)| = sup

t
|Y n
t | ⇒ sup

t
|W ◦

F (t)| = sup
t
|W ◦

t |,

where the limit distribution is given by Theorem 5.10.
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9 The space D∞ = D[0,∞)
secDi

9.1 Two metrics on D∞

To extend the Skorokhod theory to the space D∞ = D[0,∞) of the cadlag functions
on [0,∞), consider for each t > 0 the space Dt = D[0, t] of the same cadlag func-
tions restricted on [0, t]. All definitions for D = D[0, 1] have obvious analogues for
Dt: for example we denote by dt(x, y) the analogue of d1(x, y) := d(x, y). Denote
‖x‖t = supu∈[0,t] |x(u)|.

Example 9.1 One might try to define Skorokhod convergence xn → x on D∞ by requir-
ing that dt(xn, x)→ 0 for each finite t > 0. This does not work: if xn(t) = 1{t∈[0,1−n−1)},
the natural limit would be x(t) = 1{t∈[0,1)} but d1(xn, x) = 1 for all n. The problem here
is that x is discontinuous at t = 1, and the definition must accommodate discontinuities.

L16.1 Lemma 9.2 Let 0 < u < t < ∞. If dt(xn, x) → 0 and x is continuous at u, then
du(xn, x)→ 0.

Proof. By hypothesis, there are time transforms λn ∈ Λt such that ‖λn − 1‖t → 0
and ‖xn − xλn‖t → 0 as n → ∞. Given ε, choose δ so that |v − u| ≤ 2δ implies
|x(v)− x(u)| ≤ ε/2. Now choose n0 so that, if n ≥ n0 and v ≤ t, then |λnv − v| ≤ δ and
|xn(v)− (xλn)(v)| ≤ ε/2. Then, if n ≥ n0 and |v − u| ≤ δ, we have

|λnv − u| ≤ |λnv − v|+ |v − u| ≤ 2δ

and hence

|xn(v)− x(u)| ≤ |xn(v)− (xλn)(v)|+ |(xλn)(v)− x(u)| ≤ ε.

Thus
sup
|v−u|≤δ

|x(v)− x(u)| ≤ ε, sup
|v−u|≤δ

|xn(v)− x(u)| ≤ ε for n ≥ n0.

Let

un =


u− n−1 if λnu < u,
u if λnu = u,
λ−1
n (u− n−1) if λnu > u,

so that un ≤ u. Since

|un − u| ≤ |λ−1
n (u− n−1)− (u− n−1)|+ n−1,

we have un → u, and since

|λnun − u| ≤ |λnun − un|+ |un − u|,

we also have λnun → u.
Define µn ∈ Λu so that µnv = λnv for v ∈ [0, un] and interpolate linearly on (un, u]

aiming at the diagonal point µnu = u, see Figure 6. By linearity, |µnv− v| ≤ |λnun− un|
for v ∈ [un, u] and we have ‖µn − 1‖u → 0.

55



u t

u

u-1/n

nu

lam
bd
a

mu

Figure 6: A detail of the proof of Lemma 9.2 and Theorem 9.8. lem

It remains to show that ‖xn − xµn‖u → 0. To do this we choose n1 so that

un > u− δ and λnun > u− δ for n ≥ n1.

If v ≤ un, then

|xn(v)− (xµn)(v)| = |xn(v)− (xλn)(v)| ≤ ‖xn − xλn‖t.

On the other hand, if v ∈ [un, u] and n ≥ n1, then v ∈ [u − δ, u] and µnv ∈ [u − δ, u]
implying for n ≥ n1 ∨ n0

|xn(v)− (xµn)(v)| ≤ |xn(v)− x(u)|+ |x(u)− (xµn)(v)| ≤ 2ε.

The proof is finished.

Definition 9.3 For any natural i, define a map ψi : D∞ →Di by

(ψix)(t) = x(t)1{t≤i−1} + (i− t)x(t)1{i−1<t≤i}

making the transformed function (ψix)(t) continuous at t = i.

p168 Definition 9.4 Two topologically equivalent metrics d∞(x, y) and d◦∞(x, y) are defined
on D∞ in terms of d(x, y) and d◦(x, y) by

d∞(x, y) =
∞∑
i=1

1 ∧ di(ψix, ψiy)

2i
, d◦∞(x, y) =

∞∑
i=1

1 ∧ d◦i (ψix, ψiy)

2i
.

The metric properties of d∞(x, y) and d◦∞(x, y) follow from those of di(x, y) and
d◦i (x, y). In particular, if d∞(x, y) = 0, then di(ψix, ψiy) = 0 and ψix = ψiy for all
i, and this implies x = y.

Lemma 9.5 The map ψi : D∞ →Di is continuous.

Proof. It follows from the fact that d∞(xn, x)→ 0 implies di(ψixn, ψix)→ 0.
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9.2 Characterization of Skorokhod convergence on D∞

Let Λ∞ be the set of continuous, strictly increasing maps λ : [0,∞) → [0,∞) such that
λ0 = 0 and λs→∞ as t→∞. Denote ‖x‖∞ = supu∈[0,∞) |x(u)|.

Exercise 9.6 Let λ ∈ Λt where t ∈ (0,∞]. Show that the inverse transformation λ−1 ∈
Λt is such that ‖λ−1 − 1‖t = ‖λ− 1‖t.

Example 9.7 Consider the sequence xn(t) = 1{t≥n} of elements of D∞. Its natural limit
is x ≡ 0 but then ‖xnλn − x‖∞ = ‖xnλn‖∞ = 1 for any choice of λn ∈ Λ∞.

16.1 Theorem 9.8 Convergence d∞(xn, x)→ 0 takes place if and only if there is a sequence
λn ∈ Λ∞ such that

‖λn − 1‖∞ → 0 and ‖xnλn − x‖i → 0 for each i.

Proof. Necessity. Suppose d∞(xn, x) → 0. Then di(ψixn, ψix) → 0 and there exist

λ
(i)
n ∈ Λi such that

ε(i)n = ‖λ(i)
n − 1‖i ∨ ‖(ψixn)λ(i)

n − ψix‖i → 0, n→∞ for each i.

Choose ni > 1 such that n ≥ ni implies ε
(i)
n < i−1. Arrange that ni < ni+1, and let

i1 = . . . = in1−1 = 1, in1 = . . . = in2−1 = 2, in2 = . . . = in3−1 = 3, . . .

so that in →∞. Define λn ∈ Λ∞ by

λnt =

{
λ

(in)
n t if t ≤ in,
t if t > in.

Then
‖λn − 1‖∞ = ‖λ(in)

n − 1‖in ≤ ε(in)
n < i−1

n → 0.

Now fix i. If n is large enough, then i < in − 1 and

‖xnλn − x‖i = ‖(ψinxn)λn − ψinx‖i
≤ ‖(ψinxn)λn − ψinx‖in = ‖(ψinxn)λ(in)

n − ψinx‖in ≤ ε(in)
n < i−1

n → 0.

Sufficiency. Suppose that there is a sequence λn ∈ Λ∞ such that, firstly, ‖λn−1‖∞ →
0, and secondly, ‖xnλn − x‖i → 0 for each i. Observe that for some Ci,

‖x‖i ≤ Ci and ‖xn‖i ≤ Ci for all (n, i).

Indeed, by the first assumption, for large n we have λn(2i) > i implying ‖xn‖i ≤ ‖xnλn‖2i,
where by the second assumption, ‖xnλn‖2i → ‖x‖2i.

Fix an i. It is enough to show that di(ψixn, ψix)→ 0. As in the proof of Lemma 9.2
define

un =


i− n−1 if λni < i,
i if λni = i,
λ−1
n (i− n−1) if λni > i,
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and µn ∈ Λi so that µnv = λnv for v ∈ [0, un] interpolating linearly on (un, i] towards
µni = i. As before, ‖µn − 1‖i → 0 and it suffices to check that

‖(ψixn)µn − ψix‖i → 0, n→∞.

To see that the last relation holds suppose j := λ−1
n (i − 1) ≤ i − 1 (the other case

j > i− 1 is treated similarly) and observe that

‖(ψixn)λn − ψix‖i =
(
‖xnλn − x‖j

)
∨
(

sup
j<t≤i−1

|(i− λnt)xn(λnt)− x(t)|
)

∨
(

sup
i−1<t≤i

|(i− λnt)xn(λnt)− (i− t)x(t)|
)

≤
(
‖xnλn − x‖i + Ci sup

j<t≤i−1
|(i− 1− λnt)|

)
∨
(

sup
i−1<t≤i

|i− λnt| · |xn(λnt)− x(t)|+ sup
i−1<t≤i

|(λnt− t)x(t)|
)

≤ ‖xnλn − x‖i + Ci‖λn − 1‖i → 0.

It follows that for t ≤ un,

|(ψixn)(µnt)− (ψix)(t)| ≤ ‖(ψixn)λn − ψix‖i → 0.

Turning to the case un < t ≤ i, given an ε ∈ (0, 1) choose n0 such that for n > n0, un
and µnun both lie in [i− ε, i]. Then

|(ψixn)(µnt)− (ψix)(t)| ≤ sup
un<t≤i

|(i− µnt)xn(µnt)− (i− t)x(t)| ≤ 2Ciε.

16.2 Theorem 9.9 Convergence d∞(xn, x) → 0 takes place if and only if dt(xn, x) → 0 for
each continuity point t of x.

Proof. Necessity. If d∞(xn, x)→ 0, then di(ψixn, ψix)→ 0 for each i. Given a continuity
point t of x, take an integer i for which t < i− 1. According to Lemma 9.2, dt(xn, x) =
dt(ψixn, ψix)→ 0.

Sufficiency. Choose continuity points ti of x in such a way that ti ↑ ∞ as i→∞. By
hypothesis,

dti(xn, x)→ 0, n→∞, i ≥ 1.

Choose λ
(i)
n ∈ Λti so that

ε(i)n = ‖λ(i)
n − 1‖ti ∨ ‖xnλ(i)

n − x‖ti → 0, n→∞ for each i.

Using the argument from the first part of the proof of Theorem 9.8, define integers in in
such a way that in →∞ and ε

(in)
n < i−1

n . Put

λnt =

{
λ

(in)
n t if t ≤ tin ,
t if t > tin ,

so that λn ∈ Λ∞. We have ‖λn − 1‖∞ ≤ i−1
n , and for any given i, if n is sufficiently large

so that i < tin , then

‖xnλn − x‖i = ‖xnλ(in)
n − x‖i ≤ ‖xnλ(in)

n − x‖tin ≤ ε(in)
n < i−1

n → 0.

Applying Theorem 9.8 we get d∞(xn, x)→ 0.
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9.3 Separability and completeness of D∞

M6 Lemma 9.10 Suppose (Si, ρi) are metric spaces and consider S = S1×S2× . . . together
with the metric of coordinate-wise convergence

ρ(x, y) =
∞∑
i=1

1 ∧ ρi(xi, yi)
2i

.

If each Si is separable, then S is separable. If each Si is complete, then S is complete.

Proof. Separability. Suppose that Bi is a countable dense subset in Si and x◦i ∈ Si is a
fixed point. Consider the countable set B = B(x◦1, x

◦
2, . . .)

B = {x ∈ S : x = (x1, . . . , xk, x
◦
k+1, x

◦
k+2, . . .), x1 ∈ B1, . . . xk ∈ Bk}.

Given an ε and a point y ∈ S, choose k so that
∑

i>k 2−i < ε and then choose points
xi ∈ Bi so that ρi(xi, yi) < ε. With this choice the corresponding point x ∈ B satisfies
ρ(x, y) < 2ε.

Completeness. Suppose that xn = (xn1 , x
n
2 , . . .) are points of S forming a fundamental

sequence. Then each sequence (xni ) is fundamental in Si and hence ρi(x
n
i , xi) → 0 for

some xi ∈ Si. By the M-test, Lemma 2.10, ρ(xn, x)→ 0, where x = (x1, x2, . . .).

Definition 9.11 Consider the product space D = D1 ×D2 × . . . with the coordinate-
wise convergence metric (cf Definition 9.4)

ρ(x̄, ȳ) =
∞∑
i=1

1 ∧ d◦i (x̄i, ȳi)
2i

, x̄ = (x̄1, x̄2, . . .), ȳ = (ȳ1, ȳ2, . . .) ∈D.

Put ψx = (ψ1x, ψ2x, . . .) for x ∈D∞. Then ψx ∈D and d◦∞(x, y) = ρ(ψx, ψy) so that ψ
is an isometry of (D∞, d

◦
∞) into (D, ρ).

L16.2 Lemma 9.12 The image D∞ := ψD∞ is closed in D.

Proof. Suppose that xn ∈ D∞, x̄ = (x̄1, x̄2, . . .) ∈ D, and ρ(ψxn, x̄) → 0, then
di(ψixn, x̄i)→ 0 for each i. We must find an x ∈D∞ such that x̄ = ψx.

The sequence of functions x̄i ∈Di, i = 1, 2, . . . has at most countably many points of
discontinuity. Therefore, there is a dense set T ∈ [0,∞) such that for every i ≥ t ∈ T ,
the function x̄i(·) is continuous at t. Since di(ψixn, x̄i)→ 0, we have ψixn(t)→ x̄i(t) for
all t ∈ T ∩ [0, i]. This means that for every t ∈ T there exists the limit x(t) = limn xn(t),
since ψixn(t) = xn(t) for i > t+ 1.

Now ψix(t) = x̄i(t) on T ∩ [0, i]. Hence x(t) = x̄i(t) on T ∩ [0, i− 1], so that x can be
extended to a cadlag function on each [0, i− 1] and then to a cadlag function on [0,∞).
We conclude, using right continuity, that ψix(t) = x̄i(t) for all t ∈ [0, i].

16.3 Theorem 9.13 The metric space (D∞, d
◦
∞) is separable and complete.

Proof. According Lemma 9.10 the space D is separable and complete, so are the closed
subspace D∞ and its isometric copy D∞.
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9.4 Weak convergence on D∞

Definition 9.14 For any natural i and any s ≥ i, define a map ψs,i : Ds →Di by

(ψs,ix)(t) = x(t)1{t≤i−1} + (i− t)x(t)1{i−1<t≤i}.

Exercise 9.15 Show that the mapping ψs,i is continuous.

L16.3 Lemma 9.16 A necessary and sufficient condition for Pn ⇒ P on D∞ is that Pnψ
−1
k ⇒

Pψ−1
k on Dk for every k.

Proof. Since ψk is continuous, the necessity follows from the mapping theorem.
For the sufficiency we need the isometry ψ and the inverse isometry ψ−1:

D∞
ψk→Dk, D∞

ψ→D, D∞
ψ−1

→ D∞.

Define two more mappings

D
ζk→D1 × . . .×Dk, Dk

χk→D1 × . . .×Dk

by

ζk(x̄) = (x̄1, . . . , x̄k), χk(x) = (ψk,1x, . . . , ψk,kx).

Consider the Borel σ-algebra D for (D, ρ) and let Df ⊂ D be the class of sets of the
form ζ−1

k H where k ≥ 1 and H ∈ D1× . . .×Dk, see Definition 2.5. The remainder of the
proof is split into four steps.

Step 1. Applying Theorem 2.4 show that A = Df is a convergence-determining class.
Given a ball B(x̄, ε) ⊂D, take k so that 2−k < ε/2 and consider the cylinder sets

Aη = {ȳ ∈D : d◦i (x̄i, ȳi) < η, i = 1, . . . , k} for 0 < η < ε/2.

Then x̄ ∈ A◦η = Aη ⊂ B(x̄, ε) implies Aη ∈ Ax,ε. It remains to see that the boundaries of
Aη for different η are disjoint.

Step 2. For probability measures Qn and Q on D show that if Qnζ
−1
k ⇒ Qζ−1

k for
every k, then Qn ⇒ Q.

This follows from the equality ∂(ζ−1
k H) = ζ−1

k ∂H for H ∈ D1× . . .×Dk, see the proof
of Theorem 2.14.

Step 3. Assume that Pnψ
−1
k ⇒ Pψ−1

k on Dk for every k and show that Pnψ
−1 ⇒ Pψ−1

on D.
The map χk is continuous: if xn → x in Dk, then ψk,ixn → ψk,ix in Di, i ≤ k. By the

mapping theorem, Pnψ
−1
k χ−1

k ⇒ Pψ−1
k χ−1

k , and since χkψk = ζkψ, we get Pnψ
−1ζ−1

k ⇒
Pψ−1ζ−1

k . Referring to step 2 we conclude Pnψ
−1 ⇒ Pψ−1.

Step 4. Show that Pnψ
−1 ⇒ Pψ−1 on D implies Pn ⇒ P on D∞.

Extend the isometry ψ−1 to a map η : D → D∞ by putting η(x̄) = x0 ∈ D∞ for all
x̄ /∈ D∞. Then η is continuous when restricted to D∞, and since D∞ supports Pψ−1

and the Pnψ
−1, it follows that

Pn = Pnψ
−1η−1 ⇒ Pψ−1η−1 = P.
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Definition 9.17 (Cf Lemma 7.9.) For a probability measure P on D∞ define TP ⊂
[0,∞) as the set of t for which P (Jt) = 0, where Jt = {x : x is discontinuous at t}.

Exercise 9.18 Let P be the probability measure on D∞ generated by the Poisson pro-
cess with parameter λ. Show that TP = [0,∞).

p174 Lemma 9.19 For x ∈ D∞ let rtx be the restriction of x on [0, t]. The function rt :
D∞ →Dt is measurable. The set of points at which rt is discontinuous belongs to Jt.

Proof. Denote δk = t/k. Define the function rkt x ∈ Dt as having the value x(iδk) on
[iδk, (i+ 1)δk) for 0 ≤ i ≤ k − 1 and the value x(t) at t. Since the πiδk are measurable
D∞/R1, it follows as in the proof of Theorem 7.2 (b) that rkt is measurable D∞/Dt. By
Lemma 6.30,

dt(r
k
t x, rtx) ≤ δk ∨ w′t(x, δk)→ 0 as k →∞ for each x ∈D∞.

Now, to show that rt is measurable take a closed F ∈ Dt. We have F = ∩εF 2ε, where
the intersection is over positive rational ε. From

r−1
t F ⊂ liminf

k
(rkt )

−1F ε =
∞⋃
j=1

∞⋂
k=j

(rkt )
−1F ε ⊂ r−1

t F 2ε

we deduce that r−1
t F = ∩ε liminfk(r

k
t )
−1F ε is measurable. Thus rt is measurable.

To prove the second assertion take an x ∈D∞ which is continuous at t. If d∞(xn, x)→
0, then by Theorem 9.9,

dt(rtxn, rtx) = dt(xn, x)→ 0.

In other words, if x /∈ Jt, then rt is continuous at x.

16.7 Theorem 9.20 A necessary and sufficient condition for Pn ⇒ P on D∞ is that Pnr
−1
t ⇒

Pr−1
t for each t ∈ TP .

Proof. If Pn ⇒ P on D∞, then Pnr
−1
t ⇒ Pr−1

t for each t ∈ TP due to the mapping
theorem and Lemma 9.19.

For the reverse implication, it is enough, by Lemma 9.16, to show that Pnψ
−1
i ⇒ Pψ−1

i

on Di for every i. Given an i choose a t ∈ TP so that t ≥ i. Since ψi = ψt,i ◦ rt, the
mapping theorem gives

Pnψ
−1
i = (Pnr

−1
t )ψ−1

t,i ⇒ (Pr−1
t )ψ−1

t,i = Pψ−1
i .

Exercise 9.21 Let W ◦ be the standard Brownian bridge. For t ∈ [0,∞) put Wt =
(1 + t)W ◦

t
1+t

. Show that such defined random element W of D∞ is a Gaussian process

with zero means and covariance function E(WsWt) = s for 0 ≤ s ≤ t < ∞. This is a
Wiener process W = (Wt, 0 ≤ t < ∞). Clearly, rt(W ) is a Wiener process which is a
random element of Dt.

Corollary 9.22 Let ξ1, ξ2, . . . be iid r.v. defined on (Ω,F ,P). If ξi have zero mean and

variance σ2 and Xn
t =

ξ1+...+ξbntc
σ
√
n

, then Xn ⇒ W on D∞.
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Proof. By Theorem 8.3, Xn ⇒ W on D1. The same proof gives Xn ⇒ W on Dt for
each t ∈ [0,∞). In other words, rt(X

n) ⇒ rt(W ) for each t ∈ [0,∞), and it remains to
apply Theorem 9.20.

Corollary 9.23 Suppose for each n, ξn1, . . . , ξnn are iid indicator r.v. with P(ξni = 1) =
α/n. If Xn

t =
∑

i≤nt ξni, then Xn ⇒ X on D∞, where X is the Poisson process with
parameter α.

Proof. Combine Corollary 7.7 and Theorem 9.20.
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