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BOREL SUBRINGS OF THE REALS

G. A. EDGAR AND CHRIS MILLER

(Communicated by David Preiss)

Abstract. A Borel (or even analytic) subring of R either has Hausdorff di-
mension 0 or is all of R. Extensions of the method of proof yield (among other
things) that any analytic subring of C having positive Hausdorff dimension is
equal to either R or C.

Preliminaries

We begin with a few definitions, notations, and results as preliminary material.
If E is a set and k is a positive integer, we write Ek for the k-fold Cartesian

product E × E × · · · ×E.
The set R of real numbers has various structures: it is a field; it is a ring; it is

a group (under addition); it is a metric space. The set C of complex numbers also
has all these structures. Let k be a positive integer. The Cartesian power Rk is a
metric space, a group, and an R-vector space, and Ck is a metric space, a group, a
C-vector space, and an R-vector space.

If X is a metric space and A ⊆ X , then A is called a Borel set in X iff A
belongs to the σ-algebra generated by the open sets in X . If X and Y are metric
spaces, then a function ϕ : X → Y is called Borel measurable iff for every Borel
set B in Y , the inverse image ϕ−1(B) is a Borel set in X . If X is a complete
separable metric space, and A ⊆ X , then A is called an analytic set in X if A is
the continuous image of some Borel set in some Euclidean space Rk. (Analytic sets
are also known as Suslin sets or Souslin sets.)

We write dim for Hausdorff dimension. The Dimension Inequality [15, Thm. 8.10,
p. 115], [10, 7.2, p. 94]: if A ⊆ Rn, B ⊆ Rm are Borel sets, then dim(A × B) ≥
dimA+ dimB. In general, equality need not hold. From this we get

dim(An+m) ≥ dim(An) + dim(Am).

Therefore the sequence (1/n) dim(An) converges as n→∞ to supn(1/n) dim(An).
Call this limit the Cartesian–Hausdorff dimension of A, or the CH dimension
of A. All we need to know is that the CH dimension of A is 0 iff dim(An) = 0 for
all positive integers n. This implies in particular that dimA = 0.

Received by the editors October 29, 2001.
2000 Mathematics Subject Classification. Primary 28A78; Secondary 03E15, 11K55, 12D99,

28A05.
Key words and phrases. Borel subring, Borel subfield, Hausdorff dimension, Erdős, Volkmann,
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1122 G. A. EDGAR AND CHRIS MILLER

1. Main theorem

We improve the main result of our paper [6], using some of the same methods
for the proof.

Theorem 1. Let E ⊆ R be a subring and a Borel set. Then either E has CH
dimension zero or E = R.

Historical remarks. In 1960, Volkmann [17] noted that all known examples of sub-
fields of R had Hausdorff dimension either 0 or 1. He showed that if a subfield
K ⊆ R existed with dimK = s, 0 < s < 1, then it would be “dimensionslos”—for
every open set U , the s-dimensional Hausdorff measure Hs(K ∩ U) is either 0 or
∞. In 1966, Erdős and Volkmann [7] showed that for every s, 0 ≤ s ≤ 1, there
is G ⊆ R an additive subgroup and a Borel set, with dimG = s. (See also [10,
Ex. 12.4, p. 167].) They noted that the question of the Hausdorff dimension of
subrings and subfields remained open. R. O. Davies (unpublished, see [9, p. 212]
and [15, p. 167]), using the Continuum Hypothesis, showed that for 0 ≤ s ≤ 1,
there exists a subring E ⊆ R with dimE = s. These subrings are not Borel (and
not analytic). In 1984, Falconer [8] showed that if E ⊆ R is a subring and a Borel
set (or an analytic set), then dimE ≤ 1/2 or dimE = 1. He gave a second proof
in [9]. The authors [6] recently showed that if K ⊆ R is a real-closed subfield and
a Borel set (or an analytic set), then either dimK = 0 or K = R.

The proof of Theorem 1 will be subdivided into lemmas.
The set of linear functionals on Rk is naturally identified with Rk. When we say

“almost all” linear functionals, we mean almost all with respect to k-dimensional
Lebesgue measure.

Lemma 1.1. Let A ⊆ Rk be a Borel set with dimA > 1. Then for almost all linear
functionals ϕ : Rk → R, the image ϕ(A) has positive Lebesgue measure.

Proof. This is a special case of the Projection Theorem [15, Cor. 9.8, p. 131]. A
proof for k = 2 may be found in [10, Thm. 6.1, p. 83]. Note that the image ϕ(A),
although it may not be Borel, is analytic, and therefore Lebesgue measurable [3,
Thm. 8.4.1, p. 278].

Lemma 1.2. Let E ⊆ R be an additive subgroup and a Borel set with nonzero CH
dimension. Then there is a positive integer k and a linear functional ϕ : Rk → R
such that ϕ(Ek) = R.

Proof ([6]). Since E has nonzero CH dimension, there is n so that dim(En) > 0. So
(by the Dimension Inequality) there is k with dim(Ek) > 1. By Lemma 1.1, there
is a linear functional ϕ : Rk → R such that ϕ(Ek) has positive Lebesgue measure.
Since ϕ is linear, ϕ(Ek) is an additive subgroup of R. Now ϕ(Ek) has positive
measure, so by Steinhaus’s Theorem ([1, Thm. 15.12, p. 116], [15, Ex. 4, p. 43],
[16, (6.67), p. 297]), the difference set ϕ(Ek) − ϕ(Ek) contains a neighborhood of
0. But since ϕ(Ek) is a subgroup, it is equal to its difference set. Every element
of R is an integer multiple of an element of the neighborhood ϕ(Ek) of zero. But
then since it is a group, R = ϕ(Ek).

Lemma 1.3. Let E ⊆ R be a subring. Assume there is a positive integer k and
a linear functional ϕ : Rk → R such that ϕ(Ek) = R. Then such k and ϕ may be
found so that ϕ also maps Ek bijectively onto R.
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Proof. Let k be the least positive integer such that there is a linear functional
ϕ : Rk → R with ϕ(Ek) = R. We claim that ϕ is injective on Ek. For 1 ≤ j ≤ k,
let uj = (0, · · · , 0, 1, 0, · · · , 0) with 1 in the jth coordinate, and write rj = ϕ(uj).
The map ϕ is R-linear, so ϕ(Ek) = R means

k∑
j=1

ajrj : a1, · · · , ak ∈ E

 = R.(∗)

Assume ϕ is not injective on Ek. We will show that one of the rj may be dropped,
while retaining the equality (∗). Since ϕ is not injective, there are b1, · · · , bk ∈ E,
not all zero, so that

∑
bjrj = 0. By re-labeling, if necessary, we may assume bk 6= 0.

So

rk =
k−1∑
j=1

−bj
bk

rj .

We claim 
k−1∑
j=1

ajrj : a1, · · · , ak−1 ∈ E

 = R.(∗∗)

Let s be any real number. Then s/bk ∈ R, so by (∗) there exist a1, · · · , ak ∈ E
such that s/bk =

∑k
j=1 ajrj . Therefore

s =
k−1∑
j=1

bkaj rj + bkak

k−1∑
j=1

−bj
bk

rj =
k−1∑
j=1

(
bkaj − akbj

)
rj .

This proves (∗∗). So if we restrict ϕ to the remaining k − 1 coordinates, we have
a linear functional Rk−1 → R that maps Ek−1 onto all of R. This contradicts the
minimality of k. So ϕ is injective on Ek.

Lemma 1.4. Let E ⊆ R be an additive subgroup and a Borel set. Let k be a positive
integer and ϕ : Rk → R a linear functional. Assume that ϕ maps Ek bijectively onto
R. Then k = 1 and E = R.

Proof. Since ϕ is R-linear, it is continuous, hence Borel measurable. Let ψ : R →
Ek be the inverse of the restriction of ϕ to Ek. Then ψ is Borel measurable [3,
Prop. 8.3.5, p. 274], [14, (15.2), p. 89] and a group homomorphism. For 1 ≤ j ≤ k,
let uj = (0, · · · , 0, 1, 0, · · · , 0) with 1 in the jth coordinate, and write rj = ϕ(uj).
Let π1 : Rk → R be the first coordinate map. Then τ = π1 ◦ ψ maps R → R,
τ(x + y) = τ(x) + τ(y) for all x, y, and τ is Borel measurable. Therefore there is
a constant c such that for all x ∈ R, τ(x) = cx ([1, Ex. 11, p. 117], [16, p. 307,
Ex. 9(e)], [14, (9.10), p. 61]). Now τ(r1) 6= 0, so c 6= 0; but if k > 1, then there
would be r2 6= 0 with τ(r2) = 0, a contradiction. Therefore k = 1, so the linear
functional ϕ : R→ R has the form ϕ(x) = ax for some constant a. But ϕ maps E
onto all of R, so E = R.

Proof of Theorem 1. Let E ⊆ R be a subring and a Borel set with nonzero Car-
tesian–Hausdorff dimension. Then k and ϕ exist as in Lemma 1.2. By Lemma 1.3,
we may assume ϕ maps Ek bijectively onto R. Then by Lemma 1.4, E = R.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1124 G. A. EDGAR AND CHRIS MILLER

Remarks. We have stated Theorem 1 for Borel sets. It is true for analytic sets as
well:

(i) The Dimension Inequality dim(A×B) ≥ dimA+ dimB is stated in [15] only
for Borel sets. But it is also true for analytic sets. Given analytic sets A,B,
there are compact sets A1 ⊆ A and B1 ⊆ B with Hausdorff dimension as close
as we like to dimA, dimB ([4]; there is a proof in [5, (1.7.11), p. 62]). Apply
the Borel set result to A1 × B1. (Actually dim(A × B) ≥ dimA + dimB is
true for arbitrary sets, but with a more difficult proof [18], [13].)

(ii) The Projection Theorem (Lemma 1.1). If A ⊆ Rk is an analytic set and
dimA > 1, choose a compact set A1 ⊆ A with dimA1 > 1, and apply the
Borel version of the theorem.

(iii) Borel isomorphism. If A,B are analytic sets and ϕ : A→ B is Borel measur-
able and bijective, then ϕ−1 is also Borel measurable [3, Prop. 8.6.2, p. 289].
This (even the Borel version of it) is proved from the Separation Theorem for
analytic sets [3, Thm. 8.3.1, p. 272].

If X ⊆ R is an analytic set, then the ring generated by it, Z[X ], is an analytic set.
(This shows one of the reasons why we are interested in the analytic case: the ring
generated by a Borel set is not necessarily Borel.) If dimXk > 0 for some k, then
by our results Z[X ] = R: every real is a finite sum of finite products of elements of
X or their negatives. If X is also compact, we may use the Baire Category Theorem
on this. There is n and an open interval I, so that every element of I is a sum of
at most n terms, each of which is (plus or minus) a product of at most n elements
of X . (Empty sum is 0, empty product is 1.)

The groups of Erdős and Volkmann are not divisible (it is easy to check that e
belongs to all of them, but e/2 belongs to none of them). One might ask whether
a divisible additive subgroup of R (a vector space over Q) can have Hausdorff
dimension strictly between 0 and 1. This can, indeed, happen. If G is any additive
subgroup that is Borel, then its divisible hull

∞⋃
n=1

1
n!
G

is a divisible additive subgroup of R, is still a Borel set, and has the same Hausdorff
dimension as G. Apply this observation to the Erdős-Volkmann groups.

2. Subrings of the complex numbers

The method above may be adapted to prove similar results.

Theorem 2. Let E ⊆ C be a subring and a Borel set. Then E has zero CH
dimension or E = R or E = C.

The proof will use lemmas analogous to the lemmas for Theorem 1.
We will need a special case of the complex version of the Projection Theorem

(which is proved in the same way as the real Projection Theorem, using the complex
Grassmannian in place of the real Grassmannian). Since we did not find it in print,
we include here the special case (1-complex-dimensional range) that is to be used
in this paper. We follow the proof given by Mattila [15] for R.

Lemma 2.1. Let A ⊆ Ck be a Borel set with dimA > 2. Then for almost all C-lin-
ear functionals ϕ : Ck → C, the image ϕ(A) has positive 2-dimensional Lebesgue
measure.
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Proof. Define the inner product on Ck by: if u = (u1, · · · , uk),v = (v1, · · · , vk), let

〈u,v〉 =
k∑
j=1

uj vj .

Each fixed v ∈ Ck induces a linear functional ϕv by ϕv(u) = 〈u,v〉. All linear
functionals are of this form. The norm for Ck is ‖u‖ =

√
〈u,u〉 .

A unitary operator is a linear map T : Ck → Ck such that ‖T (u)‖ = ‖u‖ for all
u ∈ Ck. Unitary maps on Ck may be identified with k× k unitary matrices. There
is a transitivity property: if u,v ∈ Ck and ‖u‖ = ‖v‖, then there is a unitary T
such that T (u) = v.

In Ck, the unit sphere S = S2k−1 is S =
{

u ∈ Ck : ‖u‖ = 1
}

. Write σ for
the (2k − 1)-dimensional surface area on S. Sometimes we act as though σ is a
measure on all of Ck by letting the complement of S have measure zero. Note that
σ is invariant under unitary transformation: if H ⊆ Ck and T is unitary, then
σ
(
T (H)

)
= σ(H).

Write u1 = (1, 0, · · · , 0) for a “north pole” of S. A calculus exercise shows us that
a band around the “equator” of S has area σ {v ∈ S : |〈v,u1〉| ≤ r } ≤ πr2C2k−3,
where C2k−3 is the (2k − 3)-dimensional volume of the unit (2k − 3)-ball. By the
transitivity and invariance, for any y ∈ S,

σ {v ∈ S : |〈v,y〉| ≤ r } = σ {v ∈ S : |〈v,u1〉| ≤ r } ≤ πr2C2k−3,

and so for any nonzero y ∈ Ck,

σ {v ∈ S : |〈v,y〉| ≤ r } = σ

{
v ∈ S :

∣∣∣∣〈v,
y
‖y‖

〉∣∣∣∣ ≤ r

‖y‖

}
≤ πC2k−3

(
r

‖y‖

)2

.

(This inequality corresponds to Mattila’s [15, Lemma 3.11, p. 50], and will be used
in the same way.)

Now let A ⊆ Ck be a Borel set with dimA > 2. Then by [5, (3.2.7), p. 121] there
is a probability measure µ with compact support ⊆ A so that

I2(µ) =
∫∫

µ(dx)µ(dy)

‖x− y‖2
<∞.

For v ∈ S, let µv be the image of µ under the linear functional ϕv, defined as
follows: for H ⊆ C, let µv(H) = µ

{
x ∈ Ck : 〈x,v〉 ∈ H

}
. So if v ∈ S, t ∈ C, and

r > 0, the measure of a disk in the complex plane is

µv { z ∈ C : |z − t| ≤ r } = µ
{

x ∈ Ck : |〈x,v〉 − t| ≤ r
}
.

Of course the 2-dimensional Lebesgue measure of a disk is

λ2 { z ∈ C : |z − t| ≤ r } = πr2.

Therefore the lower density of µv with respect to λ2 is

D(µv, λ
2, t) = lim inf

r→0

µv { z ∈ C : |z − t| ≤ r }
λ2 { z ∈ C : |z − t| ≤ r }

= lim inf
r→0

µ
{

x ∈ Ck : |〈x,v〉 − t| ≤ r
}

πr2
.
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Now imitate the proof of [15, Thm. 9.7, p. 130]:∫∫
D(µv, λ

2, t)µv(dt)σ(dv)

≤ lim inf
r→0

1
πr2

∫∫
µ {x : |〈x,v〉 − t| ≤ r } µv(dt)σ(dv)

= lim inf
r→0

1
πr2

∫∫
µ {x : |〈x− y,v〉| ≤ r } µ(dy)σ(dv)

= lim inf
r→0

1
πr2

∫∫
σ {v : |〈x− y,v〉| ≤ r } µ(dy)µ(dx)

≤ C2k−3

∫∫
1

‖x− y‖2
µ(dy)µ(dx)

= C2k−3I
2(µ) <∞.

So, for σ-almost all v, D(µv, λ
2, t) <∞ for µv-almost all t. By [15, 2.12(3), p. 36]

for any such v we conclude µv � λ2.
Finally, for any v with µv � λ2, we claim λ2

(
ϕv(A)

)
> 0. Indeed, if λ2(ϕv(A))

= 0, then µv

(
ϕv(A)

)
= 0, so

0 = µv

(
ϕv(A)

)
= µ {x : ϕv(x) ∈ ϕv(A) } ≥ µ(A) = 1,

a contradiction.

Lemma 2.2. Let E ⊆ C be an additive subgroup and a Borel set with nonzero
CH dimension. Then there is a positive integer k and a complex-linear functional
ϕ : Ck → C such that ϕ(Ek) = C.

Proof. Since E has nonzero CH dimension, there is n so that dim(En) > 0. So
(by the Dimension Inequality) there is k with dim(Ek) > 2. By Lemma 2.1, there
is a C-linear functional ϕ : Ck → C such that ϕ(Ek) has positive 2-dimensional
Lebesgue measure. The rest is the same as before. We need the 2-dimensional
version of Steinhaus’s Theorem (due to Ruziewicz): ϕ(Ek) has positive measure,
so ϕ(Ek)−ϕ(Ek) contains a neighborhood of 0 ([1, Thm. 15.12, p. 116], [15, Ex. 4,
p. 43]).

Lemma 2.3. Let E ⊆ C be a subring. Assume there is a positive integer k and a
complex-linear functional ϕ : Ck → C such that ϕ(Ek) = C. Then such k and ϕ
may be found so that ϕ also maps Ek bijectively onto C.

Proof. The proof is as before, using C-linear instead of R-linear.

Lemma 2.4. Let E ⊆ C be an additive subgroup and a Borel set. Let k be a
positive integer and ϕ : Ck → C a C-linear functional. Assume that ϕ maps Ek

bijectively onto C. Then either k = 1 and E = C or k = 2 and E = R.

Proof. Let ψ : C → Ek be the inverse of the restriction of ϕ. Let uj , rj = ϕ(uj)
as before. Then τ = π1 ◦ ψ maps C → C, is additive, and is Borel measurable.
Therefore it is continuous. (See [2, Ch. I, Thm. 4], [14, (9.10), p. 61].) Now τ is
R-linear, so its nullspace could be:

(1) the single point 0;
(2) a 1-real-dimensional line through 0; or
(3) all of C.
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In case (1), we conclude k = 1 as before and therefore E = C. Case (3) is ruled
out since S(r1) = 1 6= 0. So in the case where E 6= C we have case (2). This means
{r2, · · · , rk} all lie in this one line through 0. Repeating with the other coordinates,
we conclude k = 2 and r1, r2 are not real multiples of each other. Now the nullspace
of τ = π1 ◦ ψ is, on the one hand, a 1-real-dimensional subspace of C, but on the
other hand, it is all E-multiples of a fixed element r2. Each E-multiple of r2 is a
real multiple, and vice versa. Divide by r2 to conclude that E = R.

Remarks. If X ⊆ C is an analytic set, then the ring generated by it, Z[X ], is an
analytic set. If dimXk > 0, then Z[X ] = R or Z[X ] = C. Of course Z[X ] = R or
C according to whether X ⊆ R or not.

3. Subrings of the p-adic numbers

An analogous result may be proved for the fields of p-adic numbers.
Let p be a prime, Qp the complete metric locally compact field of p-adic numbers,

and Zp the compact subring of p-adic integers [19], [11]. The absolute value on Qp
is ultrametric and has only values 0 and pn for integers n. The Haar measure λ is
normalized so that λ(Zp) = 1. Now Zp is self-similar: it is the union of p sets that
are translates of pZp, which is similar to Zp itself, shrunk by the factor p−1. So the
Hausdorff dimension is the similarity dimension, namely 1. (Also the 1-dimensional
Hausdorff measure is the Haar measure.)

Theorem 3. Let E ⊆ Qp be a subring and a Borel set. Then E has zero CH
dimension or E = Qp or E = Zp.

The proof is essentially the same as before. We provide only a few remarks on
the differences, and leave the details to the reader.

Lemma 3.1. Let A ⊆ Qkp be a Borel set with dimA > 1. Then for almost all linear
functionals ϕ : Qkp → Qp, the image ϕ(A) has positive Haar measure.

If k is a positive integer, then the set Qkp of k-tuples is a vector space over Qp.
The natural norm for it is defined as follows: if v = (v1, · · · , vk), then

‖v‖ = max
1≤j≤k

|vj | .

Thus Qkp is again ultrametric, and the distances are all of the form pn. Use the
product measure λk onQkp. For any v ∈ Qkp, define a linear functional ϕv : Qkp → Qp
by

ϕv(u) = v1u1 + · · ·+ vkuk.

Therefore “almost all” linear functionals refers to the measure λk. For the unit
sphere S =

{
v ∈ Qkp : ‖v‖ = 1

}
there is no need for a surface area measure, since

S has positive λ volume itself.

Lemma 3.2. Let E ⊆ Qp be an additive subgroup and a Borel set with nonzero CH
dimension. Then there is a positive integer k and a Qp-linear functional ϕ : Qkp →
Qp such that ϕ(Ek) is an open subgroup.

Use versions of the Dimension Inequality [5, (3.2.12), p. 122] and Steinhaus’s
Theorem [11, Cor. 20.17, p. 296] valid in this setting. The open subgroups of Qp
are Qp itself and the multiples pnZp of Zp.
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Lemma 3.3. Let E ⊆ Qp be a subring. Assume there is a positive integer k and a
Qp-linear functional ϕ : Qkp → Qp such that ϕ(Ek) is an open subgroup. Then such
k and ϕ may be found so that ϕ also maps Ek bijectively onto an open subgroup.

If G is the open subgroup ϕ(Ek), then proceed as before: The range for the
restriction to k − 1 coordinates is bkG, also an open subgroup.

Lemma 3.4. Let E ⊆ Qp be an additive subgroup and a Borel set. Let k be a
positive integer and ϕ : Qkp → Qp a Qp-linear functional. Assume that ϕ maps Ek

bijectively onto an open subgroup. Then k = 1 and E is an open subgroup.

Automatic continuity (a Borel-measurable homomorphism is continuous) is valid
in any complete metric group: [2, Ch. I, Thm. 4], [14, (9.10), p. 61], [12, 2.3.1,
p. 350].

Finally, if K is a finite algebraic extension field of Qp and E ⊆ K is a subring and
a Borel set, then E has zero CH dimension or E is a closed subring. The proofs are
similar again. In an n-dimensional extension of Qp the unit ball is self-similar, has
Hausdorff dimension n, and n-dimensional Haar measure coincides with Hausdorff
measure.

According to the classification in [19], R, C, and the finite algebraic extensions
of the Qp are all of the nondiscrete locally compact commutative fields of charac-
teristic 0.

Added after posting

Change “additive subgroup” to “subring” in the statements of Lemmas 1.4, 2.4,
and 3.4.
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