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ARITHMETIC GAUGE THEORY: A BRIEF INTRODUCTION

MINHYONG KIM

Abstract. Much of arithmetic geometry is concerned with the study of principal bundles. They occur

prominently in the arithmetic of elliptic curves and, more recently, in the study of the Diophantine

geometry of curves of higher genus. In particular, the geometry of moduli spaces of principal bundles

appears to be closely related to an effective version of Faltings’s theorem on finiteness of rational

points on curves of genus at least 2. The study of arithmetic principal bundles includes the study of

Galois representations, the structures linking motives to automorphic forms according to the Langlands

programme. In this article, we give a brief introduction to the arithmetic geometry of principal bundles

with emphasis on some elementary analogies between arithmetic moduli spaces and the constructions of

quantum field theory. For the most part, it can be read as an attempt to explain standard constructions

of arithmetic geometry using the language of physics, albeit employed in an amateurish and ad hoc

manner.

1. Fermat’s principle

Fermat’s principle says that the trajectory taken by a beam of light is a solution to an optimisation

problem. That is, among all the possible paths that light could take, it selects the one requiring the

least time to traverse. This was the first example of a very general methodology known nowadays as the

principle of least action. To figure out the trajectory or spacetime configuration favoured by nature, you

should analyse the physical properties of the system to associate to each possible configuration a number,

called the action of the configuration. Then the true trajectory is one where the action is extremised.

The action determines a constraint equation, the so-called Euler-Lagrange equation of the system, whose

solutions give you possible trajectories. The action principle in suitably general form is the basis of

classical field theory, particle physics, string theory, and gravity. For Fermat to have discovered this idea

so long ago in relation to the motion of light was a monumental achievement, central to the scientific

revolution that rose out of the intellectual fervour of 17th century Europe.

However, Fermat is probably better known these days as the first modern number-theorist. Among the

intellectual giants of the period, Fermat was almost unique in his preoccupation with prime numbers and

Diophantine equations, polynomial equations to which one seeks integral or rational solutions. Located

among his many forays into this subject one finds his famous ‘Last Theorem’, which elicited from the best

mathematical minds of subsequent generations several hundred years of theoretical development before

it was finally given a proof by Andrew Wiles in 1995 [63]. The action principle and Fermat’s last theorem

are lasting tributes to one of the singularly original minds active at the dawn of modern science. Could

there be a relation between the two? In fact, the problem of finding the trajectory of light and that of

finding rational solutions to Diophantine equations are two facets of the same problem, one occurring in

geometric gauge theory, and the other, in arithmetic gauge theory. The fact that the photon is described

by a U(1) gauge field is well-known. The purpose of this article is to give the motivated physicist with

background in geometry and topology some sense of the second type of theory and its relevance to the

theory of Diophantine equations.

In the context of abelian problems, say the arithmetic of elliptic curves, much of the material is

classical. However, for non-abelian gauge groups, the perspective of gauge theory is very useful and has

concrete consequences. It may be that number-theorists can also benefit from the intuition provided by
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this somewhat fanciful view, even though much of it will appear as pretentious reformulation of well-

known notions. In any case, it is hoped that the impressionistic treatment of this paper will not be overly

irritating, since it is mostly supplemented by pointers to published literature.

2. Diophantine geometry and gauge theory

We will be employing the language of Diophantine geometry, whereby a system of equations is encoded

in an algebraic variety

V

defined over Q. We will always assume V is connected. The rational solutions (or points, to use the

language of geometry) will be denoted by V (Q), while p-adic and adelic points1 will be denoted by V (Qp)

and V (AQ), respectively. Sometimes integral models will be implicitly assumed, in which case, we will

write V (Z) for the integral points. Similarly, V (B) will denote the points of V in a general ring B. For

example, one common ring occuring in Diophantine geometry is ZS , the S-integers for some finite set S

of primes, consisting of rational numbers that only have primes from S in the denominator, and therefore,

intermediate between Z and Q. When we think of rings as functions, a ring like ZS should be thought

of as those having singularities lying in a fixed set.

Even though we will not use much of it, we remark without explanation the formulation in the language

of schemes, whereby a B-point can be viewed as a section s of a fibration over Spec(B):

VB

Spec(B)
��

s

]]

The theory of [33, 34, 35, 36] associates to p-adic or adelic points of V arithmetic gauge fields. We will

be focussing mostly on the p-adic theory for the sake of expositional simplicity. The statement, which

we will review in sections 4 and 5, is that there is a natural map

Ap : V (Qp) ✲ p-adic arithmetic gauge fields

The type of gauge field is determined by the arithmetic geometry of V . Among p-adic or adelic gauge

fields, the problem is to find the locus of rational gauge fields. The condition for a gauge field to be

rational or integral2 can be phrased entirely in terms of global symmetry, and is shown in many cases

to impose essentially computable constraints on the p-adic gauge fields. These constraints should be

viewed as one version of ‘arithmetic Euler-Lagrange (E-L) equations’. In number theory, they are closely

related to reciprocity laws as will be explained in section 8 and section 10. The key point is that when

the solution x ∈ V (Qp) lies in the subset V (Q), then the corresponding gauge field Ap(x) is rational.

That is, we have a commutative diagram

X(Q) ⊂ ✲ X(Qp)

rational gauge fields

A

❄
⊂✲ p-adic gauge fields.

Ap

❄

1 The main advantage of the field of p-adic numbers over the reals is its substantial but manageable absolute Galois

group. The adeles can be thought of as essentially the product ring of R and Qp for all p, with some small restriction. See

[52] for a review.
2For the most part, our varieties will be projective, allowing us to identify integral and rational points.
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The E-L equation for Ap(x) can be translated, using p-adic Hodge theory, back to an analytic equation

satisfied by the point x. When V is a curve and the equation thus obtained is non-trivial, this implies

finiteness theorems for rational points. That is, it is often possible to prove that

A−1
p (rational gauge fields)

is a finite set3. One can give thereby new proofs of the finiteness of rational solutions to a range of

Diophantine equations, including the generalised Fermat equations [20]

axn + byn = c

for n ≥ 4. This finiteness was first proved by Gerd Faltings in 1983 as part of his proof of the Mordell

conjecture (cf. Section 3) using ideas and constructions of arithmetic geometry, However, the proof in [20]

has a number of theoretical advantages as well as practical ones. On the one hand, the gauge-theoretical

perspective has the potential to be applicable to a very broad class of phenomena encompassing many of

the central problems of current day number theory [38]. On the other, unlike Faltings’s proof, which is

widely regarded as ineffective, the gauge-theory proof conjecturally leads to a computational method for

actually finding rational solutions [37], a theme that is currently under active investigation [8, 9, 22, 23].

It should be remarked that the map A that associates gauge fields to points has been well-known since

the 1950s when the variety V is an elliptic curve, an abelian variety, or generally, a commutative algebraic

group. More general equations, for example, curves of genus ≥ 2, require non-abelian gauge groups, and

it is in this context that the analogy with physics assumes greater important. Nonetheless, the arithmetic

E-L equations obtained thus far have not been entirely canonical. The situation is roughly that of having

an Euler-Lagrange equation without an action. On the other hand, if we consider gauge theory with

constant gauge groups (to be discussed below), there is a very natural analogue of the Chern-Simons

action on 3-manifolds, for which it appears a theory can be developed in a manner entirely parallel to

usual topology. In particular, some rudiment of path integral quantisation becomes available, and give

interpretations of n-th power residue symbols as arithmetic linking numbers [38, 18, 19]. The arithmetic

Chern-Simons action of those papers were originally motivated by the problem of defining an action for

gauge fields arising in Diophantine geometry.

3. Principal bundles and number theory: Weil’s constructions

In the language of geometry, gauge fields are principal bundles with connection, and this is the form

in which we will be discussing arithmetic analogues. Perhaps it is useful to recall that over the last 40

year or so, the idea that a space X can be fruitfully studied in terms of the field theories it can support

has been extraordinarily powerful in geometry and topology. The space of interest can start out both

as a target space of fields or as a source. Both cases are able to give rise to suitable moduli spaces of

principal bundles (with connections)

M(X, G),

which then can be viewed as invariants of X . Here, G might be a compact Lie group or an algebraic

group, while the moduli space might consist of flat connections, or other spaces of solutions to differential

equations, for example, the (self-dual) Yang-Mills equation. Of course this idea is at least as old as Hodge

theory for abelian G, while the non-abelian case has seen an increasing array of deep interactions with

physics since the work of Atiyah, Bott, Drinfeld, Hitchin, Manin, Donaldson, Simpson, Witten, and

many others [4, 6, 5, 26, 58, 64].

However, my impression is that it is not widely known among mathematicians that the study of

principal bundles was from its inception closely tied to number theory. Probably, the first moduli space

3In fact, this will always be true subject to standard conjectures on mixed motives [42].
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of principal bundles appeared as the Jacobian of a Riemann surface, the complex torus target of the

Abel-Jacobi map

x 7→ (

∫ x

b

ω1,

∫ x

b

ω2, . . . ,

∫ x

b

ωg) mod H1(X,Z),

in what can now be interpreted as the Hodge realisation. In the early 20th century [61], Andre Weil

gave the first algebraic construction of the Jacobian JC of a smooth projective algebraic curve C of

genus at least two defined over an algebraic number field F . His main motivation was the Mordell

conjecture, which said that the set C(F ) of F -rational points should be finite. The algebraic nature of

the construction allowed JC to be viewed also as a variety in its own right over F that admitted an

embedding

C(F ) →֒ JC(F )

x 7→ O(x)⊗O(−b).

Weil proved that JC(F ) was a finitely-generated abelian group, but was unable to use this striking fact

to prove the finiteness of C(F ). It appears to have taken him another decade or so [62] to realise that

the abelian nature of JC kept it from being too informative about C(F ), and from there he went on to

define

M(C, GLn)(F ) = [
∏

x∈C

GLn(OC,x)]\GLn(AF (C))/GLn(F (C))

the set of isomorphism classes of rank n vector bundles on C. Weil considered this as a non-abelian

extension of the Jacobian, which might be applied to the non-abelian arithmetic of C. Even though

the Mordell conjecture remained unproven for another 45 years, Weil’s construction went on to inspire

many ideas in geometric invariant theory and non-abelian Hodge theory, much of it in interaction with

Yang-Mills theory [5, 51, 26, 58].

In order to bring about further applications to number theory, it turned out to be critical to consider

moduli of principal bundles over F itself, or over various rings of integers in F , not just over other objects

of algebro-geometric nature sitting over F . These are the arithmetic gauge fields mentioned above.

4. Arithmetic gauge gields

For the most part, in this paper, we will present the theory in a pragmatic manner, requiring as little

theory as possible. What underlies the discussion is the topology of the spectra of number fields, local

fields, and rings of integers, but it is possible to formulate most statements in the language of fields and

groups. Roughly speaking, when we refer to an object over (or on) a ring O, we will actually have in

mind the geometry Spec(O), the spectrum4 of O.

Given a field K of characteristic zero, denote by

GK = Gal(K̄/K)

the Galois group of an algebraic closure K̄ of K. Thus, these are the field automorphisms of K̄ that act

as the identity on K. For any finite extension L of K contained in K̄, the algebraic closure L̄ is the same

as K̄, and

GL = {g ∈ GK | g|L = I}.

When L/K is Galois, GL is the kernel of the projection

GK
✲ Gal(L/K).

In fact, we can write the Galois group as an inverse limit 5

GK = lim
←−

L

Gal(L/K),

4But the reader will not be required to know the language of spectra or schemes until section 9.
5An element of such an inverse limit is a compatible collection (gL)L, where the compatibility means that if L ⊃ L′ ⊃ K,

then gL|L
′ = gL′ .
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as L runs over the finite Galois extensions of K contained in K̄. This equips GK with the topology of

a compact, Hausdorff, totally disconnected space, with a basis of open sets given by the cosets of the

GL. In particular, it is homeomorphic to a Cantor set. Such large inverse limits afford some initial

psychological difficulty, but form an essential part of arithmetic topology.

By a gauge group over K we mean a topological group U with a continuous action of GK . A U -gauge

field, or principal U -bundle over K is a topological space P with a simply-transitive continuous right

U -action and a continuous left GK action that are compatible. This means

g(pu) = g(p)g(u)

for all g ∈ GK , u ∈ U and p ∈ P . We remark that a principal G-bundle as defined corresponds naively

only to flat connections in geometry. We will comment on this analogy in more detail below. In algebraic

geometry, the expression U -torsor is commonly used in place of the differential geometric terminology.

We will use both. For the purposes of this paper, an arithmetic gauge group (or field) will mean a gauge

group (or field) over an algebraic number field or a completion of an algebraic number field.

There is an obvious notion of isomorphism of U -torsors, and a well-known classification of U -torsors

over K: Given P , choose p ∈ P . Then for any g ∈ GK , g(p) = pc(g) for a unique c(g) ∈ GK . It is easy

to check that g 7→ c(g) defines a continuous function

c : GK
✲ U

such that

c(gg′) = c(g)gc(g′).

The set of such functions is denoted Z1(GK , U), and called the set of continuous 1-cocycles of GK with

values in U . There is a right action of U on Z1(GK , U) by

(uc)(g) = g(u−1)c(g)u,

and we define

H1(GK , U) := Z1(GK , U)/U.

Lemma 4.1. The procedure described above defines a bijection

Isomorphism classes of U -torsors ≃ H1(GK , U).

We will denote H1(GK , U) also by H1(K, U), to emphasise its dependence on the topology of Spec(K).

A rather classical case is when U = R(K̄), the K̄-points of an algebraic group R over K, which we consider

with the discrete topology. We will often write R for R(K̄), when there is no danger of confusion. A

trivial but important example is R = Gm, the multiplicative group, so that Gm(K̄) = K̄×. In this case,

Hilbert’s theorem 90 [53] says

H1(K,Gm) = 0,

or that every principal Gm-bundle is trivial. Another important class is that of abelian varieties for

example, elliptic curves. In that case H1(K, R) is usually called the Weil-Chatelet group of R [57].

Some useful operations on torsors include

(1) Pushout: If f : U ✲ U ′ is a continuous homomorphism of groups over K, then there is a

pushout functor f∗ that takes U -torsors to principal U ′-torsors. The formula is

f∗(P ) = [P × U ′]/U,

where the right action of U on the product is (p, u′)u = (pu, f(u−1)u′). The resulting quotient still has

the U ′-action: [(p, u′)]v = [(p, u′v)].

(2) Product: When P is an U -torsor and P ′ is an U ′-torsor, P × P ′ is a U × U ′-torsor.

Note that if U is abelian, the group law

m : U × U ✲ U
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is a homomorphism. Using this,

(P, P ′) 7→ m∗(P × P ′)

defines a bifunctor on principal U bundles and an abelian group law on H1(K, U). However, if U is

non-abelian, there is no group structure on the H1 and matters becomes more subtle and interesting.

When U is an abelian group, one can define cohomology groups in every degree

Hi(K, U) := Ker[d : Ci(GK , U) ✲ Ci+1(GK , U)]/Im[d : Ci−1(GK , U) ✲ Ci(GK , U)].

Here, Ci(G, U) is the set of continuous maps from Gi to U , while the differential d is defined in a natural

combinatorial manner [53]. One checks that H0(K, U) = UGK , the set of invariants of the action, and

that the cohomology groups fit into a long exact sequence as usual. That is, if

1 ✲ U ′′ ✲ U ✲ U ′ ✲ 1

is exact, then we get

0 ✲ (U ′′)GK ✲ UGK ✲ (U ′)GK ✲ H1(K, U ′′) ✲ H1(K, U) ✲ H1(K, U ′)

✲ H2(K, U ′′) ✲ H2(K, U) ✲ H2(K, U ′) ✲ · · ·

The sequence up to the H1 terms remains exact even when the groups are non-abelian, except the

meaning needs to be interpreted a bit carefully.

An important case is U = R(K̄) for R a connected abelian algebraic group. In this case, multiplication

by n induces an exact sequence

0 ✲ R[n] ✲ R
n✲ R ✲ 0,

where A[n] generally denotes the n−torsion subgroup of an abelian group A. Hence, we get the long

exact sequence

0 ✲ (R[n])GK ✲ RGK ✲ RGK ✲ H1(K, R[n]) ✲ H1(K, R) ✲ H1(K, R) ✲

Note here that RGK = R(K), the K-rational points of R. Thus, we get an injection

R(K)/nR(K) ⊂ ✲ H1(K, R[n]),

indicating how principal bundles for R[n] can encode information about the group of rational points.

When R is an elliptic curve, this is the basis of the descent algorithm for computing the Mordell-Weil

group, about which we will say more later.

Some genuinely topological groups U arise from taking inverse limits. For example, we have the group

µn ⊂ Gm of n-th roots of unity. They are related by the system of power maps

µab
(·)a

✲ µb,

so that we can take an inverse limit

Ẑ(1) := lim
←−

n

µn.

This is a topological group isomorphic to Ẑ, the profinite completion6 of Z, but with a non-trivial action

of GK . It is common to focus on a set of prime powers for a fixed prime p, and define

Zp(1) = lim
←−

µpn .

As a topological group, Zp(1) ≃ Zp, the group of p-adic integers7. It is a simple example of a compact

p-adic Lie group. Principal bundles for this are then classified by H1(K,Zp(1)).

6 Given any group A, the profinite completion Â of A is by definition

Â = lim
←−
N

A/N,

where N are normal subgroups of finite index.
7Recall that the p-adic integers are sometime represented as power series

∑
∞

i=0
aipi with 0 ≤ ai ≤ p − 1. Another

representation is Zp = lim
←−

Z/pn.
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In fact, we have an isomorphism

H1(K, Ẑ(1)) ≃ lim
←−

H1(K, µn),

so we can consider a Ẑ(1))-torsor as being a compatible collection of µn-torsors as we run over n. The

exact sequence

1 ✲ µn
✲ Gm

n✲ Gm
✲ 1

gives rise to the long exact sequence

1 ✲ µn(K) ✲ K× n✲ K× ✲ H1(K, µn) ✲ 0,

so that we get an isomorphism

K×/(K×)n ≃ H1(K, µn).

Concretely, the torsor associated to an element a ∈ K is simply the set a1/n of n−th roots of a in K̄.

This clearly admits an action of µn. That is, the group µn can be thought of as ‘internal symmetries’ of

the set a1/n. This torsor only depends on the class of a-modulo n-th powers, and is trivial if and only if

a has an n−th root in K. The point is that the choice of any n-th root in K̄ will determine a bijection

to µn, but this will be equivariant for the GK -action exactly if you choose an n-th root in K itself, which

may or may not be possible. In discussing torsors over fields, it will be important in this way to keep

track of both the U -action, the internal symmetries, and the GK-action, which can be thought of as the

analogue of external (spacetime) symmetries in physics.

5. Homotopy and gauge fields

We will generalise the discussion of internal and external symmetries of the previous section. Let V

be a variety defined over K and b ∈ V (K) a K-rational point8. From this data one gets a gauge group

as well as torsors on K associated to rational points of V . The gauge group will be

U = π1(V , b),

one of the many different versions of the fundamental group9 of V , which is V regarded10 as a variety

over K̄. We will not take care to distinguish notationally between different types of fundamental groups,

since the context will make it clear which one is being referred to. (Conceptually, it is also useful to

regard them all as essentially the same.) Whenever K is embedded into C, it will be a completion of

the topological fundamental group of V (C), either in a profinite or an algebraic sense. However, the key

point is that it admits an action of GK , and has the structure of a gauge group over K. The GK -action

is usually highly non-trivial, and this is a main difference from geometric gauge theory, where the gauge

group tends to be constant over spacetime. Now, given any other point x ∈ V (K), we associate to it the

homotopy classes of path

P (x) := π1(V ; b, x)

from b to x, which then has both a compatible action of GK and of π1(V , b). That is,

the loops based at b are acting as internal symmetries of sets of paths emanating from b,

while GK acts compatibly as external symmetries11.

8 In most of the work thus far, a basepoint b was used. It is possible to develop the theory without such a choice. But

then, instead of a moduli space of torsors, we will be dealing with a gerbe.
9We will not give the precise definitions in terms of fibre functors. A good general introduction is the book of Szamuely

[59], while the algebraic group realisation we will use below is given a careful discussion in [24].
10 The general principle is that varieties over algebraic closed fields belong to the realm of usual geometry, while there is

always an arithmetic component to geometry over non-closed field. But even in dealing with such subtleties, one constantly

uses geometry over the algebraic closure.
11This is a very elementary idea, but worth emphasising in my view.
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In order to provide some intuition for the GK-action, we give a rather concrete description in the case

where π1(V , b) is the profinite étale fundamental group. It is worth stressing again that this is just the

profinite completion of the topological fundamental group of V (C), the complex manifold associated to

V via some complex embedding of K. However, the remarkable, albeit elementary, fact is the existence

of the ‘hidden’ Galois symmetry. To describe it, one approach is to construct the fundamental group

and path spaces using covering spaces.

Recall that for a manifold M , if

f : M̃ ✲ M

is the universal covering space, then the choice of a basepoint m ∈ M and a lift m̃ ∈ M̃m := f−1(m)

determines a canonical bijection

π1(M, m) ≃ M̃m

that takes e to m̃. This bijection is induced by the homotopy lifting of paths. Similarly,

π1(M ; m, m′) ≃ M̃m′ .

If we replace M by the variety V , there is still a notion of an algebraic universal covering

Ṽ ✲ V ,

except it is actually an inverse system

(V i
✲ V )i∈I

of finite algebraic covers, each of which is unramified, that is, surjective on tangent spaces. The uni-

versality means that any finite connected unramified cover is dominated by one of the V i. For an easy

example, consider the compatible system of n power maps

(Ḡm
(·)n

✲ Ḡm)n.

These together form the algebraic universal cover ˜̄Gm
✲ Ḡm.

Now if we choose a basepoint b ∈ V (K) and a lift12 b̃ ∈ Ṽ , then there is a unique K-model

Ṽ ✲ V

of Ṽ , that is, a system

(Vi
✲ V )i

defined over K that gives rise to the universal covering over K̄, characterised by the property that b̃

consists of K-rational points of the system13.

Even though we have not given a formal definition of the profinite étale fundamental group, a useful

fact is that there are canonical bijections

π1(V , b) ≃ Ṽb

and

π1(V ; b, x) ≃ Ṽx.

That is, the fundamental group and the homotopy class of paths can be identified with the fibers of

the universal covering space. This way of presenting them makes it somewhat hard to see the torsor

structure. On the other hand, it does make it apparent how GK is acting. The problem of describing this

action can be thought of as that of giving some manageable construction of Ṽ . This is in general a quite

hard problem and typically, one studies some quotient of the fundamental group corresponding to special

12 By this, we mean a compatible system bi of basepoint lifts to the finite covers V i
✲ V . Compatibility here means

that whenever you have a map V i
✲ V j of covers, bi is taken to bj .

13One way to see this is that the pointed covering (Ṽ , b̃) ✲ (V , b) is really universal, in that any other pointed

covering is dominated by a unique map from Ṽ . By applying this to Galois conjugates of (Ṽ , b̃), we get descent data that

give a K-model for the pointed system. This kind of reasoning is usually called ‘Weil descent’. For details, see [49].
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families of covers, such as abelian covers or solvable covers. An alternative is to study linearisations of

the fundamental group, which we will discuss below.

Anyway, we end up with a map

V (K) ✲ H1(GK , π1(V , b));

x 7→ π1(V ; b, x);

encoding points of V into torsors. Typically H1(GK , π1(V , b)) will be much bigger than V (K). That is,

there will be many torsors14 that are not of the form P (x) for some point of x. But the important thing

for us is that the space of torsors often carries a natural geometry, remarkably similar to the geometry

of classical solutions to a geometric gauge theory. This added geometric structure turns out to be very

useful in grappling with the sparse structure of V (K).

6. The local to global problem, reciprocity laws, and Euler-Lagrange equations

For the remainder of this paper, we will assume that U is either a p-adic Lie group15 for a fixed prime

p or a discrete group. (Depending on convention, the latter can be included in the former.) So as to

avoid discussing detailed algebraic number theory [16], we will focus mostly on K = Q or K = Qv, where

v could be a prime p or the symbol ∞. We will refer to any such v as a place of Q, as it corresponds

to an equivalence class of absolute values. The field Qv is obtained by completing with respect to an

absolute value corresponding to v. Thus, we have the field Qp of p−adic numbers, while Q∞ denotes the

field of real numbers R.

R

Q2
✛ ⊃ Q

∪

✻

⊂ ✲ Q3

Q5

✛

⊃

Q7

❄

∩

. . .

⊂

✲

We will denote by Q the field of algebraic numbers and

π := GQ = Gal(Q/Q).

We denote by Qv an algebraic closure of Qv and

πv := GQv
= Gal(Qv/Qv).

For each v, we choose an embedding Q ⊂ ✲ Qv. Restricting the action of πv to Q then determines an

embedding 16

πv
⊂ ✲ π

for each v.

14However, there are important cases where this is conjectured to be a bijection. This is the subject of Grothendieck’s

section conjecture [30].
15We will not define this notion here, but rely on examples like Zp, GLn(Zp), p-adic points of more general reductive

algebraic groups, finite groups, and group extensions formed out of such groups. For a systematic treatment, see [56].
16 The fact that this is an embedding is not entirely obvious. It has to do with the denseness of algebraic numbers

inside Qv. The reader should be aware that πv is a very thin subgroup of G . It is topologically finitely generated and has

an explicit description [53]. The structure of G, on the other hand, is still very mysterious.
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We will need one more mildly technical fact about the structure of πp for primes p [52]. The field Qp

has an integral subring Zp, the p-adic integers. The integral closure17 of Zp in Qp is a subring

O
Qp
⊂ Qp

that is stabilised by the πp-action. The ring O
Qp

has a unique maximal ideal mp, and

O
Qp

/mp ≃ F̄p,

an algebraic closure of Fp. Thus, acting on this quotient ring determines a homomorphism

πp
✲ πu

p = Aut(O
Qp

/mp) ≃ Gal(F̄p/Fp)

that turns out to be surjective18. The last Galois group is generated by one element Fr′
p whose effect is

x 7→ x1/p. (This is the group-theoretic inverse of the usual generator, the p-th power map19.) Any lift

Frp of Fr′
p to πp ⊂ π is called a Frobenius element at p. The kernel of the homomorphism πp

✲ πu
p

is denoted by Ip and called the inertia subgroup at p.

The key interaction for applications to arithmetic are between H1(Q, U) and the various H1(Qv, U).

Since πv injects into π, there is a restriction map

H1(Q, U) ✲ H1(Qv, U)

for each v, which we put together into

loc : H1(Q, U) ✲
∏

v

H1(Qv, U).

Here then is the main problem of arithmetic gauge theory:

For a gauge group U over Q, describe the image of loc.

Any kind of a solution to this problem is called a local-to-global principle in number theory.

At this point, we pursue a bit more the analogy with geometric gauge fields. As discussed already,

geometric gauge theory with symmetry group U (in this case a real Lie group) deals with a space A of

principal U -connections on a spacetime manifold X . The usual convention these days is to take A to be

a space of C∞ connections. There is an action functional

S : A ✲ R

that is invariant under gauge transformations U (connection preserving automorphisms of the principal

bundle). The space of classical solutions is

M(X, U) = A
EL/U,

where AEL ⊂ A is the set of connections that satisfy the Euler-Lagrange equations for the functional S.

The classical problem is to describe the space M(X, U), or to find points in M(X, U) corresponding to

specific boundary conditions. The quantum problem is to compute path integrals like
∫

A/U

O1(A)O2(A) · · ·Ok(A) exp(−S(A))dA,

where Oi are local functions of A.

Now, from the point of view of classical physics, M(X, U) will be the fields that we actually observe,

and the embedding

M(X, U) ⊂ A/U

17 This refers to the elements of the field extension that satisfy a nontrivial monic polynomial equation with coefficients

in Zp. This notion is most natural when we consider the integral closure of Z in a field extension F of Q of dimension d.

In this setting, the integral closure is the maximal subring of F isomorphic to Zd as a group.
18The superscript is supposed to stand for ‘unramified’, corresponding to the fact that πu

p r is the Galois group of the

maximal extension in Qp that is unramified over Qp.
19The reason for using the inverse rather than the natural p-power map has to do with the geometric Frobenius map

acting on étale cohomology. This is a rather confusing convention, about which I would suggest the reader refrain from

asking further at the moment.
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corresponds to a model for ‘quantum fluctuations’ around classical solutions. However, the justification

for considering A/U as the space of quantum fluctuation, or ‘off-shell states’ of the field, is not so

clear. It depends on the choice of an initial mathematical model inside which the classical solutions

wre constructed. Some might argue that it is hard to even describe M(X, U) unless one starts from

A/U. This is false for physical reasons, since M(X, U) is suppose to be a model of the classical states,

which should make intrinsic sense regardless of the space in which we seek them20. Another objection

comes from specific examples such as 3d Chern-Simons theory or 2d Yang-Mills theory, where M(X, U)

can easily be a space of flat connections. In that case, it has a topological description as a space of

representations of the fundamental group of X . It is mostly this last case we have in mind when we

consider the arithmetic versions. A model for quantum fluctuations of M(X, U) might then just as

well be collections of punctual local systems around points of X , in the spirit of the jagged or singular

paths that occur in Feynman’s motivational description of the path integral [65]. This will be especially

appropriate if we allow a model of X that can have complicated local topology.

It is from this point of view that we regard a collection (Pv)v of Qv principal bundles as v runs over

the places of Q as a quantum arithmetic gauge field on Q. A problem of finding which collections glue

together to a rational gauge field, that is, a principal U -bundle over Q, is the problem of describing the

image of the localisation map. It is also an arithmetic analogue of finding and solving the Euler-Lagrange

equation21 . A better justification for this analogy will be discussed in section 10.

If we focus on a single component Pv, it is worth emphasising that the image of

locv : H1(Q, U) ✲ H1(Qv, U)

consists exactly of those principal bundles Pv whose external symmetry πv extends to the much larger

group π ⊃ πv. Computing this image precisely is critically related to the effective Mordell conjecture, as

we will explain in section 8.

7. The Tate-Shafarevich group and abelian gauge fields

We should remark that the kernel of the localisation map is also frequently of importance. In words,

these are the locally trivial torsors22. The best known case is when we have an elliptic curve E. The

kernel of localisation is then called the Tate-Shafarevich group of E, and denoted23

X(Q, E).

A simple example is when E is given by the (non-Weierstrass) equation

x3 + y3 + 60z3 = 0.

Then the curve C given by

3x3 + 4y3 + 5z3 = 0

20Of course this is not quite true. Classical states should be a statistical state of some sort arising out of the quantum

theory, and hence, dependant on the quantum states. However, we are following here the tentative treatment found in

standard expositions of path integral quantisation.
21This point of view was discovered independently by Philip Candelas and Xenia de la Ossa, although I may be

misrepresenting their perspective.
22One of the complexities associated with arithmetic gauge fields is that many are not locally trivial in a naive sense,

unlike the geometric situation. Part of the motivation for the étale topology is to have a topology that is fine enough so

that natural torsors become locally trivial.
23Read ‘Sha’.
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is an element24 of X(Q, E). The group H1(Q, E) is an infinite torsion25 group. Remarkably, X(Q, E)

is conjectured to be finite.

The relationship between the localisation map and X is a crucial part of the so-called ‘descent

algorithm’ for computing the points on an elliptic curve. Recall that E(Q) is a finitely generated abelian

group, that is,

E(Q) ≃ Zr × finite abelian group

and that its torsion subgroup is easy to compute [57]. However, the rank is still a difficult quantity and

the conjecture of Birch and Swinnerton-Dyer (BSD) is mainly concerned with the computation of r. The

standard method at the moment is to look at

E(Q)/pE(Q)

for some prime p, often p = 2. If we know the structure of this group, it is elementary group theory to

figure out the rank of E(Q), given that we also know the torsion. The long exact sequence arising from

0 ✲ E[p] ✲ E
p✲ E ✲ 0

Gives

0 ✲ E(Q)/pE(Q) ⊂ ✲ H1(Q, E[p])
i✲ H1(Q, E)[p] ✲ 0.

We have

X(Q, E)[p] ⊂ H1(Q, E)[p].

Define the p-Selmer group Sel(Q, E[p]) to be the inverse image of X(Q, E)[p] under the map i, so that

it fits into an exact sequence

0 ✲ E(Q)/pE(Q) ✲ Sel(Q, E[p]) ✲ X(Q, E)[p] ✲ 0.

Described in words, Sel(Q, E[p]) consists of the E[p]-torsors that become locally trivial when pushed out

to E-torsors.

The key point is that the Selmer group is effectively computable, and this already gives us a bound

on the Mordell-Weil group of E. This is then refined by way of the diagram

0 ✲ E(Q)/pnE(Q) ✲ Sel(Q, E[pn]) ✲ X(Q, E)[pn] ✲ 0

0 ✲ E(Q)/pE(Q)
❄

✲ Sel(Q, E[p])
❄

✲ X(Q, E)[p]
❄

✲ 0

for increasing values of n. Provided X is finite, one can see that the image of E(Q)/pE(Q) in Sel(Q, E[p])

consists exactly of the elements that can be lifted to Sel(Q, E[pn]) for all n. We get thereby, a cohomo-

logical expression for the group E(Q)/pE(Q) that can be used to compute its structure precisely. The

idea is to compute the image

Im(Sel(Q, E[pn])) ⊂ Sel(Q, E[p])

for each n and simultaneously compute the image of E(Q)≤n in Sel(Q, E[p]). Here, E(Q)≤n consists of

the point in E(Q) of height26 ≤ n. This is a finite set that can be effectively computed: just look at the

24 This also is not so easy to see. There is an action of E on C, which arises from the fact that E is actually the

Jacobian of C [2].
25To see this, one notes that all elements of H1(Q, E) can be represented by the Q points of an algebraic curve C in

such a way that the action is algebraic and defined over Q [57]. The torsor becomes trivial as soon as C has a rational

point. Now C has a rational point over some finite field extension K of Q. That is, the class will become trivial under

the restriction map H1(Q, E) ✲ H1(K, E). However, there is also a ‘trace’ map H1(K, E) ✲ H1(Q, E) defined by

summing a Galois conjugacy class of torsors. Also, the composed map H1(Q, E) ✲ H1(K, E) ✲ H1(Q, E) is simply

multiplication by [K : Q]. Thus, the element [C] ∈ H1(Q, E) is killed by this degree.
26The height h(x, y) of a point (x, y) ∈ E(Q) is defined as follows. Write (x, y) = (s/r, t/r) for coprime integers s, t, r.

Then h(x, y) := log sup{|s|, |t|, |r|}. The height of the origin is defined to be zero. Clearly, there are only finitely many

rational (x, y) of height ≤ n for any n.
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finite set of pairs (x, y) of height ≤ n and see which ones satisfy the equation for E. Thus, we have an

inclusion

Im(E(Q)≤n) ⊂ Im(Sel(Q, E[pn]) ⊂ Sel(Q, E[p]).

Assuming X is finite, we get

Im(E(Q)≤n) = Im(Sel(Q, E[pn])

for n sufficiently large, at which point we can conclude that

E(Q)/pE(Q) = Im(Sel(Q, E[pn]).

This is a conditional27 algorithm for computing the rank, which is used by all the existing computer

packages. With slightly more care, it also gives a set of generators for the group E(Q). In this sense,

we eventually arrive at a conditional algorithm for ‘completely determining’ E(Q). An important part

(some would argue the most important part) of BSD is to remove the ‘conditional’ aspect.

8. Non-abelian gauge fields and Diophantine geometry

We keep to the conventions of the previous section and assume U to be a p-adic Lie group over Q.

We now make the following further assumption: There is a finite set S of places containing p and ∞

such that for all v /∈ S, the action of πv on U factors through the quotient πu
v ≃ Gal(F̄v/Fv). Another

way of saying this is that the action of the inertia subgroup Iv is trivial. We say that U is unramified

at v. Geometrically, this corresponds to having a family of groups on Spec(ZS), where ZS ⊂ Q is the

ring of S-integers28, i.e., rational numbers whose denominators are divisible only by primes in S. We

will assume that the torsors P satisfy the same condition. In terms of Spec(Z), these can be thought

of as connections having singularity29only along the primes in S. We will refer to these as S-integral

U -torsors. We will denote by

H1(ZS , U)

the isomorphism classes of S-integral U -torsors. The reason for introducing this notion is that the U and

P that arise in nature are S-integral for some S. The condition of being unramified clearly makes sense

even when P is just a torsor over Qv. We denote by H1
u(Qv, U) the isomorphism classes of unramified

U torsors over Qv.

One additional condition that U and its torsors are required to satisfy is that of being crystalline at

p, a technical condition about which we will be quite vague30. There is a big topological Qp-algebra Bcr

called the ring of p-adic periods and the torsors are required to trivialise over Bcr. This is a condition

that comes from geometry and is closely related to p-adic Hodge theory. The point is that because U is

a p-adic Lie group, it will very rarely happen that the action is actually unramified at p. The crystalline

condition captures smooth behaviour nevertheless. We denote by H1
f (πp, U) the torsors over Qp that are

crystalline.

With these assumptions, we denote by

′∏
H1(Qv, U)

the isomorphism classes of tuples (Pv)v where Pv is a U -torsor over Qv with the property that all but

finitely many Pv are unramified and such that Pp is crystalline. For the global version, denote by

27In the sense that it terminates only if X, or more precisely, its p-primary part X[p∞] is finite.
28 In terms of scheme theory, the set underlying Spec(ZS) is the open subset of Spec(Z) obtained by removing the

primes in S
29The geometry of schemes is organised in such a way that Z becomes a ring of functions on Spec(Z). It is easy to

imagine that ZS then becomes the ring of functions with restricted poles.
30This is an enormous subject in the study of Galois representations and pedagogical references are easy to find with

just the key word ‘crystalline representation.’ A comprehensive survey is in [27]. In the non-abelian situation, a treatment

is given in [33]



ARITHMETIC GAUGE THEORY: A BRIEF INTRODUCTION 14

H1
f (ZS , U) the U torsors over Q that are unramified outside S and crystalline at p. Thus, we get a map

loc : H1
f (ZS , U) ✲

′∏
H1(Qv, U),

whose image we would like to compute.

The main examples are

(1) The constant group U = GLn(Zp) or other p-adic Lie groups with trivial G-action.

In this case, from the earlier description in terms of cocycles, it is easy to see that a U -torsor is simply

a representation

ρ : G ✲ U.

By our earlier assumption, this representation is required to be unramified outside S and crystalline at

p. We will return to this important case in the next section.

(2) The Qp-pro-unipotent fundamental group [24, 34]

U = π1(V̄ , b)Qp

of a smooth projective variety V over Q equipped with a rational base-point b ∈ V (Q). We assume that

V extends to a smooth projective family over ZS\p. An abstract definition of U can be given starting

from the profinite étale fundamental group π1(V , b): π1(V̄ , b)Qp
is the universal pro-unipotent group31

over Qp admitting a continuous homomorphism

π1(V̄ , b) ✲ π1(V̄ , b)Qp

This is one of a number of ‘algebraic envelopes’ of a group that have been important in both arithmetic

and algebraic geometry [1]. In spite of the difficulty of definition, it is substantially easier to work with

than either the ‘bare’ fundamental group or its profinite completion.

The important and convenient fact is that H1
f (ZS , U) has the structure of a pro-algebraic scheme over

Qp [33]. Among the constructions discussed so far, this is the closest to gauge-theoretic moduli spaces

in physics and geometry. For another rational point x, one can also define

P (x) = π1(V̄ ; b, x)Qp
:= [π1(V ; b, x)× U ]/π1(V , b),

the U torsor of pro-unipotent paths from b to x. This construction gives us a map

V (Q) ✲ H1
f (ZS , U);

x 7→ P (x)

that fits into a diagram
V (Q) ✲ V (Qp)

H1
f (ZS , U)

A

❄
locp✲ H1

f (Qp, U)

Ap

❄

Even though the localisation map needs to be studied as a whole, because U is a p-adic Lie group, it

will usually happen that the component at p is the most informative, and we will concentrate on this for

now. (We will explain below the role of the adelic points.)

Conjecture 8.1. [7] Suppose V is a smooth projective curve of genus ≥ 2. Then

A−1
p (Im(locp)) = V (Q).

31An algebraic group is unipotent if it can be represented as a group of uppertriangular matrices with 1s on the diagonal.

A pro-unipotent group is a projective limit of unipotent algebraic groups.
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In essence, the conjecture is saying that the rational points can be recovered as the intersection between

p-adic points and the space of S-integral torsors inside the space of p-adic torsors. A number of other

diagrams are relevant to this discussion.

H1
f (ZS , U)

loc✲ ∏′
v H1(Qv, U)

H1
f (Qp)
❄✲

The right vertical arrow is just the projection to the component at p. The image of the horizontal arrow

should be computed by a reciprocity law [39, 40], which we view as a preliminary version of the arithmetic

Euler-Lagrange equations in that it specifies which collection of local torsors glue to a global torsor.

The diagram
X(Qp)

H1(Qp, U)

Ap

❄
D✲ UDR/F 0

A D
R

✲

is used to clarify he structure of the local moduli space H1
f (Qp, U) and to translate the Euler-Lagrange

equations into equations satisfied by the p-adic points. The last object UDR is the De Rham fundamental

group [24] endowed with a Hodge flitration F i, which can be computed explicitly in such a way that

the map ADR is also described explicitly in terms of p-adic iterated integrals. From this point of view,

computing the E-L equation is the main tool for finding the points V (Q) [35, 36, 8, 9].

To make this practical we use the lower central series

U = U1 ⊃ U2 ⊃ U3 ⊃ · · · ,

where Un = [U, Un−1]. We denote by Un = U/Un+1 the corresponding quotients, which are then

finite-dimensional algebraic groups. All the diagrams above can be replaced by truncated versions, for

example,
V (Q) ✲ V (Qp)

H1
f (ZS , Un)

An

❄
locp✲ H1

f (Qp, Un)

An,p

❄

These iteratively give equations for V (Q) depending on a reciprocity law for the image of H1
f (ZS , Un) in∏′ H1(Qv, Un).

We illustrate this process with one example [22, 23], which we take to be affine because it is easier to

describe than the projective case. Let V = P1 \ {0, 1,∞}. When we take n = 2 and S = {∞, 2, p} the

image of H1
f (ZS , U2) in

H1
f (Qp, U2) ≃ A3 = {(x, y, z)}

is described by the equation32

z − (1/2)xy = 0.

When translated back to points, this yields the consequence that the 2-integral points V (Z{2}) are in

the zero set of the function

D2(z) = ℓ2(z) + (1/2) log(z) log(1− z).

32The isomorphism between the local moduli space and the affine three-space is also a consequence of p-adic Hodge

theory [34].
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Here, log(z) is the p−adic logarithm that is defined by the usual power series in a neighbourhood of 1

and then continued to all of Q \ {0} via additivity and the condition log(p) = 0. The p-adic k-logarithm

is defined for k ≥ 2 by

ℓk(z) =

∞∑

n=1

zn/nk

in a neighbourhood of zero and analytically continued to V (Qp) using Coleman integration [33].

When we use the defining equations for H1
f (ZS , U4), we find that V ((Z{2}) is killed by the additional

equation

ζp(3)ℓ4(z) + (8/7)[log3 2/24 + ℓ4(1/2)/ log 2] log(z)ℓ3(z)

+[(4/21)(log3 2/24 + ℓ4(1/2)/ log 2) + ζp(3)/24] log3(z) log(1− z) = 0.

Here, ζp(s) is the Kubota-Leopold p-adic zeta function.

It is worth noting that this method for finding rational points is a surprising confluence of three

ingredients:

(1) The method of Chabauty [21], which was, in retrospect, the case of abelian gauge groups. One

ends up using the p-adic logarithm on the Jacobian of the curve without considering cohomology at all;

(2) The descent method for finding points on elliptic curves [57]. This again is another version of the

abelian case, where one uses Galois cohomology and the Selmer group. As described earlier, this method

is central to the conjecture of Birch and Swinnerton-Dyer.

(3) The geometry of arithmetic gauge fields.

Meanwhile, we should note that the ability to compute the full set of rational points will still rely

on having a methodology that computes the image of the global moduli space quite precisely. We will

return to this point in section 10. However, the hope that this should always be possible stems from the

algebraicity of the localisation map

locp : H1
f (ZS , Un)

locp✲ H1
f (Qp, Un).

This implies that the image is a constructible set for the Zariski topology, which therefore admits a finite

polynomial description. There is an increasing collection of examples for which the image has a precise

enough description for the rational points to be computed completely [8, 9, 22, 23]. A spectacular recent

result [10] carries this out for the modular curve

Xs(13) = X(13)/C+
s (13),

where X(13) is the smooth projective model of the modular curve parametrising elliptic curves with full

level 13 structure and C+
s (13) ⊂ GL2(F13) is the normaliser of a split Cartan subgroup. They prove the

remarkable

Theorem 8.2 (Balakrishnan, Dogra, Müller, Tuitman, Vonk). Xs(13) has exactly 7 rational points

consisting of 6 CM points and a cusp.

This theorem resolves a well-known difficulty in the arithmetic of modular curves arising in relation

to effective versions of Serre’s open image theorem. For a review of past work on this problem, see [12]

and [13], where 13 is referred to as the ‘cursed’ level.
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9. Galois representations, L-functions, and Chern-Simons actions

We now consider

H1
f (ZS , GLn(Zp)),

a moduli space of Galois representations33. This is the subspace of

Homcont(π1(Spec(ZS)), GLn(Zp))/GLn(Zp)

constrained by the crystalline condition34 at p, where the GLn(Zp) is acting on the space of continuous

homomorphisms by conjugation.

It is believed then that the image can be characterised by an L-function via a reciprocity law that

one is tempted to view as an arithmetic action principle of sorts. That is, for any collection (Pv)v of

local principal bundles with Pp ∈ H1
f (Qp, GLn(Zp)) crystalline and Pv ∈ H1

u(Qv, GLn(Zp)) for v /∈ S,

one looks at the complex-valued product [41]

L((Pv)v, s) :=
∏

v 6=∞

1

det(I − v−sFrv|P
Iv
v )

,

which formally amalgamates the information associated to all ‘local’ functions

(Pv)v 7→ Tr((v−sFrv)n|P Iv

v )

as we run over places v and natural numbers n.

Assuming a rather large number of standard conjectures in the theory of motives, some necessary

conditions for (Pv)v to be in the image of the localisation map of an irreducible representation P are as

follows.

(1) Each of the det(I − v−sFrv|P
Iv
v ) should be polynomials of v−s with integral coefficients for v /∈ S;

for any v, the coefficients should be algebraic. We use the algebraicity to regard the polynomial as

complex-valued.

(2) There is an integer w such that the absolute values of the eigenvalues of Frv are vw/2 for v /∈ S.

This implies that the product converges absolutely for Re(s) > w/2 + 1.

(3) L((Pv)v, s) has analytic continuation to all of C and satisfies a functional equation of the form

L((Pv)v, s) = absL((Pv)v, w + 1− s),

for some rational numbers a, b. This function should have no poles unless w is even, the Pv are one-

dimensional, and Frv acts as vw/2 for all but finitely many v.

Roughly speaking, that these statements are necessary is summarised under the rubric of the Fontaine-

Mazur conjecture [28] and the Hasse-Weil conjecture [41]. Even though it is not clear if a conjecture is

stated in the literature, it appears to be commonly believed that these conditions should also characterise

all (Pv)v that are in the image of the localisation map (cf. [60]).

There is a sense in which L((Pv)v, s) should be related to an action. The complex number s itself

parametrises representations of a somewhat more general type, namely belonging to the idele class group

of F . That is, for each place v of Q, there is a normalised absolute value ‖ · ‖v, which come together to

form the norm character

A×
Q

✲ C×;

(av)v 7→ N((av)v) :=
∏

v

‖av‖v.

This character and its complex powers N(·)−s factor through the idele class group A×
Q/(Q)× and the

L value is a complex amplitude associated to (Pv)v twisted by N(·)−s. The infinite product expansion

33Here, we will allow ourselves to use the word ‘space’ quite loosely. There are numerous ways to geometrise this set,

sometimes formally [48], sometimes analytically [17]. It may also be most natural to regard it as a (derived) stack without

worrying too much about representability. We will reprise this theme in the next section.
34It is possible to be more general using more notions from p-adic Hodge theory
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will hold only for a region of s, so that the conjectured analytic continuation is supposed to involve a

move from a kind of ‘decomposable range of the parameter’ to one that is not. When the continuation

is carried out, it turns out to be natural to view it as a section of a determinant line bundle, which is

a function only in certain regions [29, 32], creating an analogy with the wave functions of topological

quantum field theory [4].

The question of finding natural action functionals on spaces of principal bundles appears to be im-

portant not just for unity of the theory, but because of the hope that it might lead to a more efficient

approach to the gauge-theoretic Diophantine geometry alluded to in the previous section. We will elab-

orate on this point in the next section. While an action on torsors for π1(V , b)Qp
seems hard to define,

there is an approach to a Chern-Simons action of Galois representations. To describe this, we lapse now

into more geometric language and reproduce the discussion from [38, 18], which, in turn, is based on

[25].

Let X = Spec(OF ), the spectrum of the ring of integers in a number field F . We assume that

F is totally imaginary. Denote by Gm the étale sheaf that associates to a scheme the units in the

global sections of its coordinate ring. The topological fact underlying the functional is the canonical

isomorphism ([46, p. 538]):

(∗) inv : H3(X,Gm) ≃ Q/Z.

This map is deduced from the ‘invariant’ map of local class field theory [53]. We will therefore use the

same name for a range of isomorphisms having the same essential nature, for example,

(∗∗) inv : H3(X,Zp(1)) ≃ Zp,

where Zp(1) = lim
←−i

µpi , and µn ⊂ Gm is the sheaf of n-th roots of 1. The pro-sheaf Zp(1) is a very

familiar coefficient system for étale cohomology and (∗∗) is reminiscent of the fundamental class of a

compact oriented three manifold for singular cohomology. Such an analogy was noted by Mazur around

50 years ago [47] and has been developed rather systematically by a number of mathematicians, notably,

Masanori Morishita [50]. Within this circle of ideas is included the analogy between knots and primes,

whereby the map

Spec(OF /Pv)  X

from the residue field of a prime Pv should be similar to the inclusion of a knot. Let Fv be the completion

of F at the prime v and OFv
its valuation ring. If one takes this analogy seriously, the map

Spec(OFv
)→ X,

should be similar to the inclusion of a handle-body around the knot, whereas

Spec(Fv)→ X

resembles the inclusion of its boundary torus35. Given a finite set S of primes, we consider the scheme

XS := Spec(OF [1/S]) = X \ {Pv}v∈S .

Since a link complement is homotopic to the complement of a tubular neighbourhood, the analogy is

then forced on us between XS and a three manifold with boundary given by a union of tori, one for

each ‘knot’ in S. These are basic morphisms in 3 dimensional topological quantum field theory [4]. From

this perspective, the coefficient system Gm of the first isomorphism is analogous to the S1-coefficient

important in Chern-Simons theory [64, 25]. A more direct analogue of Gm is the sheaf O×
M of invertible

35It is not clear to us that the topology of the boundary should really be a torus. This is reasonable if one thinks of

the ambient space as a three-manifold. On the other hand, perhaps it’s possible to have a notion of a knot in a homology

three-manifold that has an exotic tubular neighbourhood? In any case, M. Kapranov has pointed out that a better analogy

is with a Klein bottle.
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analytic functions on a complex variety M . However, for compact Kähler manifolds, the comparison

isomorphism

H1(M, S1) ≃ H1(M,O×
M )0,

where the subscript refers to the line bundles with trivial topological Chern class, is a consequence of

Hodge theory. This indicates that in the étale setting with no natural constant sheaf of S1’s, the familiar

Gm has a topological nature, and can be regarded as a substitute.

We now move to the definition of the arithmetic Chern-Simons action just for the simple case of a

finite unramified Galois representation. Let

π := π1(X, b),

be the profinite étale fundamental group of X , where we take

b : Spec(F )→ X

to be the geometric point coming from an algebraic closure of F . Assume now that the group µn(F ) of

n-th roots of unity is in F and fix a trivialisation ζn : Z/nZ ≃ µn. This induces the isomorphism

inv : H3(X,Z/nZ) ≃ H3(X, µn) ≃
1

n
Z/Z.

Now let A be a finite group with trivial GF -action and fix a class c ∈ H3(A,Z/nZ). For

[ρ] ∈ H1(π, A),

we get a class

ρ∗(c) ∈ H3(π,Z/nZ)

that depends only on the isomorphism class [ρ]. Denoting by inv also the composed map

H3(π,Z/nZ) // H3(X,Z/nZ)
inv

≃
// 1

nZ/Z.

We get thereby a function

CSc : H1(π(X), A) // 1
nZ/Z;

[ρ]
✤ // inv(ρ∗(c)).

This is the basic and easy case of the classical Chern-Simons action in the arithmetic setting. There is a

natural generalisation to the case where ramification is allowed and where the representation has p-adic

coefficients. It is related to natural invariants of algebraic number theory such as extensions of ideal class

groups and n-th power residues symbols [18, 19]. One might hope for such constructions to be related

at once to L-functions and to Euler-Lagrange equations even for the unipotent fundamental groups of

the previous section. Indeed, the approaches to the BSD conjecture that go via the ‘main conjecture of

Iwasawa theory’ take the view that Selmer groups should be annihilated by L-functions [32]. The reader

might notice that the analytic equations defining integral points in the previous section actually indicate

some connection to L-functions, but in a way that remains mysterious.

We note also that the Langlands reciprocity conjecture [44] has as its goal the rewriting of arithmetic

L-functions quite generally in terms of automorphic L-functions. In view of the striking work [31], it

seems reasonable to expect the geometry of arithmetic gauge fields to play a key role in importing

quantum field theoretic dualities to arithmetic geometry.
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10. Lagrangian Intersections

In this section, we outline some detailed reasons to expect an arithmetic action principle, once again

based on rather precise analogies with the theory of three-manifolds. Sufficiently rich geometric founda-

tions36 underlying the constructions to follow should come from either rigid analytic geometry as in [17]

or derived versions [11], [55]. For the purpose of this informal exposition, we will progress as though the

necessary geometry is already in place, and simply use the natural properties we need. Of course, the

reader should beware the lack of rigorous foundations at the moment.

Let X be a compact oriented 3-manifold and let

X = X1 ∪Σ X2

be a Heegard splitting of X . Let R be a sheaf of groups on X . (The precise nature of R will be left

vague for the purposes of this introduction.) Associated to this data, we have moduli spaces

M(X1, R), M(X2, R), M(Σ, R)

of principal R-bundles on X1, X2, and their common boundary Σ. There are also restriction maps

M(X1, R)
r1✲ M(Σ, R) r2✛ M(X2, R),

and geometric invariants are constructed out of the intersection of the images [3]. Quite remarkably, this

kind of intersection is of central interest in number theory as well.

We continue the discussion of the analogy mentioned in the previous section. If K is an algebraic

number field and OK its ring of integers, then X = Spec(OK) should be like a compact 3-manifold. If v

is a place of K and Pv the corresponding maximal ideal, the inclusion

Spec(kv) ⊂ ✲ Y

of the residue field kv = OK/Pv is supposed to be analogous to a knot. Let Kv be the completion of K

at v and Ov its ring of integers. One can then view the spectrum of the completion Zv = Spec(Ov) as a

handle-body around the knot and Tv = Spec(Kv) as the complement of the knot inside the handle-body,

which will therefore be homotopic to the boundary. The space Xv = X \ {Pv}, is the analogue to the

knot complement, which is homotopic to the complement of the interior of the handle-body. That is, we

are viewing Xv and Zv as giving a Heegard splitting of the arithmetic 3-fold X with common boundary

Tv:
Tv

Xv
✛

Zv

✲
.

Now, given a sheaf R on X , we can again consider moduli spaces M(Xv, R), M(Zv, R) and restriction

maps

M(Xv, R)
locv✲ M(Tv, R) rv✛ M(Zv, R).

It turns out the intersection of these images are typically of great significance even in arithmetic.

More generally, we can let XS = X \ {Pv}v∈S for a finite set S of places and consider maps

M(Xv, R)
locS✲

∏

v∈S

M(Tv, R) rS✛
∏

v∈S

M(Zv, R)

together with the corresponding fibre product

S(X, R) := M(XS, R)×∏
v

M(Tv ,R)

∏

v∈S

M(Zv, R)

36Currently, foundational work is in progress in collaboration with Kai Behrend and Yakov Kremnitzer.
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as well as other notions of intersection, naive or derived.

We will be considering one of two types.

(1) R is a unipotent Qp-algebraic group with a continuous action of πS = π1(XS). In this case, we

will assume that S contains all places dividing p. Then the moduli space M(XS , R) can be identified

with

H1(πS , R)

representing the isomorphism classes of πS-equivariant R-torsors. Similarly, M(Tv, R) is the local coho-

mology H1(πv, R), where πv = Gal(F̄v/Fv). The definition of M(Zv, R) is somewhat delicate. When v

doesn’t divide p, then we let

M(Zv, R) := H1(πv/Iv, RIv ),

where Iv ⊂ πv is the inertia subgroup and RIv refers to the part fixed by Iv. When v|p, then we let

M(Zv, R) := H1
f (πv, Crysv(R)),

where Crysv(R) is the maximal πv-subgroup of R which is crystalline, and the subscript H1
f refers to

πv-equivariant torsors for Crysv(R) which are themselves crystalline.

(2) R = GLn(E), where E is a finite extension of Qp, the ring of integers in it, or a finite quotient of

the ring of integers, considered as a constant sheaf on X . In this case, the moduli space M(XS, R) is

H1(πS , GLn(E)), the space of representations on free E-modules of rank n, and M(Tv, R) is of course just

H1(πv, GLn(E)), the space of representations of the local Galois group πv. The definition of M(Zv, R)

again needs to distinguish between the case v ∤ p, when it consists of the unramified representations of

πv, and v|p, in which case it’s made up of the isomorphism classes of crystalline representations. This

last notion is somewhat delicate in the case of integral representations, and we will be somewhat sloppy

about the correct general notion.

We illustrate the centrality of these intersections in arithmetic geometry with some examples.

1. Let A be an elliptic curve over K. Let R be the sheaf associated to Vp = Tp(A) ⊗ Qp for some

prime p with the property that A has good reduction at all places in Sp = {v | v|p}. Let S be a finite

set of places containing Sp and the places of bad reduction for A. So we are regarding Vp as a lisse sheaf

of algebraic groups on XS that is simply pushed forward to X . If v ∈ S \ Sp, we have the unramified

cohomology H1
f (πv, Vp) := H1(πv/Iv, V Iv

p ) consisting of torsors that admit a reduction of structure group

to the unramified subgroup of Vp. For v ∈ Sp, H1
f (πv, Vp) ⊂ H1(πv, Vp) is the subspace of crystalline

torsors. The maps above become

H1(πS , Vp)
locS✲

∏

v∈S

H1(πv, Vp) ✛rS
∏

v∈S

H1
f (πv, Vp).

In this case, we take the intersection to be the fiber product

Sel(A,Qp) := H1(πS , Vp)×∏
v∈S

H1(πv,Vp)

∏

v∈S

H1
f (πv, Vp).

Conjecture 10.1.

dimQp
Sel(A,Qp) = rankZA(K).

This is simply a reformulation of the conjecture on the finiteness of the p-part of the Tate-Shafarevich

group of A.
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2. Let C/K be a hyperbolic curve, compact or affine. We assume given a regular OK-model, which

we will not make explicit. This time, we take the group to be U = π1(C̄, b)Qp
, the Qp-pro-unipotent

geometric étale fundamental group of C as in section 8. The constructions can now be refined to

M(XS, U)
locS✲

∏

v∈S

M(Tv, U) ✛rS
∏

v∈S

M(Zv, U).

The applications to Diophantine geometry is now refined to the following diagram:

C(OK) ✲ Im(locS) ∩ Im(rS) ✛ ∏
v∈S C(Ov)

M(XS, U)
❄

locS✲ ∏
v∈S M(Tv, U)

❄
✛rS ∏

v∈S M(Zv, U)
❄

More precisely, we have the implication

The projection

Im(locS) ∩ Im(rS) ✲ M(Tv, U)

is non-dense for some v|p.

⇒ C(OK) is finite.

The fact that the image of C(Ov) lies in M(Zv, U) is the main result of [43].

3. The intersections for groups of type (2) above should be related to arithmetic Casson invariants.

In fact, consider the case where E/Qp is a finite extension and denote by Hv a filtration on (E⊗Qp
Kv)n

for each v | p. Given a crystalline representation

ρv : πv
✲ GLn(E),

Fontaine’s theory [27] associates to it a filtered φ−module

D(ρv) = (En ⊗Bcr)πv ,

which is an E⊗Qp
Kv-module of rank n. If v | p, then M(Zv, R)Hv denotes the crystalline representations

ρv of πv such that D(ρv) has Hodge type Hv. If v ∤ p, then M(Zv, R)Hv := M(Zv, R). The Fontaine-

Mazur conjecture proposes that

The locus of irreducible representations in the fiber product

M(XS, R)×∏
v∈S

M(Tv ,R)

∏

v∈S

M(Zv, R)Hv

is finite.

In considering Casson invariants in topology, it has been important to use the technique of realising

subspaces as Lagrangian submanifolds of symplectic manifolds and then considering their intersections.

This will happen for π1-representations typically when the structure group is semi-simple, for example,

SLn. In the arithmetic setting, because of the the occurrence of Tate twists in duality, such a ‘self-dual’

situation is harder to arrange. In the case (2), one could, for example, pass to representations of

π∞
S ⊂ πS ,

obtained by adjoining to the base field all p-power roots of 1, which will be classified by an infinite-

dimensional space in general. We go on to outline now an alternative construction of Lagrangian inter-

sections. For the remainder of this section, we will use also the notation of continuous group cohomology

when it contributes to clarity.
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Let R be a sheaf of p-adic analytic groups on XS = Spec(OF [1/S]) of types (1) or (2) above and let

L be its Lie algebra. Assume S contains all places dividing p and that the action of πS = π1(XS) is

crystalline at all places dividing p. Define

T ∗(1)R := L∗(1) ⋊ R.

This is a twisted cotangent bundle of R. It’s easy to see that the twisting still gives a well-defined group

on XS by checking the compatibility with the action of πS . Let

c̃ ∈ H1(πS , T ∗(1)R)

and c ∈ H1(πS , R) be its image under the natural projection

H1(πS , T ∗(1)R) ✲ H1(πS , R).

We note for later reference that this projection is split. Whenever we can geometrise these classifying

spaces in a reasonable way, the tangent spaces will be computed as

Tc̃H
1(πS , T ∗(1)R) ≃ H1(πS , (L(c))∗(1)× L(c))

≃ H1(πS , (L(c))∗(1))×H1(πS , L(c)).

where L(c) is L with the πS-action twisted by the adjoint action of the cocycle c. This is because

the adjoint action of T ∗(1)R on its tangent space factors through R. Similarly, if v is a place of F ,

πv = Gal(F̄v/Fv), c̃v a cocycle of πv with values in T ∗(1)R, and cv its projection to R, then

Tc̃v
H1(πv, T ∗(1)R) ≃ H1(πv, (L(cv))∗(1))×H1(πv, L(cv)).

Now,

H1(πv, (L(cv))∗(1))×H1(πv, L(cv)) ≃ H1(πv, L(cv))∗ ×H1(πv, L(cv))

by local Tate duality [53]. Hence, it carries a natural structure of a symplectic vector space, whose

symplectic form ωv is given by

ωv((φ, c), (φ′, c′)) = 〈φ, c′〉 − 〈φ′, c〉.

By summing over v, we get a symplectic structure on
∏

v∈S

[H1(πv, (L(cv))∗(1))×H1(πv, L(cv))].

Even though the precise geometric foundation needs to be worked out,
∏

v∈S

M(Tv, T ∗(1)R) =
∏

v∈S

H1(πv, T ∗(1)R)

should then have the structure of a analytic symplectic variety. By Poitou-Tate duality [53], the image

of

M(XS, T ∗(1)R) = H1(πS , T ∗(1)R)

under the localisation

locS : M(XS, T ∗(1)R) ✲
∏

v∈S

M(Tv, T ∗(1)R)

will then be a Lagrangian subvariety. If the cocycle c̃v is crystalline or unramified, then

H1
f (πv , (L(cv))∗(1))×H1

f (πv , L(cv))

and

H1(πv/Iv, [(L(cv))∗(1)]Iv )×H1(πv/Iv, [L(cv)]Iv )

are Lagrangian inside

H1(πv, (L(cv))∗(1))×H1(πv, L(cv)).

Hence, ∏

v∈S

M(Zv, T ∗(1)R) ⊂
∏

v∈S

M(Tv, T ∗(1)R).
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will also acquire the structure of a Lagrangian subvariety. Using this, we can construct the Lagrangian

intersection

S(X, T ∗(1)R) := M(XS, T ∗(1)R)×∏
v∈S

M(Tv ,T ∗(1)R)

∏

v∈S

M(Zv, T ∗(1)R),

which possesses a split projection map to the intersection

S(X, R) = M(XS, R)×∏
v∈S

M(Tv ,R)

∏

v∈S

M(Zv, R)

of interest.

A key point of this discussion is the general theorem of [15], which states that Lagrangian intersections

are locally the critical loci of functions. Hence, in the Diophantine case where the relevant moduli spaces

are schemes, at a Zariski local level, all the moduli spaces

S(X, T ∗(1)R)

arising via the twisted cotangent construction can be described as the solution to Euler-Lagrange equa-

tions arising from a least action principle. From this point of view, the space of quantum off-shell fields

is

lim
−→

S

∏

v∈S

M(Tv, T ∗(1)R).

(Or possibly a restricted direct product.) The problem remains to give a natural construction of a global

functional on this space from which equations of Euler-Lagrange type for both the Lagrangian intersection

S(X, T ∗(1)R) and the non-Lagrangian intersection S(X, R) might be extracted. In its absence, a possible

interpretation is that the realisation of global moduli spaces as Lagrangian intersections itself should be

viewed as an action principle, with an actual action being only locally defined. However, this view doesn’t

seem to lead to helpful computational tools, which might be considered the main goal in the Diophantine

case.

Here are some simple and concrete examples of this construction.

4. Consider the coefficient group Z∗
p. Then the twisted cotangent bundle is

T ∗(1)Z∗
p = Qp(1)× Z∗

p.

Let X = Spec(Z), S = {p}, XS = Spec(Z) \ S, and πS , πp, etc. as usual. In this case,

H1(πp, T ∗(1)Z∗
p) ≃ H1(πp,Qp(1))×H1(πp,Z∗

p)

≃ (Q̂∗
p)⊗Qp ×Hom(Q̂∗

p,Z∗
p) ≃ (Z∗

p × Ẑ)⊗Qp ×Hom(Z∗
p × Ẑ,Z∗

p)

≃ Qp ×Qp ×W × U,

where W = Hom(Z∗
p,Z∗

p) ≃ Z∗
p is sometimes called the (Zp-points of the) weight space, and the space

U = Hom(Ẑ,Z∗
p) ≃ Z∗

p can be thought of as the unramified characters of πp. Here we have used abelian

local class field theory [16]. If we denote by H1
f (πp, T ∗(1)Z∗

p) the crystalline subspace, it’s a fact [45]37that

H1
f (πp,Z∗

p) ≃ χZ
p × U ⊂W × U,

where χp is the identity map, also thought of as the p-adic cyclotomic character of πp. Meanwhile [14],

H1
f (πp,Qp(1)) ≃ Qp × 0 ⊂ Qp ×Qp.

So

H1
f (πp, T ∗(1)Z∗

p) ≃ Qp × 0× χZ
p × U ⊂ Qp ×Qp ×W × U.

Now we examine the image of

H1(πS , T ∗(1)Z∗
p)

locp✲ H1(πp, T ∗(1)Z∗
p).

37This is a mathoverflow post, but with a short and complete proof.
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The space H1(πS ,Z∗
p) consists of characters that are unramified outside p, which then must factor through

a p-adic power of the cyclotomic character χp. (We will use the same notation for the global cyclotomic

character and its restriction to πp.) Thus, it can be identified via localisation with W above. Meanwhile,

H1(πS ,Qp(1)) is generated by the image of the p-units, and hence, is generated (modulo torsion) by the

image of p. This is just the subspace 0×Qp of H1(πp,Qp(1)). Therefore, the image of H1(πS , T ∗(1)Z∗
p)

is just

0×Qp ×W × 0.

Hence, the Lagrangian intersection is

H1(πS , T ∗(1)Z∗
p) ∩H1

f (πp, T ∗(1)Z∗
p) ≃ 0× 0× χZ × 0.

Even though it’s rather trivial, one interesting aspect of this computation is that we get the same

zero-dimensional intersection for

S(Spec(Z), T ∗(1)Z∗
p) = H1(πS , T ∗(1)Z∗

p) ∩H1
f (πp, T ∗(1)Z∗

p)

and

S(Spec(Z),Z∗
p) = H1(πS ,Z∗

p) ∩H1
f (πp,Z∗

p).

5. Now let X = Spec(OF ) for a totally complex number field F and S be the set of places in F that

lie over p. Let H be the class group of F . We have, again by local class field theory,

H1(πv,Z∗
p) ≃ Hom(F̂ ∗,Z∗

p) ≃ Hom(O∗
Fv

,Z∗
p)×Hom(Ẑ,Z∗

p)

= WFv
× UFv

,

where we write WFv
= Hom(O∗

Fv
,Z∗

p) and UFv
= Hom(Ẑ,Z∗

p). This product decomposition of course

relies on a choice of uniformiser, and implicitly, a choice of a totally ramified extension corresponding to

it via Lubin-Tate theory. On the other hand

H1(πv,Qp(1)) ≃ (O∗
Fv
× Ẑ)⊗Qp ≃ Qdv

p ×Qp,

where dv = [Fv : Qp]. The subspace H1
f (πv,Qp(1)) is again identified with the first factor Qdv

p × 0. The

crystalline subspace H1
f (πv,Z∗

p) is identified [45] with

χZ
v × UFv

,

where χv = χp ◦Nv and

Nv : O∗
Fv

✲ Z∗
p

is the norm. Thus, H1
f (πv,Qp(1)× Z∗

p) is identified with

Qdv

p × 0× χZ
v × UFv

.

Consider now the image of

H1(πS ,Qp(1)) ⊂
∏

v∈S

H(πv,Qp(1)) = Qd
p ×Qs

p,

where d = [F : Q] and s = |S|. This will be the Qp-span of the S-units (OF [1/S])∗ via the Kummer

map. But we have an exact sequence

1 ✲ O
∗
F

✲ (OF [1/S])∗ ✲
∏

v∈S

Z

given by the valuations at v ∈ S, and the last map has finite cokernel, since each maximal ideal Pv

corresponding to a place v ∈ S has finite order in the ideal class group. So we find that the image of

H1(πS ,Qp(1)) is Ep ×Qs
p, where Ep is the subspace of Qd

p generated by the global units. (According to

the Leopoldt conjecture, Ep should have dimension r1 + r2 − 1.)
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As for H1(πS ,Z∗
p) it’s the same as Hom(AS ,Z∗

p), where AS is the Galois group of the maximal abelian

extension of F unramified ourside S [16]. This group fits into an exact sequence

0 ✲ (
∏

v∈S

O
∗
Fv

)/Im(O∗
F ) ✲ AS

✲ H ✲ 0.

For the sake of simplicity, will will assume that this sequence is split, so that

Hom(AS ,Z∗
p) ≃ Hom((

∏

v∈S

O
∗
Fv

)/Im(O∗
F ),Z∗

p)×Hom(H,Z∗
p).

Thus, the image in
∏

v∈S [WFv
× UFv

] is

[
∏

v∈S

WFv
]glob × locS(Hom(H,Z∗

p)),

where the superscript denotes the set of products of local characters that vanish on the global units and

locp(Hom(H,Z∗
p)) refers to the restriction of global unramified characters to the decomposition groups

in S. Therefore, the intersection for S(X, T ∗(1)Z∗
p) is

Ep × 0× [
∏

v∈S

χZ
v ]glob × locS(Hom(H,Z∗

p)).

As before, the last two factors are discrete, but the first factor introduces a non-transverse contribution,

which perhaps should be viewed as topologically trivial, in some sense. To spell it out again, the two

subspaces of which it’s the intersection are

∏

v∈S

H1
f (πv,Qp(1)× Z∗

p) = Qd
p × 0×

∏

v∈S

χZ
v ×

∏

v∈S

UFv

and

H1(πS ,Qp(1)× Z∗
p) = Ep ×Qs

p × [
∏

v∈S

WFv
]glob × locS(Hom(H,Z∗

p))

in

∏

v∈S

H1(πv,Qp(1)× Z∗
p) =

∏

v∈S

[Qdv

p ×Qp ×WFv
× UFv

].

In any case, the examples above indicate that the two intersections S(X, T ∗(1)R) and S(X, R) should

have essentially similar structures. Also interesting is that the class group appears naturally in the

computation of an ‘arithmetic Casson invariant’.
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