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A NOT-SO-CHARACTERISTIC EQUATION: THE ART OF

LINEAR ALGEBRA

ELISHA PETERSON

Abstract. Can the cross product be generalized? Why are the trace and de-
terminant so important in matrix theory? What do all the coefficients of the
characteristic polynomial represent? This paper describes a technique for ‘doo-
dling’ equations from linear algebra that offers elegant solutions to all these
questions. The doodles, known as trace diagrams, are graphs labeled by matri-
ces which have a correspondence to multilinear functions. This correspondence
permits computations in linear algebra to be performed using diagrams. The
result is an elegant theory from which standard constructions of linear algebra
such as the determinant, the trace, the adjugate matrix, Cramer’s rule, and
the characteristic polynomial arise naturally. Using the diagrams, it is easy to
see how little structure gives rise to these various results, as they all can be
‘traced’ back to the definition of the determinant and inner product.

1. Introduction

When I was an undergraduate, I remember asking myself: why does the cross
product “only work” in three dimensions? And what’s so special about the trace
and determinant of a matrix? What is the real reason behind the connection
between the cross product and the determinant? These questions have traditional
answers, but I never found them satisfying. Perhaps that’s because I could not, as
a visual learner, “see” what these things really meant.

A few years ago, I was delighted to come across the correspondences

u× v ↔
u v

and u · v ↔ u v

in a book by the physicist G.E. Stedman [12]. Moreover, there was a way to perform
rigorous calculations using the diagrams.

The central tool in Stedman’s book is the spin network, a type of graph labeled
by representations of a particular group. Spin networks are similiar in appearance
to Feynman diagrams, but are useful for different kinds of problems. The first
work with diagrams of this sort appears to be [6], in which spin networks of rank
2 were used as a tool for investigating quantized angular momenta. The name
spin networks is due to Roger Penrose, who used them to construct a discrete
model of space-time [9]. In modern terminology, a spin network represents a graph
whose edges are labeled by representations of a particular group and whose vertices
are labeled by intertwiners or maps between tensor powers of representations [7].
Predrag Cvitanovic has showed how to construct the diagrams for any Lie group,
and actually found a novel classification of the classical and exceptional Lie groups
using this approach [2].
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The applications of spin networks are numerous. They are a standard tool used
by physicists for studying various types of particle interactions [2]. Their general-
ization to quantum groups forms the backbone of skein theory and many 3-manifold
invariants. In combinatorics, they are closely related to chromatic polynomials of
graphs, and Louis Kauffman has posed the Four-Color Theorem in terms of spin
networks [4]. Spin networks also play a role in geometry. They can be used to char-
acterize the character variety of a surface, which encodes the geometric structures
which can be placed on the surface [10, 5, 11]. There are indications that they may
also be a powerful tool for the study of matrix invariants.

Figure 1. Trace dia-
gram which simplifies to
det(A)I.

Amidst all these applications, there
is a surprising lack of the most basic
application of the diagrams: linear al-
gebra. In this paper, spin networks
are additionally labeled with matrices
and called trace diagrams to emphasize
this application. Trace diagrams pro-
vide simple depictions of traces, deter-
minants, and other linear algebra fare
in a way that is mathematically rigor-
ous. The paper concludes with an ele-
gant diagrammatic proof of the Cayley-
Hamilton Theorem, which follows di-
rectly from the diagram in Figure 1.

The emphasis of this paper is on il-
lumination rather than proof, and in
particular on how diagrammatic tech-
niques have the power to both prove
and explain. For this reason, several
examples are included, and more en-
lightening proofs are preferred. While diagrammatic methods may seem unfamiliar
at first, in the end they offer a profound insight into some of the most fundamental
structures of linear algebra, such as the determinant, the adjugate matrix, and the
characteristic equation.

We hope that by the end of the paper the reader is both more comfortable with
the appearance of diagrams in mathematics and convinced that sometimes, in the
words of Richard Feynman, “these doodles turn out to be useful.”

2. Symmetry in Linear Algebra

Perhaps the greatest contribution of diagrams is there ability to capture sym-
metries inherent in linear algebra. This section reviews some of those symmetries
as well as multilinear or tensor algebra, the algebraic framework used to interpret
diagrams.

The inner product is an example of a symmetric (or commutative) function, since
u · v = v · u. Similarly, the cross product is anti-symmetric (or anti-commutative)
as u × v = −v × u. Both functions are multilinear, since they are linear in each
factor. For example:

(u+ λv) ×w = u×w + λ(v ×w).
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Multilinear functions on vector spaces can always be considered as functions on
tensor products. Informally, a tensor product of two complex vector spaces consists
of finite sums of vector pairs subject to the relation

(λu,v) = λ(u,v) = (u, λv)

for λ ∈ C. The corresponding element is usually written u ⊗ v. If V = C
3, then

the domain of both · and × can be taken to be V ⊗ V , so that · : V ⊗ V → C and
× : V ⊗V → V . For a rigorous construction of tensor products, see Appendix B in
[3].

As another example, the determinant function can be written as a function
det : V ⊗ V ⊗ V → C, with u ⊗ v ⊗ w 7→ det[u v w]. The multilinearity of
the determinant is usually described as being able to factor the multiplication of a
matrix column by a constant outside a determinant. Since switching columns in a
matrix introduces a sign on the determinant, the determinant is an anti-symmetric
function.

3. A Taste of Trace

This section presents 3-Vector Diagrams and Trace Diagrams informally as
heuristics to aid in calculations. The ideas introduced here will be made rigor-
ous in the next section.

Consider again the correspondences

u× v ↔
u v

and u · v ↔ u v .

These diagrams are read “bottom to top” so that the inputs u and v occur along
the bottom, and the output(s) occur along the top. In the case of the cross product,
a single output strand implies a vector output; in the case of the inner product, the
absence of an input strand implies a scalar output.

The notation permits an alternate expression of standard vector identities:

Example 3.1. Draw the identity

(u× v) · (w × x) = (u ·w)(v · x)− (u · x)(v ·w).

Solution. Keeping the vector inputs in the same order, the diagram is:

u v w x

=

u v w x

−

u v w x

.

Exercise 3.2. What vector identity does this diagram represent?

u v w

=
v wu

=
u

v
w

=
u v w

The reader is encouraged to guess the meaning of the fourth term (later described
in Definition 4.1).

Now suppose that matrix and vector multiplication could also be encoded dia-
grammatically, according to the rules

ABC ↔ ABC =

C

B

A

and vTAw ↔
w

A

v

.
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Then matrix elements may be represented diagrammatically as well. If the standard
row and column bases for Cn are represented by {êi} and {êj}, respectively, then

aij = êiAêj ↔
j

A

i

.

Using this notation, trace and determinant diagrams may also be constructed.

Example 3.3. Find a diagrammatic representation of the trace tr(A).

Solution.

tr(A) ↔

n
∑

i=1 i

A

i

.

Example 3.4. Find a diagrammatic representation of the determinant

(1) det(A) =
∑

σ∈Σn

sgn(σ)a1σ(1)a2σ(2) · · · anσ(n).

Solution. One approach is to introduce new notation:

det(A) ↔
∑

σ∈Σn

sgn(σ)

1

A

1

2

A

2

n

A

n

σ

. .

. .

,

where σ
..

..
represents a permutation on the n strands. For example, if n = 2, then

det(A) ↔

1

A

1

2

A

2

−

1

A

2

2

A

1

.

4. Topological Invariance: No Rules, Just Right

What if there were a set of rules for manipulating the diagrams that was com-
patible with their interpretations as functions? This section exhibits just such a
correspondence, which exists provided the graphs are given a little extra structure.
Several classical proofs become trivial in this context, as the complexity is funneled
from the proof into the construction of a diagram.

The diagrams will essentially be given the structure of a graph whose vertices
have degree 1 or n only, and whose edges are labelled by matrices. But there are a
few difficulties with ensuring a diagram’s function is well-defined. First,

(2)
A
= u · (Av) = (ATu) · v but

A
= (Au) · v.

The problem here is that
A
and

A
are indistinguishable as graphs, but represent

different functions. This problem will be resolved in Definition 4.1 by requiring the
graphs to be oriented.

The second problem is

(3)
v w

= v ⊗w but

wv

= w ⊗ v = −v ⊗w.
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This time, the problem is that the ordering of edges at a vertex matters, so the
diagram must include a way to order the edges adjacent to a vertex.

These two extra pieces of structure are incorporated into the formal definition
of a trace diagram:

Definition 4.1. An n-trace diagram is an oriented graph drawn in the plane with
edges labeled by n× n matrices whose vertices (i) have degree 1 or n only, (ii) are
sources or sinks, and (iii) are labeled by an ordering of edges incident to the vertex.

If there are no degree 1 vertices, the trace diagram is said to be closed. Otherwise,
the degree 1 vertices are divided into ordered sets of inputs and outputs. These extra
structures determine equivalence of the diagrams under isotopy. By convention,
trace diagrams are typically drawn with input vertices at the bottom of the diagram
and output vertices at the top.

A simple way to maintain the required ordering is to draw a short mark between
two edges at the vertex, called a ciliation. For example, the ciliation on implies

the ordering 5
4

3

21

. Diagrams are unchanged under any isotopy which preserves

the order of the inputs and outputs as well as the position of the ciliations. Thus

u v w

=
v wu

=
u

v
w

=
u v w

holds automatically since the diagrams are isotopic.
The functional interpretation of a diagram is described in the following theorem:

Theorem 4.2 (Fundamental Theorem of Trace Diagrams). Let V = Cn. There is
a well-defined correspondence between trace diagrams with k inputs and l outputs
and functions V ⊗k → V ⊗l. In particular, every decomposition of a trace diagram
into the following basic maps gives the same function (or scalar if the diagram is
closed):

: v 7−→ v;

: vT 7−→ vT ;

A : v 7−→ A · v;

: 1 7−→
n
∑

i=1

êi ⊗ êi;

: v ⊗wT 7−→ v ·w;

. .
n

: v1 ⊗ · · · ⊗ vn 7−→ det[v1 · · · vn].

In addition, the n-vertex with opposite orientation represents the determinant of
several row vectors.

The decomposition assumes the diagram is in ‘general position’ relative to the
vertical direction, and involves “chopping” the diagram up into these particular
pieces. Vertical stacking of diagrams corresponds to the composition of functions.
Several examples follow.
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Example 4.3. To compute , switch the order of the outputs:

= : 1 7−→
∑

i

êi ⊗ êi 7−→
∑

i

êi ⊗ êi.

Exercise 4.4. Show that : 1 7→ dim(V ) = n.

Thus, the basic loop is equivalent to the scalar n. Here is the simplest closed
diagram with a matrix, and the reason for the terminology ‘trace’ diagram:

Example 4.5. Show that A = tr(A).

Solution. Decompose the diagram A = ◦

(

A

)

◦ . Then

A : 1 7−→
∑

i

êi ⊗ êi
A

7−→
∑

i

(Aêi)⊗ êi 7−→
∑

i

(Aêi) · êi =
∑

i

aii = tr(A).

Exercise 4.6. Show that (2) is no longer a problem, since A : vT 7−→ (Av)T .

Example 4.7. Compute .

Solution. = since the decomposition = ◦ gives

: v 7−→
∑

i

v ⊗ êi ⊗ êi 7−→
∑

i

(v · êi)êi =
∑

i

viêi = v.

This last result was expected since both and are equivalent forms of the

same trace diagram. Moreover, this fact essentially proves Theorem 4.2:

Sketch proof of Theorem 4.2 (adapted from [10]). The previous example shows that
isotopies changing the number of local maxima and minima of the form and
do not change the function. Thus, a trace diagram may be assumed to be posi-
tioned with the minimum possible number of cups and caps. With this restriction,
there is only one way to decompose a map into the component maps given in the
theorem. �

Remark 4.8. The correspondence between diagrams and functions established by
the Fundamental Theorem of Trace Diagrams demonstrates an equivalence of cat-
egories and is well-known in literature on spin networks. It is usually proven by
showing that the algebra of diagrams modulo specific relations is equivalent to the
algebra of functions modulo their relations [12].

Remark 4.9. In particular cases, the diagrams can be simplified somewhat.

• If n is odd, then the determinant is cyclically invariant :

det[v1 · · · vn] = det[v2 · · · vn v1],

so the ciliation is unnecessary; the cyclic orientation implied by the drawing
of a diagram in the plane is sufficient.
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• For 2-trace diagrams, the orientation is unnecessary, and frequently the cap
is defined to be v ⊗ w 7→ i · det[v w] rather than the inner product.

With the factor of i, there is no need to keep track of ciliations, and the
diagrams are simply collections of arcs and loops labelled by matrices [1, 4].

5. Simplifying Diagrammatic Calculations

Theorem 4.2 says that a function’s diagram may be computed by transforming
the diagram into some sort of “standard form.” In practice, it is better to have a
working knowledge of the functions of the few basic diagrams described next. This
is abundantly clear in the following computation:

Example 5.1. Show that the diagram is the function v 7→ −2v.

Solution. Arrange the diagram so it decomposes into the basic component maps.
Then:

: v 7→
∑

i,j,k

v ⊗ êi ⊗ êj ⊗ êj ⊗ êi ⊗ êk ⊗ êk

=
∑

i6=j,j 6=k,i6=k

det[v êi êj ]det[ê
j êi êk]T êk.

But

det[v êi êj]det[ê
j êi êk]T = det





v · êj v · êi v · êk
0 1 0
1 0 0



 = −v · êk = −vk.

Therefore,

: v 7→
∑

i6=j,j 6=k,i6=k

(−vk)êk = −2
∑

k

vkêk = −2v.

Fortunately, there is an easier approach. The remainder of this section gives
several results that make such technical calculations unnecessary. Several of the
proofs are deferred to the appendix.

Proposition 5.2. The n-vertices of trace diagrams are antisymmetric, meaning a
sign is introduced if either (i) two inputs at a node are switched or (ii) a ciliation
is moved across an edge. Alternately, if any collection of inputs at an n-vertex are
linearly dependent, the diagram evaluates to zero.

Proof. These facts are restatements of standard facts regarding the determinant:
switching two columns introduces a sign, while the determinant of a square matrix
with linearly dependent rows or columns is zero. �

Proposition 5.3 (Matrix Invariance). Matrices may be ‘cancelled’ at any node
with the addition of a determinant factor. In particular,

A A A. .

A A A
. .

= det(A)
. .

. .
and

AA A. .

. .
= det(A)

. .

Ā Ā Ā
. .

,

where Ā = A−1.
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Proof. Topological invariance implies that only one case need be checked:

A A A
. .
n

: v1 ⊗ · · · ⊗ vn 7→ det[Av1 · · · Avn] = det(A)det[v1 · · · vn].

The second relation follows from the first. �

The next two propositions, whose proofs are found in the appendix, give the
functions at a diagram’s nodes:

Proposition 5.4. The following diagram is a “complemental antisymmetrizer”:

(4)
. .

. .n− k

k

: êα1
⊗ · · · ⊗ êαk

7−→
∑

σ∈Σn−k

sgn(α|
←
σ )êσ(k+1) ⊗ · · · ⊗ êσ(n),

where the sum is over permutations on the complement of {α1, . . . , αk} and

sgn(α|
←
σ ) = sgn (α1 · · · αkσ(n) · · · σ(k + 1)) .

One important special case is the codeterminant map

(5) . .n : 1 7→
∑

σ∈Σn

sgn(
←
σ )êσ(1) ⊗ · · · ⊗ êσ(n).

Note that sgn(
←
σ ) = (−1)⌊

n

2
⌋sgn(σ) since ⌊n

2 ⌋ swaps are required to reverse the
order of a permutation on n elements.

Remark 5.5. Proposition 5.4 shows that there is a way to define a “cross product”

in any dimension, although n− 1 inputs are required. In particular,
u v

extends

to the family of diagrams

a1 ai an−1

.. . . .

Proposition 5.6. Let k
..

..
denote the antisymmetrizer on k vertices defined by

k
..

..
: a1 ⊗ · · · ⊗ ak 7−→

∑

σ∈Σk

sgn(σ)aσ(1) ⊗ · · · ⊗ aσ(k).

If k > n, then k
..

..
= 0. Otherwise, for 0 ≤ k ≤ n,

k
..

..
=

(−1)⌊
n

2
⌋

(n− k)!
. .

. .

. .k

n− k

k

.

In particular cases:
(6)

..

..n

n

= (−1)⌊
n

2
⌋

n
..

..
. .n = (−1)⌊

n

2
⌋n!

A A A
. . = (−1)⌊

n

2
⌋n!det(A).
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6. The Elegant Adjugate and Clandestine Cramer

We now turn to the main results of this paper, the diagrammatic proofs of the
adjugate formula, Cramer’s Rule, and the Cayley-Hamilton Theorem. For each, we
will first establish the diagrammatic result, and later show that the diagrammatic
relation is equivalent to its standard expression via linear algebra.

The diagrammatic version of the adjugate formula adj(A) · A = det(A)I is

Proposition 6.1 (Diagrammatic Adjugate Formula).

(7) AA A. .

A

= (−1)⌊
n

2
⌋(n− 1)!det(A) .

Proof. Use Propositions 5.3 and 5.6. �

Cramer’s Rule is actually ‘hiding’ in this diagram. Recall that ifA = [a1 a2 · · · an],
then Cramer’s Rule states that the elements of the solution x are given by

xj =
det(Aj)

det(A)
=

det[a1 · · · aj−1 b aj+1 · · · an]

det(A)
,

where Aj is, as shown, the matrix obtained from A by replacing the jth column
with the vector b.

Proposition 6.2 (Diagrammatic Cramer’s Rule). Suppose that the columns of Aj

are identical to the columns of A, except that the jth column of Aj is x. Then

(8)
AjAj Aj. .

j

Aj

j

= (−1)⌊
n

2
⌋(n− 1)!det(A)

x

j

.

Proof. By Propositions 5.3 and 5.6,

(9) det(Aj) =
(−1)⌊

n

2
⌋

(n− 1)!

AjAj Aj. .

j

Aj

j

=
(−1)⌊

n

2
⌋

(n− 1)!
AA A. .

x

A

j

= det(A)
x

j

= det(A)xj .

The second step follows from the fact that Aj êj = b = Ax and the following lemma:

Lemma 6.3. Let j represent the linear function mapping êj 7→ 0 and êi 7→ 1 for

i 6= j. If the matrix Aj is any matrix obtained by replacing the jth column of A by
an arbitrary vector, then

A

j

= Aj

j

and

j

A
.. . . =

j

Aj
.. . . .
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Proof. The first statement holds because Aêi = Aj êi unless i = j, in which case
both diagams evaluate to zero. For the second statement, note that if two strands
adjacent to a single node are labeled with the same vector, then the diagram eval-
uates to zero. Consequently,

j

. . . . =

j

. . . .j .

Combined with the first statement, this proves the second. �

�

It should be clear from 9 that Proposition (8) implies establish Cramer’s Rule,
but it may not be clear where the adjugate matrix shows up in Proposition 6.1.
In traditional texts, the adjugate matrix is constructed by (i) building a matrix of
cofactors, (ii) applying sign changes along a checkerboard pattern, and (iii) trans-
posing the result.

In contrast, the diagram adj(A) is quite simple:

Proposition 6.4. The matrix elements of adj(A) may be expressed as

(adj(A))ji =
(−1)⌊

n

2
⌋

(n− 1)!
AA A. .

i

j

,

Proof. The matrix element of the diagram must somehow encode all the traditional
steps required for computing the adjugate. But how? First, ‘crossing out’ occurs
when the basis elements êi and êj are placed adjacent to the nodes, sign changes are
encoded in the orientation of the node, and the transpose comes into play because
the matrices in the diagram are along downward-oriented strands.

Formally, note that the signed (i, j)-cofactor may be expressed as the determi-
nant of the matrix

Aj = [a1 · · · aj−1 êi aj+1 · · · an] =

















a11 · · · 0 · · · a1n
...

. . .
...

. . .
...

ai1 · · · 1 · · · ain
...

. . .
...

. . .
...

an1 · · · 0 · · · ann

















,

in which the jth column of A is replaced by êi. By definition, (adj(A))ji = det(Aj).
The following equation, which is remarkably similar to (9), shows how to find

the adjugate matrix:

(10) (adj(A))ji = det(Aj) =
(−1)⌊

n

2
⌋

(n− 1)!

AjAj Aj. .

j

Aj

j

=
(−1)⌊

n

2
⌋

(n− 1)!
AA A. .

i

j

.

This establishes the result. �



A NOT-SO-CHARACTERISTIC EQUATION: THE ART OF LINEAR ALGEBRA 11

7. The Not-So-Characteristic Equation

Recall that p(λ) = det(A − λI) is a degree n polynomial in λ, called the char-
acteristic polynomial of A. By the fundamental theorem of algebra, it must have
n real or complex roots, counted with multiplicity, which are the eigenvalues of A
leading to the equation Av = λv for some eigenvector v. The Cayley-Hamilton
Theorem says that a matrix satisfies its own characteristic equation p(A) = 0. For
example, in the case A =

[

2 3
4 5

]

, the characteristic polynomial is

det(A− λI) = λ2 − (trA)λ + det(A) = λ2 − 7λ− 2,

and consequently
[

2 3
4 5

]2

− 7

[

2 3
4 5

]

− 2

[

1 0
0 1

]

=

[

0 0
0 0

]

.

Our final result is actually the most trivial, an immediate consequence of Propo-
sition 5.6:

Theorem 7.1 (Diagrammatic Cayley-Hamilton Theorem). If n+ 1
..

..
represents the

anti-symmetrizer on n+ 1 vectors, then

(11)
. .

. .

A A

n+ 1 = 0.

But how does this not-so-characteristic version of the characteristic equation
relate to the formula det(A− λI)?

Proposition 7.2. When the anti-symmetrizer n+ 1
..

..
in (11) is expanded, the co-

efficients of Ai are equal to n! times the coefficients of λi in the characteristic
polynomial det(A− λI) = 0.

As a first step, here is the determinant of a sum of matrices:

Lemma 7.3. Given A,B ∈ Mn×n, the determinant sum det(A + B) is expressed
diagrammatically as

det(A+B) =
(−1)⌊

n

2
⌋

n!

n
∑

i=0

(

n

i

)

A A
. .n− i

B B
. .i .

Proof. Replace A in det(A) = (−1)⌊
n

2
⌋

n! A A A
. . with A + B. The result consists

of 2n diagrams, each of which has the form ? ? ?
. . where ? is either A or B.

The matrices in each summand may be reordered without introducing any signs,
since any ‘switch’ at the lower node must also be made at the upper node. So the

terms may be grouped by the number of B’s in each. Since there are

(

n

i

)

with i

B strands, the result follows. �
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Consequently, the characteristic polynomial is

(12) det(A− λI) =
(−1)⌊

n

2
⌋

n!

n
∑

i=0






(−1)i

(

n

i

)

A A
. .n− i . .i






λi.

This means that the coefficients of the characteristic polynomial are, up to a con-
stant factor, the n+ 1 “simplest” diagrams with nodes.

The next lemma provides a combinatorial decomposition of the anti-symmetrizer
in (11):

Lemma 7.4. For any k with 0 ≤ k ≤ n,

(13)
. .

. .

A A

k + 1 =

k
∑

i=0

(−1)ik!

(k − i)! . .

. .

A A A

k − i
Ai .

Proof. Let σ ∈ Σk+1 be a permutation, and decompose it σ = τν, where τ is the
cycle containing the first element and ν contains the remaining cycles. If |τ | = i+1
is fixed, then there are k!

(k−i)! choices for τ and therefore k! total choices for each

value of i. Since sgn(τ) = (−1)i and sgn(ν) is incorporated into k − i
..

..
, the coefficient

of Ai is (−1)i k!
(k−i)! . �

Proof of Proposition 7.2. As indicated in (12), the coefficient of λi in the charac-
teristic polynomial is

(14) ci =
(−1)i+⌊

n

2
⌋

i!(n− i)! A A
. .n− i . .i .

On the other hand, letting k = n in Lemma 7.4 and applying Proposition 5.6 shows
that

. .

. .

A A

n+ 1 =

n
∑

i=0

(−1)in!

(n− i)! . .

. .

A A A

n− i
Ai

=

n
∑

i=0

(−1)i(−1)⌊
n

2
⌋n!

(n− i)!i! A A
. .n− i . .i Ai.

The coefficient in the last sum is n!ci, so Equation (11) is n! times that given by
the Cayley-Hamilton Theorem. �

8. Closing Thoughts

The results contained in this paper are just a start. It is an easy exercise to
flip through a linear algebra textbook and find more results than can be expressed
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diagrammatically. Conversely, every diagrammatic relation has a linear algebra
interpretation, so they are quite good at “generating” new formulas.

As one final example, trace diagrams are remarkably good at capturing the con-
cept of a matrix minor. Using this fact, Steven Morse has shown [8] that both the
Jacobi Determinant Theorem and Charles Dodsgon’s condensation method for cal-
culating determinants have simple diagrammatic proofs. The Jacobi Determinant
Theorem is

. .

A A A A.. .... ..

. .

n− k

k

n− k

=

. .

A A A. .

. .n− k

k

n− k

and the condensation technique arises from the special case k = n− 2.
Trace diagrams are a powerful technique for generating trace identities, which

suggests that they may in the near future be used to solve problems in invariant the-
ory that are intractable with classic techniques. Indeed, for nmatrices {A1, . . . , An}
it is an immediate consequence of Proposition 5.6 that

. .

. .

A1 A2 An

n =
. .

. .

A1A2 An

n
.

This equation, which generalizes the characteristic equation, is sometimes called a
polarization of the characteristic polynomial, and is the source of all trace identities
for certain matrix groups.

Appendix A. Proofs of Node Identities

Proposition A.1 (Proposition 5.4).

. .

. .n− k

k

: êα1
⊗ · · · ⊗ êαk

7−→
∑

σ∈Σn−k

sgn(α|
←
σ )êσ(k+1) ⊗ · · · ⊗ êσ(n),

where the sum is over permutations on the complement of {α1, . . . , αk} and

sgn(α|
←
σ ) = sgn (α1 · · · αkσ(n) · · · σ(k + 1)) .

Proof. The function is computed by redrawing the diagram

.. ..
..

k

=
. .

. .n− k

k

.

The cups transform an input êα1
⊗ · · · ⊗ êαk

to

∑

σ∈Σn−k

êα1
⊗ · · · ⊗ êαk

⊗
(

êσ(n) ⊗ · · · ⊗ êσ(k+1)

)

⊗
(

êσ(k+1) ⊗ · · · ⊗ êσ(n)
)

.
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The summation is restricted to the complement of {αi} since the determinant of
any matrix with repeated columns is zero. Hence, it may be rewritten

∑

σ∈Σn−k

det[êα1
· · · êαk

êσ(n) · · · êσ(k+1)]ê
σ(k+1) ⊗ · · · ⊗ êσ(n),

and the determinant evaluates to the sign defined above. �

Proposition A.2 (Proposition 5.6). If k > n, then k
..

..
= 0. Otherwise, for

0 ≤ k ≤ n,

k
..

..
=

(−1)⌊
n

2
⌋

(n− k)!
. .

. .

. .k

n− k

k

.

Proof. The fact that k
..

..
= 0 for k > n follows from Proposition 5.2.

For k ≤ n, the function is computed by applying Proposition 5.4 twice. The
image of êα1

⊗ · · · ⊗ êαk
is

∑

τ∈Σk

∑

σ∈Σn−k

sgn(Id|
←
σ )sgn(σ|

←
τ )êτ(1) ⊗ · · · ⊗ êτ(k)

Reversing the permutation in the sgn(σ|
←
τ ) term gives:

sgn(Id|
←
σ )sgn(σ|

←
τ ) = (−1)⌊

n

2
⌋sgn(Id|

←
σ )sgn(τ |

←
σ )

= (−1)⌊
n

2
⌋sgn(

←
σ )2sgn(β)2sgn(τ)

= (−1)⌊
n

2
⌋sgn(τ).

Here β is a permutation that encodes the ordering of {αi} and its complement,
which is assumed to be consistent throughout the computation. Therefore,

êα1
⊗ · · · ⊗ êαk

7−→
∑

τ∈Σk

∑

σ∈Σn−k

(−1)⌊
n

2
⌋sgn(τ)êτ(1) ⊗ · · · ⊗ êτ(k)

= (−1)⌊
n

2
⌋(n− k)!

∑

τ∈Σk

sgn(τ)êτ(1) ⊗ · · · ⊗ êτ(k). �
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