Programming in Lua, Fourth Edition
Roberto lerusalimschy
Copyright © 2016, 2003 Roberto lerusalimschy

Feisty Duck Digital
Book Distribution

~ www.feistyduck.com

Licensed for the exclusive use of:
Eric Taylor <jdslkgjf.iapgjflksfg@yandex.com>

Contents

ADOUL ThE BOOK ...ttt e e e et e e iX
I I T T o P 1
L. GEING SEAMEAceeeeii ettt ettt 4
L0111 0] P 4
Some LexiCal CONVENTIONSccouutieiiiiie ettt e et e e eeai e eees 6
Global Vari@hlesc.veieieii e e 7
TYPES @NU VAIUBS ...ttt ettt e e et e e e e e e enb e eees 7

N PP TTOPPPTR 8

BOOIBANS ...t 8

The Stand-AloNe INEEMPIELEYiiiiii e e 9

2. Interlude: The BEight-QUEEN PUZZIEiiiiiiiee e 12
I N[00 0T £ T PSP PPPPT TN 15
NUMEIAIS <.ttt e et e et e e e e 15
ATITNMELIC OPEIEIOIS ...ttt ettt ettt e et e e e e s 16
REIELIONEI OPEIEIOIS ... eieiiie ettt ettt ettt e e et e et e e ene s 17

The MathematiCal Libraryooooeuuiiiiiiiiiei e 18
RaNdomM-NUMDEr GENEIEIONuuieiiiiii ettt eenens 18

ROUNAING FUNCLIONS ...ttt e 18
REPresentation LiMitSiiiiiiiieiiii et e 19
1600011/ £ oo TSP PUP PP SPPPPTRSPPIN 21
PrECEAENCE ...ttt ettt 22

LUB BEFOIE INEEOEYS ...ttt 22

S |] 00 T SO PT TSP 24
LtEral SEFNGS .. eeeeieieii ettt ettt 24
LONG SIMNGS -ttt ettt ettt ettt e e et et e e et et e e et e e e e e ena e eees 25
(6007 oi o]0 LS PP UPPITRN 26

The SEHNG LIDIaryoeee et e e 27

L6 oo o [PSP UPPPTTO 29

B TADIES e 33
TADIE INAICES ..ttt 33
TaADIE CONSITUCTONS ... ettt ettt et e e et e e es 35
Arrays, Lists, @nd SEOUENCEScovuniiiiieiii e e 36
Tahle TraVErSaAl ...t 38

SAf@ NAVIGALTIONeeieit et 38

The Table LiDIary ..o 39

B. FUNCLIONS ...ttt e e e et e 42
MUITIPIE RESUITS ...ttt e e e e e eees 43
Variadic FUNCLIONScoeeieieiie et et 45

The function t abl €. UNPAaCK ... 47
Proper Tail CallSouuiiiii e e 48

7. The EXternal WOrldcoooui e 50
The SIMPIE 1/O MOTELo 50

The Complete 1/O MOGE]coouiniii e e 53
Other Operations ON FIlESo 54
Other SYStEmM CallS ... 55
RUNNIiNG SyStemM COMMANGSccuuuiiiiiiie e 55

8. FlliNG SOME GAPSceeiieee ittt ettt e et e e et e e e e e e ean 57
Local Variables and BIOCKSuiiiiiiiieiiii e 57
CONLIOI SEFUCTUIES ...ttt et e e 58

1T ENEN 1S e 58

(=01 | PN 59

NUMENCEL FOF ..uiiiii e e e e e e eeae 60

€1 o1 T ol o] SO UPP 60

break, return, and GOtcoouiiiiiii i 61

T = I (T | 1 o0 T 65
S O o= 0 =SSP 68
FUNCLiONS 8S FIrst-Class VAIUBScuuiiiiiiiiii e e s 68
NON-GIODEl FUNCLIONSutiiiiiii e e e e ea e e eees 69

= (o= oo 1] oo TP 71

A Taste of Functional Programmingcceceueeiiiieiiiieeiieeeie e e e e e e s eaanes 74

O = 0= 4 T 1Y/ o 1 o P 77
The Pattern-Matching FUNCLIONSuiiiiiiiiiiiec e e 77
Thefunction string. FiNd ..o 77
Thefunction st riNg. MAL Ch ..o 77

The function St ri NG. gSUD ... 78
Thefunction string. gmat Ch ..., 78

PaILEINS ..o 78
L0210 L1 1= PRSPPI 82
REDIBCEMENES ... i 83

L] I =o' [o [N 84

LI oI o= Lo o I 86

THCKS OF the Tradevn e e e e 86

11. Interlude: Most Frequent WOrSoovvuiiiiiiii e e e e 20
DT (- o o T 0= PSSP 92
The FUNCHION OS. 11 M oot e e 92

The FUNCHION 0S. AL € oiviviiiiiiii e 93
Date-Time ManiPUIGtioNcc.uiiiiiieiiiiei e e e e e e e e e aeaas 95

T = 1 3 0o N Y] (= 97
LAY S S @ o1 = 0] £ PPN 97

(00T 1o [01 (= (= £ 97
Packing and Unpacking Binary Datacoovvuiiiiiiiiiiieiie e e e 99
BINAIY FIlES ..iiiiiii e 101

14, Dala SITUCIUIES ...ttt ettt et et e et et e e e e e e e e e enaeens 104
N = V£ TP SPPPRPP 104
Matrices and Multi-Dimensional AITAYScocuuuieiiiieiiii e e e e e 105
101 = o I T P 107
Queues and Double-Ended QUEUEScivuiiiiieiiieece e e e e 107
REVEISE TaIES ... 108

SELS ANA BAGS ..ovvniiiiieii e 109

S T o I 21U = £ 110

LT =0 o P 111

15. Data Files and SerialiZationoooeuuiiiieiiiee e e 114
DALA FIlES .ot 114

s (1 T2 1o P 116
Saving tables WithOut CYCIESviiiii i 118

Saving tables With CYCIEScovviii i 119

16. Compilation, EXecution, and EITOrScocuuiiiiiieiiie e e e e 122
(@0 14101 =11 P 122
Precompiled COOEcuviiiii e e 125

[(0] £ T PSPPI 126
Error Handling and EXCEPLIONScouuiiiiiciii e e e e e e 127
Error Messages and Tracehacksccuiiiiiiiiiii e 128

17. Modules and PaCKagESeiiiiiiiii e 131

LI CCl 0 gw (o] T =T [0 = P 132

ReNaming amoduleoouuiiii e 133

Path SEarChiNgciii e e 133

SEAICHENS .. it 135

The Basic Approach for Writing ModuleSin Luaccocovveiiiiiiiiieiiinecieeeee e, 135
SUbMOAUIES AN PaCKAGESevviiiii e e e e e e 137

1 7= = 0 139
18. Iterators and the GENENIC TOrovuiiii e 142
[terators and CIOSUMEScvvueii i ei e e e e e e e e e e et e e e aanns 142

The Semantics of the GENEric forccoviiiiiiiiii i, 143

S (= 1= = - (0PN 145
Traversing TableS iN Ordercc.uiiiiiiiii e e 146

LR8I L= = (0] £ PP 147

19. Interlude: Markov Chain AIgOrithm ... 149
20. Metatables and MetamethOdScooiiiiiiii e 152
Arithmetic Metamethodsoovuiiiii i 152
Relational Metamethodsoovuiiiiii e 155
Library-Defined Metamethodsooiiiiiiiiii e 155
Table-Access MetamethodScouviiiiiie e 156

The _index metamethodccoooviiiiiiii e 156

The __newi ndex metamethodccooevviiiiiiciii e, 157

Tables with default ValUESiiiiiiii e 158

Tracking table @CCESSESvvviiii e 159

REA0-0NIY tADIES ... 160

21. Object-Oriented ProgramiMingceeeueeeieeeiierieeeiine et eeeieeste e s esrneearneeennnas 162
L0 163

1] 07 o 165
MUItiPIE INNEMTANCE .. cove e e e e e 166

L Y7 oY PPN 168

The Single-Method APPrOaChuuiiiiici e e 170

(DU I Rz o (== = 1t 1o P 170

22. The ENVITONMENTiiitiiii et e e e e e e e e et e e et e e e et e e st e e et e eeaneeanaees 173
Global Variables with Dynamic NameSccouuiiiiiiiiiii e e 173
Global-Variable DeClarationsccuuiiiiiiiiiiiieie e e e 174
NON-Global ENVIFONMENESuuiiiiicii e e e e e e e e e e e e e eaes 176
USING BNV ettt e e et e e e e 177
Environments and MOUIESooiiiiiiiiiii e 180
CENV AN 1 080 oo 181

G T T o7 o [N 183
WEBK TADIES ..oviiiei i 183
MEMONIZE FUNCLIONS . ..uuiiiiieii e e e e e e e e e e e et e e et e eaneees 184

L@ o] L= o AN 111 11 === 185
Revisiting Tables with Default ValueSco.viiviiiiiiiiiii e 186
Ephemeron Tablescoovniiii e 187
NI ZENS ..t 188

The Garbage COlECIOruiiii e e e e 190
Controlling the Pace of ColleCtionooviiiiiiiii e, 191

S o (011 1] === 194
(00 (010 |11 0= = = S Lox PPN 194

WHO 1S thE BOSS? ...ttt e e e e e e e e e e e et e e aaeees 196
COrOULINES @S ITErAOS ... iiiiiieii e e e e e e e e e e e et e e e eanes 198
EVent-Driven Programmingcc.ueeeuieeiieeiieeeiieeeie e s s e st e esteeetsesaaeeanesaenns 200

2 T = = 1= o 1o o PP 205
INtroSPECtiVE FaCIlitiES ... ovvi i 205

Accessing local variableSooovuiiiiii i 207

Accessing non-local variablesccooeiii i, 208

ACCESSING OthEr COMOULINESiivi i e e e 209

HOOKS .t 210
0] 11 1= PP 211

S 1010 070) (1 1o [212

26. Interlude: Multithreading with COroUtiNEScovviiiiiiii e 217
R I T O PR 221
27. AN Overview Of the C AP ... 223
YN = A T 10T o] = T 223

THE SEACK . evviee e e 225
PUShiNg ElEMENES ... 226

QUENYING ElEMENES ... 227

Other Stack OPEIatioNSuviviieiii e e e e e 229

Error Handling With the C APl ... 231

Error handling in application COOEcocovviiiiiiiiii e, 232

Error handling in library COdecoieiiiiiiii e, 232

VK= aaTo T YA AN T Tor= 1o o S 233

28. Extending Your APPIICALIONiiiiieiii e e 236
THE BASICS .ettiieiiii ettt ettt et e aaaan 236

LI o =T = 1] o101 = o) o 237
SOME SNOM CULS vttt e e et e e e e e e aa e 240

Calling LUA FUNCLIONSiiiiii e e e et e e e e e e e an s 241

A GeNEric Call FUNCHIONcoieiii e eeeaens 242

29. Calling C frOM LU ...uvevniii e e e e e e e e e e e e e e e e e e et e e e e eaaeees 247
LR T 0 1o = PP 247

1000] 0111911 7= 1 o] PO 249

LY oo L1 =PRI 251

30. Techniques for Writing C FUNCHONScovuiiiiiiieiii e e e e e 254
F N 4= YA = 011 oL = o 254
StriNg ManipUIAtioncouuiiiiei e e e 255
Storing Stat€ iN C FUNCHIONSuuiiiiiiiii e e e e e e e et eeaaeees 258

LS =01 1 Y/ 258

L 07 1T 260

Shared UPVAIUEBScovviiiii e e e e e e e e aa e 263

31 User-Defined TYPES IN € .oniiiiiiiii e e e et e e e et e e aaeaees 265
WS 0 - - SRR 265

L = o =S PP 268

OB ECt-OrENEA ACCESS ...ivuiiitieeei et et e e e e e e e e et e e et e e e e eaaaees 270
ATTAY A CCESS . uiitietit ettt ettt et et 271
Lo 0 QS o v PP 272

32. Managing RESOUICESccvuiiiii et e et e e et e e e e e e et e et e e e e ean e e eanaaes 274
F N DT (= v (oA = = o) PN 274

AN XML ParSEE ooniiiiii e e 277

33. THreads and SEAEESvuueiiiiii ettt e e et e e et e e e et e e e et s e e eerenaeeees 286
MUIIPIE TRIEAAS ... cvveiii e e 286

[T ST (- RN 289

List of Figures

2.1. The eight-QUEEN PIrOGIaIMceeeei et e ettt e et e et e e et e et e et e e et et e e e ab e e enan s 13
7.1 A program t0 SO @ TIlE ... e 52
8.1. An example of a state machine With gotoccooiiiiiiii e 62
8.2, A IMAZE AIME ...ttt ettt ettt et ettt 63
8.3. A strange (and invalid) USE Of @ gOLOcevvurieiiiiiiiee it 64
9.1. Union, intersection, and difference of regionscoovuuiiiiiiiiiiii e 75
9.2. Drawing aregion in @PBM file ... 75
11.1. WOrd-freqQUENCY PIOGIBIM ... eeeetteeeett e ettt e e et et e e e eett s e ettt a e et eab s e e eebt e e e eebb s eeeennaeeenn 91
12.1. Directives for fuNCtion 0S. At ©coeuuiiiiiii e 9
13.1. UNSIGNEA AIVISION ..ttt et ettt ettt e ettt e e et e e e et e eeena e eees 98
13.2. DUMPING the dUMD PrOOIaIMiieiiie et e e e e e eenens 102
14.1. Multiplication Of SPaIrSe MELMCESciieeie ettt e s 106
14.2. A double-ended QUEUEciiiii e 108
14.3. Reading a graph from afile ... 112
14.4. Finding a path DEtWEEN tWO NOOESuiiiiiiiiee e 112
15.1. Quoting arbitrary [ITeral SIHNQSueieii e 117
15.2. Serializing tables WithOUL CYCIESiiiii e 118
15.3. Saving tableS With CYCIESu i e 120
16.1. Example of output from | UAC - ...euiiiii e 125
16.2. SHIING FEPELITION ...eevtt ettt ettt e e et e e et e et et e ettt s e e eerb e e eert e eeen 130
17.1. A homemade package. sear Chpat Ncooooiiiii e 134
17.2. A simple module for complexX NUMDENSuiiiiii e 136
17.3. Module With @XPOIT TSteeeeeeiee e 137
18.1. Iterator to traverse al words from the standard iNPULoovvviiiieiiiiinicii e 143
19.1. Auxiliary definitions for the Markov programcc..eieeiiiiiieeiiii e 150
19.2. The MAIKOV PIrOGIEIMcieeiie ettt ettt ettt e e et e et e e e e b e e e e aba s 151
20.1. A SIMPIEe MOAUIE FOI SELS ...vviiieeiii ettt 153
20.2. Tracking tAD]@ BCCESSES i eiiitt ettt et ettt ettt e e e e 159
211 the ACCOUNT ClBSS .ieiii ittt 165
21.2. An implementation of multiple inheritanCe ..o 167
21.3. Accounts using a dual repreSentalionceeeeeneeeeri et e et e e et e e e e e e 171
22.1. The function SEE T i @1 d ..o 174
22.2. Checking global-variable deClarationoieieiuiieieiieeeei e 176
23.1. Constant-function factory With Memorizationcoeuuiiiiiiiinie e 187
23.2. Running afunction at every GC CYCIEiiiiiiiieiiii e 190
23.3. FINAliZers and MEIMOIYuuiiiiiiii ettt e e e e e e 192
24.1. Producer—consumer With fIltersooiiii i 198
24.2. A function to generate PErMUEBLIONSccouuurieiiiiiii et 199
24.3. An ugly implementation of the asynchronous I/O libraryccooiiiiiiinieiiiiiie, 201
24.4. Reversing afile in event-driven fashioncoooiiiiiiiiiiiii e 202
24.5. Running synchronous code on top of the asynchronous librarycccooevviiiiinieiiinnn. 203
25.1. Getting the value of avariale ... 208
25.2. Hook for counting nUMBEr Of CallSiiiiiiiiiiii e 211
25.3. Getting the name of & TUNCLIONuuiiiiii e e 212
25.4. A naive sandboX With NOOKSooiiiiiiii e 213
25.5. CONLrolliNG MEMOTY USEiiiiieeeiti ettt ettt ettt e et e et e et e e e e e ene e eeenanns 214
25.6. Using hooks to bar calls to unauthorized fUNCLIONSccuuiiiiiiiiiiei e 215
26.1. Function to download a WeD Pagecoovuiiiiiiie e 218
26.2. The diSPalChEree et 219
26.3. DiSpatCher USING SEI ECT .oiuiiiiiiii e 220

27.1. A bare-bones stand-alone LUa iNtENPIrateruiiiiiieieiiii e 224

27.2.
27.3.
28.1.
28.2.
28.3.
28.4.
28.5.
28.6.
28.7.
29.1.
29.2.
30.1.
30.2.
30.3.
30.4.
30.5.
31.1.
31.2.
31.3.
31.4.
32.1.
32.2.
32.3.
32.4.
32.5.
32.6.
32.7.
32.8.
32.9.
33.1.
33.2.
33.3.
33.4.
33.5.
33.6.
33.7.

DUMPING the SEACKeuiii e e e 229

Example of stack Manipulationccccouiiiiiiiiii e 231
Getting user information from a configuration fileccociiiiiiii i, 236
A particular get col orfi el d implementationccooveiiiiiiiii i, 238
Colors as Strings OF tADIES ... cvve i 240
Calling a Luafunction from C ..o e 242
A generic Call FUNCLIONiii e 243
Pushing arguments for the generic call fTUNCLIoNccoviiiiiiii e, 244
Retrieving results for the generic call fTuNCLionccoooiiii i 245
A fuNCtion t0 read @ AIFECIONYuuiii i e e e e 249
Implementation of pcal | with CONtiNUAatioNSccoceviiiiiii e, 251
The fuNCiON MBP 1N C oo e e e e e e et e e aees 255
S o] TRl aTo = = 1o P 256
The fuNCtiON ST i NQ. UPPEI coniiiii i e e e e e e e aens 257
A simplified implementation for t abl €. concatcccooeiiiiiiii i 258
An implementation Of TUPIEScouuiiii i 262
Manipulating @ BOOIEAN @AYuiiiiiiiiiii e e e e e e e e e aaaas 266
Extra code for the Boolean array [ibraryco.ooiieiiiiiiiiiii e 267
New versions for set array/get ar F Aycccoucieiiieeeie e e e e e e e e 269
New initialization code for the Bit Array librarycooiiiiiiiii i 272
The di r. open factory fUNCLIONccooviiii e 275
Other functions for the di 1 HBrarycoooeiiiiiii e 276
Function to create XML parser ODJECESvvvniiiniiiie e 280
Function to parse an XML fragmentoiiiiiiiiiiiie e e 281
Handler for CharaCter dataovveuunieiiii e e eeaees 282
Handler for end €lemMeNtSco.uuiiiiiiiie e 282
Handler fOor start €lementSoeueuiiieii e 283
Method t0 ClOSE AN XML PaISEr ...cvvuiiiii e e e e e e e e e e e e et e e e eaa e eeen 283
Initialization code for the | Xp library ..o 284
Function to search for a process waiting for achannelccooooiiiiiiii i 291
Function to add a process to awaiting listoooiuiiiiiiiiii e 291
Functions to send and reCEIVE MESSAGESvvvueiiiieiiiieeieee e e e e e e e e e e et eeanas 292
FUNCLION tO Create NEW PrOCESSES ...uuivinetiii e eeii e ettt ettt e ettt e e st e e st e e et e e st e e et e e st e eanaeeanans 293
Body for NEW threadsiiiiii e 294
Extra functions for the | proc modulecccoouiiiiii e 295
Registering libraries to be opened on demandccoeiiiiiiii i 296

About the Book

When Waldemar, Luiz, and | started the development of Lua, back in 1993, we could hardly imagine that
it would spread asit did. Started as an in-house language for two specific projects, currently Luaiswidely
used in al areasthat can benefit from asimple, extensible, portable, and efficient scripting language, such
as embedded systems, mobile devices, the Internet of Things, and, of course, games.

We designed Lua, from the beginning, to be integrated with software written in C/C++ and other con-
ventional languages. This integration brings many benefits. Lua is a small and simple language, partly
because it does not try to do what C is already good for, such as sheer performance and interface with
third-party software. Luarelieson C for these tasks. What L ua does offer iswhat C is not good for: agood
distance from the hardware, dynamic structures, no redundancies, and ease of testing and debugging. For
these goal s, L ua has a saf e environment, automatic memory management, and good facilities for handling
strings and other kinds of data with dynamic size.

Part of the power of Luacomesfromitslibraries. Thisisnot by chance. After al, one of the main strengths
of Luaisitsextensibility. Many features contribute to this strength. Dynamic typing allows a great degree
of polymorphism. Automatic memory management simplifies interfaces, because there is no need to de-
cide who is responsible for alocating and deallocating memory or how to handle overflows. First-class
functions allow a high degree of parameterization, making functions more versatile.

More than an extensible language, L uais also a glue language. L ua supports a component-based approach
to software development, where we create an application by gluing together existing high-level compo-
nents. These components are written in a compiled, statically-typed language, such as C or C++; Luais
the glue that we use to compose and connect these components. Usually, the components (or objects)
represent more concrete, low-level concepts (such as widgets and data structures) that are not subject to
many changes during program development, and that take the bulk of the CPU time of the final program.
Luagives the final shape of the application, which will probably change alot during the life cycle of the
product. We can use Lua not only to glue components, but also to adapt and reshape them, and to create
completely new components.

Of course, Luais not the only scripting language around. There are other languages that you can use for
more or less the same purposes. Nevertheless, Lua offers a set of features that makes it your best choice
for many tasks and gives it a unique profile:

Extensibility: Luasextensibility is so remarkable that many peopleregard Luanot asalanguage,
but asakit for building domain-specific languages. We designed Luafrom scratch
to be extended, both through Lua code and through external C code. As a proof
of concept, Lua implements most of its own basic functionality through external
libraries. Itisreally easy tointerface Luawith external languageslike C/C++, Java,
C#, and Python.

Smplicity: Luaisasimple and small language. It has few (but powerful) concepts. Thissim-
plicity makes Lua easy to learn and contributes to its small size. (Its Linux 64-bit
executable, including all standard libraries, has 220 KB.)

Efficiency: Lua has a quite efficient implementation. Independent benchmarks show Lua as
one of the fastest languages in the realm of scripting languages.

Portability: When we talk about portability, we are talking about running Lua on all platforms
we have ever heard about: al flavors of UNIX (Linux, FreeBSD, etc.) Windows,
Android, i0S, OS X, IBM mainframes, game consoles (PlayStation, Xbox, Wii,
etc.), microcontrollers (Arduino, etc.), and many more. The source code for each
of these platformsis virtually the same. Lua does not use conditional compilation

to adapt its codeto different machines; instead, it sticksto the standard SO (ANSI)
C. Thisway, you do not usually need to adapt it to anew environment: if you have
an 1SO C compiler, you just have to compile Lua, out of the box.

Audience

This book does not assume any prior knowledge of Lua or any specific programming language —except
for its last part, which discusses the Lua APl with C. However, it assumes the knowledge of some basic
programming concepts, in particular variables and assignment, control structures, functions and parame-
ters, recursion, streams and files, and basic data structures.

Lua users typically fall into three broad groups: those that use Lua aready embedded in an application
program, those that use Lua stand alone, and those that use Lua and C together. This book has much to
offer to al these groups.

Many people use Lua embedded in an application program, such as Adobe Lightroom, Nmap, or World
of Warcraft. These applications use Lua's C API to register new functions, to create new types, and to
change the behavior of some language operations, configuring Luafor their specific domains. Often, the
users of such applications do not even know that Luais an independent language adapted for a particular
domain. For instance, many developers of plug-ins for Lightroom do not know about other uses of the
language; Nmap users tend to think of Lua as the language of the Nmap Scripting Engine; many players
of World of Warcraft regard Lua as alanguage exclusive to that game. Despite these different worlds, the
core language is still the same, and the programming techniques you will learn here apply everywhere.

Luais useful also as a stand-alone language, not only for text processing and one-shot little programs,
but for medium-to-large projects, too. For such uses, the main functionality of Lua comes from libraries.
The standard libraries, for instance, offer pattern matching and other functionsfor string handling. AsLua
has improved its support for libraries, there has been a proliferation of external packages. LuaRocks, a
deployment and management system for Lua modules, passed one thousand modules in 2015, covering
all sorts of domains.

Finally, there are those programmers that work on the other side of the bench, writing applications that
use Lua as a C library. Those people will program more in C than in Lua, although they need a good
understanding of Luato createinterfacesthat are simple, easy to use, and well integrated with the language.

Book Structure

This edition adds new material and examples in many areas, including sandboxing, coroutines, date and
time manipulation, in addition to the new material related to version 5.3: integers, bitwise operations,
unsigned integers, etc.

More importantly, this edition marks a major restructuring of the text. Instead of organizing the materia
around the language (e.g., with separate chapters for each library), | tried to organize the material around
common themesin programming. That organization allowsthe book to better follow an order of increasing
complexity, with simple themes coming first. That order came from experience teaching courses about
the language; in particular, | think this new organization fits the book better as a didactic resource for
courses involving Lua.

As the previous editions, this one is organized in four parts, each with around nine chapters. However,
the parts have a quite new character.

Thefirst part coversthe basics of thelanguage (and it isfittingly named The Basics). It isorganized around
the main types of valuesin Lua: numbers, strings, tables, and functions. It also covers basic 1/0 and gives
an overview of the syntax of the language.

The second part, called Real Programming, covers more advanced topics that you can expect to find in
other similar languages, such as closures, pattern matching, date and time manipulation, data structures,
modules, and error handling.

The third part is called Lua-isms. As the name implies, it covers aspects of Luathat are particularly dif-
ferent from other languages, such as metatables and its uses, environments, weak tables, coroutines, and
reflection. These are a so the more advanced aspects of the language.

Finally, asin previous editions, the last part of the book coversthe API between Luaand C, for those that
use C to get the full power of Lua. The flavor of that part is necessarily quite different from the rest of
the book. There, we will be programming in C, not in Lua; therefore, we will be wearing a different hat.
For some readers, the discussion of the C APl may be of marginal interest; for others, it may be the most
relevant part of this book.

Along al parts, we focus on different language constructs and use numerous examples and exercises to
show how to usethem for practical tasks. We al so have afew interludes among the chapters. Each interlude
presents a short but complete program in Lua, which gives a more holistic view of the language.

Other Resources

Thereference manual isamust for anyonewho wantsto really learn alanguage. Thisbook does not replace
the Luareference manual; quite the opposite, it complements the manual. The manual only describes L ua.
It shows neither examples nor arationale for the constructs of the language. On the other hand, it describes
the whole language; this book skips over seldom-used dark corners of Lua. Moreover, the manual is the
authoritative document about L ua. Wherever thisbook disagrees with the manual, trust the manual. To get
the manual and more information about Lua, visit the Luasiteat htt p: / / ww. | ua. or g.

You can also find useful information at the Lua users' site, kept by the community of usersat htt p: / /
| ua- users. or g. Among other resources, it offers a tutorial, a list of third-party packages and docu-
mentation, and an archive of the official Luamailing list.

This book describes Lua 5.3, although most of its contents also apply to previous versions and probably
to future versions as well. All differences between Lua 5.3 and older Lua 5 versions are clearly marked in
the text. If you are using amore recent version (rel eased after the book), check the corresponding manual
for differences between versions.

A Few Typographical Conventions

The book encloses "l iteral strings" between double quotes and single characters, such as a,
between single quotes. Strings that are used as patterns are also enclosed between single quotes, like
1 %w_]*'. Thebook usesat ypewri t er font bothfor chunksof codeand for identifiers. For reserved
words, it uses aboldface font. Larger chunks of code are shown in display style:

-- program"Hello Wrld"
print("Hello World") --> Hello World

The notation - - > shows the output of a statement or the result of an expression:

print (10) --> 10
13 + 3 --> 16

Becauseadoublehyphen (- -) startsacomment in Lua, thereisno problemif you include these annotations
in your code.

Several code fragments in the book, mainly in theinitia chapters, should be entered in interactive mode.
In that case, | use a notation showing the Lua prompt (" > ") ineachline:

>3+ 5 --> 8
> mat h. sin(2. 3) --> 0.74570521217672

In Lua 5.2 and older versions, to print the result of an expression in interactive mode, you must precede
the expression with an equals sign:

> =3+ 5 --> 8
> a = 25
> = a --> 25

For compatibility, Lua 5.3 still accepts this equal sign.
Finally, the book uses the notation <- - > to indicate that something is equivalent to something else:

this <--> t hat

Running the Examples

Y ou will need aLuainterpreter to run the examplesin thisbook. Ideally, you should use Lua5.3, but most
of the examples run on older versions without modifications.

TheLuasite (ht t p: / / www. | ua. or g) keepsthe source code for the interpreter. If you have a C com-
piler and a working knowledge of how to compile C code in your machine, you should try to install Lua
from its source code; it isreally easy. The Lua Binaries site (search for | uabi nari es) offers precom-
piled Luainterpreters for most major platforms. If you use Linux or another UNIX-like system, you may
check the repository of your distribution; several distributions already offer a package with Lua.

There are several Integrated Development Environments (IDEs) for Lua. Again, you can easily find them
with abasic search. (Nevertheless, | am an old timer. | still prefer a command-line interface in a window
and atext editor in another, specialy for the initial learning steps.)

Acknowledgments

It is more than ten years since | published the first edition of this book. Severa friends and institutions
have helped me aong thisjourney.

As always, Luiz Henrique de Figueiredo and Waldemar Celes, Lua coauthors, offered all kinds of help.
André Carregal, Asko Kauppi, Brett Kapilik, Diego Nehab, Edwin Moragas, Fernando Jefferson, Gavin
Wraith, John D. Ramsdell, Norman Ramsey, Reuben Thomas, and Robert Day provided invaluable sug-
gestions and useful insights for diverse editions of this book. Luiza Novaes provided key support for the
cover design.

Lightning Source, Inc. proved areliable and efficient option for printing and distributing the book. Without
them, the option of self-publishing the book would not be an option.

Tecgraf, headed by Marcel o Gattass, housed the Luaproject fromitsbirth in 1993 until 2005, and continues
to help the project in several ways.

| also would like to thank the Pontifical Catholic University of Rio de Janeiro (PUC-Ri0) and the Brazilian
National Research Council (CNPq) for their continuous support to my work. In particular, the Lua project
would be impossible without the environment that | have at PUC-Rio.

Finally, | must express my deep gratitude to Noemi Rodriguez, for al kinds of help (technical and non-
technical) and for illumining my life.

Part |. The Basics

Table of Contents

L. GELING SEAMEAceeeeieeeeee et e e et e et et e e e 4
CRNUNKS . et 4
SOME LEXiCal CONVENTIONSceeitieeiiii ettt ettt ettt e e ettt e e e eeb e e eent e eeens 6
Global Vari@hlES ... 7
TYPES @NU VAIUBS ...ttt ettt e ettt e e ettt e e et e e e een e eeees 7

[PO PUPPPTTRPN 8
BOOIBANS ...t 8
The Stand-AloNe INEMPIELEN e enaans 9

2. Interlude; The BEight-QUEEN PUZZIEiiiiiie e 12

I NN [F0¢] 0T £ S PP P TSP 15
NUMEIAIS ..ttt et e e et e e et et e e et e e et et e e e e ena s 15
ATITNMELIC OPEIEIOIStieieiti ettt ettt e et et e et e e e e s 16
REELIONEI OPEIEIOIS ...ttt ettt ettt ettt e et e e et e e e ena s 17
The MathematiCal Libraryooooeuiiiiiiiiii e 18

RaNdOM-NUMDEN GENEIBIOTvuieieiii ettt ettt ettt ettt e e e eeneans 18
ROUNAING FUNCLIONSvteciii et 18
REPresentation LiMItSiiiiiiiiiiii et et e e e e e e eeees 19
1600011/ £ oo TSP PPTT R SPPPTTRUPPIN 21
PrECEOENCE ...ttt 22
LUB BEFOIE INTEOENS ...ttt ettt e e e 22

S |] 00 TSP PSPPSR 24
LTEral SEFNGS .. eeeeeeeeeet ettt et 24
LONG SIMNGS - eetteeeeett ettt et ettt ettt ettt e e et et e e et et e e et et e et e nb e e en e eee 25
L6007 oi o]0 L PP PTTRN 26
The SEING LIDIaIY ...eeeeeei et e e e e e e e 27
L6 oo o [ST S O UPPPTTR 29

B TADIES e e 33
TADIE TNAICES ...ttt 33
TaADIE CONSIIUCTONS ... ettt ettt et et e et et e e et e e e e b 35
Arrays, LIstS, @nd SEOUENCESoeuuiiiieeiti ettt e e et e e e e e e et e e et eeenaeees 36
TaADIE TIAVEISAl ...t 38
SAFE NAVIGALTION ...ttt e 38
The Table LiDIary ..o 39

B. FUNCLIONS ...t ettt ettt et e e b s 42
MUITIPIE RESUITS ...ttt e e et e ettt e e e e at e e e enb e eeens 43
Variadic FUNCHIONSceutieeeii et e et e e e e e 45
The function t @bl €. UNPAaCK ... 47
Proper Tail CallS ...coeue et 48

7. The EXternal WOrTd ... 50
The SIMPIE /O MOUELot 50
The Complete 1/O MOEcooouii e e 53
Other Operations ON FIlES ... oo 54
Other SYSIEM CallS ... et et 55

RUNNING SYSEEM COMMANGScceiiiieee e 55

8. FlliNG SOME GAPSeetiiieiiiii ettt ettt et e et et e e e eaaas 57
Local Variables @and BIOCKSuiiiiiiiiiiiii et 57
CONEIOI SEFUCTUIES ...ttt ettt e et e e e s 58

T BN 1S e 58
W e e 59
(1S 0= | PPN 59
NUMENTCEI TOF ...t e e e eeees 60

The Basics

Generic for

break, return, and goto

Chapter 1. Getting Started

To keep with tradition, our first program in Luajust prints" Hel o Wor | d":
print("Hello World")

If you are using the stand-alone Luainterpreter, all you have to do to run your first programisto call the
interpreter —usually named | ua or | ua5. 3— with the name of the text file that contains your program.
If you save the above program in afilehel | 0. | ua, the following command should run it:

% lua hello.lua

As a more complex example, the next program defines a function to compute the factorial of a given
number, asks the user for a number, and printsits factorial:

-- defines a factorial function
function fact (n)
if n ==0 then
return 1
el se
return n * fact(n - 1)
end
end

print("enter a nunber:")
a =io.read("*n") -- reads a nunber
print(fact(a))

Chunks

We call each piece of code that Lua executes, such as afile or asingle line in interactive mode, a chunk.
A chunk is simply a sequence of commands (or statements).

A chunk can beassimpleasasingle statement, such asinthe“HelloWorld” example, or it can be composed
of amix of statements and function definitions (which are actually assignments, aswe will seelater), such
asthefactorial example. A chunk can be aslarge aswewish. Because Luais used also asadata-description
language, chunks with several megabytes are not uncommon. The Lua interpreter has no problems at all
with large chunks.

Instead of writing your program to afile, you can run the stand-alone interpreter in interactive mode. If
you call | ua without any arguments, you will get its prompt:

% | ua
Lua 5.3 Copyright (C 1994-2016 Lua.org, PUC Ri o
>

Thereafter, each command that you type (suchasprint "Hel | o Wor | d") executesimmediately after
you enter it. To exit the interactive mode and the interpreter, just type the end-of-file control character
(ctrl-DinPOSIX, ct rl - Z in Windows), or call the function os. exi t , from the Operating System
library —you havetotypeos. exit ().

Starting in version 5.3, we can enter expressions directly in the interactive mode, and Luawill print their
values:

Getting Started

% | ua

Lua 5.3 Copyright (C 1994-2016 Lua.org, PUC Ri o
> math.pi / 4 --> 0.78539816339745

>a =15

> an2 --> 225

>a + 2 --> 17

In older versions, we need to precede these expressions with an equals sign:

% | uab. 2

Lua 5.2.3 Copyright (C 1994-2013 Lua.org, PUCGR o
>a =15

> = gnh2 --> 225

For compatibility, Lua 5.3 till accepts these equals signs.

To run that code as a chunk (not in interactive mode), we must enclose the expressions inside calls to
print:

print(math.pi / 4)
a =15

print(anr2)
print(a + 2)

Luausually interprets each line that we typein interactive mode as a compl ete chunk or expression. How-
ever, if it detects that the line is not complete, it waits for more input, until it has a complete chunk. This
way, we can enter amulti-line definition, such asthefactorial function, directly ininteractive mode. How-
ever, it isusually more convenient to put such definitionsin afile and then call Luato run thefile.

We can usethe-i option toinstruct Luato start an interactive session after running a given chunk:
% lua -i prog

A command line like this one will run the chunk in the file pr og and then prompt for interaction. Thisis
especially useful for debugging and manual testing. At the end of this chapter, we will see other options
for the stand-alone interpreter.

Another way to run chunksiswith the function dof i | e, whichimmediately executes afile. For instance,
suppose we have afilel i bl. | ua with the following code:

function norm (x, YY)
return math.sqgrt(x"2 + y"2)
end

function tw ce (x)
return 2.0 * x
end

Then, in interactive mode, we can type this code:

> dofile("libl.lua") -- load our library
>n =norm3.4, 1.0)
> twice(n) --> 7.0880180586677

Thefunctiondof i | e isuseful also when we aretesting apiece of code. We can work with two windows:
oneis atext editor with our program (in afile pr og. | ua, say) and the other is a console running Lua

Getting Started

in interactive mode. After saving a modification in our program, we execute dof i | e(" pr og. | ua")
in the Lua console to load the new code; then we can exercise the new code, calling its functions and
printing the resullts.

Some Lexical Conventions

Identifiers (or names) in Lua can be any string of letters, digits, and underscores, not beginning with a
digit; for instance
[] i 10 i
aSonewhat LongNane _INPUT
Y ou should avoid identifiers starting with an underscore followed by one or more upper-case | etters (e.g.,

__VERSI ON); they are reserved for special usesin Lua. Usually, | reserve theidentifier _ (asingle under-
score) for dummy variables.

The following words are reserved; we cannot use them as identifiers:

and br eak do el se el sei f
end fal se for function goto

i f in | ocal ni | not

or r epeat return t hen true
unti | whi | e

Luais case-sensitive: and is areserved word, but And and AND are two different identifiers.

A comment starts anywhere with two consecutive hyphens (- -) and runs until the end of the line. Lua
aso offers long comments, which start with two hyphens followed by two opening square brackets and
run until the first occurrence of two consecutive closing square brackets, like here:

--[[A nulti-line
| ong coment

1]

A common trick that we use to comment out a piece of code is to enclose the code between - - [[and
--11,like here:

-- 1

print (10) -- no action (comented out)

--11]

To reactivate the code, we add a single hyphen to the first line:

-
print(10) --> 10

--11]

Inthe first example, the- - [[inthefirst line starts along comment, and the two hyphensin the last line
are still inside that comment. In the second example, the sequence - - - [[starts an ordinary, single-line
comment, so that the first and the last lines become independent comments. In this case, the pri nt is
outside comments.

Lua needs no separator between consecutive statements, but we can use a semicolon if we wish. Line
breaks play no rolein Luas syntax; for instance, the following four chunks are al valid and equivalent:

1Long comments can be more complex than that, as we will see in the section called “Long strings’.

Getting Started

a=1

b=a* 2

a = 1;

b =a* 2;

a=1 b=a*?2

a=1 b=a*2 -- ugly, but valid

My personal convention isto use semicolons only when | write two or more statements in the same line
(which | hardly do).

Global Variables

Global variables do not need declarations; we simply usethem. It isnot an error to access anon-initialized
variable; wejust get the value nil as the result:

> b -->nil
> b =10
> b --> 10

If we assign nil to aglobal variable, Lua behaves as if we have never used the variable:

> b =nil
> b -->nil

Lua does not differentiate a non-initialized variable from one that we assigned nil. After the assignment,
Lua can eventually reclaim the memory used by the variable.

Types and Values

Luais a dynamically-typed language. There are no type definitions in the language; each value carries
its own type.

Thereare eight basic typesin Lua: nil, Boolean, number, string, userdata, function, thread, and table. The
functiont ype givesthe type name of any given value:

> type(nil) --> nij

> type(true) --> bool ean
> type(10.4 * 3) --> nunber

> type("Hello world") --> string

> type(io.stdin) --> userdata
> type(print) --> function
> type(type) --> function
> type({}) --> table

> type(type(X)) --> string

The last line will result in " st ri ng" no matter the value of X, because the result of t ype is aways
astring.

The userdata type allows arbitrary C datato be stored in Lua variables. It has no predefined operationsin
L ua, except assignment and equality test. Userdataare used to represent new types created by an application
program or alibrary written in C; for instance, the standard 1/0 library uses them to represent open files.
We will discuss more about userdata later, when we get to the C API.

Getting Started

Nil

Variables have no predefined types; any variable can contain values of any type:

> type(a) -->nil ("a'" is not initialized)
>a =10

> type(a) --> nunber

>a = "astring!'!"

> type(a) --> string

>a =nil

> type(a) -->nil

Usually, when we use a single variable for different types, the result is messy code. However, sometimes
the judicious use of this facility is helpful, for instance in the use of nil to differentiate a normal return
value from an abnormal condition.

Wewill discuss now the simple types nil and Boolean. In the following chapters, we will discussin detail
the types number (Chapter 3, Numbers), string (Chapter 4, Strings), table (Chapter 5, Tables), and function
(Chapter 6, Functions). We will explain the thread type in Chapter 24, Coroutines, where we discuss
coroutines.

Nil isatype with asingle value, nil, whose main property isto be different from any other value. Lua uses
nil as akind of non-value, to represent the absence of a useful value. As we have seen, a global variable
has anil value by default, beforeitsfirst assignment, and we can assign nil to aglobal variableto deleteit.

Booleans

The Boolean type has two values, @false{} and @true{}, which represent the traditional Boolean values.
However, Booleans do not hold a monopoly of condition values: in Lua, any value can represent a con-
dition. Conditiona tests (e.g., conditions in control structures) consider both the Boolean false and nil
as false and anything else as true. In particular, Lua considers both zero and the empty string as true in
conditional tests.

Throughout this book, | will write“false” to mean any false value, that is, the Boolean false or nil. When
| mean specifically the Boolean value, | will write “false”. The same holds for “true” and “true’.

L ua supports a conventional set of logical operators: and, or, and not. Like control structures, all logical
operators consider both the Boolean false and nil asfalse, and anything else astrue. The result of theand
operator isitsfirst operand if that operand is false; otherwise, the result is its second operand. The result
of the or operator isitsfirst operand if it is not false; otherwise, the result is its second operand:

>4 and 5 -->5
> nil and 13 -->nil
> false and 13 --> fal se
>0 or 5 -->0
> false or "hi" -->"hi"
> nil or false --> fal se

Both and and or use short-circuit evaluation, that is, they evaluate their second operand only when nec-
essary. Short-circuit evaluation ensures that expressionslike(i ~= 0 and a/i > b) do not cause
run-time errors: Luawill not try to evaluatea / i wheni iszero.

A useful Luaidiomisx = x or v, whichiseguivalentto

if not x then x = v end

Getting Started

That is, it setsx to adefault value v when x is not set (provided that x is not set to false).

Another useful idiomis((a and b) or c¢) orsimply (a and b or c) (giventhat and hasa
higher precedence than or). It isequivalent to the C expressiona ? b : c, provided that b isnot false.
For instance, we can select the maximum of two numbersx andy withtheexpression(x > y) and X
or y.Whenx > y,thefirst expression of the and istrue, so the and resultsin its second operand (x),
which is always true (because it is a number), and then the or expression results in the value of its first
operand, x. Whenx > vy isfase, theand expressionisfalse and so theor resultsin its second operand, .

The not operator always gives a Boolean value:

> not nil --> true
> not false --> true
> not O --> fal se
> not not 1 --> true
> not not nil --> false

The Stand-Alone Interpreter

The stand-alone interpreter (also called | ua. ¢ duetoitssourcefile or simply | ua dueto its executable)
isasmall program that allows the direct use of Lua. This section presents its main options.

Whentheinterpreter loadsafile, itignoresitsfirst lineif thisline startswith ahash (#). Thisfeature allows
the use of Lua as a script interpreter in POSIX systems. If we start our script with something like

#!/usr/1ocal /bin/lua
(assuming that the stand-alone interpreter islocated at / usr /| ocal / bi n), or
#!/usr/bin/env |ua
then we can call the script directly, without explicitly calling the Luainterpreter.
Theusageof | ua is
lua [options] [script [args]]

Everything is optional. As we have seen already, when we call | ua without arguments the interpreter
enters the interactive mode.

The - e option alows us to enter code directly into the command line, like here:
%lua -e "print(math.sin(12))" --> -0.53657291800043
(POSIX systems need the double quotes to stop the shell from interpreting the parentheses.)

The-1 option loads a library. Aswe saw previously, - i enters interactive mode after running the other
arguments. Therefore, the next call will load thel i b library, then execute the assignment x = 10, and
finally present a prompt for interaction.

%lua -i -llib -e "x = 10"

If we write an expression in interactive mode, Lua printsits value:

> mat h. si n(3) --> 0.14112000805987
>a =30
> a --> 30

Getting Started

(Remember, thisfeature camewith Lua5.3. In older versions, we must precede the expressionswith equals
signs.) To avoid this print, we can finish the line with a semicolon:

> jo.flush() --> true
> jo.flush();

The semicolon makes the line syntactically invalid as an expression, but still valid as acommand.

Before running its arguments, the interpreter looks for an environment variablenamed LUA INIT_5_3
or elsg, if thereisno such variable, LUA | NI T. If thereisone of thesevariablesanditscontentis@i | e-

nane, then the interpreter runsthe givenfile. If LUA I NI T_5_ 3 (or LUA | NI T) isdefined but it does
not start with an at-sign, then the interpreter assumes that it contains Lua code and runsit. LUA | NI T
gives us great power when configuring the stand-alone interpreter, because we have the full power of
Luain the configuration. We can preload packages, change the path, define our own functions, rename
or delete functions, and so on.

A script can retrieve its arguments through the predefined global variable ar g. In a call like % | ua
script a b c,theinterpreter creates the table ar g with all the command-line arguments, before
running any code. The script name goes into index 0O; its first argument (" a" in the example) goes to
index 1, and so on. Preceding options go to negative indices, asthey appear before the script. For instance,
consider thiscall:

%lua -e "sin=math.sin" script ab

Theinterpreter collects the arguments as follows:

arg[-3] = "lua"

arg[-2] = "-e"

arg[-1] = "sin=math.sin"
arg[0] = "script"

arg[1] = "a"

arg[2] = "b"

More often than not, a script uses only the positive indices (ar g[1] and ar g[2] , in the example).
A script can aso retrieve its arguments through a vararg expression. In the main body of a script, the

expression . . . (three dots) results in the arguments to the script. (We will discuss vararg expressionsin
the section called “Variadic Functions’.)

Exercises

Exercise 1.1: Run the factorial example. What happens to your program if you enter a negative number?
Modify the example to avoid this problem.

Exercise 1.2: Run the t wi ce example, both by loading the file with the - | option and with dof i | e.
Which way do you prefer?

Exercise 1.3: Can you name other languages that use” - - " for comments?

Exercise 1.4: Which of the following strings are valid identifiers?

_end End end until ? nil NULL one-step
Exercise 1.5: What is the value of the expressiont ype(nil) == nil ?(You can use Luato check

your answer.) Can you explain this result?

10

Getting Started

Exercise 1.6: How can you check whether avalue is a Boolean without using the functiont ype?
Exercise 1.7: Consider the following expression:

(x and y and (not z)) or ((not y) and x)
Are the parentheses necessary? Would you recommend their use in that expression?

Exercise 1.8: Write a simple script that prints its own name without knowing it in advance.

11

Chapter 2. Interlude: The Eight-Queen
Puzzle

In this chapter we make a short interlude to present a simple but complete program in Luathat solves the
eight-queen puzze: its goal is to position eight queens in a chessboard in such a way that no queen can
attack another one.

The code here does not use anything specific to Lua; we should be able to translate the code to several
other languages with only cosmetic changes. The ideaisto present the general flavor of Lua, in particular
how the Lua syntax looks like, without going into details. We will cover al missing detailsin subsequent
chapters.

A first step to solving the eight-queen puzzle isto note that any valid solution must have exactly one queen
in each row. Therefore, we can represent potential solutionswith asimple array of eight numbers, one for
each row; each number tells at which column isthe queen at that row. For instance, thearray { 3, 7, 2,
1, 8, 6, 5, 4} meansthatthe queensarein the squares(1,3), (2,7), (3,2), (4,1), (5,8), (6,6), (7,5),
and (8,4). (By the way, thisis not avalid solution; for instance, the queen in square (3,2) can attack the
one in square (4,1).) Note that any valid solution must be a permutation of the integers 1 to 8, asavalid
solution also must have exactly one queen in each column.

The complete program isin Figure 2.1, “ The eight-queen program”.

12

Interlude: The Eight-Queen Puzzle

Figure 2.1. The eight-queen program
N =8 -- board size

-- check whet her position (n,c) is free fromattacks
function isplaceok (a, n, c)

for i =1, n- 1 do -- for each queen already pl aced
if (a[i] == c¢) or -- sanme colum?
(a[i] - i =c¢ - n) or -- sane di agonal ?
(a[i] +i ==c¢c + n) then -- sane di agonal ?
return fal se -- place can be attacked
end
end
return true -- no attacks; place is K
end

-- print a board
function printsolution (a)

for i =1, Ndo -- for each row
for j =1, Ndo -- and for each col umm
-- wite "X" or "-" plus a space
io.wite(a[i] == and "X" or "-", " ")
end
io.wite("\n")
end
io.wite("\n")
end

-- add to board '"a' all queens from'n' to 'N
function addqueen (a, n)

if n>Nthen -- all queens have been pl aced?
printsol ution(a)
else -- try to place n-th queen

for ¢ =1, Ndo
if isplaceok(a, n, c¢) then

a[n] =c -- place n-th queen at colum 'c
addqueen(a, n + 1)
end
end
end

end

-- run the program
addqueen({}, 1)

Thefirst functionisi spl aceok, which checks whether a given position on a board is free from attacks
from previously placed queens. More specificaly, it checks whether putting the n-th queen in column c
will conflict with any of the previous n- 1 queens already set in the array a. Remember that, by represen-
tation, two queens cannot be in the samerow, soi spl aceok checks whether there are no queensin the

same column or in the same diagonals of the new position.

Next we have the function pr i nt sol ut i on, which prints aboard. It simply traverses the entire board,
printing an X at positions with a queen and a- at other positions, without any fancy graphics. (Note its
use of the and—or idiom to select the character to print at each position.) Each result will look like this:

13

Interlude: The Eight-Queen Puzzle

- X - - - -

The last function, addqueen, is the core of the program. It tries to place al queens larger than or equal
to n in the board. It uses backtracking to search for valid solutions. Firgt, it checks whether the solution
iscomplete and, if so, prints that solution. Otherwise, it loops through al columns for the n-th queen; for
each column that is free from attacks, the program places the queen there and recursively tries to place
the following queens.

Finally, the main body simply callsaddqueen on an empty solution.

Exercises

Exercise 2.1: Modify the eight-queen program so that it stops after printing the first solution.

Exercise 2.2: An alternative implementation for the eight-queen problem would be to generate all possible
permutations of 1 to 8 and, for each permutation, to check whether it is valid. Change the program to use
this approach. How does the performance of the new program compare with the old one? (Hint: compare
the total number of permutations with the number of times that the original program calls the function
i spl aceok.)

14

Chapter 3. Numbers

Until version 5.2, Luarepresented all numbers using double-precision floating-point format. Starting with
version 5.3, Lua uses two alternative representations for numbers: 64-bit integer numbers, called simply
integers, and double-precision floating-point numbers, called simply floats. (Note that, in this book, the
term “float” does not imply single precision.) For restricted platforms, we can compile Lua 5.3 as Small
Lua, which uses 32-hit integers and single-precision fl oats.!

Theintroduction of integersisthe hallmark of Lua5.3, itsmain difference against previousversionsof L ua.
Nevertheless, this change created few incompatibilities, because double-precision floating-point numbers
can represent integers exactly up to 2%% Most of the material we will present hereisvalid for Lua5.2 and
older versions, too. In the end of this chapter | will discussin more detail the incompatibilities.

Numerals

We can write humeric constants with an optional decimal part plus an optional decimal exponent, like
these examples:

> 4 .> 4

> 0.4 --> 0.4

> 4.57e-3 --> 0.00457

> 0. 3el2 --> 300000000000.0
> 5E+20 --> 5e+20

Numeralswith adecimal point or an exponent are considered floats; otherwise, they aretreated asintegers.
Both integer and float values have type " nunber " :

> type(3) --> nunber
> type(3.5) --> nunber
> type(3.0) --> nunber

They have the same type because, more often than not, they are interchangeable. Moreover, integers and
floats with the same value compare as equal in Lua

>1 ==1.0 --> true
> -3 ==-3.0 --> true
> 0.2e3 == 200 --> true

In the rare occasions when we need to distinguish between floats and integers, we can use mat h. t ype:

> mat h. type(3) --> integer
> mat h. type(3.0) --> fl oat

Moreover, Lua 5.3 shows them differently:

> 3 --> 3

> 3.0 --> 3.0

> 1000 --> 1000
> le3 --> 1000.0

Like many other programming languages, Lua supports hexadecimal constants, by prefixing them with
0x. Unlike many other programming languages, L ua supports al so floating-point hexadecimal constants,

We create Small Lua from the same source files of Standard Lua, compiling them with the macro LUA_32BI TS defined. Except for the sizes for
number representations, Small Luaisidentical to Standard Lua

15

Numbers

which can have a fractional part and a binary exponent, prefixed by p or P.2 The followi ng examples
illustrate this format:

> Oxff --> 255
> Ox1A3 --> 419
> 0x0. 2 --> 0.125
> Ox1p-1 --> 0.5
> Oxa. bp2 --> 42.75

Luacan write numbersin thisformat using st ri ng. f or mat with the % option:

> string.fornmat("%", 419) --> 0x1. a3p+8
> string.fornmat("%", 0.1) --> 0x1.999999999999ap- 4

Although not very friendly to humans, this format preserves the full precision of any float value, and the
conversion is faster than with decimals.

Arithmetic Operators

Luapresentsthe usual set of arithmetic operators: addition, subtraction, multiplication, division, and nega-
tion (unary minus). It also supports floor division, modulo, and exponentiation.

One of the main guidelines for the introduction of integers in Lua 5.3 was that “ the programmer may
choose to mostly ignore the difference between integers and floats or to assume compl ete control over the
representation of each number.” 3 Therefore, any arithmetic operator should give the same result when
working on integers and when working on reals.

The addition of two integers is aways an integer. The same is true for subtraction, multiplication, and
negation. For those operations, it does not matter whether the operands are integers or floats with integral
values (except in case of overflows, which we will discussin the section called “ Representation Limits’);
theresult is the same in both cases:

> 13 + 15 --> 28
> 13.0 + 15.0 -->28.0

If both operands are integers, the operation gives an integer result; otherwise, the operation results in a
float. In case of mixed operands, Lua converts the integer oneto afloat before the operation:

> 13.0 + 25 -->38.0
> -(3 * 6.0) --> -18.0

Division does not follow that rule, because the division of two integers does not need to be an integer.
(In mathematical terms, we say that the integers are not closed under division.) To avoid different results
between division of integers and divisions of floats, division always operates on floats and gives float
results:

2.0 --> 1.5

3.0/
3/ 2 --> 1.5

>
>
For integer division, Lua 5.3 introduced a new operator, called floor division and denoted by / /. As
its name implies, floor division always rounds the quotient towards minus infinity, ensuring an integral
result for all operands. With this definition, this operation can follow the same rule of the other arithmetic

operators: if both operands are integers, the result is an integer; otherwise, the result is a float (with an
integral value):

2This feature was introduced in Lua5.2.
3From the Lua 5.3 Reference Manual.

16

Numbers

>3 /] 2 -->1
>3.0// 2 --> 1.0
>6// 2 --> 3
>6.0// 2.0 --> 3.0
> -9 /] 2 --> -5
>1.5// 0.5 --> 3.0

The following equation defines the modul o operator:
a %b ==a- ((a/l b) * b)

Integral operands ensure integral results, so this operator also follows the rule of other arithmetic opera-
tions: if both operands are integers, the result is an integer; otherwise, theresult is afloat.

For integer operands, modulo has the usual meaning, with the result always having the same sign as the
second argument. In particular, for any given positive constant K, the result of the expresson x % K
is always in the range [0,K-1], even when X is negative. For instance, i % 2 always resultsin O or 1,
for any integer i .

For real operands, modulo has some unexpected uses. For instance, x - x % 0. 01 isx with exactly
two decimal digits,andx - x % 0. 001 isx with exactly three decimal digits:

> X = mat h. pi
> X - X9%0.01 --> 3.14
> X - X%0. 001 --> 3.141

Asanother example of the use of the modul o operator, suppose we want to check whether avehicleturning
agiven angle will start to backtrack. If the angle isin degrees, we can use the following formula:

| ocal tolerance = 10
function isturnback (angle)

angle = angle % 360

return (math.abs(angle - 180) < tol erance)
end

This definition works even for negative angles:
print(isturnback(-180)) --> true
If we want to work with radians instead of degrees, we simply change the constantsin our function:

| ocal tolerance = 0.17
function isturnback (angle)

angle = angle % (2*math. pi)

return (math. abs(angle - math.pi) < tol erance)
end

The operation angl e % (2 * mat h. pi) isal we need to normalize any angle to a value in the
interval [0, 2#).

Lua also offers an exponentiation operator, denoted by a caret (*). Like division, it always operates on

floats. (Integers are not closed under exponentiation; for instance, 22 isnot an integer.) We can write
x"0. 5 to compute the square root of x and x(1/ 3) to compute its cubic root.

Relational Operators

Lua provides the following relational operators:

17

Numbers

< > <= >= == ~=
All these operators always produce a Boolean value.

The == operator tests for equality; the ~= operator is the negation of equality. We can apply these opera-
tors to any two values. If the values have different types, Lua considers them not equal. Otherwise, Lua
compares them according to their types.

Comparison of numbers aways disregards their subtypes; it makes no difference whether the number is
represented as an integer or as afloat. What mattersisits mathematical value. (Nevertheless, it is slightly
more efficient to compare numbers with the same subtypes.)

The Mathematical Library

Luaprovides astandard mat h library with a set of mathematical functions, including trigonometric func-
tions (si n, cos, t an, asi n, etc.), logarithms, rounding functions, max and ni n, a function for gen-
erating pseudo-random numbers (r andon, plus the constants pi and huge (the largest representable
number, which is the special value inf on most platforms.)

> math.sin(math. pi / 2) --> 1.0
> mat h. max(10.4, 7, -3, 20) --> 20
> mat h. huge --> inf

All trigonometric functions work in radians. We can use the functions deg and r ad to convert between
degrees and radians.

Random-number generator

Themat h. r andomfunction generates pseudo-random numbers. We can call it in three ways. When we
call it without arguments, it returns a pseudo-random real number with uniform distribution in the interval
[0,1). When we call it with only one argument, an integer n, it returns a pseudo-random integer in the
interval [1,n]. For instance, we can simulate the result of tossing adie with the call r andon(6) . Finally,
we can cal r andomwith two integer arguments, | and u, to get a pseudo-random integer in the interval

[1u].

We can set a seed for the pseudo-random generator with the function r andonseed; its numeric sole
argument is the seed. When a program starts, the system initializes the generator with the fixed seed
1. Without another seed, every run of a program will generate the same sequence of pseudo-random
numbers. For debugging, this is a nice property; but in a game, we will have the same scenario over
and over. A common trick to solve this problem is to use the current time as a seed, with the call
mat h. randonseed(os. ti me()). (We will see os. ti ne in the section called “The Function
os.tinme")

Rounding functions

The math library offersthree rounding functions: f | oor , cei | , and nodf . Floor rounds towards minus
infinite, cell rounds towards plusinfinite, and nodf rounds towards zero. They return an integer result if
it fitsin an integer; otherwise, they return afloat (with an integral value, of course). The function nodf ,
besides the rounded value, a so returns the fractional part of the number as a second result.

> mat h. f1 oor (3. 3) --> 3
> mat h. f1 oor(-3. 3) --> -4

4Aswe will discussin the section called “Multiple Results’, afunction in Lua can return multiple values.

18

Numbers

> mat h. cei |l (3. 3) --> 4

> math.ceil (-3.3) --> -3

> mat h. nodf (3. 3) --> 3 0.3

> mat h. nodf (- 3. 3) --> -3 -0.3

> mat h. f1 oor (2"70) --> 1.1805916207174e+21

If the argument is already an integer, it is returned unaltered.

If wewant to round anumber x to the nearest integer, we could computethefloor of x + 0. 5. However,
thissimple addition can introduce errors when the argument isalargeintegral value. For instance, consider
the next fragment:

X = 2752 + 1
print(string.format ("%l %", x, math.floor(x + 0.5)))
--> 4503599627370497 4503599627370498

What happensiis that 2°2 + 1.5 does not have an exact representation as afloat, so it isinternally rounded
in away that we cannot control. To avoid this problem, we can treat integral values separately:

function round (x)
local f = math. fl oor(x)

if x ==1f then return f
el se return math.floor(x + 0.5)
end

end

The previous function will always round half-integers up (e.g., 2.5 will be rounded to 3). If we want
unbiased rounding (that rounds half-integers to the nearest even integer), our formula fails when x +
0. 5 isan odd integer:

> math.floor(3.5 + 0.5) --> 4 (ok)
> math.floor(2.5 + 0.5) --> 3 (wr ong)

Again, the modulo operator for floats showsitsusefulness: thetest (x % 2. 0 == 0. 5) istrue exactly
whenx + 0. 5isan odd integer, that is, when our formulawould give awrong result. Based on thisfact,
it is easy to define afunction that does unbiased rounding:

function round (x)
local f = math.fl oor(x)
if (x ==f) or (x %2.0 == 0.5) then

return f
el se
return math.floor(x + 0.5)
end
end
print(round(2.5)) --> 2
print(round(3.5)) --> 4
print(round(-2.5)) --> -2
print(round(-1.5)) --> -2

Representation Limits

Most programming languages represent numbers with some fixed number of bits. Therefore, those repre-
sentations have limits, both in range and in precision.

19

Numbers

Standard Lua uses 64-bit integers. Integers with 64 bits can represent values up to 2% - 1, roughly 10'°,
(Small Lua uses 32-hit integers, which can count up to two billions, approximately.) The math library
defines constants with the maximum (mat h. maxi nt eger) and the minimum (nat h. m ni nt eger)
values for an integer.

This maximum value for a 64-hit integer is alarge number: it is thousands times the total wealth on earth
counted in cents of dollars and one billion times the world popul ation. Despite this large value, overflows
occur. When we compute an integer operation that would result in avalue smaller than mi ni nt eger or
larger than maxi nt eger , the result wraps around.

In mathematical terms, to wrap around means that the computed result is the only number between mi n-
i nt eger andmaxi nt eger thatisequa modulo 254 to the mathematical result. In computational terms,
it means that we throw away the last carry bit. (Thislast carry bit would increment a hypothetical 65th bit,
which represents 2% Thus, to ignore this bit does not change the modulo 254 of theval ue.) This behavior
is consistent and predictable in al arithmetic operations with integersin Lua:

> mat h. naxi nteger + 1 == nat h. m ni nt eger --> true
> mat h. m ninteger - 1 == nat h. maxi nt eger --> true
> -mat h. mi ni nt eger == mat h. m ni nt eger --> true
> mat h. mi ninteger // -1 == math. m ni nteger --> true

The maximum representable integer isOx7f f . . . f f f, that is, a number with al bits set to one except
the highest bit, which is the signal bit (zero means a non-negative number). When we add one to that
number, it becomes 0x800. . . 000, which is the minimum representable integer. The minimum integer
has a magnitude one larger than the magnitude of the maximum integer, as we can see here:

> mat h. naxi nt eger --> 09223372036854775807
> Ox7fffffffffffffff --> 9223372036854775807
> mat h. ni ni nt eger --> -9223372036854775808
> 0x8000000000000000 --> -9223372036854775808

For floating-point numbers, Standard L ua uses double precision. It represents each number with 64 bits, 11
of which are used for the exponent. Double-precision floating-point numbers can represent numbers with
roughly 16 significant decimal digits, in a range from -103% to 103%. (Small Lua uses single-precision
floats, with 32 bits. In this case, the range is from -10% to 10%, with roughly seven significant decimal
digits.)

The range of double-precision floats is large enough for most practical applications, but we must always
acknowledge the limited precision. The situation here is not different from what happens with pen and
paper. If we use ten digits to represent a number, 1/ 7 becomes rounded to 0.142857142. If we compute
1/ 7 * 7 usingten digits, theresult will be 0.999999994, which is different from 1. Moreover, numbers
that have a finite representation in decimal can have an infinite representation in binary. For instance,
12.7 - 20 + 7. 3isnotexactly zero even when computed with double precision, because both 12. 7
and 7. 3 do not have an exact finite representation in binary (see Exercise 3.5).

Because integers and floats have different limits, we can expect that arithmetic operations will give dif-
ferent results for integers and floats when the results reach these limits:

> mat h. maxi nt eger + 2 --> -9223372036854775807
> mat h. maxi nteger + 2.0 -->9.2233720368548e+18

In this example, both results are mathematically incorrect, but in quite different ways. Thefirst line makes
an integer addition, so the result wraps around. The second line makes a float addition, so the result is
rounded to an approximate value, aswe can see in the following equality:

> mat h. maxi nteger + 2.0 == math. maxi nteger + 1.0 --> true

20

Numbers

Each representation has its own strengths. Of course, only floats can represent fractional numbers. Floats
have amuch larger range, but the range where they can represent integers exactly isrestricted to [—253,253] .
(Those are quite large numbers nevertheless.) Up to these limits, we can mostly ignore the differences
between integers and floats. Outside these limits, we should think more carefully about the representations

we are using.
Conversions
Toforceanumber to beafloat, we can simply add 0. 0 toit. Aninteger aways can be converted to afloat:
>-3+0.0 -->-3.0
> Ox7fffffffffffffff + 0.0 --> 9,2233720368548e+18

Any integer up to 2> (which is 9007199254740992) has an exact representation as a double-precision
floating-point number. Integers with larger absolute values may |ose precision when converted to afloat:

> 9007199254740991 + 0.0 == 9007199254740991 --> true
> 9007199254740992 + 0.0 == 9007199254740992 --> true
> 9007199254740993 + 0.0 == 9007199254740993 --> fal se

In the last line, the conversion rounds the integer 2°%+1 to the float 2°3, breaking the equality.
To force a number to be an integer, we can OR it with zero?®

> 2753 --> 9.007199254741e+15 (f1oat)
> 2753 | 0 --> 9007199254740992 (i nt eger)

Lua does this kind of conversion only when the number has an exact representation as an integer, that is,
it has no fractional part and it isinside the range of integers. Otherwise, Luaraises an error:

>3.2| 0 -- fractional part
stdin:1l: nunmber has no integer representation
> 2764 | O -- out of range

stdin:1l: nunmber has no integer representation
> mat h. randonm(1, 3.5)
stdin:1l: bad argunment #2 to 'random
(nunmber has no integer representation)

To round afractional number, we must explicitly call arounding function.

Another way to force a number into an integer isto use mat h. t oi nt eger , which returns nil when the
number cannot be converted:

> mat h. t oi nt eger (- 258. 0) --> -258

> mat h. t oi nt eger (2730) --> 1073741824

> mat h. t oi nt eger (5. 01) -->nil (not an integral val ue)
> mat h. t oi nt eger (2764) -->nil (out of range)

This function is particularly useful when we need to check whether the number can be converted. As
an example, the following function converts a number to integer when possible, leaving it unchanged
otherwise:

function cond2int (x)
return math.toi nteger(x) or x

SBitwise operations are new in Lua5.3. We will discuss them in the section called “Bitwise Operators’.

21

Numbers

end

Precedence

Operator precedence in Luafollows the table below, from the higher to the lower priority:

AN

unary operators (- # ~ not)
* / /1 %

+ -

.. (concatentation)
<< >> (bitw se shifts)
& (bitwi se AND)

~ (bitwi se exclusive OR
| (bitw se OR

< > <= >= ~= ==

and

or

All binary operators are left associative, except for exponentiation and concatenation, which are right
associative. Therefore, the following expressions on the left are equivalent to those on the right:

a+i < b/2+1 <--> (a+i) < ((b/2)+1)
5+x"2*8 <--> 5+((x"2) *8)
a<yandy <=z <--> (a <y) and (y <= 2z)
- xA2 <--> - (x"2)

xX"y"z <--> xMy"z)

When in doubt, always use explicit parentheses. It is easier than looking it up in the manual and others
will probably have the same doubt when reading your code.

Lua Before Integers

Not by chance, the introduction of integersin Lua 5.3 created few incompatibilities with previous Lua
versions. As | said, programmers can mostly ignore the difference between integers and floats. When
we ignore these differences, we aso can ignore the differences between Lua 5.3 and Lua 5.2, where all
numbers are floats. (Regarding numbers, Lua 5.0 and Lua 5.1 are exactly like Lua5.2.)

Of course, the main incompatibility between Lua5.3 and Lua 5.2 is the representation limits for integers.
Lua5.2 can represent exact integersonly up to 23, whilein Lua5.3 thelimit is 253 When counting things,
this difference is seldom an issue. However, when the number represents some generic bit pattern (e.g.,
three 20-bit integers packed together), the difference can be crucial.

Although Lua 5.2 did not support integers, they sneaked into the language in several ways. For instance,
library functions implemented in C often get integer arguments. Lua 5.2 does not specify how it converts
floatsto integersin these places. the manual saysonly that “[the number] istruncated in some non-specified
way”. This is not a hypothetical issue; Lua 5.2 indeed can convert -3.2 to -3 or -4, depending on the
platform. Lua5.3, onthe other hand, defines precisely these conversions, doing them only when the number
has an exact integer representation.

Lua 5.2 does not offer the function mat h. t ype, as all numbers have the same subtype. Lua 5.2 does
not offer the constants mat h. maxi nt eger and mat h. m ni nt eger, asit has no integers. Lua 5.2
also does not offer floor division, although it could. (After all, its modulo operator is already defined in
terms of floor division.)

22

Numbers

Surprisingly, the main source of problems related to the introduction of integers was how Lua converts
numbers to strings. Lua 5.2 formats any integral value as an integer, without a decimal point. Lua 5.3
formats al floats as floats, either with a decimal point or an exponent. So, Lua 5.2 formats 3. 0 as" 3",
while Lua5.3 formatsitas"” 3. 0" . Although Lua has never specified how it formats numbers in conver-
sions, many programs relied on the previous behavior. We can fix thiskind of problem by using an explicit
format when converting numbersto strings. However, more often than not, this problem indicates a deeper
flaw somewhere else, where an integer becomes a float with no good reason. (In fact, this was the main
motivation for the new format rulesin version 5.3. Integral values being represented as floats usually isa
bad smell in a program. The new format rule exposes these smells.)

Exercises

Exercise 3.1: Which of the following are valid numerals? What are their values?

. 0el12 .el2 0. Oe 0Ox12 OxXABFG OxA FFFF OxXFFFFFFFF
0x 0x1P10 0. 1lel 0x0. 1p1

Exercise 3.2: Explain the following results:

> mat h. maxi nt eger * 2 --> -2
> mat h. m ni nteger * 2 -->0
> mat h. maxi nt eger * mat h. naxi nt eger --> 1
> mat h. m ni nt eger * mat h. m ni nt eger -->0

(Remember that integer arithmetic always wraps around.)

Exercise 3.3: What will the following program print?

for i = -10, 10 do
print(i, i %3)
end

Exercise 3.4: What isthe result of the expression 2" 374? What about 2/ - 3747

Exercise 3.5: Thenumber 12.7 isequal to thefraction 127/10, where the denominator isapower of ten. Can
you expressit asacommon fraction where the denominator isapower of two?What about the number 5.5?

Exercise 3.6: Write a function to compute the volume of aright circular cone, given its height and the
angle between a generatrix and the axis.

Exercise3.7: Using mat h. r andom writeafunction to produce a pseudo-random number with astandard
normal (Gaussian) distribution.

23

Chapter 4. Strings

Strings represent text. A string in Lua can contain asingle letter or an entire book. Programs that manip-
ulate strings with 100K or 1M characters are not unusual in Lua.

Strings in Lua are sequences of bytes. The Lua core is agnostic about how these bytes encode text. Lua
is eight-bit clean and its strings can contain bytes with any numeric code, including embedded zeros.
This means that we can store any binary data into a string. We can also store Unicode strings in any
representation (UTF-8, UTF-16, etc.); however, as we will discuss, there are severa good reasons to use
UTF-8 whenever possible. The standard string library that comes with L ua assumes one-byte characters,
but it can handle UTF-8 strings quite reasonably. Moreover, since version 5.3, Lua comes with a small
library to help the use of UTF-8 encoding.

Stringsin Luaareimmutable values. We cannot change a character inside astring, aswe can in C; instead,
we create anew string with the desired modifications, as in the next example:

a = "one string"

b = string.gsub(a, "one", "another") -- change string parts
print(a) --> one string

print(b) --> another string

Stringsin Lua are subject to automatic memory management, like all other Lua objects (tables, functions,
etc.). This means that we do not have to worry about allocation and deallocation of strings; Lua handles
it for us.

We can get the length of a string using the length operator (denoted by #):

a = "hello"
print (#a) -->5
print (#"good bye") --> 8

This operator always counts the length in bytes, which is not the same as characters in some encodings.

We can concatenate two strings with the concatenation operator . . (two dots). If any operand isanumber,
L ua converts this number to a string:

>"Hello " .. "Wrld" --> Hello World
> "result is " .. 3 -->result is 3
(Some languages use the plus sign for concatenation, but 3 + 5 isdifferentfrom3 .. 5.)

Remember that strings in Lua are immutable values. The concatenation operator always creates a new
string, without any modification to its operands:

>a = "Hello"
>a .. " Wrld" --> Hello World
> a --> Hello

Literal strings

We can delimit literal strings by single or double matching quotes:

"a line"
"anot her |ine'

a
b

24

Strings

They are equivalent; the only differenceisthat inside each kind of quote we can use the other quote without
€SCapes.

As amatter of style, most programmers always use the same kind of quotes for the same kind of strings,
where the “kinds’ of strings depend on the program. For instance, a library that manipulates XML may
reserve single-quoted strings for XML fragments, because those fragments often contain double quotes.

Stringsin Lua can contain the following C-like escape sequences:

\a bell

\b back space

\ f form feed

\'n newline

\r carriage return
\'t horizontal tab
\'v vertical tab

\\ backdlash

\ " double quote
\! single quote

The following examples illustrate their use:

> print("one line\nnext line\n\"in quotes\", 'in quotes'")
one line

next |ine

"in quotes", 'in quotes'

> print('a backslash inside quotes: \'"\\\'")

a backsl ash inside quotes: '\’

> print("a sinmpler way: "\\'")

a sinpler way: "\’

We can specify acharacter in aliteral string also by its numeric value through the escape sequences\ ddd
and \ xhh, where ddd is a sequence of up to three decimal digits and hh is a sequence of exactly two
hexadecimal digits. As a somewhat artificia example, the two literals" ALO n123\"" and ' \ x41LO
\ 10\ 04923""' havethesamevalueinasystem using ASCII: 0x41 (65 in decimal) isthe ASCII codefor
A, 10isthe codefor newline, and 49 isthe codefor thedigit 1. (In this example we must write 49 with three
digits, as\ 049, because it is followed by another digit; otherwise Lua would read the escape as\ 492.)
We could also write that same string as ' \ x41\ x4c\ x4f\ x0a\ x31\ x32\ x33\ x22' , representing
each character by its hexadecimal code.

Since Lua 5.3, we can also specify UTF-8 characters with the escape sequence\ u{ h. .. h}; wecan
write any number of hexadecimal digitsinside the brackets:

> "\u{3b1} \u{3b2} \u{3b3}" > H##

(The above example assumes an UTF-8 terminal.)
Long strings

We can delimit literal strings also by matching double square brackets, as we do with long comments.
Literalsin thisbracketed form can run for several lines and do not interpret escape sequences. Moreover, it

25

Strings

ignoresthefirst character of the string when this character isanewline. Thisform isespecially convenient
for writing strings that contain large pieces of code, as in the following example:

page = [[
<htm >
<head>
<title>An HTML Page</title>
</ head>
<body>
Lua</ a>
</ body>
</htm >

11
write(page)

Sometimes, we may need to enclose a piece of code containing something likea = b[c[i]] (notice
the]] inthiscode), or we may need to enclose some code that already has some code commented out.
To handle such cases, we can add any number of equals signs between the two opening brackets, asin
[===[. After this change, the litera string ends only at the next closing brackets with the same number
of equals signs in between (] ===] , in our example). The scanner ignores any pairs of brackets with a
different number of equals signs. By choosing an appropriate number of signs, we can enclose any literal
string without having to modify it in any way.

This same facility is valid for comments, too. For instance, if we start a long comment with - - [=[, it
extends until the next] =] . This facility allows us to comment out easily a piece of code that contains
parts already commented out.

Long strings aretheideal format to includeliteral text in our code, but we should not use them for non-text
literals. Although literal stringsin Lua can contain arbitrary bytes, it is not a good idea to use this feature
(e.g., you may have problems with your text editor); moreover, end-of-line sequenceslike"\ r\ n" may
be normalized to "\ n" when read. Instead, it is better to code arbitrary binary data using numeric escape
seguences either in decimal or in hexadecimal, such as" \ x13\ x01\ xA1\ xBB" . However, this posesa
problem for long strings, because they would result in quite long lines. For those situations, since version
5.2 Lua offers the escape sequence\ z: it skips all subsequent space characters in the string until the first
non-space character. The next exampleillustrates its use:

data = "\ x00\ x01\ x02\ x03\ x04\ x05\ x06\ x07\ z
\ x08\ x09\ x0OA\ xOB\ xOC\ xOD\ xOE\ xOF"

The\ z at the end of the first line skips the following end-of-line and the indentation of the second line,
so that the byte\ x08 directly follows\ x07 in the resulting string.

Coercions

Lua provides automatic conversions between numbers and strings at run time. Any numeric operation
applied to a string triesto convert the string to a number. Luaapplies such coercions not only in arithmetic
operators, but also in other places that expect a number, such asthe argument to mat h. si n.

Conversely, whenever Luafinds a number where it expects a string, it converts the number to a string:
print(10 .. 20) --> 1020

(When we write the concatenation operator right after a numeral, we must separate them with a space;
otherwise, Luathinks that the first dot is adecimal point.)

26

Strings

Many people argue that these automatic coercions were not a good ideain the design of Lua. Asarule, it
is better not to count on them. They are handy in a few places, but add complexity both to the language
and to programs that use them.

Asareflection of this* second-class status’, Lua 5.3 did not implement afull integration of coercions and
integers, favoring instead a simpler and faster implementation. The rule for arithmetic operations is that
the result is an integer only when both operands are integers; a string is not an integer, so any arithmetic
operation with stringsis handled as a floating-point operation:

>"10" + 1 -->11.0

To convert a string to a number explicitly, we can use the function t onumnber , which returns nil if the
string does not denote a proper number. Otherwise, it returns integers or floats, following the same rules
of the Lua scanner:

> tonunmber (" -3 ") --> -3

> tonunber (" 10e4 ") --> 100000.0

> tonunber (" 10e") -->nil (not a valid nunber)

> tonunber ("0x1. 3p-4") --> 0.07421875
By default, t onunber assumes decimal notation, but we can specify any base between 2 and 36 for the
conversion:

> tonunber ("100101", 2) --> 37

> tonunmber ("fff", 16) --> 4095

> tonunber ("-2Z", 36) --> -1295

> tonunber ("987", 8) -->nil

Inthelast line, the string does not represent a proper numeral in the given base, sot onunber returnsnil.
To convert a number to a string, we can call the functiont ost ri ng:
print(tostring(10) == "10") --> true

These conversions are always valid. Remember, however, that we have no control over the format (e.g.,
the number of decimal digits in the resulting string). For full control, we should use st ri ng. f or nat
which we will see in the next section.

Unlike arithmetic operators, order operators never coercetheir arguments. Remember that " 0" isdifferent
from 0. Moreover, 2 < 15 isobvioudly true, but " 2" < " 15" isfalse (alphabetical order). To avoid
inconsistent results, Lua raises an error when we mix strings and numbers in an order comparison, such
as2 < "15".

The String Library

The power of araw Lua interpreter to manipulate strings is quite limited. A program can create string
literals, concatenate them, compare them, and get string lengths. However, it cannot extract substrings or
examine their contents. The full power to manipulate stringsin Lua comes from its string library.

As | mentioned before, the string library assumes one-byte characters. This equivalenceistrue for severa
encodings (e.g., ASCII or ISO-8859-1), but it breaks in any Unicode encoding. Nevertheless, as we will
see, several parts of the string library are quite useful for UTF-8.

Some functions in the string library are quite simple: the call string. | en(s) returns the length
of astring s; it is equivalent to #s. The cal string.rep(s, n) returns the string s repeated n

27

Strings

times; we can create a string of 1 MB (e.g., for tests) withstri ng. rep("a", 2720). Thefunction
string. reverse reversesastring. Thecall string. | ower (s) returns a copy of s with the up-
per-case letters converted to lower case; all other characters in the string are unchanged. The function
string. upper convertsto upper case.

> string.rep("abc", 3) --> abcabcabc

> string.reverse("A Long Line!") --> leniL gnoL A
> string.lower("A Long Line!") -->a long line!
> string.upper("A Long Line!") --> A LONG LI NE!

Asatypical use, if we want to compare two strings regardless of case, we can write something like this:
string.lower(a) < string.!|ower(b)

Thecal string.sub(s, i,) extractsapiece of thestring s, fromthei -th to the -th character
inclusive. (Thefirst character of astring hasindex 1.) We can also use negative indices, which count from
the end of the string: index -1 refers to the last character, -2 to the previous one, and so on. Therefore, the
cal string.sub(s, 1, j) getsaprefix of thestrings withlengthj ;string. sub(s, j, -1)
gets a suffix of the string, starting at thej -th character; and st ri ng. sub(s, 2, -2) returnsacopy
of the string s with the first and last characters removed:

>s = "[in brackets]"

> string.sub(s, 2, -2) -->in brackets
> string.sub(s, 1, 1) --> [

> string.sub(s, -1, -1) -->]

Remember that strings in Lua are immutable. Like any other function in Lua, st ri ng. sub does not
change the value of a string, but returns a new string. A common mistake is to write something like
string.sub(s, 2, -2) andassume that it will modify the value of s. If we want to modify the
value of avariable, we must assign the new value to it:

s = string.sub(s, 2, -2)

Thefunctionsst ri ng. char andst ri ng. byt e convert between charactersand their internal numeric
representations. The function st ri ng. char gets zero or more integers, converts each one to a charac-
ter, and returns a string concatenating all these characters. The call stri ng. byte(s, i) returnsthe
internal numeric representation of the i -th character of the string s; the second argument is optional; the
cal string. byt e(s) returnstheinternal numeric representation of thefirst (or single) character of s.
The following examples assume the ASCII encoding for characters:

print(string.char(97)) --> a

i = 99; print(string.char(i, i+1, i+2)) --> cde
print(string.byte("abc")) --> 97
print(string.byte("abc", 2)) --> 98
print(string.byte("abc", -1)) --> 99

In the last line, we used a negative index to access the last character of the string.

A cdl likestring. byte(s, i, j) returnsmultiple values with the numeric representation of all
characters between indicesi andj (inclusive):

print(string.byte("abc", 1, 2)) --> 97 98

A niceidiomis{string. byte(s, 1, -1)},whichcreatesalist withthe codesof all charactersin
s. (Thisidiom only works for strings somewhat shorter than 1 MB. Lualimitsits stack size, whichin turn
[imits the maximum number of returns from a function. The default stack limit is one million entries.)

28

Strings

The function st ri ng. f or mat is a powerful tool for formatting strings and converting numbers to
strings. It returns a copy of itsfirst argument, the so-called format string, with each directive in that string
replaced by a formatted version of its correspondent argument. The directives in the format string have
rules similar to those of the C function pri nt f . A directive is a percent sign plus a letter that tells how
to format the argument: d for a decimal integer, x for hexadecimal, f for a floating-point number, s for
strings, plus several others.

> string.format("x = % y = %", 10, 20) -->x =10 y = 20
> string.format("x = %", 200) --> X = c8

> string.format("x = Ox%", 200) --> x = 0xC8

> string.format("x = %", 200) --> x = 200. 000000
>tag, title = "hl", "a title"

> string. format ("<%>%</%>", tag, title, tag)

--> <hl>a title</hl>

Between the percent sign and the | etter, a directive can include other options that control the details of the
formatting, such as the number of decimal digits of afloating-point number:

print(string.format("pi = %4f", math.pi)) --> pi = 3.1416
d=5 m=11; y = 1990
print(string.format("%2d/ %®2d/ ¥%®4d", d, m y)) --> 05/11/1990

Inthefirst example, the % 4f meansafloating-point number with four digitsafter the decimal point. Inthe
second example, the %92d means adecimal number with zero padding and at least two digits; the directive
%2d, without the zero, would use blanks for padding. For a complete description of these directives, see
the documentation of the C function pr i nt f , asLuacallsthe standard C library to do the hard work here.

We can call all functions from the string library as methods on strings, using the colon operator. For in-

stance, we can rewrite the call st ring. sub(s, i, j) ass:sub(i, j);string.upper(s)
becomess: upper () . (Wewill discussthe colon operator in detail in Chapter 21, Object-Oriented Pro-
gramming.)

Thestring library includes also several functionsbased on pattern matching. Thefunctionstri ng. fi nd
searches for a pattern in agiven string:

> string.find("hello world", "wor") --> 7 9
> string.find("hello world", "war") -->nil

It returns the initial and final positions of the pattern in the string, or nil if it cannot find the pattern.
Thefunctionstri ng. gsub (Globa SUBstitution) replaces all occurrences of a pattern in a string with

another string:
> string.gsub("hello world", "I", ".") --> he..o wor.d 3
> string.gsub("hello world", "II", "..") --> he..o world 1

> string.gsub("hello world", "a", ".") --> hello world 0
It also returns, as a second result, the number of replacementsit made.

Wewill discussmoreabout thesefunctionsand all about pattern matching in Chapter 10, Pattern Matching.

Unicode

Sinceversion 5.3, Luaincludesasmall library to support operations on Unicode strings encoded in UTF-8.
Even before that library, Lua aready offered a reasonable support for UTF-8 strings.

29

Strings

UTF-8 isthe dominant encoding for Unicode on the Web. Because of its compatibility with ASCII, UTF-8
isalso theideal encoding for Lua. That compatibility is enough to ensure that several string-manipulation
techniques that work on ASCII strings also work on UTF-8 with no modifications.

UTF-8 represents each Unicode character using a variable number of bytes. For instance, it represents A
with one byte, 65; it represents the Hebrew character Aleph, which has code 1488 in Unicode, with the
two-byte sequence 215-144. UTF-8 represents all charactersin the ASCII range asin ASCII, that is, with
asingle byte smaller than 128. It represents all other characters using sequences of bytes where the first
byte is in the range [194,244] and the continuation bytes are in the range [128,191]. More specifically,
the range of the starting bytes for two-byte sequences is [194,223]; for three-byte sequences, the range
is[224,239]; and for four-byte sequences, it is [240,244]. None of those ranges overlap. This property
ensures that the code sequence of any character never appears as part of the code sequence of any other
character. In particular, abyte smaller than 128 never appearsin a multibyte sequence; it always represents
its corresponding ASCII character.

Severa thingsin Lua “just work” for UTF-8 strings. Because Lua is 8-bit clean, it can read, write, and
store UTF-8 stringsjust like other strings. Literal strings can contain UTF-8 data. (Of course, you probably
will want to edit your source code asa UTF-8 filein a UTF-8—aware editor.) The concatenation operation
workscorrectly for UTF-8 strings. String order operators (lessthan, lessequal, etc.) compare UTF-8 strings
following the order of their character codes in Unicode.

Lua's operating-system library and 1/O library are mainly interfaces to the underlying system, so their
support for UTF-8 strings depends on that underlying system. On Linux, for instance, we can use UTF-8
for file names, but Windows uses UTF-16. Therefore, to manipulate Unicode file names on Windows, we
need either extralibraries or changes to the standard Lua libraries.

Let us now see how functions from the string library handle UTF-8 strings. The functions r ever se,
upper,| ower, byt e,andchar do not work for UTF-8 strings, asall of them assume that one character
is equivalent to one byte. The functions st ri ng. f or mat and st ri ng. r ep work without problems
with UTF-8 strings except for the format option' %' , which assumes that one character is one byte. The
functionsstri ng. | enandstri ng. sub work correctly with UTF-8 strings, with indices referring to
byte counts (not character counts). More often than not, thisis what we need.

Let us now have alook at the new ut f 8 library. The function ut f 8. | en returns the number of UTF-8
characters (codepoints) in a given string. Moreover, it validates the string: if it finds any invalid byte
seguence, it returns false plus the position of the first invalid byte:

> utf8.len("résumg") --> 6
> utf8.1en("acédo") --> 4
> utf8.1en("Minen") -->5
> utf8.1en("ab\x93") -->nil 3

(Of course, to run these examples we need aterminal that understands UTF-8.)

The functions ut f 8. char and utf 8. codepoi nt are the equivalent of string.char and
st ring. byt e inthe UTF-8 world:

> utf8.char(114, 233, 115, 117, 109, 233) --> résung
> utf 8. codepoint ("résung", 6, 7) --> 109 233

Notetheindicesinthelast line. Most functionsintheut f 8 library work withindicesin bytes. For instance,
thecall st ri ng. codepoint (s, i, j) considersbothi andj tobebytepositionsinstrings. If we
want to use character indices, thefunctionut f 8. of f set convertsacharacter position to abyte position:

> s = "Nahdaan"
> utf8.codepoint(s, utf8.offset(s, 5)) --> 228

30

Strings

> utf 8. char(228) --> 4

Inthisexample, weused ut f 8. of f set to get the byte index of thefifth character in the string, and then
provided that index to codepoi nt .

Asinthestring library, the character index for ut f 8. of f set canbe negative, in which casethe counting
isfrom the end of the string:

> s = "AgAED

> string.sub(s, utf8.offset(s, -2)) --> EP
The last function in the ut f 8 library is ut f 8. codes. It allows us to iterate over the charactersin a
UTF-8 string:
for i, c in utf8.codes("Acdo") do
print(i, c)
end
-->1 65
--> 2 231
--> 4 227
--> 6 111

This construction traverses all charactersin the given string, assigning its position in bytes and its numeric
code to two local variables. In our example, the loop body only prints the values of those variables. (We
will discussiterators in more detail in Chapter 18, Iterators and the Generic for.)

Unfortunately, there is not much more that Lua can offer. Unicode has too many peculiarities. It is vir-
tually impossible to abstract almost any concept from specific languages. Even the concept of what is a
character is vague, because there is no one-to-one correspondence between Unicode coded characters and
graphemes. For instance, the common grapheme é can be represented by asingle codepoint (" \ u{ E9} ")
or by two codepoints, an e followed by a diacritical mark (" e\ u{ 301} "). Other apparently basic con-
cepts, such as what is a letter, also change across different languages. Because of this complexity, com-
plete support for Unicode demands huge tables, which are incompatible with the small size of Lua. So, for
anything fancier, the best approach is an external library.

Exercises
Exercise 4.1: How can you embed the following fragment of XML asastring in a Lua program?
<! [CDATAl
Hello world

11>
Show at least two different ways.

Exercise 4.2: Suppose you need to write along sequence of arbitrary bytes asaliteral string in Lua. What
format would you use? Consider issues like readability, maximum line length, and size.

Exercise 4.3: Write afunction to insert a string into a given position of another one:

> insert("hello world", 1, "start: ") --> start: hello world
> insert("hello world", 7, "small ") --> hello small world

Exercise 4.4: Redo the previous exercise for UTF-8 strings:

> insert("acédo", 5, "!") --> acéo!

31

Strings

(Note that the position now is counted in codepoints.)

Exercise 4.5: Write a function to remove a dice from a string; the slice should be given by its initial
position and its length:

> renmove("hello world", 7, 4) --> hello d
Exercise 4.6: Redo the previous exercise for UTF-8 strings:

> renove("acao", 2, 2) --> ao
(Here, both theinitial position and the length should be counted in codepoints.)
Exercise 4.7: Write afunction to check whether agiven string is a palindrome:

> ispali("step on no pets") --> true
> jspali("banana") --> fal se

Exercise 4.8: Redo the previous exercise so that it ignores differences in spaces and punctuation.

Exercise 4.9: Redo the previous exercise for UTF-8 strings.

32

Chapter 5. Tables

Tables are the main (in fact, the only) data structuring mechanism in Lua, and a powerful one. We use
tables to represent arrays, sets, records, and many other data structuresin asimple, uniform, and efficient
way. Lua uses tables to represent packages and objects as well. When we write mat h. si n, we think
about “the function si n from the mat h library”. For Lua, this expression means “index the table mat h
using thestring " si n" asthe key”.

A table in Luais essentially an associative array. A table is an array that accepts not only numbers as
indices, but also strings or any other value of the language (except nil).

Tablesin Lua are neither values nor variables; they are objects. If you are familiar with arraysin Java or
Scheme, then you have a fair idea of what | mean. You may think of atable as a dynamically-allocated
object; programs manipulate only references (or pointers) to them. Lua never does hidden copies or cre-
ation of new tables behind the scenes.

We create tables by means of a constructor expression, which in its simplest form iswritten as{ } :

> a = {} -- create a table and assign its reference
> Kk = "x"

> a[k] = 10 -- new entry, with key="x" and val ue=10

> a[20] = "great" -- newentry, with key=20 and val ue="great"
> a["x" --> 10

>k = 20

> af K] --> "great"

> a["x"] = a["x"] + 1 -- increments entry "x"

> a["x" --> 11

A tableis always anonymous. Thereis no fixed relationship between a variable that holds atable and the

table itself:
>a = {}
> a["x"] = 10
> b = a -- 'b" refers to the sane table as 'a'
> b["x" --> 10
> b["x"] = 20
> a[" x" --> 20
>a = nil -- only '"b'" still refers to the table
>b =nil -- no references left to the table

When a program has no more references to atable, the garbage collector will eventually delete the table
and reuse its memory.

Table Indices

Each table can store values with different types of indices, and it grows as needed to accommodate new

entries:
> a ={} -- enpty table
> -- create 1000 new entries
> for i =1, 1000 do a[i] =1i*2 end
> al 9] --> 18
> a["x"] = 10
> a["x" --> 10

33

Tables

> al"y"] -->nil

Note the last line: like global variables, table fields evaluate to nil when not initialized. Also like global
variables, wecan assign nil to atablefield to deleteit. Thisisnot acoincidence: Luastoresglobal variables
in ordinary tables. (We will discuss this subject further in Chapter 22, The Environment.)

To represent structures, we use the field name as an index. Lua supports this representation by providing
a. nane as syntactic sugar for a[" nane"] . Therefore, we could write the last lines of the previous
example in a cleaner manner as follows:

>a ={} -- enpty table

> a. x =10 -- same as a["x"] = 10
> a. X --> 10 -- same as a["x"]

> a.y -->nil -- sanme as a["y"]

For Lua, the two forms are equivalent and can be intermixed freely. For a human reader, however, each
form may signal a different intention. The dot notation clearly shows that we are using the table as a
structure, where we have some set of fixed, predefined keys. The string notation gives the idea that the
table can have any string as akey, and that for some reason we are manipulating that specific key.

A common mistake for beginnersisto confuse a. x with a[x] . Thefirst form representsa[" x"] , that
is, atable indexed by the string " x" . The second form is a table indexed by the value of the variable x.
See the difference:

>a = {}

> x ="y"

> a[x] = 10 -- put 10 in field "y"

> a[x] --> 10 -- value of field "y"

> a. X -->nil -- value of field "x" (undefined)
> a.y --> 10 -- value of field "y"

Because we can index atable with any type, when indexing atable we have the same subtleties that arise
in equality. Although we can index a table both with the number O and with the string " 0", these two
values are different and therefore denote different entries in atable. Similarly, the strings " +1", " 01",
and" 1" al denote different entries. When in doubt about the actual types of your indices, use an explicit
conversion to be sure;

>i =10; j ="10"; k = "+10"

>a = {}

> a[i] = "nunber key"

> a[j] = "string key"

> a[k] = "another string key"

> ali] --> nunber key

> alj] --> string key

> a[k] --> anot her string key
> a[tonunber (j)] --> nunber key

> a[t onunber (k)] --> nunber key

Y ou can introduce subtle bugs in your program if you do not pay attention to this point.

Integers and floats do not have the above problem. In the same way that 2 compares equal to 2. 0, both
values refer to the same table entry, when used as keys:

>a={)
> a[2.0] = 10
> a[2.1] = 20

Tables

> al 2] --> 10
> a[2. 1] --> 20

More specifically, when used as a key, any float value that can be converted to an integer is converted.
For instance, when Luaexecutesa[2. 0] = 10, it convertsthekey 2. 0 to 2. Float values that cannot
be converted to integers remain unaltered.

Table Constructors

Constructors are expressions that create and initialize tables. They are adistinctive feature of Luaand one
of its most useful and versatile mechanisms.

The simplest constructor is the empty constructor, { } , as we have seen. Constructors also initiaize lists.
For instance, thefollowing statement will initializedays[1] withthestring” Sunday" (thefirst element
of the constructor hasindex 1, not 0), days[2] with" Monday" , and so on:

days = {"Sunday", "Monday", "Tuesday", "Wdnesday",
"Thur sday", "Friday", "Saturday"}

print(days[4]) --> Wednesday
Luaalso offers a special syntax to initialize arecord-like table, as in the next example:
a ={x =10, y = 20}
This previous line is equivalent to these commands:
a=1{}; ax =10; a.y = 20
The original expression, however, is faster, because L ua creates the table already with the right size.

No matter what constructor we use to create a table, we can always add fields to and remove fields from

the result:
w={x =0, vy =0, label = "console"}
x = {math.sin(0), math.sin(1l), math.sin(2)}
w 1] = "another field" -- add key 1 to table 'w
x.f = w -- add key "f" to table 'Xx'
print(w "x"]) -->0
print(w 1]) --> another field
print(x.f[1]) --> anot her field
w.x = nil -- renmove field "x"

However, as | just mentioned, creating a table with a proper constructor is more efficient, besides being
cleaner.

We can mix record-style and list-styleinitializations in the same constructor:

pol yli ne = {col or="bl ue",
t hi ckness=2,

npoi nt s=4,

{x=0, y=0}, -- polyline[1]
{x=-10, y=0}, -- polyline[2]
{x=-10, y=1}, -- polyline[3]
{x=0, y=1} -- polyline[4]

}

35

Tables

The above example aso illustrates how we can nest tables (and constructors) to represent more complex
data structures. Each of the elementspol yl i ne[i] isatable representing arecord:

print(polyline[2].x) -->-10
print(polyline[4].y) --> 1

Those two constructor forms have their limitations. For instance, we cannot initialize fields with negative
indices, nor with string indicesthat are not proper identifiers. For such needs, thereisanother, moregeneral,
format. In this format, we explicitly write each index as an expression, between square brackets:

opnanes = {["+"] = "add", ["-"] = "sub",
[**"1 ="ml", ["/"] = "div"}
i =20; s ="-"
a={[i+0] =s, [i+1l] =s..s, [i+2] = s..s..s}
print (opnanes|s]) --> sub
print(a[22]) --> -

This syntax is more cumbersome, but more flexible too: both the list-style and the record-style forms are
special cases of this more general syntax, as we show in the following equivalences:

{(x=0 y=0 <-> {["x] =0, ['y] =0}
("rryovgn, 'y <> {[1] =07, (2] =g [8] = b

We can always put acomma after the last entry. These trailing commas are optional, but are always valid:
a={[1] = "red", [2] = "green", [3] = "blue",}

This flexibility frees programs that generate L ua constructors from the need to handle the last element as
aspecia case.

Finally, we can always use a semicolon instead of acommain aconstructor. Thisfacility isaleftover from
older Luaversionsand | guessit is seldom used nowadays.

Arrays, Lists, and Sequences

To represent a conventional array or alist, we simply use atable with integer keys. Thereis neither away
nor aneed to declare a size; we just initialize the elements we need:

-- read 10 lines, storing themin a table

a = {}

for i =1, 10 do
a[i] = io.read()

end

Given that we can index atable with any value, we can start the indices of an array with any number that
pleases us. However, it is customary in Luato start arrays with one (and not with zero, asin C) and many
facilitiesin Luastick to this convention.

Usually, when we manipulate a list we must know its length. It can be a constant or it can be stored
somewhere. Often we store the length of alist in a non-numeric field of the table; for historical reasons,
several programsusethefield" n" for thispurpose. Often, however, thelength isimplicit. Remember that
any non-initialized index resultsin nil; we can use this value as a sentinel to mark the end of the list. For
instance, after weread 10 linesinto alist, it is easy to know that itslength is 10, because its numeric keys

36

Tables

arel, 2, ..., 10. Thistechnique only works when the list does not have holes, which are nil elementsinside
it. We call such alist without holes a sequence.

For sequences, Luaoffersthe length operator (#). Aswe have seen, on stringsit gives the number of bytes
inthe string. On tables, it gives the length of the sequence represented by the table. For instance, we could
print the lines read in the last example with the following code:

-- print the lines, from1l to #a
for i =1, #a do

print(af[i])
end

The length operator also provides a useful idiom for manipulating sequences:

a[#a + 1] = v -- appends 'v' to the end of the sequence

Thelength operator is unreliable for listswith holes (nils). It only works for sequences, which we defined
as lists without holes. More precisely, a sequence is a table where the positive numeric keys comprise a
set {1,...,n} for some n. (Remember that any key with value nil is actually not in the table.) In particular,

atable with no numeric keysis a sequence with length zero.

The behavior of the length operator for lists with holes is one of the most contentious features of Lua.
Over the years, there have been many proposals either to raise an error when we apply the length operator
to alist with holes, or to extend its meaning to those lists. However, these proposals are easier said than
done. The problem is that, because a list is actually atable, the concept of “length” is somewhat fuzzy.
For instance, consider the list resulting from the following code:

a = {}

a[l1l] =1

a[2] = nil -- does nothing, as a[2] is already nil
a[3] =1

a[4] =1

It is easy to say that the length of thislist is four, and that is has a hole at index 2. However, what can
we say about the next similar example?

a = {}
a[l] =1
a[10000] = 1
Should we consider a as alist with 10000 elements, with 9998 holes? Now, the program does this:
a[10000] = nil

What is the list length now? Should it be 9999, because the program deleted the last element? Or maybe
still 10000, as the program only changed the last element to nil? Or should the length collapse to one?

Another common proposal isto make the# operator return the total number of elementsin thetable. This
semantics is clear and well defined, but not very useful or intuitive. Consider all the examples we are
discussing here and think how useful would be such operator for them.

Y et more troubling are nils at the end of the list. What should be the length of the following list?
a = {10, 20, 30, nil, nil}

Remember that, for Lua, afield with nil is indistinct from an absent field. Therefore, the previous table
isequal to{ 10, 20, 30};itslengthis3, not 5.

37

Tables

Y oumay consider that anil at theend of alistisavery special case. However, many listsare built by adding
elementsoneby one. Any list with holesthat was built that way must have had nils at its end along the way.

Despite all these discussions, most lists we use in our programs are sequences (e.g., afile line cannot be

nil) and, therefore, most of the time the use of the length operator is safe. If you really need to handle lists
with holes, you should store the length explicitly somewhere.

Table Traversal

We can traverse al key—value pairsin atable with the pai r s iterator:

t = {10, print, x =12, k = "hi"}
for k, vin pairs(t) do

print(k, v)
end
--> 1 10
--> k hi
--> 2 function: 0x420610
--> X 12

Due to the way that Luaimplements tables, the order that elements appear in atraversal isundefined. The
same program can produce different orders each time it runs. The only certainty is that each element will
appear once during the traversal.

For lists, we can use thei pai r s iterator:

t = {10, print, 12, "hi"}

for k, vin ipairs(t) do
print(k, v)

end
-->1 10
--> 2 function: 0x420610
--> 3 12
--> 4 hi

In this case, Luatrivially ensures the order.
Another way to traverse a sequence iswith a numerical for:
t = {10, print, 12, "hi"}

for k = 1, #t do
print(k, t[k])

end
--> 1 10
--> 2 function: 0x420610
--> 3 12
--> 4 hi

Safe Navigation

Suppose the following situation: we want to know whether agiven function from agiven library is present.
If we know for sure that the library itself exists, we can write something likei f i b.foo then
Otherwise, we have to write something likei f |ib and lib.foo then

38

Tables

When the level of nested tables gets deeper, this notation becomes problematic, as the next example il-
lustrates:

zip = conpany and conpany. director and
conpany. di rect or. address and
conpany. di rect or. addr ess. zi pcode

This notation is not only cumbersome, but inefficient, too. It performs six table accesses in a successful
access, instead of three.

Some programming languages, such as C#, offer a safe navigation operator (written as?. in C#) for this
task. When wewritea ?. b and a isnil, the result is aso nil, instead of an error. Using that operator,
we could write our previous example like this:

zi p = conpany?.director?. address?. zi pcode
If any component in the path were nil, the safe operator would propagate that nil until the final result.

L uadoes not offer asafe navigation operator, and we do not think it should. Luais minimalistic. Moreover,
thisoperator isquite controversial, with many peopl e arguing—not without somereason— that it promotes
careless programming. However, we can emulate it in Luawith a bit of extra notation.

If weexecutea or {} whena isnil, theresult isthe empty table. So, if weexecute(a or {}).Db
when a isnil, the result will be also nil. Using thisidea, we can rewrite our origina expression like this:

zip = (((company or {}).director or {}).address or {}).zipcode
Still better, we can make it alittle shorter and slightly more efficient:
E = {} -- can be reused in other simlar expressions

zip = (((conpany or E).director or E).address or E).zipcode

Granted, this syntax is more complex than the one with the safe navigation operator. Nevertheless, we
write each field name only once, it performs the minimum required number of table accesses (three, in this
example), and it requires no new operators in the language. In my personal opinion, it is a good enough
substitute.

The Table Library

Thetable library offers several useful functions to operate over lists and sequenc&s.1

The function t abl e. i nsert inserts an element in a given position of a sequence, moving up other
elementsto open space. For instance, if t isthelist{ 10, 20, 30}, afterthecaltable.insert(t,
1, 15) it will become {15, 10, 20, 30}.Asaspecia and frequent case, if we call i nsert
without a position, it inserts the element in the last position of the sequence, moving no elements. As an
example, the following code reads the input stream line by line, storing all linesin a sequence:

t ={}
for line in io.lines() do
table.insert(t, line)
end
print (#t) --> (nunber of lines read)

Y ou can think of it as“The Sequence Library” or “The List Library”; we have kept the original name for compatibility with old versions.

39

Tables

The function t abl e. r enbve removes and returns an element from the given position in a sequence,
moving subsequent elements down to fill the gap. When called without a position, it removes the last
element of the sequence.

With these two functions, it is straightforward to implement stacks, queues, and double queues. We can
initialize such structuresast = {}. A push operationisequivalenttot abl e. i nsert (t, x);apop
operation isequivalenttot abl e. renove(t). Thecal tabl e.insert(t, 1, Xx) insertsatthe
other end of the structure (its beginning, actually), andt abl e. r enove(t, 1) removesfrom thisend.
Thelast two operations are not particularly efficient, as they must move elements up and down. However,
becausethet abl e library implementsthese functionsin C, these loops are not too expensive, so that this
implementation is good enough for small arrays (up to afew hundred elements, say).

Lua5.3 hasintroduced amore general function for moving elementsinatable. Thecall t abl e. nove(a,
f, e, t) movestheelementsintablea fromindexf until e (bothinclusive) topositiont . For instance,
to insert an element in the beginning of alist a, we can do the following:

tabl e. nove(a, 1, #a, 2)
a[1] = newEl enment

The next code removes the first el ement:

t abl e. nove(a, 2, #a, 1)
a[#a] = nil

Note that, as is common in computing, a move actually copies values from one place to another. In this
last example, we must explicitly erase the last element after the move.

Wecan call t abl e. nbve with an extraoptional parameter, atable. In that case, the function movesthe
elements from the first table into the second one. For instance, thecall t abl e. nove(a, 1, #a, 1,
{}) returnsaclone of list a (by copying al its elementsinto a new list), whilet abl e. nove(a, 1,
#a, #b + 1, b) appendsall elementsfrom list a to the end of list b.

Exercises

Exercise 5.1: What will the following script print? Explain.

sunday = "nonday"; nonday = "sunday"
t = {sunday = "nonday", [sunday] = nonday}
print(t.sunday, t[sunday], t[t.sunday])

Exercise 5.2: Assume the following code:
a={}; aa=a
What would be the value of a. a. a. a?lsany a in that sequence somehow different from the others?
Now, add the next line to the previous code:
a.a.a.a = 3
What would bethe value of a. a. a. a now?

Exercise 5.3: Suppose that you want to create a table that maps each escape sequence for strings (the
section called “Litera strings’) to its meaning. How could you write a constructor for that table?

Exercise 5.4: We can represent a polynomial ax" + an_lx”'l + ..+ alx1 + agin Luaasalist of its coef-
ficients, such as{a, a, ..., an}-

40

Tables

Write a function that takes a polynomial (represented as a table) and a value for x and returns the poly-
nomial value.

Exercise 5.5: Can you write the function from the previous item so that it uses at most n additions and n
multiplications (and no exponentiations)?

Exercise 5.6: Write afunction to test whether a given tableis avalid sequence.

Exercise 5.7: Write afunction that inserts all elements of agiven list into agiven position of another given
list.

Exercise 5.8: The table library offers a function t abl e. concat , which receives a list of strings and
returns their concatenation:

print(table.concat({"hello", " ", "world"})) --> hello world
Write your own version for this function.

Comparethe performance of your implementation against the built-in version for largelists, with hundreds
of thousands of entries. (Y ou can use afor loop to create those large lists.)

41

Chapter 6. Functions

Functions are the main mechanism for abstraction of statements and expressions in Lua. Functions can
both carry out a specific task (what is sometimes called a procedure or a subroutine in other languages)
or compute and return values. In the first case, we use afunction call as a statement; in the second case,
we useit as an expression:;

print(8*9, 9/8)
a = math.sin(3) + math.cos(10)
print(os.date())

In both cases, alist of arguments enclosed in parentheses denotes the call; if the call has no arguments,
we still must write an empty list () to denote it. There is a special case to this rule: if the function has
one single argument and that argument is either aliteral string or atable constructor, then the parentheses

are optional:
print "Hello Wrld" <--> print("Hello Wrld")
dofile "a.lua <--> dofile ('a.lua")
print [[a multi-line <--> print([[a multi-line
nmessage] | nmessage]])
f{x=10, y=20} <--> f ({x=10, y=20})
type{} <--> type({})

Luaalso offersaspecial syntax for object-oriented calls, the colon operator. Anexpressionlikeo: f oo(x)
callsthe method f 00 inthe object 0. In Chapter 21, Object-Oriented Programming, we will discuss such
calls and object-oriented programming in more detail.

A Luaprogram can use functions defined both in Luaand in C (or in any other language used by the host
application). Typically, weresort to C functions both to achieve better performance and to accessfacilities
not easily accessible directly from Lua, such as operating-system facilities. As an example, al functions
from the standard Lua libraries are written in C. However, when calling afunction, there is no difference
between functions defined in Luaand functions defined in C.

Aswe saw in other examples, afunction definition in Lua has a conventional syntax, like here:

-- add the elenents of sequence 'a
function add (a)

local sum= 0

for i =1, #a do
sum = sum + afi]
end
return sum
end

In this syntax, a function definition has a name (add, in the example), alist of parameters, and a body,
which isalist of statements. Parameters work exactly as local variablesinitialized with the values of the
arguments passed in the function call.

We can call afunction with a number of arguments different from its number of parameters. Lua adjusts
the number of arguments to the number of parameters by throwing away extra arguments and supplying
nils to extra parameters. For instance, consider the next function:

function f (a, b) print(a, b) end

It has the following behavior:

42

Functions

f() -->nil nil

f(3) --> 3 nil

f(3, 4) --> 3 4

f(3, 4, 5) --> 3 4 (5 is discarded)

Although this behavior can lead to programming errors (easily spotted with minimal tests), it isalso useful,
especialy for default arguments. As an example, consider the following function, to increment a global
counter:

function incCount (n)

n=nor 1

gl obal Count er = gl obal Counter + n
end

Thisfunction has 1 asitsdefault argument; thecall i ncCount () , without arguments, incrementsgl ob-
al Count er by one. Whenwe call i ncCount (), Luafirst initializes the parameter n with nil; the or
expression resultsin its second operand and, as aresult, Luaassigns adefault 1 to n.

Multiple Results

An unconventional but quite convenient feature of Luaisthat functions can return multipleresults. Several
predefined functions in Lua return multiple values. We have already seen the function stri ng. fi nd,
which locates a pattern in astring. This function returns two indices when it finds the pattern: the index of
the character where the match starts and the one where it ends. A multiple assignment allows the program
to get both results:

s, e =string.find("hello Lua users", "Lua")
print(s, e) --> 7 9

(Remember that the first character of a string hasindex 1.)
Functionsthat wewritein Luaal so can return multipleresults, by listing them all after ther etur n keyword.
For instance, a function to find the maximum element in a sequence can return both the maximum value

and its location:

function maxi mum (a)

local m =1 -- index of the maxi num val ue
local m= a[m] -- maxi num val ue
for i =1, #a do
if a[i] > mthen
m =i; m=ali]
end
end
return m m -- return the maxi numand its index
end
print (maxi mun({8, 10, 23, 12, 5})) --> 23 3

Lua always adjusts the number of results from a function to the circumstances of the call. When we call
afunction as a statement, Lua discards all results from the function. When we use acal as an expression
(e.g., the operand of an addition), Lua keeps only the first result. We get all results only when the call is
the last (or the only) expression in alist of expressions. These lists appear in four constructions in Lua:
multiple assignments, arguments to function calls, table constructors, and retur n statements. To illustrate
all these cases, we will assume the following definitions for the next examples:

43

Functions

function fooO () end -- returns no results
function fool () return "a" end -- returns 1 result
function foo2 () return "a", "b" end -- returns 2 results

Inamultiple assignment, afunction call asthelast (or only) expression produces as many results as needed
to match the variables:

X, y = foo2() -- x="a", y="b"
x = foo2() -- x="a", "b" is discarded
X, Yy, z =10, foo2() -- x=10, y="a", z="b"

In amultiple assignment, if a function has fewer results than we need, Lua produces nils for the missing
values:

X,y = foo0() -- x=nil, y=nil
X,y = fool() -- x="a", y=nil
X, ¥,z = foo2() -- x="a", y="b", z=nil

Remember that multiple results only happen when the call is the last (or only) expression in a list. A
function call that is not the last element in the list always produces exactly one result:

foo2(), 20 -- x="a", y=20 ('b' discarded)
foo0(), 20, 30 -- x=nil, y=20 (30 is discarded)

X,y
X,y

When afunction call isthe last (or the only) argument to another call, al results from the first call go as
arguments. We saw examples of this construction already, with pri nt . Because pri nt can receive a
variable number of arguments, the statement pri nt (g()) printsal results returned by g.

print(foo0()) --> (no results)
print(fool()) -->a

print(foo2()) -->a b

print(foo2(), 1) -->a 1

print(foo2() .. "x") --> ax (see next)

When the call to f 002 appears inside an expression, Lua adjusts the number of results to one; so, in the
last line, the concatenation uses only the first result, " a" .

If wewritef (g()),andf has afixed number of parameters, Lua adjusts the number of results from
g to the number of parameters of f . Not by chance, this is exactly the same behavior that happensin a
multiple assignment.

A constructor also collects all results from a call, without any adjustments:

t = {foo0()} --t ={} (an enpty table)
t = {fool()} --t = {"a"}
t = {foo2()} --t ={"a", "b"}

As aways, this behavior happens only when the call is the last expression in the list; calls in any other
position produce exactly one result:

t = {fooO(), foo2(), 4} -- t[1] =nil, t[2] ="a", t[3] = 4
Finally, astatement liker et urn f () returnsall valuesreturned by f :

function foo (i)
if i == 0 then return foo0()
elseif i == 1 then return fool()

44

Functions

elseif i == 2 then return foo2()
end
end
print(foo(1l)) -->a
print(foo(2)) -->a b
print(foo(0)) -- (no results)
print(foo(3)) -- (no results)

We can force a call to return exactly one result by enclosing it in an extra pair of parentheses:

print((foo0()))
print((fool())) -->a
print((foo2()))

Beware that areturn statement does not heed parentheses around the returned value; any pair of paren-
theses placed there counts as an extra pair. Therefore, astatement liker et urn (f (x)) awaysreturns
one single value, no matter how many valuesf returns. Sometimes this is what we want, sometimes not.

Variadic Functions

A function in Lua can be variadic, that is, it can take a variable number of arguments. For instance, we
have already called pr i nt with one, two, and more arguments. Although pr i nt isdefinedin C, we can
define variadic functionsin Lua, too.

As asimple example, the following function returns the summation of all its arguments:

function add (...)
local s =0

for , vinipairs{...} do
s =s +v
end
return s
end
print(add(3, 4, 10, 25, 12)) --> 54

Thethreedots(. . .) inthe parameter list indicate that the functionisvariadic. When we call thisfunction,
Lua collects dl its arguments internally; we call these collected arguments the extra arguments of the
function. A function accesses its extra arguments using again the three dots, now as an expression. In our
example, the expression{ . . . } resultsin alist with al collected arguments. The function then traverses
thelist to add its elements.

We call the three-dot expression avararg expression. It behaves like amultiple return function, returning
all extra arguments of the current function. For instance, the command print(...) printsal extra
arguments of the function. Likewise, the next command creates two local variables with the values of the
first two optional arguments (or nil if there are no such arguments):

local a, b = ...
Actually, we can emulate the usual parameter-passing mechanism of Lua translating
function foo (a, b, c)

to

45

Functions

function foo (...)
local a, b, ¢ = ...

Those who fancy Perl's parameter-passing mechanism may enjoy this second form.
A function like the next one simply returns al its arguments:
function id (...) return ... end

It isamulti-value identity function. The next function behaves exactly like another function f 0o, except
that before the call it prints a message with its arguments:

function fool (...)
print("calling foo:", ...)
return foo(...)

end

Thisisauseful trick for tracing calls to a specific function.

Let us see another useful example. Lua provides separate functions for formatting text
(string.format) and for writing text (i 0. wri t e). It is straightforward to combine both functions
into a single variadic function:

function fwite (fm, ...)
return io.wite(string.format(fnt, ...))
end

Note the presence of afixed parameter f nt before the dots. Variadic functions can have any number of
fixed parameters before the variadic part. Lua assigns the first arguments to these parameters; the rest (if
any) goes as extra arguments.

To iterate over its extra arguments, a function can use the expression { . . . } to collect them al in a
table, as we did in our definition of add. However, in the rare occasions when the extra arguments can
be valid nils, the table created with { . . . } may not be a proper sequence. For instance, there is no way
to detect in such atable whether there were trailing nils in the original arguments. For these occasions,
Lua offers the function t abl e. pack.1 This function receives any number of arguments and returns a
new table with all itsarguments (just like{ . . . }), but thistable hasalso an extrafield " n" , with the total
number of arguments. As an example, the following function usest abl e. pack to test whether none
of itsargumentsis nil:

function nonils (...)
| ocal arg = table.pack(...)

for i =1, arg.n do
if arg[i] == nil then return false end

end

return true
end
print(nonils(2,3,nil)) --> fal se
print(nonils(2,3)) --> true
print(nonils()) --> true
print(nonils(nil)) --> fal se

Another option to traverse the variable arguments of afunctionisthesel ect function. A call tosel ect
has always one fixed argument, the selector, plus a variable number of extra arguments. If the selector is

1This function was introduced in Lua 5.2.

46

Functions

anumber n, sel ect returnsall arguments after the n-th argument; otherwise, the selector should be the
string" #" , so that sel ect returnsthe total number of extra arguments.

print(select(1, "a", "b", "c")) -->a b c
print(select(2, "a", "b", "c")) -->b c
print(select(3, "a", "b", "c")) -->¢C
print(select("#", "a", "b", "c")) -->3
More often than not, we use sel ect in places where its number of resultsis adjusted to one, so we can
think about sel ect (n, ...) asreturning itsn-th extraargument.

Asatypical example of theuse of sel ect, hereisour previousadd function using it:

function add (...)
local s =0

for i =1, select("#", ...) do
s =s + select(i, ...)
end
return s
end

For few arguments, this second version of add is faster, because it avoids the creation of a new table
at each call. For more arguments, however, the cost of multiple callsto sel ect with many arguments
outperforms the cost of creating a table, so the first version becomes a better choice. (In particular, the
second version has a quadratic cost, because both the number of iterations and the number of arguments
passed in each iteration grow with the number of arguments.)

The function t abl e. unpack

A special function with multiple returnsist abl e. unpack. It takes alist and returns as results all ele-
ments from the list:

print (tabl e.unpack{10, 20, 30}) -->10 20 30
a, b = tabl e. unpack{ 10, 20, 30} -- a=10, b=20, 30 is discarded

Asthenameimplies, t abl e. unpack isthereverse of t abl e. pack. While pack transforms a para-
meter listinto area Lualist (atable), unpack transformsareal Lualist (atable) into areturn list, which
can be given as the parameter list to another function.

An important use for unpack isin ageneric call mechanism. A generic call mechanism allows usto call
any function, with any arguments, dynamically. In ISO C, for instance, there is no way to code a generic
call. We can declare a function that takes a variable number of arguments (with st dar g. h) and we can
call avariable function, using pointers to functions. However, we cannot call a function with a variable
number of arguments: each call you writein C has afixed number of arguments, and each argument has
afixed type. In Lua, if we want to call avariable function f with variable argumentsin an array a, we
simply write this:

f(tabl e. unpack(a))

The call tounpack returnsall valuesin a, which become the argumentsto f . For instance, consider the
following call:

print(string.find("hello", "I1"))

We can dynamically build an equivalent call with the following code:

47

Functions

f
a

string.find
{"hello", "Il"}

print(f(table.unpack(a)))

Usually, t abl e. unpack uses the length operator to know how many elements to return, so it works
only on proper sequences. If needed, however, we can provide explicit limits:

print(table.unpack({"Sun", "Mn", "Tue", "Wed"}, 2, 3))
--> Mn Tue

Although the predefined function unpack iswritten in C, we could write it also in Lua, using recursion:

function unpack (t, i, n)
i =1 or 1
n =n or #t
if i <=n then
return t[i], unpack(t, i + 1, n)
end
end

The first time we call it, with a single argument, the parameter i gets 1 and n gets the length of the
sequence. Then the function returnst [1] followed by all results from unpack(t, 2, n),whichin
turnreturnst [2] followed by all resultsfromunpack(t, 3, n),andsoon, stopping after n elements.

Proper Tail Calls

Another interesting feature of functionsin Luaisthat Lua doestail-call elimination. (This meansthat Lua
isproperly tail recursive, athough the concept does not involve recursion directly; see Exercise 6.6.)

A tail call isagoto dressed asacall. A tail call happens when afunction calls another asitslast action, so
it has nothing else to do. For instance, in the following code, the call to g isatail call:

function f (x) x = x + 1; return g(x) end

After f calls g, it has nothing else to do. In such situations, the program does not need to return to the
calling function when the called function ends. Therefore, after the tail call, the program does not need to
keep any information about the calling function on the stack. When g returns, control can return directly to
the point that called f . Some language implementations, such asthe Luainterpreter, take advantage of this
fact and actually do not use any extra stack space when doing atail call. We say that theseimplementations
do tail-call elimination.

Because tail calls use no stack space, the number of nested tail callsthat a program can makeis unlimited.
For instance, we can call the following function passing any number as argument:

function foo (n)
if n>0then return foo(n - 1) end
end

It will never overflow the stack.

A subtle point about tail-call elimination is what is a tail call. Some apparently obvious candidates fail
the criterion that the calling function has nothing else to do after the call. For instance, in the following
code, the call to g isnot atail cal:

function f (x) g(x) end

48

Functions

Theprobleminthisexampleisthat, after callingg, f still hasto discard any resultsfrom g beforereturning.
Similarly, all the following callsfail the criterion:

return g(x) + 1 -- must do the addition
return x or g(x) -- must adjust to 1 result
return (g(x)) -- must adjust to 1 result

In Lua, only a call with the formreturn func(args) isatail cal. However, both f unc and its
arguments can be complex expressions, because L ua evaluates them before the call. For instance, the next
cal isatail cal:

return x[i].foo(x[j] + a*b, i + j)

Exercises

Exercise 6.1: Write afunction that takes an array and prints al its elements.

Exercise 6.2: Write a function that takes an arbitrary number of values and returns al of them, except
the first one.

Exercise 6.3: Write a function that takes an arbitrary number of values and returns all of them, except
the last one.

Exercise 6.4: Write afunction to shuffle agiven list. Make sure that all permutations are equally probable.

Exercise 6.5: Write afunction that takes an array and prints all combinations of the elementsin the array.
(Hint: you can usetherecursiveformulafor combination: C(n,m) = C(n-1, m-1) + C(n- 1, m). To generate
all C(n,m) combinations of n elementsin groups of size m, you first add the first element to the result and
then generate all C(n - 1, m- 1) combinations of the remaining elements in the remaining sots; then you
remove the first element from the result and then generate all C(n - 1, m) combinations of the remaining
elementsin the free slots. When n is smaller than m, there are no combinations. When mis zero, thereis
only one combination, which uses no elements.)

Exercise 6.6: Sometimes, alanguage with proper-tail callsis called properly tail recursive, with the argu-
ment that this property is relevant only when we have recursive calls. (Without recursive calls, the maxi-
mum call depth of a program would be statically fixed.)

Show that this argument does not hold in a dynamic language like Lua: write a program that performs an
unbounded call chain without recursion. (Hint: see the section called “ Compilation”.)

49

Chapter 7. The External World

Because of its emphasis on portability and embeddability, Lua itself does not offer much in terms of
facilitiesto communicate with the external world. Most I/Oinreal Lua programsis done either by the host
application or through external libraries not included in the main distribution, from graphics to databases
and network access. Pure Lua offers only the functionalities that the 1SO C standard offers —namely,
basic file manipulation plus some extras. In this chapter, we will see how the standard libraries cover these
functionalities.

The Simple I/0O Model

The /0O library offers two different models for file manipulation. The simple model assumes a current
input stream and a current output stream, and its 1/O operations operate on these streams. The library
initializes the current input stream to the process's standard input (st di n) and the current output stream
to the process's standard output (st dout). Therefore, when we execute something likei o. r ead() , we
read aline from the standard input.

We can change these current streams with the functions i 0. i nput and i 0. out put. A cal like
i 0.input(fil enane) opensastream over the given filein read mode and sets it as the current input
stream. From thispoint on, all input will comefromthisfile, until ancther call toi 0. i nput . Thefunction
i 0. out put doesasimilar job for output. In case of error, both functions raise the error. If you want to
handle errors directly, you should use the complete 1/O model.

Aswr i t eissimplerthanr ead, wewill look at it first. Thefunctioni o. wr i t e simply takesan arbitrary
number of strings (or numbers) and writes them to the current output stream. Because we can call it with
multiple arguments, we should avoid callslikei o. wite(a..b..c);thecalio. wite(a, b,
c) accomplishes the same effect with fewer resources, as it avoids the concatenations.

Asarule, youshouldusepr i nt only for quick-and-dirty programs or debugging; alwaysusei 0. wri t e
when you need full control over your output. Unlikepr i nt ,wr i t e addsno extracharactersto the output,
such as tabs or newlines. Moreover, i 0. wri t e alows you to redirect your output, whereas pr i nt

always uses the standard output. Finally, pr i nt automatically appliest ost ri ng to its arguments; this
is handy for debugging, but it also can hide subtle bugs.

Thefunctioni o. wri t e convertsnumbersto strings following the usual conversion rules; for full control
over this conversion, we should usestri ng. f or mat :

>jo.wite("sin(3) =", math.sin(3), "\n")
-->sin(3) = 0.14112000805987
>jo.wite(string.format("sin(3) = %4f\n", math.sin(3)))
-->sin(3) = 0.1411

Thefunctioni o. r ead reads strings from the current input stream. Its arguments control what to read:!

a" reads the wholefile

reads the next line (dropping the newline)

"L reads the next line (keeping the newline)
"n" reads a number
num reads numcharacters as a string

Yn Lua5.2 and before, all stri ng options should be preceded by an asterisk. Lua 5.3 still accepts the asterisk for compatibility.

50

The External World

Thecalio.read("a") readsthe whole current input file, starting at its current position. If we are at
the end of thefile, or if thefileis empty, the call returns an empty string.

Because Lua handles long strings efficiently, a simple technique for writing filtersin Luais to read the
wholefile into a string, process the string, and then write the string to the output:

t = io.read("a") -- read the whole file
t = string.gsub(t, "bad", "good") -- do the job
io.wite(t) -- wite the file

As a more concrete example, the following chunk is a complete program to code a file's content using
the MIME quoted-printable encoding. This encoding codes each non-ASCI| byte as =xx, where XX is
the value of the byte in hexadecimal. To keep the consistency of the encoding, it must encode the equals
sign aswell:

t
t

io.read("all")

string.gsub(t, "([\128-\255=])", function (c)
return string.formt("=992X", string.byte(c))

end)

io.wite(t)

The function st ri ng. gsub will match all non-ASCII bytes (codes from 128 to 255), plus the equals
sign, and call the given function to provide a replacement. (We will discuss pattern matching in detail in
Chapter 10, Pattern Matching.)

Thecalio.read("l") returnsthe next line from the current input stream, without the newline char-
acter; thecali o. read(" L") issimilar, but it keepsthe newline (if present in thefile). When we reach
the end of file, the call returns nil, as there is no next line to return. Option " | " is the default for r ead.
Usually, | usethisoption only when the algorithm naturally handlesthe dataline by line; otherwise, | favor
reading the whole file at once, with option " a" , or in blocks, as we will see later.

As a simple example of the use of line-oriented input, the following program copies its current input to
the current output, numbering each line;

for count = 1, math. huge do

local line = io.read("L")

if line == nil then break end

io.wite(string.format("%d ", count), line)
end

However, to iterate on awholefileline by line, thei 0. | i nes iterator allows a simpler code:

| ocal count =0

for line inio.lines() do
count = count + 1
io.wite(string.format("%d

end

count), line, "\n")

Asanother example of line-oriented input, Figure 7.1, “ A programto sort afile€” showsacomplete program
to sort the lines of afile.

51

The External World

Figure7.1. A program to sort afile

local lines = {}

-- read the lines in table 'lines

for line in io.lines() do
lines[#lines + 1] = line

end

-- sort

tabl e. sort (lines)

-- wite all the lines

for _, | inipairs(lines) do
io.wite(l, "\n")

end

Thecali o. read("n") readsanumber fromthe current input stream. Thisisthe only casewherer ead
returns anumber (integer or float, following the same rules of the Lua scanner) instead of astring. If, after
skipping spaces, i 0. r ead cannot find a numeral at the current file position (because of bad format or
end of file), it returnsnil.

Besides the basic read patterns, we can call r ead with anumber n as an argument: in this case, it triesto
read n characters from the input stream. If it cannot read any character (end of file), the call returns nil;
otherwise, it returns astring with at most n characters from the stream. As an example of this read pattern,
the following program is an efficient way to copy afilefrom st di n to st dout :

whil e true do
| ocal block = io.read(2"13) -- block size is 8K
if not block then break end
i 0o.wite(bl ock)

end

Asaspecia case, i 0. read(0) worksasatest for end of file: it returns an empty string if thereis more
to be read or nil otherwise.

We can call r ead with multiple options; for each argument, the function will return the respective result.
Suppose we have afile with three numbers per line:

6.0 -3.23 15e12

4.3 234 1000001

Now we want to print the maximum value of each line. We can read all three numbers of each line with
asinglecall tor ead:

whil e true do
local nl1, n2, n3 =io.read("n", "n", "n")
if not nl then break end
print(math. max(nl, n2, n3))

end

52

The External World

The Complete I/O Model

The simple I/0 model is convenient for simple things, but it is not enough for more advanced file manip-
ulation, such as reading from or writing to several files simultaneously. For these manipulations, we need
the complete model.

To open afile, weusethefunctioni 0. open, which mimicsthe C function f open. It takes as arguments
the name of the file to open plus a mode string. This mode string can contain an r for reading, aw for
writing (which also erases any previous content of the file), or an a for appending, plus an optional b to
open binary files. The function open returns a new stream over the file. In case of error, open returns
nil, plus an error message and a system-dependent error number:

print(io.open("non-existent-file", "r"))
-->nil non-exi stent-file: No such file or directory 2

print(io.open("/etc/passwd", "w'))
-->nil /etc/ passwd: Permnmi ssion denied 13

A typical idiom to check for errorsisto use the function assert :
local f = assert(io.open(filenane, node))

If the open fails, the error message goes as the second argument to assert, which then shows the
message.

After we open afile, we can read from or write to the resulting stream with the methodsr ead andwri t e.
They are similar to the functionsr ead and wr i t e, but we call them as methods on the stream object,
using the colon operator. For instance, to open afile and read it all, we can use a fragment like this:

| ocal f = assert(io.open(filenane, "r"))
local t = f:read("a")
f:close()

(We will discuss the colon operator in detail in Chapter 21, Object-Oriented Programming.)

The 1/O library offers handles for the three predefined C streams, called i 0. st di n, i 0. st dout , and
i 0. stderr. Forinstance, we can send a message directly to the error stream with a code like this:

i 0o.stderr:wite(nmessage)

Thefunctionsi o. i nput andi 0. out put alow usto mix the complete model with the simple model.
We get the current input stream by callingi o. i nput () , without arguments. We set this stream with the
cal i o.input (handl e). (Similar calls are also vaid for i 0. out put .) For instance, if we want to
change the current input stream temporarily, we can write something like this:

local tenmp = io.input() -- save current stream

i 0.1 nput("new nput") -- open a new current stream

do sonet hing with new i nput

i 0.input():close() -- close current stream

i 0.input(tenp) -- restore previous current stream

Note that i 0. read(args) is actualy a shorthand for i 0. i nput (): read(args), that is, the
r ead method applied over the current input stream. Similarly, i 0. wri t e(ar gs) is a shorthand for
io.output():wite(args).

53

The External World

Instead of i 0. r ead, wecanalsousei 0. | i nes toread from astream. Aswe saw in previous examples,
i 0.11nes gives an iterator that repeatedly reads from a stream. Given afile name, i 0. | i nes will
open a stream over the file in read mode and will close it after reaching end of file. When called with
no arguments, i 0. | i nes will read from the current input stream. We can adso usel i nes as a method
over handles. Moreover, since Lua5.2i 0. | i nes accepts the same optionsthat i 0. r ead accepts. As
an example, the next fragment copiesthe current input to the current output, iterating over blocks of 8 KB:

for block in io.input():lines(2713) do
io.wite(bl ock)
end

Other Operations on Files

Thefunctioni o. t npfi | e returns a stream over atemporary file, open in read/write mode. Thisfileis
automatically removed (deleted) when the program ends.

The function f | ush executes al pending writes to afile. Like the functionwr i t e, wecancal itasa
function—i o. f | ush() — toflush the current output stream, or asamethod —f : f | ush() —toflush
the stream f .

The set vbuf method sets the buffering mode of a stream. Its first argument is a string: " no" means
no buffering; " f ul | " means that the stream data is only written out when the buffer is full or when we
explicitly flush thefile; and " | i ne" meansthat the output is buffered until anewlineisoutput or thereis
any input from some special files (such as aterminal device). For the last two options, set vbuf accepts
an optional second argument with the buffer size.

In most systems, the standard error stream (i 0. st der r) isnot buffered, while the standard output stream
(i 0. st dout) is buffered in line mode. So, if we write incomplete lines to the standard output (e.g., a
progress indicator), we may need to flush the stream to see that output.

The seek method can both get and set the current position of a stream in a file. Its genera form is
f:seek(whence, offset),wherethewhence parameter isastring that specifies how to interpret
the offset. Itsvalid valuesare" set ", for offsets relative to the beginning of thefile; " cur ", for offsets
relative to the current position in the file; and " end" , for offsets relative to the end of the file. Indepen-
dently of the value of whence, the call returns the new current position of the stream, measured in bytes
from the beginning of thefile.

The default value for whence is" cur " and for of f set is zero. Therefore, thecall fil e: seek()
returnsthe current stream position, without changingit; thecall fi | e: seek("set") resetstheposition
to the beginning of the file (and returns zero); andthecall f i | e: seek("end") setsthe position to the
end of the file and returns its size. The following function gets the file size without changing its current
position:

function fsize (file)

local current = file:seek() -- save current position
| ocal size = file:seek("end") -- get file size
file:seek("set", current) -- restore position
return size

end

To complete the set, 0s. r ename changes the name of afile and os. r enmove removes (deletes) afile.
Note that these functions come from the os library, not thei o library, because they manipulate real files,
not streams.

All these functions return nil plus an error message and an error code in case of errors.

54

The External World

Other System Calls

The function os. exi t terminates the execution of a program. Its optional first argument is the return
status of the program. It can be a number (zero means a successful execution) or a Boolean (true means a
successful execution). An optiona second argument, if true, closes the Lua state, calling al finalizersand
releasing all memory used by that state. (Usually thisfinalization is not necessary, because most operating
systems release all resources used by a process when it exits.)

The function os. get env gets the value of an environment variable. It takes the name of the variable
and returns a string with its value:

print(os. getenv("HOVE")) --> [hone/l ua

The call returns nil for undefined variables.

Running system commands

Thefunction 0s. execut e runsasystem command; it isequivalent to the C functionsyst em It takesa
string with the command and returns information regarding how the command terminated. The first result
isaBoolean: true means the program exited with no errors. The second result isastring: " exi t " if the
program terminated normally or " si gnal " if it was interrupted by a signal. A third result is the return
status (if the program terminated normally) or the number of the signal that terminated the program. As
an example, both in POSIX and Windows we can use the following function to create new directories:

function createDir (dirname)
os. execute("nkdir " di r name)
end

Another quite useful functionisi o. popen.2 Likeos. execut e, it runs a system command, but it also
connects the command output (or input) to a new local stream and returns that stream, so that our script
can read data from (or write to) the command. For instance, the following script builds a table with the
entries in the current directory:

-- for PCSI X systenms, use '|ls' instead of "dir’
local f = io.popen("dir /B", "r")
local dir = {}
for entry in f:lines() do
dir[#dir + 1] = entry
end

The second parameter ("r ") toi 0. popen means that we intend to read from the command. The default
isto read, so this parameter is optional in the example.

The next example sends an email message:

"sone news"
"sonmeone@omnmewher e. or g"

| ocal subject
| ocal address

local cnd = string.format("mail -s '9%' '%'", subject, address)
local f = io.popen(cnd, "wW')
forwite([[

Not hi ng i mportant to say.

2This function is not available in all Lua installations, because the corresponding functionality is not part of ISO C. Despite not being standard in
C, weincluded it in the standard libraries due to its generality and presence in major operating systems.

55

The External World

-- e

11)

f:close()

(Thisscript only workson POSI X systems, with the appropriate packagesinstalled.) The second parameter
toi 0. popen nowis" w', meaning that we intend to write to the command.

As we can see from those two previous examples, both os. execut e and i 0. popen are powerful
functions, but they are also highly system dependent.

For extended OS access, your best option isto use an external Lualibrary, suchasLuaFi | eSyst em for
basi c manipulation of directoriesand file attributes, or | uaposi x, which offersmuch of the functionality
of the POSIX.1 standard.

Exercises

Exercise 7.1: Writeaprogram that reads atext fileand rewritesit with itslines sorted in alphabetical order.
When called with no arguments, it should read from standard input and write to standard output. When
called with onefile-name argument, it should read from that file and write to standard output. When called
with two file-name arguments, it should read from the first file and write to the second.

Exercise 7.2: Change the previous program so that it asks for confirmation if the user gives the name of
an existing file for its output.

Exercise 7.3: Comparethe performance of Luaprogramsthat copy the standard input stream to the standard
output stream in the following ways:

 byte by byte;

* lineby ling;

* in chunks of 8 kB;

+ thewholefile at once.

For the last option, how large can the input file be?

Exercise 7.4: Write a program that prints the last line of atext file. Try to avoid reading the entire file
when thefileis large and seekable.

Exercise 7.5: Generalize the previous program so that it prints the last n lines of atext file. Again, try to
avoid reading the entire file when the file is large and seekable.

Exercise 7.6: Using 0s. execut e and i 0. popen, write functions to create a directory, to remove a
directory, and to collect the entriesin a directory.

Exercise 7.7: Can you use 0S. execut e to change the current directory of your Lua script? Why?

56

Chapter 8. Filling some Gaps

We have aready used most of Lua's syntactical constructions in previous examples, but it is easy to miss
some details. For completeness, this chapter closesthefirst part of the book with more details about them.

Local Variables and Blocks

By default, variablesin Lua are global. All local variables must be declared as such. Unlike global vari-
ables, alocal variable hasits scope limited to the block whereit isdeclared. A block isthe body of acontrol
structure, the body of afunction, or achunk (the file or string where the variable is declared):

x = 10
local i =1 -- local to the chunk

while i <= x do

local x =i * 2 -- local to the while body
print (x) -->2, 4, 6, 8,
=1 +1

end

if i > 20 then

| ocal x -- local to the "then" body

x = 20

print(x + 2) -- (would print 22 if test succeeded)
el se

print (x) --> 10 (the gl obal one)
end
print (x) --> 10 (the gl obal one)

Beware that this last example will not work as expected if you enter it in interactive mode. In interactive
mode, each line is a chunk by itself (unless it is not a complete command). As soon as you enter the
second line of the example (I ocal i = 1), Luarunsit and starts a new chunk in the next line. By
then, the local declaration is already out of scope. To solve this problem, we can delimit the whole block
explicitly, bracketing it with the keywords do—end. Once you enter the do, the command completes only
at the corresponding end, so Luawill not execute each line by itself.

These do blocks are useful also when we need finer control over the scope of some local variables:

| ocal x1, x2
do
local a2 = 2*a
local d = (b*"2 - 4*a*c)"(1/2)
x1 = (-b + d)/a2
X2 = (-b - d)/a2
end -- scope of 'a2' and 'd' ends here
print(x1, x2) -- 'x1" and 'x2' still in scope

It is good programming style to use local variables whenever possible. Local variables avoid cluttering
the global environment with unnecessary names; they also avoid name clashes between different parts of
a program. Moreover, the access to local variables is faster than to global ones. Finally, aloca variable
vanishes as soon as its scope ends, allowing the garbage collector to release its value.

57

Filling some Gaps

Given that local variables are “better” than global ones, some people argue that Lua should use local
by default. However, local by default has its own set of problems (e.g., issues with accessing non-local
variables). A better approach would be no default, that is, all variables should be declared before used.
The Luadistribution comeswith amodule st ri ct . | ua for global-variable checks; it raises an error if
we try to assign to anon-existent global inside afunction or to use a non-existent global. It is agood habit
to use it when developing Lua code.

Each local declaration can include an initial assignment, which works the same way as a conventional
multiple assignment: extra values are thrown away, extra variables get nil. If a declaration has no initial
assignment, it initializes al its variables with nil:

local a, b =1, 10
if a <b then

print(a) -->1
| ocal a -- '=nil" isinplicit
print(a) -->nil
end -- ends the block started at 'then’

print(a, b) -->1 10
A common idiomin Luais
|l ocal foo = foo

This code creates alocal variable, f 00, and initializes it with the value of the global variable f 0o. (The
local f 00 becomesvisibleonly after itsdeclaration.) Thisidiom isuseful to speed up the accesstof o0o. It
isalso useful when the chunk needsto preserve the original value of f 0o even if later some other function
changes the value of the global f 0o; in particular, it makes the code resistant to monkey patching. Any
piece of code preceded by | ocal print = print will usethe origina function pri nt even if
pri nt ismonkey patched to something else.

Some people think it is a bad practice to use declarations in the middle of a block. Quite the opposite:
by declaring a variable only when we need it, we seldom need to declare it without an initial value (and
thereforewe seldom forget toinitializeit). Moreover, we shorten the scope of the variable, which increases
readability.

Control Structures

Lua provides a small and conventional set of control structures, with if for conditional execution and
while, repeat, and for for iteration. All control structures have a syntax with an explicit terminator: end
terminates if, for and while structures; until terminates repeat structures.

The condition expression of a control structure can result in any value. Remember that Lua treats as true
all values different from false and nil. (In particular, Luatreats both zero and the empty string astrue.)

if then else

An if statement tests its condition and executes its then-part or its else-part accordingly. The else-part
isoptional.

if a<0then a =0 end
if a<bthen return a else return b end

if line > MAXLI NES t hen

58

Filling some Gaps

showpage()
line =0
end

To write nested ifs we can use elseif. It is similar to an else followed by an if, but it avoids the need for

multiple ends:

if op == "+" then
r=a+b

elseif op == "-" then
r=a->o

elseif op == "*" then
r = a*b

elseif op == "/" then
r =alb

el se
error("invalid operation")

end

Because Lua has no switch statement, such chains are somewhat common.
while

As the name implies, a while loop repeats its body while a condition is true. As usual, Luafirst tests the
while condition; if the condition is fal se, then the loop ends; otherwise, L ua executes the body of the loop

and repeats the process.
local i =1
while a[i] do
print(af[i])
i =i +1
end
repeat

Asthe name implies, arepeat—until statement repeats its body until its condition is true. This statement
does the test after the body, so that it always executes the body at |east once.

-- print the first non-enpty input Iine

[ocal line
r epeat

[ine = io.read()
until line ~=""
print(line)

Differently from most other languages, in Luathe scope of alocal variable declared insidetheloop includes
the condition:

-- computes the square root of 'x' using Newton-Raphson nethod
local sqr = x / 2
repeat
sqr = (sqr + x/sqr) / 2
| ocal error = math.abs(sqr*2 - x)
until error < x/10000 -- local '"error' still visible here

59

Filling some Gaps

Numerical for

Thefor statement has two variants: the numerical for and the generic for.
A numerical for has the following syntax:

for var = expl, exp2, exp3 do
sonet hi ng
end

Thisloop will execute somnet hi ng for each value of var fromexpl to exp2, using exp3 asthe step
to increment var . This third expression is optional; when absent, Lua assumes one as the step value. If
we want aloop without an upper limit, we can use the constant mat h. huge:

for i =1, math. huge do
if (0.3*i73 - 20*i~2 - 500 >= 0) then
print(i)
br eak
end

end

The for loop has some subtleties that you should learn in order to make good use of it. First, al three
expressions are evaluated once, before the loop starts. Second, the control variable is a local variable
automatically declared by the for statement, and it is visible only inside the loop. A typical mistakeisto
assume that the variable still exists after the loop ends:

for i =1, 10 do print(i) end
max = i -- probably w ong!

If you need the value of the control variable after the loop (usually when you break the loop), you must
saveits value into another variable:

-- find a value in a |ist
| ocal found = nil

for i = 1, #a do
if a[i] < 0 then
found = i -- save value of 'i'
br eak
end
end

print (found)

Third, you should not change the value of the control variable: the effect of such changesisunpredictable.
If you want to end afor loop beforeits normal termination, use break (aswe did in the previous example).

Generic for

The generic for loop traverses all valuesreturned by an iterator function. We saw some examples already,
withpai rs,i pairs,io.|ines, etc. Despiteits apparent simplicity, the generic for ispowerful. With
proper iterators, we can traverse almost anything in a readable fashion.

Of course, we can write our own iterators. Although the use of the generic for is easy, the task of writing
iterator functions has its subtleties; hence, we will cover this topic later, in Chapter 18, Iterators and the
Generic for.

60

Filling some Gaps

Unlike the numerical for, the generic for can have multiple variables, which are all updated at each itera-
tion. The loop stops when the first variable gets nil. Asin the numerical loop, the loop variables are local
to the loop body and you should not change their values inside each iteration.

break, return, and goto

The break and return statements allow us to jump out of a block. The goto statement allows us to jump
to almost any point in afunction.

We use the break statement to finish aloop. This statement breaks the inner loop (for, repeat, or while)
that containsit; it cannot be used outside a loop. After the break, the program continues running from the
point immediately after the broken loop.

A return statement returns the results from afunction or simply finishesthe function. Thereisan implicit
return at the end of any function, so we do not need to write one for functions that end naturally, without
returning any value.

For syntactic reasons, a return can appear only as the last statement of a block: in other words, as the
last statement in our chunk or just before an end, an else, or an until. For instance, in the next example,
return isthe last statement of the then block:

local i =1
while a[i] do
if a[i] == v then return i end
i =i +1
end

Usually, these are the places where we use a return, because any statement following it would be un-
reachable. Sometimes, however, it may be useful to write areturn in the middle of a block; for instance,
we may be debugging a function and want to avoid its execution. In such cases, we can use an explicit
do block around the statement:

function foo ()

return - - << SYNTAX ERROR
-- 'return' is the last statenment in the next block
do return end -- XK
ot her statenents
end

A goto statement jumps the execution of a program to a corresponding label. There has been along going
debate about goto, with some people arguing even today that they are harmful to programming and should
be banned from programming languages. Nonetheless, several current languages offer goto, with good
reason. They are a powerful mechanism and, when used with care, can only improve the quality of our
code.

In Lua, the syntax for a goto statement is quite conventional: it is the reserved word goto followed by the
label name, which can be any valid identifier. The syntax for alabel is alittle more convoluted: it hastwo
colons followed by the label name followed by more two colons, likein: : name: : . Thisconvolutionis
intentional, to highlight labelsin a program.

Lua poses some restrictions to where we can jump with a goto. First, labels follow the usual visibility
rules, so we cannot jump into a block (because alabel inside ablock isnot visible outside it). Second, we
cannot jump out of afunction. (Note that the first rule already excludes the possibility of jumping into a
function.) Third, we cannot jump into the scope of alocal variable.

61

Filling some Gaps

A typical and well-behaved use of a goto is to simulate some construction that you learned from another
language but that is absent from Lua, such as continue, multi-level break, multi-level continue, redo, local
error handling, etc. A continue statement is simply a goto to a label at the end of a loop block; a redo
statement jumps to the beginning of the block:

whil e sone_conditi on do
c:redo::
if sonme_other_condition then goto continue
else if yet_another_condition then goto redo
end
some code
::continue:

end

A useful detail in the specification of Luais that the scope of alocal variable ends on the last non-void
statement of the block where the variable is defined; labels are considered void statements. To see the
usefulness of this detail, consider the next fragment:

whi |l e sone_condition do
if sone_other condition then goto continue end
| ocal var = sonething
sone code
;. continue:
end

You may think that this goto jumps into the scope of the variable var . However, the cont i nue label
appears after the last non-void statement of the block, and therefore it is not inside the scope of var .

The goto is aso useful for writing state machines. As an example, Figure 8.1, “An example of a state
machine with goto” shows a program that checks whether its input has an even number of zeros.

Figure 8.1. An example of a state machine with goto

::sl:: do
local ¢ = io.read(l)
i f == "'0" then goto s2
elseif ¢ == nil then print'ok'; return
el se goto si
end
end
11821 do
local ¢ = io.read(l)
if c =="0" then goto sl
elseif ¢ == nil then print'not ok'; return
el se goto s2
end
end
goto si

There are better ways to write this specific program, but this technique is useful if we want to trandate a
finite automaton into Lua code automatically (think about dynamic code generation).

As another example, let us consider a simple maze game. The maze has several rooms, each with up to
four doors: north, south, east, and west. At each step, the user enters a movement direction. If thereisa

62

Filling some Gaps

door in this direction, the user goes to the corresponding room; otherwise, the program prints a warning.
The goal isto go from aninitial room to afinal room.

This game is atypical state machine, where the current room is the state. We can implement this maze

with one block for each room, using agoto to move from one room to another. Figure 8.2, “ A maze game”
shows how we could write a small maze with four rooms.

Figure 8.2. A maze game

goto rooml -- initial room
::roonl:: do
| ocal nove = io.read()
if nmove == "south" then goto roonB
el seif nove == "east" then goto roont
el se
print("invalid nove")
goto rooml -- stay in the sane room
end
end
::roonR:: do
| ocal nove = io.read()
if nmove == "south" then goto roomd
el seif nove == "west" then goto roontl
el se
print("invalid nove")
goto roong
end
end
::roonB:: do
| ocal nove = io.read()
if nmove == "north" then goto rooml
el seif nove == "east" then goto roon%
el se
print("invalid nove")
goto roonB
end
end
::roond:: do
print("Congratul ati ons, you won!")
end

For this simple game, you may find that a data-driven program, where you describe the rooms and move-
ments with tables, is a better design. However, if the game has several special situations in each room,
then this state-machine design is quite appropriate.

Exercises

Exercise 8.1: Most languages with a C-like syntax do not offer an elseif construct. Why does Lua need
this construct more than those languages?

63

Filling some Gaps

Exercise 8.2: Describefour different waysto write an unconditional loop in Lua. Which onedo you prefer?

Exercise 8.3: Many people argue that r epeat--until is seldom used, and therefore it should not be present
inaminimalistic language like Lua. What do you think?

Exercise 8.4: Aswe saw in the section called “Proper Tail Calls’, atail cal isagoto in disguise. Using
thisidea, reimplement the simple maze game from the section called “break, return, and goto” using tail
calls. Each block should become a new function, and each goto becomes atail call.

Exercise 8.5: Can you explain why Luahastherestriction that agoto cannot jump out of afunction? (Hint:
how would you implement that feature?)

Exercise 8.6: Assuming that a goto could jump out of afunction, explain what the program in Figure 8.3,
“A strange (and invalid) use of agoto” would do.

Figure 8.3. A strange (and invalid) use of a goto

function getlabel ()

return function () goto L1 end
A I

return O
end

function f (n)
if n==0 then return getlabel ()
el se
local res = f(n - 1)
print(n)
return res
end
end

x = f(10)
x()

(Try to reason about the label using the same scoping rules used for local variables.)

Part Il. Real Programming

Table of Contents

S O (o= = PSP PP SPPPPTRUPPPIN 68
FUNCEIONS 8S FITsSt-Class VAIUBSuiiiiiiiieiiii et 68
NON-GIODEl FUNCLIONSuiiiiii e eeeees 69
LEXICAl SCOPING ...ttt ettt ettt e et e et b e e e et e et et e e e 71
A Taste of Functional Programimingeeeeeueeeeiiieeeiie e e et e e e e e e eenes 74

10. Pattern MaCNING ... eeeeiiee ettt 77
The Pattern-Matching FUNCLIONScoouuiiiiiii et 77

The function String. find ..o 77
The function StriNg. MAt Ch ..o 77
The function ST ri NG. gSUD ... 78
The function Stri NG. gMBE CN oo e 78
P EINIS .ttt e 78
CAPLUIES ... e ettt 82
REDIGCEIMENLS ...t ettt e e e s 83
URL ©NMCOOING ...ttt ettt ettt e et e et e e et eeebe s 84
TaD EXPANSION ...ttt 86
THCKS Of the Trade ... e e e 86

11. Interlude: MOst FrequENnt WOISociiiuieiiiiie et Q0

12, DA AN TIMIE ettt ettt ettt ettt e e ettt e et e e ettt e et e et e et e et e et e abn e e e enba e eenes 92
The FUNCHION OS. T 1MB ittt ettt e et e e et e e e ena e eees 92
The FUNCEION 0S. G € .oouuiiiiiiii ettt eeena e e 93
Date-Time ManipUIBLIONccoouuniiiiii et e e e 95

13, BitS AN BYLES ..oeiieiiii e e 97
BitWIiSE OPEIEIONSvuueeeeti ettt e ettt e et ettt ettt e ettt e et e et e e et et e e e e et e et eba e aeee 97
UNSIGNEA INEEOENS ...ttt ettt et e et e et e e et e e e e et e e e e ena s 97
Packing and Unpacking Binary Datauieiiiiiniiiiiiiieeeiii et 99
BNy fllES ..o e 101

T4, Data SETUCLUMNES ...cvecee ettt et et e e et e e e e e e e e e eenas 104
L = 7 PP PTPPTN 104
Matrices and Multi-Dimensional ATAYSieeeeuniieieii e 105
LINKEA LISES ..evteeietie ettt ettt e et e et e et a e e e e e e e 107
Queues and Double-Ended QUEUESoieuniiiieiii et e e e e 107
REVEISE TaIES ...t 108
SEES NG BAGS ... eiieti ettt 109
SING BUFFEIS ..ottt e e 110
GrAPNIS .. e 111

15. Data Files and Sefi@liZationuioiiiiiiii e 114
DaLA FIIES ... 114
SENTAITZALTON ...t 116

Saving tables WIithOUL CYCIEScoiiiiieiii e 118
Saving tables With CYCIES i 119

16. Compilation, EXECUION, @N0 EITOISocuuiiiii e e e et e e eees 122
1600] 17111 =11 H TSP P PP SPPPTT 122
Precompiled COUEuieiii ettt 125
B O S e 126
Error Handling @and EXCEPLIONSoiiiitiiiiiiiiee ettt e s 127
Error Messages and TraCehaCksviiiiiiiiiiiii e 128

17. MOAUIES 8N PACKBOESceeeiiieieii ettt et e et 131
The FUNCHION I QU T8 ittt et e b 132

ReENaMING @ MOUIEccooiiiiiiii e 133
Path SEAICHINGceeeti i e e 133

66

Real Programming

The Basic Approach for Writing ModuleS in LUuacc.oveviiiiiiiiiiiiiiccee e

Submodules and Packages

67

Chapter 9. Closures

Functionsin Luaare first-class values with proper lexical scoping.

What does it mean for functionsto be “first-classvalues’ ? It means that, in Lua, afunctionisavaluewith
the same rights as more conventional values like numbers and strings. A program can store functionsin
variables (both global and local) and in tables, pass functions as arguments to other functions, and return
functions as results.

What does it mean for functionsto have “lexical scoping”? It means that functions can access variabl es of
their enclosing functions. (It also means that Lua properly contains the lambda calculus.)

Together, these two features give great flexibility to the language; for instance, a program can redefine a
function to add new functionality or erase afunction to create a secure environment when running a piece
of untrusted code (such as code received through a network). More importantly, these features allow us
to apply in Luamany powerful programming techniques from the functional-language world. Evenif you
have no interest at al in functional programming, it is worth learning a little about how to explore these
techniques, because they can make your programs smaller and simpler.

Functions as First-Class Values

Aswejust saw, functionsin Luaarefirst-class values. The following exampleillustrates what that means:

a={p =print} -- 'a.p' refers to the "print' function
a.p("Hello world") --> Hello Wrld

print = math.sin -- 'print' nowrefers to the sine function
a.p(print(1)) --> 0.8414709848079

math.sin = a.p -- 'sin'" nowrefers to the print function
mat h. si n(10, 20) --> 10 20

If functions are values, are there expressions that create functions? Sure. In fact, the usual way to write
afunctionin Lua, such as

function foo (x) return 2*x end
is an instance of what we call syntactic sugar; it is simply a pretty way to write the following code:
foo = function (x) return 2*x end

The expression in the right-hand side of the assignment (f uncti on (x) body end)isafunction
constructor, in the same way that {} is atable constructor. Therefore, a function definition isin fact a
statement that creates avalue of type" f unct i on" and assignsit to avariable.

Note that, in Lua, al functions are anonymous. Like any other value, they do not have names. When
we talk about a function name, such as pri nt , we are actually talking about a variable that holds that
function. Although we often assign functionsto global variables, giving them something like aname, there
are several occasions when functions remain anonymous. L et us see some examples.

Thetablelibrary providesthefunctiont abl e. sor t , which receives atable and sortsits elements. Such
afunction must allow unlimited variations in the sort order: ascending or descending, numeric or alpha-
betical, tables sorted by akey, and so on. Instead of trying to provide all kinds of options, sort provides
a single optional parameter, which is the order function: a function that takes two elements and returns

68

Closures

whether the first must come before the second in the sorted list. For instance, suppose we have a table
of records like this:

network = {
{nane = "grauna", |P = "210.26.30.34"},
{nane = "arraial", IP = "210.26.30.23"},
{name = "lua", | P = "210. 26.23. 12"},
{nane = "derain", |IP = "210.26.23.20"},
}

If we want to sort the table by the field nane, in reverse alphabetical order, wejust write this:
tabl e. sort (network, function (a,b) return (a.name > b.nane) end)
See how handy the anonymous function isin this statement.

A function that takes another function as an argument, such assor t , iswhat we call a higher-order func-
tion. Higher-order functions are apowerful programming mechanism, and the use of anonymous functions
to create their function argumentsisagreat source of flexibility. Neverthel ess, remember that higher-order
functions have no specia rights; they are a direct consequence of the fact that Lua handles functions as
first-class values.

To further illustrate the use of higher-order functions, we will write a naive implementation of acommon
higher-order function, the derivative. In aninformal definition, the derivative of afunction f isthe function
f'(x) = (f(x + d) - f(x)) / d when d becomes infinitesimally small. According to this definition, we can
compute an approximation of the derivative as follows:

function derivative (f, delta)
delta = delta or 1le-4
return function (x)
return (f(x + delta) - f(x))/delta
end
end

Given a function f , the call deri vati ve(f) returns (an approximation of) its derivative, which is
another function:

¢ = derivative(nmath. sin)
> print(math.cos(5.2), c(5.2))

--> 0.46851667130038 0. 46856084325086
print(math.cos(10), c(10))

--> -0.83907152907645 -0.83904432662041

Non-Global Functions

An obvious consequence of first-class functionsisthat we can store functions not only in global variables,
but also in table fields and in local variables.

We have already seen several examples of functionsin table fields: most L ualibraries use this mechanism
(eg., i 0. read, mat h. si n). To create such functions in Lua, we only have to put together what we
have learned so far:

Lib = {}

69

Closures

Lib.foo = function (x,y) return x + y end
Li b.goo = function (x,y) return x - y end
print(Lib.foo(2, 3), Lib.goo(2, 3)) -->5 -1

Of course, we can also use constructors:

Lib = {
foo = function (x,y) return x + y end,
goo = function (x,y) return x - y end
}

Moreover, Lua offers a specific syntax to define such functions:

Lib = {}
function Lib.foo (x,y) return x + vy end
function Lib.goo (x,y) return x - y end

Aswe will seein Chapter 21, Object-Oriented Programming, the use of functionsin table fieldsis akey
ingredient for object-oriented programming in Lua.

When we store afunction into alocal variable, we get alocal function, that is, afunction that is restricted
to agiven scope. Such definitions are particularly useful for packages: because Lua handles each chunk as
afunction, a chunk can declare local functions, which are visible only inside the chunk. Lexical scoping
ensures that other functionsin the chunk can use these local functions.

Lua supports such uses of local functions with a syntactic sugar for them:
| ocal function f (parans)
body

end

A subtle point arises in the definition of recursive local functions, because the naive approach does not
work here. Consider the next definition:

| ocal fact = function (n)

if n==0then return 1
el se return n*fact(n-1) -- buggy
end

end

When Lua compilesthe cal fact (n - 1) in the function body, the local f act is not yet defined.
Therefore, this expression will try to call aglobal f act , not the local one. We can solve this problem by
first defining the local variable and then the function:

| ocal fact

fact = function (n)
if n==0then return 1
el se return n*fact(n-1)
end

end

Now thef act insidethe function refersto the local variable. Its value when the function is defined does
not matter; by the time the function executes, f act aready has theright value.

70

Closures

When Lua expands its syntactic sugar for local functions, it does not use the naive definition. Instead, a
definition like

[ocal function foo (paranms) body end
expands to

| ocal foo; foo = function (parans) body end
Therefore, we can use this syntax for recursive functions without worrying.

Of coursg, thistrick does not work if we have indirect recursive functions. In such cases, we must use the
equivalent of an explicit forward declaration:

| ocal f -- "forward" decl aration

| ocal function g ()
sone code f() sone code
end

function f ()
some code g() sone code
end

Beware not to write | ocal in the last definition. Otherwise, Lua would create a fresh local variable f
leaving the original f (the onethat g isbound to) undefined.

Lexical Scoping

When we write a function enclosed in another function, it has full access to local variables from the en-
closing function; we call this feature lexical scoping. Although this visibility rule may sound obvious, it
isnot. Lexical scoping plus nested first-class functions give great power to a programming language, but
many do not support the combination.

Let us start with a simple example. Suppose we have alist of student names and a table that maps names
to grades; we want to sort the list of names according to their grades, with higher grades first. We can
do thistask as follows:

names = {"Peter", "Paul", "Mary"}
grades = {Mary = 10, Paul = 7, Peter = 8}
tabl e. sort(nanes, function (nl, n2)
return grades[nl] > grades[n2] -- conpare the grades
end)

Now, suppose we want to create a function to do this task:

function sortbygrade (nanes, grades)
tabl e. sort (names, function (nl, n2)
return grades[nl] > grades[n2] -- conpare the grades
end)
end

Theinteresting point in thislast exampleisthat the anonymousfunction giventosor t accessesgr ades,
which isaparameter to the enclosing function sor t bygr ade. Inside thisanonymous function, gr ades

71

Closures

is neither a global variable nor a local variable, but what we call a non-local variable. (For historical
reasons, non-local variables are also called upvaluesin Lua.)

Why isthis point so interesting? Because functions, being first-class values, can escape the original scope
of their variables. Consider the following code:

function newCounter ()
| ocal count = 0
return function () -- anonynous function
count = count + 1
return count
end
end

cl = newCounter ()
print(cl()) -->1
print(cl()) -->2

In this code, the anonymous function refersto anon-local variable (count) to keep its counter. However,
by the time we call the anonymous function, the variable count seems to be out of scope, because the
function that created this variable (newCount er) has aready returned. Nevertheless, Lua handles this
situation correctly, using the concept of closure. Simply put, a closure is a function plus all it needs to
access non-local variables correctly. If we call newCount er again, it will create a new local variable
count and anew closure, acting over this new variable:

c2 = newCounter ()
print(c2()) -->1
print(cl()) -->3
print(c2()) -->2

So, c1 and c2 are different closures. Both are built over the same function, but each acts upon an inde-
pendent instantiation of the local variable count .

Technically speaking, what isavalue in Luais the closure, not the function. The function itself isakind
of aprototype for closures. Nevertheless, we will continue to use the term “function” to refer to a closure
whenever thereis no possibility for confusion.

Closures provide avaluable tool in many contexts. Aswe have seen, they are useful as argumentsto high-
er-order functions such as sor t . Closures are valuable for functions that build other functions too, like
our newCount er example or the derivative example; this mechanism allows Lua programs to incorpo-
rate sophisticated programming techniques from the functional world. Closures are useful for callback
functions, too. A typical example here occurs when we create buttonsin a conventional GUI toolkit. Each
button has a callback function to be called when the user presses the button; we want different buttons to
do dightly different things when pressed.

For instance, adigital calculator needsten similar buttons, one for each digit. We can create each of them
with afunction like this:

function digitButton (digit)
return Button{ |abel = tostring(digit),
action = function ()
add_to_display(digit)
end

72

Closures

end

In this example, we pretend that But t on is a toolkit function that creates new buttons; | abel isthe
button label; and act i on isthe callback function to be called when the button is pressed. The callback
can be called along time after di gi t But t on did itstask, but it can till accessthedi gi t variable.

Closures are valuable also in a quite different context. Because functions are stored in regular variables,
we can easily redefine functions in Lua, even predefined functions. This facility is one of the reasons
why Luais so flexible. Frequently, when we redefine a function, we need the original function in the
new implementation. As an example, suppose we want to redefine the function si n to operate in degrees
instead of radians. This new function convertsits argument and then calls the original function si n to do
the real work. Our code could look like this:

local oldSin = math.sin
mat h. sin = function (x)

return oldSin(x * (math.pi / 180))
end

A dlightly cleaner way to do this redefinition is as follows:

do
local oldSin = math.sin
local k = math.pi / 180
math.sin = function (x)
return ol dSin(x * k)
end
end

Thiscode usesado block to limit the scope of thelocal variableol dSi n; following conventional visibility
rules, the variableisonly visibleinside the block. So, the only way to accessit isthrough the new function.

We can use this sametechniqueto create secure environments, also called sandboxes. Secure environments
are essential when running untrusted code, such as code received through the Internet by a server. For
instance, to restrict the files that a program can access, we can redefinei 0. open using closures:

do
| ocal ol dOpen = i 0. open
| ocal access_OK = function (filename, node)
check access
end
i 0.open = function (filenane, node)
if access_OK(fil ename, node) then
return ol dOpen(fil enanme, node)
el se
return nil, "access denied"
end
end
end

What makes this example nice is that, after this redefinition, there is no way for the program to call the
unrestricted version of functioni 0. open except through the new, restricted version. It keepstheinsecure
version as a private variable in a closure, inaccessible from the outside. With this technique, we can build
Luasandboxesin Luaitsalf, with the usual benefits: simplicity and flexibility. Instead of aone-size-fits-all
solution, Lua offers us a meta-mechanism, so that we can tailor our environment for our specific security
needs. (Real sandboxes do more than protecting external files. Wewill return to this subject in the section
called “Sandboxing”.)

73

Closures

A Taste of Functional Programming

To give a more concrete example of functional programming, in this section we will develop a smple
system for geometric regions1 The goal is to develop a system to represent geometric regions, where a
region is a set of points. We want to be able to represent all kinds of shapes and to combine and modify
shapesin severa ways (rotation, translation, union, etc.).

Toimplement this system, we could start looking for good data structuresto represent shapes; we could try
an object-oriented approach and develop some hierarchy of shapes. Or we can work on a higher level of
abstraction and represent our setsdirectly by their characteristic (or indicator) function. (Thecharacteristic
function of aset Aisafunction fa suchthat fa(x) istrueif and only if x belongsto A.) Given that ageometric
region is a set of points, we can represent a region by its characteristic function; that is, we represent a
region by afunction that, given a point, returns true if and only if the point belongs to the region.

Asan example, the next function represents adisk (acircular region) with center (1.0, 3.0) and radius 4.5:

function diskl (x, y)
return (x - 1.0)"2 + (y - 3.0)"2 <= 4.5"2
end

With higher-order functions and lexical scoping, it is easy to define a disk factory, which creates disks
with given centers and radius:

function disk (cx, cy, r)
return function (x, Yy)
return (x - cx)*2 + (y - cy)"2 <= r"2
end
end

A cdl likedi sk(1.0, 3.0, 4.5) will createadisk equal todi sk1.
The next function creates axis-aligned rectangles, given the bounds:

function rect (left, right, bottom up)
return function (x, y)
return left <= x and x <= right and
bottom <= x and x <= up
end
end

In a similar fashion, we can define functions to create other basic shapes, such as triangles and non—
axis-aligned rectangles. Each shape has a compl etely independent implementation, needing only a correct
characteristic function.

Now let us see how to modify and combine regions. To create the complement of any region istrivial:

function conplement (r)
return function (x, y)
return not r(x, y)
end
end

This example is adapted from the research report Haskell vs. Ada vs. C++ vs. Awk vs. ... An Experiment in Software Prototyping Productivity,
by Paul Hudak and Mark P. Jones.

74

Closures

Union, intersection, and difference are equally ssmple, aswe show in Figure 9.1, “Union, intersection, and
difference of regions’.

Figure 9.1. Union, inter section, and difference of regions

function union (rl, r2)
return function (x, y)
return r1l(x, y) or r2(x, y)
end
end

function intersection (ri1, r2)
return function (x, y)
return rl(x, y) and r2(x, y)
end
end

function difference (rl, r2)
return function (x, y)
return rl(x, y) and not r2(x, y)
end
end

The following function translates aregion by a given delta:

function translate (r, dx, dy)
return function (x, vy)
return r(x - dx, y - dy)
end
end

To visualize a region, we can traverse the viewport testing each pixel; pixels in the region are painted
black, pixelsoutsideit are painted white. Toillustrate this processin asimple way, we will writeafunction
to generate a PBM (portable bitmap) file with the drawing of a given region.

PBM files have a quite simple structure. (This structure is also highly inefficient, but our emphasis here
issimplicity.) In its text-mode variant, it starts with a one-line header with the string " P1" ; then thereis
one line with the width and height of the drawing, in pixels. Finally, there is a sequence of digits, one for
each image pixel (1 for black, O for white), separated by optional spaces and end of lines. The function
pl ot inFigure 9.2, “Drawing aregion in a PBM file" creates a PBM file for a given region, mapping a
virtual drawing area (-1,1], [-1,1) to the viewport area[1,M], [1,N].

Figure 9.2. Drawing aregion in a PBM file

function plot (r, M N)

io.wite("PL\n", M " ", N "\n") -- header
for i =1, Ndo -- for each line
local y = (N- i*2)/N
for j =1, Mdo -- for each col um

local x = (j*2 - M/M
io.wite(r(x, y) and "1" or "0")
end
io.wite("\n")
end
end

75

Closures

To complete our example, the following command draws awaxing crescent moon (as seen from the South-
ern Hemisphere):

cl = disk(0, 0, 1)
plot (difference(cl, translate(cl, 0.3, 0)), 500, 500)

Exercises

Exercise 9.1: Write afunction i nt egr al that takes a function f and returns an approximation of its
integral.

Exercise 9.2: What will be the output of the following chunk:

function F (x)
return {

set function (y) x =y end,

get function () return x end
}
end
0ol = F(10)
02 = F(20)

print(ol.get(), o02.get())
02.set (100)
0l. set (300)
print(ol.get(), o2.get())

Exercise 9.3: Exercise 5.4 asked you to write afunction that receives apolynomial (represented as atable)
and avalue for its variable, and returns the polynomial value. Write the curried version of that function.
Your function should receive a polynomial and return a function that, when called with a value for x,
returns the value of the polynomial for that x. See the example:

f = newpoly({3, 0, 1})

print(f(0)) --> 3
print(f(5)) --> 28
print(f(10)) --> 103

Exercise 9.4: Using our system for geometric regions, draw a waxing crescent moon as seen from the
Northern Hemisphere.

Exercise 9.5: In our system for geometric regions, add afunction to rotate a given region by agiven angle.

76

Chapter 10. Pattern Matching

Unlike several other scripting languages, Lua uses neither POSIX regex nor Perl regular expressions for
pattern matching. The main reason for this decision is size: atypical implementation of POSIX regular
expressions takes more than 4000 lines of code, which is more than half the size of al Lua standard
libraries together. In comparison, the implementation of pattern matching in Lua has less than 600 lines.
Of course, pattern matching in Lua cannot do all that a full POSIX implementation does. Nevertheless,
pattern matching in Lua is a powerful tool, and includes some features that are difficult to match with
standard POSIX implementations.

The Pattern-Matching Functions

The string library offers four functions based on patterns. We have aready had aglimpse at f i nd and
gsub; the other two are mat ch and gmat ch (Global Match). Now we will see al of them in detail.

The function string. fi nd

The function st ri ng. fi nd searches for a pattern inside a given subject string. The simplest form of
a pattern is a word, which matches only a copy of itself. For instance, the pattern 'hel | o' will search
for the substring " hel | 0" inside the subject string. When st ri ng. fi nd finds its pattern, it returns
two values: the index where the match begins and the index where the match ends. If it does not find a
match, it returns nil:

s = "hello world"

i, j = string.find(s, "hello")

print(i, j) --> 1 5
print(string.sub(s, i, j)) --> hello

print(string.find(s, "world")) --> 7 11
i, j =string.find(s, "I")

print(i, j) --> 3 3
print(string.find(s, "Il11")) -->nil

When a match succeeds, we can call st ri ng. sub with the values returned by f i nd to get the part of
the subject string that matched the pattern. For simple patterns, thisis necessarily the pattern itself.

Thefunctionst ri ng. f i nd hastwo optional parameters. Thethird parameter isan index that tellswhere
in the subject string to start the search. The fourth parameter, a Boolean, indicates a plain search. A plain
search, as the name implies, does aplain “find substring” search in the subject, ignoring patterns:

> string.find("a [word]", "[")
stdin:1l: malforned pattern (missing ']")
> string.find("a [word]", “[", 1, true) -->3 3

In the first call, the function complains because '[' has a special meaning in patterns. In the second call,
the function treats '[' as a simple string. Note that we cannot pass the fourth optional parameter without
the third one.

The function stri ng. mat ch

Thefunctionst ri ng. mat chissimilartof i nd, inthesensethat it also searchesfor apatternin astring.
However, instead of returning the positions where it found the pattern, it returns the part of the subject
string that matched the pattern:

77

Pattern Matching

print(string.match("hello world", "hello")) --> hello

For fixed patterns such as'hel | o', thisfunction is pointless. It shows its power when used with variable
patterns, as in the next example:

date =
d = string. match(date,
print(d) --> 17/7/1990

"Today is 17/7/1990"
"od+/ %d+/ vd+")

Shortly we will discuss the meaning of the pattern 'vd+/ %d+/ %@+ and more advanced uses for
string. mat ch.

The function stri ng. gsub

The function st ri ng. gsub has three mandatory parameters. a subject string, a pattern, and a replace-
ment string. Its basic use is to substitute the replacement string for all occurrences of the pattern inside
the subject string:

s = string.gsub("Lua is cute", "cute", "great")
print(s) --> Lua is great

s = string.gsub("all lii", "I", "x")

print(s) --> axx xi

s = string.gsub("Lua is great", "Sol", "Sun")
print(s) --> Lua is great

An optional fourth parameter limits the number of substitutions to be made:

s = string.gsub("all lii", "I", "x", 1)
print(s) --> ax|l i
s = string.gsub("all lii", "I", "x", 2)
print(s) --> axx i

Instead of a replacement string, the third argument to st ri ng. gsub can be also a function or a table,
which is called (or indexed) to produce the replacement string; we will cover this feature in the section
called “Replacements’.

Thefunction st ri ng. gsub also returns as a second result the number of times it made the substitution.

The function stri ng. gnat ch

Thefunctionst ri ng. gmat ch returnsafunction that iterates over all occurrencesof apatternin astring.
For instance, the following example collects all words of agiven string s:

s = "sone string"

words = {}

for win string.gmatch(s,
words[#words + 1] = w

end

"%@a+") do

Aswewill discuss shortly, the pattern '%a+' matches sequences of one or more alphabetic characters (that
is, words). So, thefor loop will iterate over all words of the subject string, storing them inthelist wor ds.

Patterns

Most pattern-matching libraries use the backslash as an escape. However, this choice has some annoying
conseguences. For the Lua parser, patterns are regular strings. They have no special treatment and follow

78

Pattern Matching

the same rules as other strings. Only the pattern-matching functions interpret them as patterns. Because
the backslash is the escape character in Lua, we have to escape it to pass it to any function. Patterns are
naturally hard to read, and writing "\ \ " instead of "\ " everywhere does not help.

We could ameliorate this problem with long strings, enclosing patterns between double brackets. (Some
languages recommend this practice.) However, the long-string notation seems cumbersome for patterns,
which are usually short. Moreover, we would lose the ability to use escapes inside patterns. (Some pat-
tern-matching tools work around this limitation by reimplementing the usual string escapes.)

Luas solution is simpler: patternsin Lua use the percent sign as an escape. (Several functionsin C, such
asprintf andstrftine, adopt the same solution.) In general, any escaped a phanumeric character
has some special meaning (e.g., '¥&' matches any letter), while any escaped non-al phanumeric character
representsitself (e.g., '% ' matches adot).

Wewill start our discussion about patterns with character classes. A character classisan itemin apattern
that can match any character in a specific set. For instance, the class % matches any digit. Therefore, we
can search for adate in the format dd/ mm yyyy with the pattern '¥d %/ %d %/ %% %l %"

s = "Deadline is 30/05/1999, firn
date = " %%/ %d%d/ Yd%d % Ya"
print(string.match(s, date)) --> 30/ 05/1999

The following table lists the predefined character classes with their meanings:

all characters
% letters
% control characters
%l digits
% printable characters except spaces
% lower-case |etters
% punctuation characters
%s space characters
%u upper-case letters
% alphanumeric characters
U hexadecimal digits

An upper-case version of any of these classes represents the complement of the class. For instance, 'Y
represents all non-letter characters:

print((string.gsub("hello, up-down!", "O9&A", ".")))
--> hel l o..up. down.

(When printing the results of gsub, | am using extra parentheses to discard its second result, which is
the number of substitutions.)

Some characters, called magic characters, have special meanings when used in a pattern. Patternsin Lua
use the following magic characters:

(). %+-*2[]"s

As we have seen, the percent sign works as an escape for these magic characters. So, '%®' matches a
guestion mark and '%8% matches a percent sign itself. We can escape not only the magic characters, but
also any non-a phanumeric character. When in doubt, play safe and use an escape.

79

Pattern Matching

A char-set allows us to create our own character classes, grouping single characters and classes inside
square brackets. For instance, thechar-set [%w_] " matches both al phanumeric characters and underscores,
'[01] ' matches binary digits, and '[%4 %4] ' matches sgquare brackets. To count the number of vowelsin
atext, we can write this code:

_, nvow = string.gsub(text, "[AEl QUaeioul", "")

We can also include character ranges in a char-set, by writing the first and the last characters of the range
separated by a hyphen. | seldom use this feature, because most useful ranges are predefined; for instance,
"%’ substitutes'[0- 9] ', and "%’ substitutes'[0- 9a- f A- F] ". However, if you need to find an octal digit,
you may prefer [0- 7] " instead of an explicit enumeration like'[01234567] '.

We can get the complement of any char-set by starting it with a caret: the pattern ‘[~0- 7] ' finds any
character that isnot an octal digitand'[*\ n] " matchesany character different from newline. Nevertheless,
remember that you can negate simple classes with its upper-case version: '%&' issimpler than [*%s] .

We can make patterns still more useful with modifiers for repetitions and optional parts. Patternsin Lua
offer four modifiers:

+ 1 or more repetitions

*

0 or more repetitions

- 0 or more lazy repetitions

? optional (0 or 1 occurrence)

The plus modifier matches one or more characters of the original class. It will aways get the longest
seguence that matches the pattern. For instance, the pattern '%a+' means one or more letters (aword):

print((string.gsub("one, and two; and three", "%a+", "word")))
--> word, word word; word word

The pattern '¥d+' matches one or more digits (an integer numeral):
print(string. match("the nunber 1298 is even", "%+")) --> 1298

The asterisk modifier is similar to plus, but it also accepts zero occurrences of characters of the class.
A typica use is to match optiona spaces between parts of a pattern. For instance, to match an empty
parenthesis pair, suchas () or (), we can use the pattern '% % * %9 ', where the pattern '%s* ' matches
zero or more spaces. (Parentheses have aspecia meaning in apattern, so we must escapethem.) Asanother
example, the pattern [_%a] [_ % * ' matches identifiers in a Lua program: a sequence starting with a
letter or an underscore, followed by zero or more underscores or a phanumeric characters.

Like an asterisk, the minus modifier also matches zero or more occurrences of characters of the original
class. However, instead of matching the longest sequence, it matches the shortest one. Sometimes there
is no difference between asterisk and minus, but usually they give rather different results. For instance, if
wetry tofind anidentifier withthepattern'[_%a] [_ %] - ', wewill find only the first |etter, because the
T_9% - " will dways match the empty sequence. On the other hand, suppose we want to erase comments
inaC program. Many peoplewould firsttry '/ 9% . * 9%/ ' (thatis,a" / *" followed by a sequence of any
charactersfollowed by " */ ", written with the appropriate escapes). However, because the . *' expands
asfar asit can, thefirst"/ *" in the program would close only with thelast " */ " ;

test = "int x; /* x */ inty;, [*y*/"
print((string. gsub(test, "/%.*%/", "")))
-->int x;
The pattern *. - ', instead, will expand only as much as necessary to find the first * */ ", so that we get

the desired result:

80

Pattern Matching

test = "int x; /* x */ inty; /[*y*/"
print((string.gsub(test, "/9%.-%/", "")))
-->int X int vy;

The last modifier, the question mark, matches an optional character. As an example, suppose we want to
find an integer in atext, where the number can contain an optional sign. The pattern'[+-] ?%+' doesthe
job, matching numeralslike" - 12" ," 23", and " +1009" . The character class [+-] ' matches either a
plus or aminus sign; the following ? makes this sign optional.

Unlike some other systems, in Lua we can apply a modifier only to a character class; there is no way to
group patterns under a modifier. For instance, there is no pattern that matches an optional word (unless
the word has only one letter). Usually, we can circumvent this limitation using some of the advanced
techniques that we will seein the end of this chapter.

If a pattern begins with a caret, it will match only at the beginning of the subject string. Similarly, if it
ends with a dollar sign, it will match only at the end of the subject string. We can use these marks both
to restrict the matches that we find and to anchor patterns. For instance, the next test checks whether the
string s startswith adigit:

if string.find(s, ""%") then ...

The next one checks whether that string represents an integer number, without any other leading or trailing
characters:

if string.find(s, ""[+]?%+$") then ...

The caret and dollar signs are magic only when used in the beginning or end of the pattern. Otherwise,
they act asregular characters matching themselves.

Another item in a pattern is '%"', which matches balanced strings. We write this item as '%xy’, where
x and y are any two distinct characters; the x acts as an opening character and the y as the closing one.
For instance, the pattern '%() ' matches parts of the string that start with a left parenthesis and finish at
the respective right one:

s = "a (enclosed (in) parentheses) |ine"
print((string.gsub(s, "%()", ""))) -->a line

Typically, we use this pattern as'%b() ', %[] ', 'Y%b{ } ', or '%b<>', but we can use any two distinct char-
acters as delimiters.

Finally, the item '96 [char - set] ' represents a frontier pattern. It matches an empty string only if the
next character isin char - set but the previous one is not:

s = "the anthemis the thene"
print((string.gsub(s, "W[%Wthed[WN", "one")))
--> one anthemis one thene

The pattern '% [%] ' matches a frontier between a non-alphanumeric and an aphanumeric character,
and the pattern '% [94\ ' matches a frontier between an a phanumeric and a non-al phanumeric character.
Therefore, the given pattern matches the string "t he" only as an entire word. Note that we must write
the char-set inside brackets, even when it isasingle class.

The frontier pattern treats the positions before the first and after the last characters in the subject string as
if they had the null character (ASCII code zero). In the previous example, the first "t he" starts with a
frontier between anull character, whichisnotintheset [%\ ', and at , whichis.

81

Pattern Matching

Captures

The capture mechanism allows a pattern to yank parts of the subject string that match parts of the pattern
for further use. We specify a capture by writing the parts of the pattern that we want to capture between
parentheses.

When a pattern has captures, the function st ri ng. mat ch returns each captured value as a separate
result; in other words, it breaks a string into its captured parts.

pair = "name = Anna"
key, value = string.mtch(pair, "(%a+)%*=%*(%+)")
print(key, value) --> name Anna

The pattern '%a+' specifies a non-empty sequence of letters; the pattern '%s* ' specifies a possibly empty
seguence of spaces. So, in the example above, the whole pattern specifies a sequence of |etters, followed
by a sequence of spaces, followed by an equals sign, again followed by spaces, plus another sequence of
letters. Both sequences of letters have their patterns enclosed in parentheses, so that they will be captured
if amatch occurs. Below isasimilar example:

date = "Today is 17/7/1990"
d, m y = string. match(date, "(%l+)/(%l+)/(%d+)")
print(d, m y) -->17 7 1990

In this example, we use three captures, one for each sequence of digits.

In a pattern, an item like '%’, where n is a single digit, matches only a copy of the n-th capture. As a
typical use, suppose we want to find, inside a string, a substring enclosed between single or double quotes.
Wecouldtry apatternsuchas["'].-["']", thatis, aquote followed by anything followed by another
guote; but we would have problems with stringslike"it's al |l ri ght". To solve this problem, we
can capture the first quote and use it to specify the second one:

s = [[then he said: "it's all right"!]]

g, quotedPart = string.match(s, "([\"'"])(.-)%")
print (quot edPart) -->it's all right

print(q) -->"

The first capture is the quote character itself and the second capture is the contents of the quote (the
substring matching the'. -).

A similar example is this pattern, which matches long strings in Lua:
%(=")%(.-)%N%A%

It will match an opening square bracket followed by zero or more equal ssigns, followed by another opening
square bracket, followed by anything (the string content), followed by a closing square bracket, followed
by the same number of equals signs, followed by another closing square bracket:

P ="%(=")%A(-)%%AR"
s = "a = [=[[[something]]]==]]=]; print(a)”
print(string. match(s, p)) --> = [[something]]]==

The first capture is the sequence of equals signs (only one sign in this example); the second is the string
content.

The third use of captured valuesis in the replacement string of gsub. Like the pattern, the replacement
string can also contain items like " %" , which are changed to the respective captures when the substitu-

82

Pattern Matching

tion is made. In particular, the item " 90" becomes the whole match. (By the way, a percent sign in the
replacement string must be escaped as " %84 .) As an example, the following command duplicates every
letter in a string, with a hyphen between the copies:

print((string.gsub("hello Lua!", "%", "%-9%")))
--> h-he-el-11-lo0-0 L-Lu-ua-a!

This one interchanges adjacent characters:

print((string.gsub("hello Lua", "(.)(.)", "9%®R%")))
--> ehll oulLa

As amore useful example, let us write a primitive format converter, which gets a string with commands
writtenin aLaTeX style and changes them to aformat in XML style:

\ conmand{sone text} --> <comuand>sone text </ comand>
If we disallow nested commands, the following call to st ri ng. gsub does the job:

S [[the \quote{task} is to \em{change} that.]]

S string.gsub(s, "\\(Y%a+){(.-)}", "<W>%2</%>")

print(s)
--> the <quote>task</quote> is to <enmpchange</en> that.

(In the next section, we will see how to handle nested commands.)
Another useful exampleis how to trim a string:

function trim(s)
s = string.gsub(s, ""*(.-)%*3$", "W")
return s

end

Note thejudicious use of pattern modifiers. The two anchors (* and $) ensure that we get the whole string.
Because the'. - ' in the middle triesto expand as little as possible, the two enclosing patterns '%s* ' match
all spaces at both extremities.

Replacements

Aswe have seen already, we can use either afunction or atable asthethird argument to st ri ng. gsub,
instead of a string. When invoked with afunction, st ri ng. gsub calls the function every time it finds
a match; the arguments to each call are the captures, and the value that the function returns becomes the
replacement string. When invoked with atable, st ri ng. gsub looks up the table using the first capture
as the key, and the associated value is used as the replacement string. If the result from the call or from
the table lookup is nil, gsub does not change the match.

As afirst example, the following function does variable expansion: it substitutes the value of the global
variable var nane for every occurrence of $var nane in astring:

function expand (s)
return (string.gsub(s, "$(%w)", _G)
end

name = "Lua", status = "great"
print (expand("$nane is $status, isn't it?"))
--> Lua is great, isn't it?

83

Pattern Matching

(Aswewill discussin detail in Chapter 22, The Environment, _Gisapredefined table containing all global
variables.) For each match with '$(%w+) ' (adollar sign followed by aname), gsub looks up the captured

name in the global table G, the result replaces the match. When the table does not have the key, there
is no replacement:

print (expand("$ot hernane is $status, isn't it?"))
--> $othername is great, isn't it?

If we are not sure whether the given variables have string values, we may want to apply t ost ri ng to
their values. In this case, we can use a function as the replacement value:

function expand (s)
return (string.gsub(s, "$(%w)", function (n)
return tostring(_gn])
end))
end

print(expand("print = $print; a = $a"))
--> print = function: 0x8050ce0; a = nil

Inside expand, for each match with '$(%w+) ', gsub calls the given function with the captured name as
argument; the returned string replaces the match.

The last example goes back to our format converter from the previous section. Again, we want to convert
commandsin LaTeX style (\ exanpl e{t ext }) to XML style (<exanpl e>t ext </ exanpl e>), but
allowing nested commands this time. The following function uses recursion to do the job:

function toxm (s)
s = string.gsub(s, "\\(%+)(%{})", function (tag, body)

body = string.sub(body, 2, -2) -- renpbve the brackets
body = toxm (body) -- handl e nested commuands
return string.format (" <%>%</%>", tag, body, tag)
end)
return s

end

print(toxm ("\\title{The \\bol d{bi g} exanple}"))
--> <titl e>The <bhol d>hi g</ bol d> exanple</title>

URL encoding

Our next example will use URL encoding, which is the encoding used by HTTP to send parameters em-
bedded in a URL. This encoding represents special characters (such as=, & and +) as" % x" , where xx
is the character code in hexadecimal. After that, it changes spaces to plus signs. For instance, it encodes
thestring" a+b = c" as" a%Bb+%3D+c" . Finaly, it writes each parameter name and parameter value
with an equals sign in between and appends all resulting pairs name = val ue with an ampersand in
between. For instance, the values

name = "al"; query = "a+b = c¢"; g="yes or no"
areencoded as" nane=al &quer y=a%2Bb+%3D+c&q=yes+or +no".

Now, suppose we want to decode this URL and store each value in atable, indexed by its corresponding
name. The following function does the basic decoding:

function unescape (s)

Pattern Matching

s = string.gsub(s, "+", " ")
s = string.gsub(s, "% %%)", function (h)
return string.char(tonunber(h, 16))
end)
return s
end

print(unescape("a%®Bb+%3D+c")) --> atb = c

The first gsub changes each plus sign in the string to a space. The second gsub matches all two-digit
hexadecimal numerals preceded by a percent sign and calls an anonymous function for each match. This
function converts the hexadecimal numeral into a number (using t onunber with base 16) and returns
the corresponding character (st ri ng. char).

To decodethepairsnane=val ue, weusegmat ch. Because neither names nor values can contain either
ampersands or equals signs, we can match them with the pattern [*&=] +":

cgi = {}
function decode (s)
for nane, value in string.gmatch(s, "([*"&]+)=(["&]+)") do
nane = unescape(nane)
val ue = unescape(val ue)
cgi [nane] = val ue
end
end

The call to gmat ch matches all pairsin the form nane=val ue. For each pair, the iterator returns the
corresponding captures (as marked by the parentheses in the matching string) as the values for nane and
val ue. Theloop body ssimply appliesunescape to both strings and stores the pair inthecgi table.

The corresponding encoding is also easy to write. First, we write the escape function; this function
encodesall special charactersasapercent sign followed by the character codein hexadecimal (thef or nat
option " 992X" makes a hexadecimal number with two digits, using O for padding), and then changes
spacesto plus signs:

function escape (s)
s = string.gsub(s, "[&+%WRg]", function (c)
return string.format("%802X", string.byte(c))

end)
s = string.gsub(s, " ", "+")
return s

end
The encode function traverses the table to be encoded, building the resulting string:

function encode (t)

local b = {}
for k,v in pairs(t) do

b[#b + 1] = (escape(k) .. "=" .. escape(v))
end

-- concatenates all entries in 'b', separated by "&"
return tabl e.concat (b, "&")
end

t = {name = "al", query = "atb =c¢", g = "yes or no"}
print(encode(t)) --> g=yes+or+no&query=a%2Bb+%3D+c&nane=al

85

Pattern Matching

Tab expansion

An empty capturelike'() ' hasaspecial meaning in Lua. Instead of capturing nothing (a uselesstask), this
pattern captures its position in the subject string, as a number:

print(string.match("hello", "()II()")) -->3 5

(Note that the result of this example is not the same as what we get from st ri ng. fi nd, because the
position of the second empty capture is after the match.)

A nice example of the use of position capturesis for expanding tabsin a string:

function expandTabs (s, tab)
tab = tab or 8 -- tab "size" (default is 8)
local corr =0 -- correction
s = string.gsub(s, "()\t", function (p)
local sp =tab - (p- 1 + corr)%ab
corr = corr - 1 + sp
return string.rep(" ", sp)
end)
return s
end

The gsub pattern matches al tabs in the string, capturing their positions. For each tab, the anonymous
function uses this position to compute the number of spaces needed to arrive at a column that isamultiple
of t ab: it subtracts one from the position to make it relative to zero and adds cor r to compensate for
previous tabs. (The expansion of each tab affects the position of the following ones.) It then updates the
correction for the next tab: minus one for the tab being removed, plus sp for the spaces being added.
Finally, it returns a string with the appropriate number of spacesto replace the tab.

Just for compl eteness, let us see how to reverse this operation, converting spaces to tabs. A first approach
could aso involve the use of empty captures to manipulate positions, but there is a simpler solution: at
every eighth character, we insert amark in the string. Then, wherever the mark is preceded by spaces, we
replace the sequence spaces—mark by atab:

function unexpandTabs (s, tab)
tab = tab or 8
s = expandTabs(s, tab)
| ocal pat = string.rep(".", tab)

s = string.gsub(s, pat, "9%\1")
s = string.gsub(s, " +\1", "\t")
s = string.gsub(s, "\1", "")
return s

end

The function starts by expanding the string to remove any previous tabs. Then it computes an auxiliary
pattern for matching all sequences of eight characters, and uses this pattern to add a mark (the control
character \ 1) after every eight characters. It then substitutes atab for all sequences of one or more spaces
followed by amark. Finally, it removes the marks left (those not preceded by spaces).

Tricks of the Trade

Pattern matching is a powerful tool for manipulating strings. We can perform many complex operations
with only afew callsto st ri ng. gsub. However, as with any power, we must use it carefully.

86

Pattern Matching

Pattern matching is not areplacement for a proper parser. For quick-and-dirty programs, we can do useful
mani pulations on source code, but it may be hard to build a product with quality. As a good example,
consider the pattern we used to match commentsin aC program: '/ 9% . - % / . If the program has aliteral
string containing " / * ", we may get awrong result:

test = [[char s[] = "a /* here"; [* atricky string */]]
print((string.gsub(test, "/%.-%/", "<COWENT>")))
--> char s[] = "a <COWENT>

Strings with such contents are rare. For our own use, that pattern will probably do its job, but we should
not distribute a program with such a flaw.

Usually, pattern matching is efficient enough for Lua programs: my new machine takes less than 0.2

seconds to count all words in a 4.4 MB text (850 K-Words).l But we can take precautions. We should

always make the pattern as specific as possible; l0oose patterns are slower than specific ones. An extreme
exampleis'(. -) %', to get all text in astring up to the first dollar sign. If the subject string has a dollar

sign, everything goes fine, but suppose that the string does not contain any dollar signs. The algorithm

will first try to match the pattern starting at the first position of the string. It will go through all the string,

looking for a dollar. When the string ends, the pattern fails for the first position of the string. Then, the
algorithm will do the whole search again, starting at the second position of the string, only to discover that

the pattern does not match there, too, repeating the search for every position in the string. Thiswill take a
quadratic time, resulting in more than four minutesin my new machinefor astring of 200K characters. We
can correct this problem simply by anchoring the pattern at the first position of the string, with "~ (. -) %
$'. The anchor tells the algorithm to stop the search if it cannot find a match at the first position. With the
anchor, the match runsin a hundredth of a second.

Beware also of empty patterns, that is, patterns that match the empty string. For instance, if wetry to match
names with a pattern like '%a* ', we will find names everywhere:

i, j =string.find(";$% **#$hellol3", "%*")
print(i,j) -->1 0

Inthisexample, thecall tost ri ng. f i nd has correctly found an empty sequence of letters at the begin-
ning of the string.

It never makes sense to write a pattern that ends with the minus modifier, because it will match only the
empty string. This modifier always needs something after it to anchor its expansion. Similarly, patterns
that include'. * ' are tricky, because this construction can expand much more than we intended.

Sometimes, it is useful to use Luaitself to build a pattern. We aready used this trick in our function to
convert spacesto tabs. Asanother example, let us see how we can find long linesin atext, for instance lines
with more than 70 characters. A long line is a sequence of 70 or more characters different from newline.
We can match a single character different from newline with the character class'[“\ n] '. Therefore, we
can match a long line with a pattern that repeats 70 times the pattern for one character, finishing in a
repetition for that pattern (to match the rest of the line). Instead of writing this pattern by hand, we can
createit withstring. rep:

pattern = string.rep("[*\n]", 70) .. "+"

Asanother example, suppose we want to make a case-insensitive search. A way of doing thisisto change
any letter x in the pattern to the class [xX] ', that is, a class including both the lower and the upper-case
versions of the original |etter. We can automate this conversion with a function:

function nocase (s)

Lo My new machine” isan Intel Corei7-4790 3.6 GHz, with 8 GB of RAM. | measured all performance data in this book on that machine.

87

Pattern Matching

s = string.gsub(s, "%", function (c)
return "[" .. string.lower(c) .. string.upper(c) .. "]"
end)
return s
end

print(nocase("H there!")) --> [hH[il] [tT][hH[eE[rR [eE!

Sometimes, we want to replace every plain occurrence of s1 with s2, without regarding any character as
magic. If thestringss1 and s2 areliterals, we can add proper escapes to magic characters while we write
the strings. If these strings are variable values, we can use another gsub to put the escapes for us:

sl
s2

= string.gsub(sl, "(9WN", "%R4d")

= string.gsub(s2, "%, "%R6%)

In the search string, we escape all non-alphanumeric characters (thus the upper-case W. In the replacement
string, we escape only the percent sign.

Another useful technique for pattern matching is to preprocess the subject string before the real work.
Suppose we want to change to upper case all quoted stringsin atext, where aquoted string starts and ends
with a double quote ("), but may contain escaped quotes ("\ " "):

follows a typical string: "This is \"great\"!".

One approach for handling such cases is to preprocess the text to encode the problematic sequence as
something else. For instance, wecould code"\ " " as"\ 1" . However, if the original text already contains
a"\ 1" ,weareintrouble. An easy way to do the encoding and avoid this problemisto code al sequences
"\ x" as"\ddd", whereddd isthe decimal representation of the character x:

function code (S)
return (string.gsub(s, "\\(.)", function (x)
return string.formt("\\%3d", string.byte(x))
end))
end

Now any sequence” \ ddd" in the encoded string must have come from the coding, becauseany "\ ddd"
in the original string has been coded, too. So, the decoding is an easy task:

function decode (5s)
return (string.gsub(s, "\\(%%%)", function (d)
return "\\" .. string.char(tonunber(d))
end))
end

Now we can complete our task. Asthe encoded string does not contain any escaped quote ("\ " "), we can
search for quoted strings ssimply with ™. - " ":

s = [[follows a typical string: "This is \"great\"!".]]

s = code(s)

s = string.gsub(s, "".-"', string.upper)

s = decode(s)

print(s) --> follows a typical string: "THIS IS \"GREAT\"!"

We can also write it like here;

print (decode(string. gsub(code(s), "".-"", string.upper)))

88

Pattern Matching

The applicability of pattern-matching functions to UTF-8 strings depends on the pattern. Literal patterns
work without problems, dueto the key property of UTF-8 that the encoding of any character never appears
inside the encoding of any other character. Character classes and character sets work only for ASCII
characters. For instance, the pattern ‘%' works on UTF-8 strings, but it will match only the ASCII white
spaces; it will not match extra Unicode white spaces such as a non-break space (U+00AQ) or aMongolian
vowel separator (U+180E).

Judicious patterns can bring some extra power to Unicode handling. A good example is the predefined
pattern ut f 8. char pat t er n, which matches exactly one UTF-8 character. The ut f 8 library defines
this pattern as follows:

utf8.charpattern = [\0-\x7F\ xC2-\xF4] [\ x80-\ xBF] *

Thefirst part isaclassthat matches either ASCII characters (range [0, Ox7F]) or initial bytesfor multibyte
seguences (range [0xC2, 0xF4]). The second part matches zero or more continuation bytes (range [0x80,
OxBF]).

Exercises

Exercise 10.1: Writeafunctionspl i t that receivesastring and adelimiter pattern and returns a sequence
with the chunksin the original string separated by the delimiter:

t = split("a whole new world", " ")
--t ={"a", "whole", "new', "world"}

How does your function handle empty strings? (In particular, is an empty string an empty sequence or a
sequence with one empty string?)

Exercise 10.2: The patterns'%® and [~ %] ' are equivalent. What about the patterns'[*%@%u] 'and ‘[%D
wnJ) ?

Exercise 10.3: Write a function tranditerate. This function receives a string and replaces each character
in that string with another character, according to a table given as a second argument. If the table maps
a to b, the function should replace any occurrence of a with b. If the table maps a to false, the function
should remove occurrences of a from the resulting string.

Exercise 10.4: At the end of the section called “Captures’, we defined at r i mfunction. Because of its
use of backtracking, this function can take a quadratic time for some strings. (For instance, in my new
machine, a match for a 100 KB string can take 52 seconds.)

 Create astring that triggers this quadratic behavior in functiont ri m
* Rewrite that function so that it alwaysworksin linear time.

Exercise 10.5: Write a function to format a binary string as a literal in Lua, using the escape sequence
\ x for al bytes:

print(escape("\0\1lhell o\ 200"))
--> \ x00\ x01\ x68\ x65\ x6C\ x6C\ x6F\ xC8

As an improved version, use a so the escape sequence\ z to break long lines.
Exercise 10.6: Rewrite the function trandliterate for UTF-8 characters.

Exercise 10.7: Write a function to reverse a UTF-8 string.

89

Chapter 11. Interlude: Most Frequent
Words

Inthisinterlude we will develop aprogram that reads atext and prints the most frequent wordsin that text.
Asin the previous interlude, the program here is quite simple, but it uses some more advanced features,
such as iterators and anonymous functions.

The main data structure of our program is a table that maps each word found in the text to its frequency
counter. With this data structure, the program has three main tasks:

» Read the text, counting the number of occurrences of each word.
 Sort thelist of wordsin descending order of frequencies.
 Print thefirst n entriesin the sorted list.

To read the text, we can iterate over al its lines and, for each line, we iterate over al its words. For each
word that we read, we increment its respective counter:

| ocal counter = {}

for lineinio.lines() do
for word in string.gmatch(line, "%w") do
counter[word] = (counter[word] or 0) + 1
end
end

Here, we describe a“word” using the pattern '%w+', that is, one or more a phanumeric characters.
The next step is to sort the list of words. However, as the attentive reader may have noticed aready, we

do not have alist of words to sort! Nevertheless, it is easy to create one, using the words that appear as
keysintablecount er:

| ocal words = {} -- list of all words found in the text

for win pairs(counter) do
words[#words + 1] = w
end

Once we havethelist, wecan sortitusingt abl e. sort :
tabl e. sort (words, function (wl, w2)
return counter[wl] > counter[w2] or
counter[wl] == counter[w2] and wl < w2
end)

Remember that the order function must return true when wl must come before w2 in the result. Words
with larger counters come first; words with equal counters come in alphabetical order.

Figure 11.1, “Word-frequency program” presents the complete program.

90

Interlude: Most Frequent Words

Figure 11.1. Word-frequency program

| ocal counter = {}

for line inio.lines() do
for word in string.gmatch(line, "%w") do
counter[word] = (counter[word] or 0) + 1
end
end

| ocal words = {} -- list of all words found in the text

for win pairs(counter) do
wor ds[#words + 1] = w
end

tabl e. sort (words, function (wl, w2)
return counter[wl] > counter[w2] or
counter[wl] == counter[w2] and wl < w2
end)

-- nunber of words to print
local n = math. m n(tonunber(arg[1]) or math. huge, #words)

for i =1, n do
io.wite(words[i], "\t", counter[words[i]], "\n")
end

Thelast loop printstheresult, whichisthefirst n wordsand their respective counters. The program assumes
that its first argument is the number of words to be printed; by default, it prints al words if no argument
isgiven.

As an example, we show the result of applying this program over this book:

$ lua wordcount.lua 10 < book. of
t he 5996

a 3942

to 2560

is 1907

of 1898

in 1674

we 1496
function 1478
and 1424

X 1266

Exercises

Exercise 11.1: When we apply the word-frequency program to a text, usually the most frequent words
are uninteresting small words like articles and prepositions. Change the program so that it ignores words
with less than four letters.

Exercise 11.2: Repeat the previous exercise but, instead of using length asthe criterion for ignoring aword,
the program should read from atext file alist of words to be ignored.

91

Chapter 12. Date and Time

The standard libraries offer few functions to manipulate date and time in Lua. As usudl, al it offersis
what is available in the standard C libraries. Nevertheless, despite its apparent simplicity, we can make
quite alot with this basic support.

Luausestwo representationsfor date and time. Thefirst oneisthrough asingle number, usually aninteger.
Although not required by 1SO C, on most systems this number is the number of seconds since some fixed
date, called the epoch. In particular, both in POSIX and Windows systems the epoch is Jan 01, 1970, 0:00
UTC.

The second representation that Lua uses for dates and timesis atable. Such date tables have the following
significant fields: year , nont h, day, hour, m n, sec, wday, yday, and i sdst . All fields except
i sdst have integer values. The first six fields have obvious meanings. The wday field is the day of
the week (one is Sunday); the yday field is the day of the year (one is January 1st). Thei sdst field
is a Boolean, true if daylight saving isin effect. As an example, Sep 16, 1998, 23:48:10 (a Wednesday)
corresponds to the following table:

259, wday = 4,

{year =
fal se}

1998, month = 9, day = 16, yday
hour =

23, mn = 48, sec = 10, i sdst

Date tables do not encode a time zone. It is up to the program to interpret them correctly with respect to
time zones.

The Function os. ti ne

The function os. ti me, when called without arguments, returns the current date and time, coded as a
number:

> os.tinme() --> 1439653520

This date corresponds to Aug 15, 2015, 12:45:20.> In aPOSIX system, we can use some basic arithmetic
to decompose that number:

| ocal date = 1439653520

| ocal day2year = 365. 242 -- days in a year

| ocal sec2hour = 60 * 60 -- seconds in an hour
| ocal sec2day = sec2hour * 24 -- seconds in a day
| ocal sec2year = sec2day * day2year -- seconds in a year
-- year

print(date // sec2year + 1970) --> 2015.0

-- hour (in UTC

print(date % sec2day // secZ2hour) --> 15

-- mnutes

print(date % sec2hour // 60) --> 45

-- seconds

print(date % 60) --> 20

1Unless otherwise stated, my dates are from a POSIX system running in Rio de Janeiro.

92

Date and Time

Wecanaso call os. ti me with adate table, to convert the table representation to anumber. Theyear ,
nont h, and day fields are mandatory. The hour , m n, and sec fields default to noon (12:00:00) when
not provided. Other fields (including wday and yday) are ignored.

> os.tine({year=2015, nonth=8, day=15, hour=12, mi n=45, sec=20})
--> 1439653520

> os.tine({year=1970, nonth=1, day=1, hour=0}) --> 10800

> os.tinme({year=1970, nonth=1, day=1, hour=0, sec=1})
--> 10801

> os.tinme({year=1970, nonth=1, day=1}) --> 54000

Note that 10800 is three hours (the time zone) in seconds and 54000 is 10800 plus 12 hoursin seconds.

The Function os. dat e

The function 0s. dat e, despiteits name, isakind of reverse of 0s. t i nme: it converts a number repre-
senting the date and time to some higher-level representation, either a date table or a string. Itsfirst para
meter isaformat string, describing the representation we want. The second parameter isthe numeric date—
time; it defaults to the current date and time if not provided.

To produce a date table, we use the format string "*t " . For instance, the call os. date("*t",
906000490) returnsthe following table:

{year = 1998, nonth = 9, day = 16, yday = 259, wday = 4,
hour = 23, min = 48, sec = 10, isdst = fal se}
In genera, wehavethat os. ti me(os. date("*t", t)) == t,foranyvaidtimet.

Except for i sdst , theresulting fields are integers in the following ranges:

year afull year
nont h 112
day 1-31
hour 0-23

mn 0-59

sec 0-60
wday 1-7
yday 1-366

(Seconds can go up to 60 to allow for leap seconds.)

For other format strings, 0s. dat e returnsacopy of the string with specific directives replaced by infor-
mation about the given time and date. A directive consists of a percent sign followed by a letter, asin
the next example:

print(os.date("a %A in 9B"))
print(os. date("%d/ % %™, 906000490))

--> a Tuesday in My
--> 16/ 09/ 1998

When relevant, representations follow the current locale. For instance, in alocale for Brazil—-Portuguese,
Y%A wouldresultin"terca-feira" and¥8in" nai 0".

Figure 12.1, “Directivesfor function os. dat e” showsthe main directives. For each directive, it presents
its meaning and its value for September 16, 1998 (a Wednesday), at 23:48:10.

93

Date and Time

Figure 12.1. Directivesfor function os. dat e

%a abbrevi ated weekday nane (e.g., Wed
%A full weekday nane (e.g., Wednesday)
% abbrevi ated nonth nanme (e.g., Sep)
B full month name (e.g., Septenber)
% date and tinme (e.g., 09/16/98 23:48:
%l day of the nonth (16) [01-31]

% hour, using a 24-hour clock (23) [(
% hour, using a 12-hour clock (11) [(
% day of the year (259) [001-365]

%m month (09) [01-12]

oV m nute (48) [00-59]

% either "ant or "pni (pm

%S second (10) [00-60]

%v weekday (3) [0-6 = Sunday-Sat urday]
%N week of the year (37) [00-53]

U date (e.g., 09/16/98)

X tinme (e.g., 23:48:10)

%y two-digit year (98) [00-99]

%Y full year (1998)

%z ti mezone (e.g., -0300)

%0 a percent sign

For numerical values, the table showsal so their range of possiblevalues. Here are some examples, showing

how to create some 1SO 8601 formats:

t = 906000490
-- 1SO 8601 date

print (os. dat e(" %- %n %",
-- 1SO 8601 conbined date and tine
print (os.date("%r/- %n %T%t %t %46, t)) --> 1998-09-16T23:48:10

-- 1 SO 8601 ordi nal
print(os. date(" %%

-- the Epoch
print(os.date("! %",

dat e

")

If the format string starts with an exclamation mark, then os. dat e interpretsthetimein UTC:

0))

t))

--> 1998-09- 16

--> 1998- 259

--> Thu Jan 1 00:00: 00 1970

If wecall os. dat e without any arguments, it uses the % format, that is, date and time information in
areasonable format. Note that the representations for %, %X, and % change according to the locale and
the system. If you want afixed representation, such asdd/ mm yyyy, use an explicit format string, such

as" Yal/ % % .

94

10)

0-23]
1-12]

Date and Time

Date—Time Manipulation

When os. dat e createsadate table, itsfieldsare all in the proper ranges. However, when we give adate
tabletoos. ti ne, itsfields do not need to be normalized. Thisfeature isan important tool to manipulate
dates and times.

As a simple example, suppose we want to know the date 40 days from now. We can compute that date
asfollows:

t = os.date("*t") -- get current tine
print(os. date(" %/ % %", os.tine(t))) --> 2015/ 08/ 18
t.day = t.day + 40

print(os.date(" %/ % %", os.tine(t))) --> 2015/ 09/ 27

If we convert the numeric time back to atable, we get a normalized version of that date-time:

t = os.date("*t")

print(t.day, t.nonth) --> 26 2
t.day = t.day - 40

print(t.day, t.nonth) --> -14 2
t = os.date("*t", os.tinme(t))

print(t.day, t.nonth) --> 17 1

In this example, Feb -14 has been normalized to Jan 17, which is 40 days before Feb 26.

In most systems, we could also add or subtract 3456000 (40 daysin seconds) to the numeric time. However,
the C standard does not guarantee the correctness of this operation, because it does not require numeric
times to denote seconds from some epoch. Moreover, if we want to add some monthsinstead of days, the
direct manipulation of seconds becomes problematic, as different months have different durations. The
normalization method, on the other hand, has none of these problems:

t = os.date("*t") -- get current tine
print(os. date(" %/ % %", os.tinme(t))) --> 2015/ 08/ 18
t.nmonth = t.nmonth + 6 -- six nonths from now
print(os. date(" %/ % %", os.tinme(t))) --> 2016/ 02/ 18

We have to be careful when manipulating dates. Normalization worksin a somewhat obvious way, but it
may have some non-obvious consequences. For instance, if we compute one month after March 31, that
would give April 31, which is normalized to May 1 (one day after April 30). That sounds quite natural.
However, if wetake one month back from that result (May 1), we arrive on April 1, not the original March
31. Note that this mismatch is a consequence of the way our calendar works; it has nothing to do with Lua.

To compute the difference between two times, there isthe function os. di f f t i nme. It returnsthe differ-
ence, in seconds, between two given numeric times. For most systems, this difference is exactly the result
of subtracting on time from the other. Unlike the subtraction, however, the behavior of os. di ffti me
is guaranteed in any system. The next example computes the number of days passed between the release
of Lua5.2 and Lua5.3:

local t5 3 os.time({year=2015, nonth=1, day=12})
| ocal t5 2 os.time({year=2011, nonth=12, day=16})
local d = os.difftinme(t5_ 3, t5 2)

print(d // (24 * 3600)) --> 1123.0

(222 [

Withdi f f ti me, we can express dates as number of seconds since any arbitrary epoch:

> nmyepoch = os.tine{year = 2000, nonth = 1, day = 1, hour 0}

95

Date and Time

> now = os.time{year = 2015, nonth = 11, day = 20}
> os.di ffti me(now, mnmyepoch) --> 501336000. 0

Using normalization, it is easy to convert that number of seconds back to a legitimate numeric time: we
create atable with the epoch and set its seconds as the number we want to convert, asin the next example.

> T = {year = 2000, nonth = 1, day = 1, hour = 0}
> T.sec = 501336000
> os.date(" %/ % %", os.tinme(T)) --> 20/ 11/ 2015

Wecanasouseos. di f fti ne tocompute the running time of a piece of code. For this task, however,
it isbetter to use 0s. cl ock. Thefunction os. ¢l ock returns the number of seconds of CPU time used
by the program. Itstypical useisto benchmark a piece of code:

I ocal x = os.clock()
local s =0
for i =1, 100000 do s =s + i end

print(string.format("elapsed tine: % 2f\n", os.clock() - X))

Unlikeos. t i ne,0s. ¢l ock usually hassub-second precision, soitsresultisafloat. The exact precision
depends on the platform; in POSIX systems, it istypically one microsecond.

Exercises

Exercise 12.1: Write a function that returns the date-time exactly one month after a given date-time.
(Assume the numeric coding of date-time.)

Exercise 12.2: Write a function that returns the day of the week (coded as an integer, one is Sunday) of
agiven date.

Exercise 12.3: Write a function that takes a date-time (coded as a number) and returns the number of
seconds passed since the beginning of its respective day.

Exercise 12.4: Write afunction that takes a year and returns the day of itsfirst Friday.
Exercise 12.5: Write a function that computes the number of complete days between two given dates.
Exercise 12.6: Write a function that computes the number of complete months between two given dates.

Exercise 12.7: Does adding one month and then one day to a given date give the same result as adding
one day and then one month?

Exercise 12.8: Write a function that produces the system's time zone.

96

Chapter 13. Bits and Bytes

Lua handles binary data similarly to text. A string in Lua can contain any bytes, and amost al library
functions that handle strings can handle arbitrary bytes. We can even do pattern matching on binary data.
On top of that, Lua 5.3 introduced extra facilities to manipulate binary data: besides integer numbers, it
brought bitwise operators and functions to pack and unpack binary data. In this chapter, we will cover
these and other facilities for handling binary datain Lua.

Bitwise Operators

Starting with version 5.3, Lua offers a standard set of bitwise operators on numbers. Unlike arithmetic
operations, bitwise operators only work on integer values. The bitwise operators are & (bitwise AND), |
(bitwise OR), ~ (bitwise exclusive-OR), >> (logical right shift), << (left shift), and the unary ~ (bitwise
NOT). (Note that, in several languages, the exclusive-OR operator is denoted by ~. In Lua, » means
exponentiation.)

> string. format ("%", Oxff & Oxabcd) --> cd

> string.format ("%", Oxff | Oxabcd) --> abff

> string.format ("%", Oxaaaa ~ -1) --> ffffffffffff5555
> string. format ("%", ~0) --> fEffffffffffffff

(Several examplesin this chapter will usest ri ng. f or mat to show resultsin hexadecimal.)

All bitwise operators work on all bits of integers. In Standard Lua, that means 64 bits. That can be a
problem when implementing algorithms that assume 32-bit integers (e.g., the cryptographic hash SHA-2).
However, it isnot difficult to perform 32-bit integer manipulation. Except for the right-shift operation, all
bitwise operations on 64 bits agree with the same operations on 32 hits, if we simply ignore the higher
half bits. The same is true for addition, subtraction, and multiplication. So, all we have to do to operate
on 32-hit integersis to erase the higher 32 bits of an integer before aright shift. (We seldom do divisions
on that kind of computations.)

Both shift operators fill with zeros the vacant bits. Thisisusually called logical shifts. Lua does not offer
an arithmetic right shift, which fills vacant bits with the signal bit. We can perform the equivalent to
arithmetic shifts with a floor division by an appropriate power of two. (For instance, x // 16 isthe
same as an arithmetic shift by four.)

Negative displacements shift in the other direction, that is,a >> nisthesameasa << -n:

> string.format ("9%", Oxff << 12) --> ff000
> string.format (""", Oxff >> -12) --> ff000

If the displacement isequal to or larger than the number of bitsin theinteger representation (64 in Standard
Lua, 32in Small Lua), the result is zero, as al bits are shifted out of the result:

> string.format ("%", -1 << 80) -->0

Unsigned Integers

The representation of integers uses one hit to store the signal. Therefore, the maximum integer that we can
represent with 64-bit integers is 2% - 1, instead of 2%* - 1. Usually, this difference is irrelevant, as 2% -
1is quite large already. However, sometimes we cannot waste a bit for the signal, because we are either
handling external datawith unsigned integers or implementing some algorithm that needsintegerswith all
their 64 bits. Moreover, in Small Luathe difference can be quite significant. For instance, if we use a 32-
bit signed integer asapositionin afile, wearelimited to 2 GB files; an unsigned integer doublesthat limit.

97

Bits and Bytes

Lua does not offer explicit support for unsigned integers. Nevertheless, with some care, it is not difficult
to handle unsigned integersin Lua, as we will see now.

We can write constants larger than 2% - 1 directly, despite appearances:

> x = 13835058055282163712 -- 3 << 62

> X --> -4611686018427387904

The problem hereis not the constant, but theway Luaprintsit: the standard way to print numbersinterprets
them assigned integers. We can usethe % or % optionsinst ri ng. f or mat to seeintegersasunsigned:

> string. format ("%", Xx) --> 13835058055282163712
> string. fornmat ("0x%", Xx) --> 0xC000000000000000

Dueto theway signedintegers are represented (two's complement), the operations of addition, subtraction,
and multiplication work the same way for signed and unsigned integers:

> string.format ("%", x) --> 13835058055282163712
> string.format ("%", x + 1) --> 13835058055282163713
> string.format ("%", x - 1) --> 13835058055282163711

(With such alarge value, multiplying x even by two would overflow, so we did not include that operation
in the example.)

Order operatorswork differently for signed and unsigned integers. The problem appears when we compare
two integers with a difference in the higher bit. For signed integers, the integer with that bit set is the
smaller, because it represents a negative number:

> Ox7fffffffffffffff < Ox8000000000000000 --> fal se

Thisresult isclearly incorrect if we regard both integers as unsigned. So, we need a different operation to
compare unsigned integers. Lua 5.3 providesmat h. ul t (unsigned less than) for that need:

> math.ult(Ox7fffffffffffffff, Ox8000000000000000) --> true

Another way to do the comparison is to flip the signal bit of both operands before doing a signed com-
parison:

> mask = 0x8000000000000000
> (Ox7fffffffffffffff ~ mask) < (0x8000000000000000 ~ mask)
--> true

Unsigned division is aso different from its signed version. Figure 13.1, “Unsigned division” shows an
algorithm for unsigned division.

Figure 13.1. Unsigned division

function udiv (n, d)
if d <0 then
if math.ult(n, d) then return O
else return 1

end
end
local q = ((n > 1) // d) << 1
local r =n- qgq*d
if not mth.ult(r, d) then g =q + 1 end
return q

end

98

Bits and Bytes

Thefirst test (d < 0) is equivalent to testing whether d is larger than 2%. In that case, the quotient can
only be 1 (if n isequal to or larger than d) or 0. Otherwise, we do the equivalent of dividing the dividend
by two, then dividing the result by the divisor, and then multiplying the result by two. The right shift is
equivalent to an unsigned division by two; the result will be anon-negative signed integer. The subsequent
left shift corrects the quotient, undoing this previous division.

Ingenera, fl oor (floor(n / 2) / d) * 2 (thecomputation done by the algorithm) is not equal
tofloor(((n / 2) [/ d) * 2) (thecorrect result). However, it is not difficult to prove that the
differenceisat most one. So, the algorithm computestherest of the division (inthevariabler) and checks
whether it is greater than the divisor: if so, it corrects the quotient (adding oneto it) and it is done.

Converting an unsigned integer to/from a float needs some adjustments. To convert an unsigned integer
to afloat, we can convert it as a signed integer and correct the result with a modulo operator:

> u = 11529215046068469760 -- an exanple
>f = (u+ 0.0) %2764
> string.format ("% Of", f) --> 11529215046068469760

Thevaueof u + 0.0 is-6917529027641081856, because the standard conversion sees u as a signed
integer. The modul o operation brings the value back to the range of unsigned integers. (Inreal code we do
not need the addition, because the modulo with a float would do the conversion anyway.)

To convert from afloat to an unsigned integer, we can use the following code:

> f = 0xA000000000000000. 0 -- an exanple
> u = math.tointeger(((f + 27"63) % 2"64) - 2763)
> string.format ("%", u) --> a000000000000000

The addition transforms a value greater than 2% in a value greater than 2%*. The modulo operator then
projects this value to the range [0,2%%), and the subtraction makes it a “negative” value (that is, a value
with the highest bit set). For avalue smaller than 2%, the addition keepsit smaller than 2%%, the modulo
operator does not affect it, and the subtraction restores its original value.

Packing and Unpacking Binary Data

Lua 5.3 aso introduced functions for converting between binary data and basic values (numbers and
strings). The function st ri ng. pack “packs’ values into a binary string; st ri ng. unpack extracts
those values from the string.

Bothstring. pack andstri ng. unpack get astheir first argument aformat string, which describes
how the datais packed. Each | etter in this string describes how to pack/unpack onevalue; seethefollowing

example:

> s = string.pack("iii", 3, -27, 450)

> #s --> 12

> string.unpack("iii", s) --> 3 -27 450 13
This call to st ri ng. pack creates a string with the binary codes of three integers (according to the
description"ii i "), each encoding its corresponding argument. The string length will be three times the
native size of an integer (3 times 4 bytes in my machine). The call to st ri ng. unpack decodes three
integers (again accordingto"ii i ") from the given string and returns the decoded val ues.

Thefunctionst ri ng. unpack also returns the position in the string after the last item read, to simplify
iterations. (This explains the 13 in the results of the last example.) Accordingly, it accepts an optional
third argument, which tells where to start reading. For instance, the next example prints all strings packed
inside agiven string:

99

Bits and Bytes

s = "hel | o\ OLua\ Owor | d\ 0"
local i =1
while i <= #s do
| ocal res
res, i = string.unpack("z", s, i)
print(res)
end
--> hello
--> Lua
--> world

Aswewill see, the z option means a zero-terminated string, so that the call to unpack extracts the string
at positioni from's and returns that string plus the next position for the loop.

There are several options for coding an integer, each corresponding to a native integer size: b (char), h
(short),i (int),and! (I ong);theoption] usesthesize of aLuainteger. To use afixed, machine-in-
dependent size, we can suffix thei option with a number from one to 16. For instance, i 7 will produce
seven-byte integers. All sizes check for overflows:

> X = string.pack("i7", 1 << 54)

> string.unpack("i 7", x) --> 18014398509481984 8
> x = string.pack("i7", -(1 << 54))

> string.unpack("i 7", x) --> -18014398509481984 8
> X = string.pack("i7", 1 << 55)

stdin:1l: bad argunment #2 to 'pack' (integer overflow)

We can pack and unpack integers wider than native Luaintegers but, when unpacking, their actual values
must fit into Luaintegers:

> X = string.pack("i1l2", 2761)

> string.unpack("i 12", x) --> 2305843009213693952 13
> X = "aaaaaaaaaaaa" -- fake a large 12-byte nunber
>

string.unpack("i 12", x)
stdin:1l: 12-byte integer does not fit into Lua Integer

Each integer option has an upper-case version corresponding to an unsigned integer of the same size:

> s = "\ xFF"
> string.unpack("b", s) --> -1 2
> string.unpack("B", s) --> 255 2

Moreover, unsigned integers have an extra option T for si ze_t . (Thesi ze_t typein ISO Cisan
unsigned integer larger enough to hold the size of any object.)

We can pack stringsin three representations: zero-terminated strings, fixed-length strings, and stringswith
explicit length. Zero-terminated strings use the z option. For fixed-length strings, we use the option cn,
where n isthe number of bytes in the packed string. The last option for strings stores the string preceded
by its length. In that case, the option has the format sn, where n is the size of the unsigned integer used
to store the length. For instance, the option s 1 stores the string length in one byte:

s = string. pack("s1", "hello")

for i =1, #s do print((string.unpack("B*, s, i))) end
--> 5 (1 ength)
--> 104 ("h")
--> 101 ("e")
--> 108 ()
--> 108 ()

100

Bits and Bytes

o> 111 ('0')

Luaraises an error if the length does not fit into the given size. We can also use a pure s as the option;
in that case, the length is stored as asi ze_t , which is large enough to hold the length of any string.
(In 64-bit machines, si ze_t usually is an eight-byte unsigned integer, which may be a waste of space
for small strings.)

For floating-point numbers, there are three options: f for single precision, d for double precision, and n
for aLuafloat.

Theformat string a so has optionsto control the endianess and the alignment of the binary data. By defaullt,
aformat uses the machine's native endianess. The > option turns all subsequent encodings in that format
to big endian, or network byte order:

s = string. pack(">i 4", 1000000)
for i =1, #s do print((string.unpack("B", s, i))) end

The < option turnsto little endian:

s = string.pack("<i2 i2", 500, 24)
for i =1, #s do print((string.unpack("B", s, i))) end
--> 244
-->1
--> 24
-->0

Finally, the = option turns back to the default machine's native endianess.

For alignment, the ! n option forces data to align at indices that are multiples of n. More specificaly, if
theitem is smaller than n, it isaligned at its own size; otherwise, it isaligned at n. For instance, suppose
we start the format string with | 4. Then, one-byte integers will be written in indices multiple of one (that
is, any index), two-byte integers will be written in indices multiple of two, and four-byte or larger integers
will be written in indices multiple of four. The ! option (without a number) sets the alignment to the
machine's native alignment.

The function st ri ng. pack does the alignment by adding zeros to the resulting string until the index
has a proper value. The function st ri ng. unpack simply skips the padding when reading the string.
Alignment only works for powers of two: if we set the alignment to four and try to manipulate a three-
byte integer, Luawill raise an error.

Any format string works as if prefixed by " =! 1", which means native endianess and no alignment (as
every index is a multiple of one). We can change the endianess and the alignment at any point during
the trandation.

If needed, we can add padding manually. The option x means one byte of padding; st ri ng. pack adds
azero byteto theresulting string; st ri ng. unpack skips one byte from the subject string.

Binary files

The functionsi o. i nput andi o. out put aways open afilein text mode. In POSIX, there is no dif-
ference between binary files and text files. In some systems like Windows, however, we must open binary
filesin aspecia way, using the letter b in the mode string of i 0. open.

101

Bits and Bytes

Typically, we read binary data either with the " a" pattern, that reads the whole file, or with the pattern
n, that reads n bytes. (Lines make no sensein abinary file)) As asimple example, the following program
converts a text file from Windows format to POSIX format —that is, it translates sequences of carriage
return—newlines to newlines:

| ocal inp = assert(io.open(arg[1l], "rb"))
| ocal out = assert(io.open(arg[2], "wh"))
| ocal data = inp:read("a")

data = string.gsub(data, "\r\n", "\n")
out:wite(data)

assert (out:close())
It cannot use the standard 1/0O streams (st di n/st dout), because these streams are open in text mode.
Instead, it assumes that the names of the input file and the output file are arguments to the program. We
can call this program with the following command line:

> |ua prog.lua file.dos file.unix

As another example, the following program prints all strings found in abinary file;

local f = assert(io.open(arg[1l], "rb"))
| ocal data = f:read("a")

| ocal validchars = "[%%]"
| ocal pattern = "(" .. string.rep(validchars, 6) .. "+)\0"
for win string.gmatch(data, pattern) do
print(w)
end

The program assumesthat astring isany zero-terminated sequence of six or morevalid characters, wherea
valid character is any character accepted by the pattern val i dchar s. In our example, this pattern com-
prises the printable characters. We use st r i ng. r ep and concatenation to create a pattern that matches
all sequences of six or more val i dchar s ended by a zero. The parentheses in the pattern capture the
string without the zero.

Our last example is a program to make a dump of a binary file, showing its contents in hexadecimal.
Figure 13.2, “Dumping the dunp program” shows the result of applying this program to itself on aPOSIX
machine.

Figure 13.2. Dumping the dunp program

6C 6F 63 61 6C 20 66 20 3D 20 61 73 73 65 72 74 local f = assert
28 69 6F 2E 6F 70 65 6E 28 61 72 67 5B 31 5D 2C (i o.open(arg[1],
20 22 72 62 22 29 29 OA 6C 6F 63 61 6C 20 62 6C "rb")).local bl
6F 63 6B 73 69 7A 65 20 3D 20 31 36 OA 66 6F 72 ocksize = 16.for
20 62 79 74 65 73 20 69 6E 20 66 3A 6C 69 6E 65 bytes in f:line

25 63 22 2C 20 22 2E 22 29 0OA 20 20 69 6F 2E 77 %", "."). io.w
72 69 74 65 28 22 20 22 2C 20 62 79 74 65 73 2C rite(" ", bytes,
20 22 5C 6E 22 29 OA 65 6E 64 OA OA "\n").end..

The complete program is here:

local f = assert(io.open(arg[l], "rb"))

102

Bits and Bytes

| ocal bl ocksize = 16
for bytes in f:lines(blocksize) do
for i =1, #bytes do
local b = string.unpack("B", bytes, i)
io.wite(string.format("%2X ", b))

end
io.wite(string.rep(” ", bl ocksize - #bytes))
bytes = string.gsub(bytes, "%", ".")
io.wite(" ", bytes, "\n")

end

Again, the first program argument is the input file name; the output is regular text, so it can go to the
standard output. The program readsthefilein chunksof 16 bytes. For each chunk, it writesthe hexadecimal
representation of each byte, and then it writesthe chunk astext, changing control charactersto dots. Weuse
string. rep tofill with blanksthe last line (which in general will not have exactly 16 bytes), keeping
the alignment.

Exercises

Exercise 13.1: Write a function to compute the modulo operation for unsigned integers.

Exercise 13.2: Implement different ways to compute the number of bits in the representation of a Lua
integer.

Exercise 13.3: How can you test whether a given integer is a power of two?

Exercise 13.4: Write afunction to compute the Hamming weight of agiven integer. (The Hamming weight
of anumber isthe number of onesin its binary representation.)

Exercise 13.5: Write afunction to test whether the binary representation of agiven integer isapalindrome.
Exercise 13.6: Implement a bit array in Lua. It should support the following operations:

* newBi t Array(n) (createsan array with n bits),

» setBit(a, n, v) (assignstheBooleanvaluev to bit n of array a),

e testBit(a, n) (returnsaBoolean with the value of hit n).

Exercise 13.7: Suppose we have a binary file with a sequence of records, each one with the following
format:

struct Record {
int x;
char[3] code;
float val ue;

b

Write a program that reads that file and prints the sum of theval ue fields.

103

Chapter 14. Data Structures

Tablesin Luaare not adatastructure; they arethe data structure. We can represent all structuresthat other
languages offer —arrays, records, lists, queues, sets— with tablesin Lua. Moreover, Luatablesimplement
all these structures efficiently.

In more traditional languages, such as C and Pascal, we implement most data structures with arrays and
lists (wherelists = records + pointers). Although we can implement arrays and lists using Luatables (and
sometimes we do this), tables are more powerful than arrays and lists; many algorithms are simplified to
the point of triviality with the use of tables. For instance, we seldom write a search in Lua, because tables
offer direct access to any type.

It takes a while to learn how to use tables efficiently. Here, we will see how to implement typical data
structureswith tables and cover some examples of their uses. Wewill start with arraysand lists, not because
we need them for the other structures, but because most programmers are already familiar with them. (We
have already seen the basics of thismaterial in Chapter 5, Tables, but | will repeat it herefor completeness.)
Then we will continue with more advanced examples, such as sets, bags, and graphs.

Arrays

Weimplement arraysin Luasimply by indexing tableswith integers. Therefore, arrays do not have afixed
size, but grow as needed. Usually, when we initialize the array we define its size indirectly. For instance,
after the following code, any attempt to access a field outside the range 1-1000 will return nil, instead
of zero:

{ -- new array

| ocal a }
= 1000 do

for i 1,
a[i] =0
end
The length operator (#) uses this fact to find the size of an array:
print (#a) --> 1000

We can start an array at index zero, one, or any other value:

-- create an array with indices from-5to 5

a = {}

for i = -5, 5 do
a[i] =0

end

However, it iscustomary in Luato start arrayswith index one. The Lualibraries adhereto this convention;
so does the length operator. If our arrays do not start with one, we will not be able to use these facilities.

We can use a constructor to create and initialize arrays in asingle expression:
squares = {1, 4, 9, 16, 25, 36, 49, 64, 81}

Such constructors can be as large as we need. In Lua, it is not uncommon data-description files with
constructors with afew million elements.

104

Data Structures

Matrices and Multi-Dimensional Arrays

There are two main ways to represent matrices in Lua. The first one is with a jagged array (an array of
arrays), that is, atable wherein each element is another table. For instance, we can create amatrix of zeros
with dimensions N by Mwith the following code:

local m = {} -- create the matrix
for i =1, Ndo

[ocal row = {} -- create a new row

nli] = row

for j =1, Mdo

rowfj] =0

end

end

Because tables are objects in Lua, we have to create each row explicitly to build a matrix. On the one
hand, thisis certainly more verbose than simply declaring a matrix, aswe do in C. On the other hand, it
gives us more flexibility. For instance, we can create atriangular matrix by changing the inner loop in the
previousexampletofor j=1,i do ... end.With thiscode, the triangular matrix uses only half
the memory of the origina one.

The second way to represent a matrix is by composing the two indices into a single one. Typicaly, we
do this by multiplying the first index by a suitable constant and then adding the second index. With this
approach, the following code would create our matrix of zeros with dimensions N by M

l[ocal m = {} -- create the matrix
for i =1, Ndo
l[ocal aux = (i - 1) * M
for j =1, Mdo
nlfaux + j] =0
end
end

Quite often, applications use a spar se matrix, amatrix wherein most elements are zero or nil. For instance,
we can represent a graph by its adjacency matrix, which has the value x in position (m,n) when thereis a
connection with cost x between nodes m and n. When these nodes are not connected, the value in position
(m,n) is nil. To represent a graph with ten thousand nodes, where each node has about five neighbors,
we will need a matrix with a hundred million entries (a square matrix with 10000 columns and 10000
rows), but approximately only fifty thousand of them will not be nil (five non-nil columns for each row,
corresponding to the five neighbors of each node). Many books on data structures discuss at ength how to
implement such sparse matriceswithout wasting 800 MB of memory, but we seldom need these techniques
when programming in Lua. Because we represent arrays with tables, they are naturally sparse. With our
first representation (tables of tables), we will need ten thousand tables, each one with about five elements,
with a grand total of fifty thousand entries. With the second representation, we will have a single table,
with fifty thousand entriesin it. Whatever the representation, we need space only for the non-nil elements.

We cannot use the length operator over sparse matrices, because of the holes (nil values) between active
entries. Thisisnot abigloss; evenif we could useit, we probably would not. For most operations, it would
be quiteinefficient to traverse al those empty entries. Instead, we can use pai r s to traverse only the non-
nil elements. As an example, let us see how to do matrix multiplication with sparse matrices represented

by jagged arrays.

Suppose we want to multiply amatrix a[M K] by amatrix b[K, N] , producing the matrixc[M N] . The
usual matrix-multiplication algorithm goes like this:

105

Data Structures

for i =1, Mdo
for j =1, Ndo
c[i][j] =0
for k = 1, K do
c[i][j] = c[i][i] + a[i]ll[k] * b[K][j]
end
end
end

The two outer loops traverse the entire resulting matrix, and for each element, the inner loop computes
itsvalue.

For sparse matrices with jagged arrays, this inner loop is a problem. Because it traverses a column of b,
instead of arow, we cannot use something likepai r s here: theloop hasto visit each row looking whether
that row has an element in that column. Instead of visiting only a few non-zero elements, the loop visits
all zero elements, too. (Traversing a column can be an issue in other contexts, too, because of its loss of
spatial locality.)

The following algorithm is quite similar to the previous one, but it reverses the order of the two inner
loops. With this simple change, it avoids traversing columns:

-- assunes 'c¢' has zeros in all elenents

for i =1, Mdo
for k =1, Kdo
for j =1, Ndo
c[il[j] =clilli] + a[ill[k] * b[K][]j]
end
end
end

Now, the middle loop traversestherow a[i] , and the inner loop traverses the row b[k] . Both can use
pai r s, visiting only the non-zero elements. The initialization of the resulting matrix ¢ is not an issue
here, because an empty sparse matrix is naturally filled with zeros.

Figure 14.1. Multiplication of sparse matrices

function nmult (a, b)

local ¢ = {} -- resulting matrix
for i =1, #a do
local resultline = {} -- will be "c[i]'
for k, vain pairs(af[i]) do -- 'va' is a[i][k]
for j, vb in pairs(b[k]) do -- 'vb' is b[K][]]
local res = (resultline[j] or 0) + va * vb
resultline[j] = (res ~= 0) and res or nil
end
end
c[i] = resultline
end
return c

end

Figure 14.1, “Multiplication of sparse matrices’ shows the complete implementation of the above algo-
rithm, using pai r s and taking care of sparse entries. Thisimplementation visitsonly the non-nil elements,
and the result is naturally sparse. Moreover, the code deletes resulting entries that by chance evaluate to
zero.

106

Data Structures

Linked Lists

Because tables are dynamic entities, it is easy to implement linked lists in Lua. We represent each node
with atable (what else?); links are simply table fields that contain references to other tables. For instance,
let usimplement asingly-linked list, where each node hastwo fields, val ue and next . A simplevariable
isthelist root:

list = nil
Toinsert an element at the beginning of the list, with avalue v, we do this:

list = {next = list, value = v}

To traverse the list, we write this;

local | = list
while | do
visit |.value
| = 1.next
end

We can alsoimplement easily other kinds of lists, such asdoubly-linked listsor circular lists. However, we
seldom need those structures in Lua, because usually thereis a simpler way to represent our data without
using linked lists. For instance, we can represent a stack with an (unbounded) array.

Queues and Double-Ended Queues

A simple way to implement queues in Lua is with functionsi nsert and r enove from thet abl e
library. Aswe saw in the section called “ The Table Library”, these functions insert and remove elements
in any position of an array, moving other elements to accommodate the operation. However, these moves
can be expensive for large structures. A more efficient implementation uses two indices, one for the first
element and another for the last. With that representation, we can insert or remove an element at both ends
in constant time, as shown in Figure 14.2, “ A double-ended queue’.

107

Data Structures

Figure 14.2. A double-ended queue

function |istNew ()
return {first =0, last = -1}
end

function pushFirst (list, value)
local first = list.first - 1
list.first = first
list[first] = value

end

function pushLast (list, value)
local last = list.last + 1
list.last = | ast
list[last] = val ue

end

function popFirst (list)

local first = list.first

if first >list.last then error("list is enpty") end
local value = list[first]

list[first] = nil -- to allow garbage collection

list.first =first + 1
return val ue
end

function poplLast (list)

local last = list.|ast
if list.first > last then error("list is enpty") end
local value = list[last]
list[last] = nil -- to allow garbage collection
list.last = last - 1
return val ue

end

If we usethisstructurein astrict queue discipline, calling only pushLast and popFi r st , bothfi r st
and | ast will increase continually. However, because we represent arrays in Lua with tables, we can
index them either from 1 to 20 or from 16777201 to 16777220. With 64-hit integers, such a queue can run
for thirty thousand years, doing ten million insertions per second, before it has problems with overflows.

Reverse Tables

As| said, before, we seldom do searches in Lua. Instead, we use what we call an index table or areverse
table.

Suppose we have atable with the names of the days of the week:

days = {"Sunday", "Monday", "Tuesday", "Wdnesday",
"Thur sday", "Friday", "Saturday"}

Now we want to translate a name into its position in the week. We can search the table, looking for the
given name. A more efficient approach, however, isto build areversetable, say r evDays, which hasthe
names as indices and the numbers as values. This table would look like this:

108

Data Structures

revDays = {["Sunday"] = 1, ["Monday"] = 2,
["Tuesday"] = 3, ["Wednesday"] = 4,
[" Thur sday"] 5, ["Friday"] = 6,
[" Sat urday”] 7

}
Then, al we have to do to find the order of aname isto index this reverse table:

X = "Tuesday"
print(revbDays|[x]) --> 3

Of course, we do not need to declare the reverse table manually. We can build it automatically from the
original one;

revbDays = {}

for k,v in pairs(days) do
revDays[v] = k

end

The loop will do the assignment for each element of days, with the variable k getting the keys (1, 2, ...)
and v thevalues (" Sunday", " Monday", ...).

Sets and Bags

Suppose we want to list al identifiers used in a program source; for that, we need to filter the reserved
words out of our listing. Some C programmers could be tempted to represent the set of reserved words
as an array of strings and search this array to know whether a given word is in the set. To speed up the
search, they could even use abinary tree to represent the set.

In Lua, an efficient and simple way to represent such setsisto put the set elements asindicesin atable.
Then, instead of searching the table for agiven element, we just index the table and test whether the result
isnil. In our example, we could write the following code:

reserved = {
["while"] = true, ["1f"]
["el se"] = true, ["do"]

true,
true,

}

for win string.gmatch(s, "[%_][%v]*") do
if not reserved[w] then
do sonething with 'w -- 'W is not a reserved word
end
end

(In the definition of r eser ved, we cannot writewhi | e = tr ue, becausewhi | e isnot avalid name
in Lua. Instead, we usethe notation["whi | e"] = true.)

We can have a clearer initialization using an auxiliary function to build the set:

function Set (list)
| ocal set = {}

for _, I inipairs(list) do set[l] = true end
return set

end

reserved = Set{"while", "end", "function", "local", }

109

Data Structures

We can also use another set to collect the identifiers:

local ids = {}
for win string.gmatch(s, "[%_]J[%v]*") do
if not reserved[w then
ids[w] = true
end
end

-- print each identifier once
for win pairs(ids) do print(w end

Bags, also called multisets, differ from regular sets in that each element can appear multiple times. An
easy representation for bags in Luais similar to the previous representation for sets, but with a counter
associated with each ke'y.1 To insert an element, we increment its counter:

function insert (bag, elenent)
bag[el enent] = (bag[elenent] or 0) + 1
end

To remove an element, we decrement its counter:

function renove (bag, elenent)

| ocal count = bag[el enent]

bag[el enent] = (count and count > 1) and count - 1 or nil
end

We only keep the counter if it already existsand it is still greater than zero.

String Buffers

Suppose we are building a string piecemeal, for instance reading a file line by line. Our typical code
could look like this:

| ocal buff =""

for line in io.lines() do
buff = buff .. line .. "\'n"

end

Despiteitsinnocent look, thiscodein L uacan cause ahuge performance penalty for largefiles: for instance,
it takes more than 30 seconds to read a 4.5 MB file on my new machine.

Why isthat? To understand what happens, let us imagine that we are in the middle of the read |oop; each
line has 20 bytes and we have already read some 2500 lines, so buf f isastring with 50 kB. When Lua
concatenates buf f. . I i ne.. "\ n", it alocates a new string with 50020 bytes and copies the 50000
bytesfrom buf f intothisnew string. That is, for each new line, Luamoves around 50 kB of memory, and
growing. Thealgorithmisquadratic. After reading 100 new lines (only 2 kB), Luahasaready moved more
than 5 MB of memory. When Lua finishes reading 350 kB, it has moved around more than 50 GB. (This
problem is not peculiar to Lua: other languages wherein strings are immutable values present a similar
behavior, Java being a famous example.)

Before we continue, we should remark that, despite all | said, this situation is not a common problem. For
small strings, the above loop is fine. To read an entire file, Lua providesthei 0. read("a") option,

we already used this representation for the most-frequent-words program in Chapter 11, Interlude: Most Frequent Words.

110

Data Structures

which reads the file at once. However, sometimes we must face this problem. Java offersthe St r i ng-
Buf f er classto ameliorate the problem. In Lua, we can use atable as the string buffer. The key to this
approach isthe function t abl e. concat , which returns the concatenation of all the strings of a given
list. Using concat , we can write our previous loop as follows:

local t = {}

for line in io.lines() do
t[# + 1] =1line .. "\n"

end

local s = table.concat(t)

This algorithm takes less than 0.05 seconds to read the same file that took more than half a minute to read
with the original code. (Nevertheless, for reading awhole file it is still better to usei 0. r ead with the
"a" option.)

We can do even better. The function concat accepts an optional second argument, which is a separator
to be inserted between the strings. Using this separator, we do not need to insert a newline after each line:

local t = {}
for line in io.lines() do
t[#t + 1] = line
end
s = table.concat(t, "\n") .. "\n"

The function inserts the separator between the strings, but we still have to add the last newline. This last
concatenation creates a new copy of the resulting string, which can be quite long. There is no option to
make concat insert this extra separator, but we can deceive it, inserting an extraempty stringint :

t[#t + 1] = ""
s = table.concat(t, "\n")

Now, the extra newline that concat adds before this empty string is at the end of the resulting string,
as we wanted.

Graphs

Like any decent language, Lua allows multiple implementations for graphs, each one better adapted to
some particular algorithms. Here we will see asimple object-oriented implementation, where we represent
nodes as objects (actually tables, of course) and arcs as references between nodes.

We will represent each node as a table with two fields: nane, with the node's name; and adj , with the
set of nodes adjacent to this one. Because we will read the graph from a text file, we need away to find
a node given its name. So, we will use an extra table mapping names to nodes. Given a hame, function
nane2node returns the corresponding node:

| ocal function nanme2node (graph, nane)
| ocal node = graph[nane]
if not node then
-- node does not exist; create a new one

node = {nane = nane, adj = {}}
graph[name] = node

end

return node

end

111

Data Structures

Figure 14.3, “Reading a graph from afile” shows the function that builds a graph.

Figure 14.3. Reading a graph from afile

function readgraph ()
| ocal graph = {}
for line inio.lines() do
-- split Iine in two namnes
| ocal namefrom nanmeto = string.match(line, "(%%+)%+(%5+)")
-- find correspondi ng nodes
| ocal from = nane2node(graph, nanefrom
| ocal to = nane2node(graph, naneto)
-- adds 'to' to the adjacent set of 'from
fromadj[to] = true
end
return graph
end

It reads a file where each line has two node names, meaning that there is an arc from the first node to the
second. For each line, the function uses st ri ng. mat ch to split the line in two names, finds the nodes
corresponding to these names (creating the nodes if needed), and connects the nodes.

Figure 14.4, “Finding a path between two nodes” illustrates an algorithm using such graphs.
Figure 14.4. Finding a path between two nodes
function findpath (curr, to, path, visited)

path = path or {}
visited = visited or {}

if visited[curr] then -- node al ready visited?
return nil -- no path here

end

visited[curr] = true -- mark node as visited

pat h[#path + 1] = curr -- add it to path

if curr == to then -- final node?
return path

end

-- try all adjacent nodes
for node in pairs(curr.adj) do
local p = findpath(node, to, path, visited)
if pthen return p end
end
t abl e. remove(pat h) -- renove node from path
end

The function f i ndpat h searches for a path between two nodes using a depth-first traversal. Its first
parameter is the current node; the second is its goal; the third parameter keeps the path from the origin to
the current node; the last parameter is a set with all the nodes already visited, to avoid loops. Note how
the algorithm manipulates nodes directly, without using their names. For instance, vi si t ed is a set of
nodes, not of node names. Similarly, pat h isalist of nodes.

To test this code, we add afunction to print a path and some code to put it all to work:

function printpath (path)
for i =1, #path do

112

Data Structures

print(path[i].name)
end
end

readgr aph()
nane2node(g, "a")
nane2node(g, "b")
findpath(a, b)

f p then printpath(p) end

g9
a
b
p
[

Exercises

Exercise 14.1: Write a function to add two sparse matrices.

Exercise 14.2: Modify the queue implementation in Figure 14.2, “A double-ended queue” so that both
indices return to zero when the queue is empty.

Exercise 14.3: Modify the graph structure so that it can keep a label for each arc. The structure should
represent each arc by an object, too, with twofields: itslabel and the nodeit pointsto. | nstead of an adjacent
set, each node keeps an incident set that contains the arcs that originate at that node.

Adapt the function r eadgr aph to read two node names plus a label from each line in the input file.
(Assume that the label is anumber.)

Exercise 14.4: Assume the graph representation of the previous exercise, where the label of each arc
represents the distance between its end nodes. Write afunction to find the shortest path between two given
nodes, using Dijkstra's algorithm.

113

Chapter 15. Data Files and Serialization

When dealing with datafiles, it isusually much easier to write the datathan to read it back. When wewrite
afile, wehavefull control of what isgoing on. When weread afile, on the other hand, we do not know what
to expect. Besides all the kinds of data that a correct file can contain, arobust program should also handle
bad files gracefully. Therefore, coding robust input routinesis always difficult. In this chapter, we will see
how we can use Luato eliminate all code for reading datafrom our programs, simply by writing the datain
an appropriate format. More specifically, we write data as L ua programs that, when run, rebuild the data.

Data description has been one of the main applications of Lua since its creation in 1993. At that time,
the main alternative for atextual data-description language would be SGML. For many people (including
us), SGML isbloated and complex. In 1998, some people simplified it to create XML, which in our view
is still bloated and complex. Other people shared our view, and some of them created JSON (in 2001).
JSON is based on Javascript and quite similar to restricted Lua data files. On the one hand, JSON has a
big advantage of being an international standard, and several languages (including Lua) have libraries to
manipulate JSON files. On the other hand, Luafiles are trivial to read and more flexible.

Using afull programming language for data description is surely flexible, but it brings two problems. One
is security, as “data’ files can run amok inside our program. We can solve that by running the filein a
sandbox, which we will discussin the section called “ Sandboxing”.

The other problem is performance. Lua not only runs fast, but it also compiles fast. For instance, in my
new machine, Lua 5.3 reads, compiles, and runs a program with ten million assignments in four seconds,
using 240 MB. For comparison, Perl 5.18 takes 21 seconds and 6 GB, Python 2.7 and Python 3.4 trash the
machine, Node.js 0.10.25 gives an “out of memory” error after eight seconds, and Rhino 1.7 also gives
an “out of memory” error, after six minutes.

Data Files

Table constructors provide an interesting alternative for file formats. With alittle extrawork when writing
data, reading becomestrivial. The technique is to write our data file as Lua code that, when run, rebuilds
the datainto the program. With table constructors, these chunks can look remarkably like aplain datafile.

L et us see an example to make things clear. If our datafileisin apredefined format, such as CSV (Com-
ma-Separated Values) or XML, we have little choice. However, if we are going to create the file for our
own use, we can use Lua constructors as our format. In thisformat, we represent each datarecord asalua
constructor. Instead of writing in our data file something like

Donal d E. Knuth, Literate Programm ng, CSLI, 1992
Jon Bentl ey, More Progranm ng Pearl s, Addi son- Wesl ey, 1990

we write this:

Entry{"Donald E. Knuth",
"Literate Progranm ng",
"CSLI ",
1992}

Entry{"Jon Bentley",
"More Programming Pearls",
" Addi son- sl ey",
1990}

Remember that Ent r y{ code} isthesameasEnt r y({code}), thatis, acall to somefunctionEnt r y
with atable as its single argument. So, that previous piece of datais a Lua program. To read that file, we

114

Data Files and Serialization

only need to run it, with a sensible definition for Ent r y. For instance, the following program counts the
number of entriesin adatafile:

local count =0
function Entry () count = count + 1 end
dofile("data")

print("number of entries:

count)
The next program collects in a set the names of all authors found in the file, and then prints them:

| ocal authors = {} -- a set to collect authors
function Entry (b) authors[b[1]] = true end

dofil e("data")

for nane in pairs(authors) do print(nane) end

Note the event-driven approach in these program fragments: the function Ent r y acts as a callback func-
tion, which is called during the dof i | e for each entry in the datafile.

When file size is not a big concern, we can use name-value pairs for our repr&eentation:l

Ent r y{
author = "Donald E. Knuth",
title = "Literate Progranmm ng",
publ i sher = "CSLI",
year = 1992
}
Ent r y{
aut hor = "Jon Bentl ey",
title = "More Programm ng Pearls",
year = 1990,

publ i sher = "Addi son-\Wesl ey",
}

Thisformat is what we call a self-describing data format, because each piece of data has attached to it a
short description of its meaning. Self-describing data are more readable (by humans, at least) than CSV
or other compact notations; they are easy to edit by hand, when necessary; and they alow us to make
small modifications in the basic format without having to change the data file. For instance, if we add a
new field we need only a small change in the reading program, so that it supplies a default value when
the field is absent.

With the name-value format, our program to collect authors becomes this:

| ocal authors = {} -- a set to collect authors
function Entry (b) authors[b.author] = true end
dofil e("data")

for nane in pairs(authors) do print(nane) end

Now the order of fields isirrelevant. Even if some entries do not have an author, we have to adapt only
the function Ent r y:

function Entry (b)
aut hor s[b. aut hor or
end

"unknown"] = true

4f this format reminds you of BibTeX, it is not a coincidence. BibTeX was one of the inspirations for the constructor syntax in Lua

115

Data Files and Seridization

Serialization

Frequently we need to serialize some data, that is, to convert the datainto a stream of bytes or characters,
so that we can saveit into afile or send it through a network connection. We can represent serialized data
as Lua code in such away that, when we run the code, it reconstructs the saved values into the reading
program.

Usually, if we want to restore the value of a global variable, our chunk will be something like var nane
= exp, where exp isthe Luacodeto create the value. The var namne isthe easy part, so let us see how
to write the code that creates avalue. For anumeric value, the task is easy:

function serialize (0)
if type(o) == "nunber" then
io.wite(tostring(o))
el se ot her cases
end
end

By writing afloat in decimal format, however, we risk losing some precision. We can use a hexadecimal
format to avoid this problem. With format (" %&"), the read float will have exactly the same bits of the
original one. Moreover, since Lua 5.3 we should distinguish between integers and floats, so that they can
be restored with the correct subtype:

local fm = {integer = "%l", float = "%"}

function serialize (0)
if type(o) == "nunber" then
io.wite(string.format(fnt[math.type(o)], 0))
el se other cases

For a string value, a naive approach would be something like this:

if type(o) == "string" then

io.wite(, o, """)

However, if the string contains specia characters (such as quotes or newlines) the resulting code will not
be avalid Lua program.

Y ou may be tempted to solve this problem changing quotes:

if type(o) == "string" then
io.wite("[[", o, "]11")

Beware of code injection! If a malicious user manages to direct your program to save something like
" 1]..0s.execute('rm*")..[[" (forinstance, she can supply this string as her address), your
final chunk will be like this one:

varnane = [[]]..o0s.execute('rm*")..[[1]
Y ou will have a bad surprise trying to load this “data’.

A simple way to quote a string in a secure way is with the option " %g" from st ri ng. f or mat . This
option was designed to save the string in a way that it can be safely read back by Lua. It surrounds the
string with double quotes and properly escapes double quotes, newlines, and some other charactersinside
the string:

a ="'"a "problematic" \\string'

116

Data Files and Serialization

print(string.format("%y", a)) --> "a \"problematic\" \\string"
Using thisfeature, our ser i al i ze function now looks like this:

function serialize (0)
if type(o) == "nunber" then
io.wite(string.format(fnm[math.type(o)], 0))
el seif type(o) == "string" then
io.wite(string.format ("%y", 0))
el se other cases
end
end

Lua 5.3.3 extended the format option " %g" to work aso with numbers (plus nil and Booleans), again
writing them in a proper way to be read back by Lua. (In particular, it formats floats in hexadecimal, to
ensure full precision.) Thus, since that version, we can simplify and extend ser i al i ze even more;

function serialize (0)
local t = type(0)
if t == "nunber" or t == "string" or t == "bool ean" or
t == "nil" then
io.wite(string.format("%y", 0))
el se other cases
end
end

Another way to savestringsisthenotation[=[. . .] =] for long strings. However, this notation ismainly
intended for hand-written code, where we do not want to changealiteral string in any way. In automatically
generated code, it is easier to escape problematic characters, asthe option" %" fromstri ng. f or nat
does.

If you nevertheless want to use the long-string notation for automatically generated code, you must take
care of somedetails. Thefirst oneisthat you must choose a proper number of equalssigns. A good proper
number is one more than the maximum that appearsin the original string. Because strings containing long
sequences of equals signs are common (e.g., comments delimiting parts of a source code), we should limit
our attention to sequences of equals signs enclosed by square bracket. The second detail isthat Luaaways
ignores a newline at the beginning of along string; a simple way to avoid this problem is to add always
anewlineto beignored.

Thefunctionquot e inFigure 15.1, “Quoting arbitrary literal strings’ istheresult of our previousremarks.
Figure 15.1. Quoting arbitrary literal strings

function quote (s)
-- find maxi num | ength of sequences of equals signs

local n = -1
for win string.gmatch(s, "]=*%[%]") do

n = math. max(n, #w - 1) -- -1to renove the ']’
end

-- produce a string with 'n' plus one equals signs
local eq = string.rep("=", n + 1)

-- build quoted string
return string.format (" [%[\n%] %] ", eq, s, eq)
end

117

Data Files and Seridization

It takes an arbitrary string and returns it formatted as along string. The call to gnat ch creates an iterator
to traverse all occurrences of the pattern] =*% [94] ' (that is, a closing square bracket followed by a
seguence of zero or more equals signs followed by afrontier with a closing square bracket) inthe string s.
For each occurrence, the loop updates n with the maximum number of equals signs so far. After the loop,
weusestring. rep toreplicate an equalssignn + 1 times, which is one more than the maximum
occurring in the string. Finaly, stri ng. f or mat encloses s with pairs of brackets with the correct
number of equals signs in between and adds extra spaces around the quoted string plus a newline at the
beginning of the enclosed string.

(We might be tempted to use the simpler pattern] =*] ', which does not use a frontier pattern for the
second square bracket, but there is a subtlety here. Suppose the subject is"] =] ==] " . Thefirst match is
"1=]". Afterit, what isleftinthe stringis" ==] ", and so there is no other match; in the end of the loop,
n would be one instead of two. The frontier pattern does not consume the bracket, so that it remains in
the subject for the following matches.)

Saving tables without cycles

Our next (and harder) task is to save tables. There are several ways to save them, according to what
assumptionswe make about the table structure. No single algorithm seems appropriatefor all cases. Simple
tables not only can use simpler algorithms, but also the output can be shorter and clearer.

Our first attempt isin Figure 15.2, “ Serializing tables without cycles’.
Figure 15.2. Serializing tables without cycles

function serialize (0)
local t = type(0)

if t == "nunber" or t == "string" or t == "bool ean" or
t =="nil" then
io.wite(string.format("%y", 0))

elseif t == "table" then

io.wite("{\n")

for k,v in pairs(o) do
io.wite(" ", k, " =")
serialize(v)
io.wite(",\n")

end

io.wite("}\n")
el se

error("cannot serialize a " type(o))
end

end

Despite its simplicity, that function does a reasonable job. It even handles nested tables (that is, tables
within other tables), aslong as the table structure is a tree —that is, there are no shared subtables and no
cycles. (A small aesthetic improvement would be to indent nested tables; see Exercise 15.1.)

The previous function assumes that all keysin atable are valid identifiers. If a table has numeric keys,
or string keys that are not syntactic valid Lua identifiers, we are in trouble. A simple way to solve this
difficulty isto use the following code to write each key:

io.wite(string.format(" [%] =", serialize(k)))

With this change, we improve the robustness of our function, at the cost of the aesthetics of the resulting
file. Consider the next call:

118

Data Files and Serialization

serialize{a=12, b='Lua', key="another "one"'}

Theresult of this call using the first version of seri al i ze isthis:

{

a =12,

b = "Lua",

key = "another \"one\"",
}

Compare it with the result using the second version:

= 12,
= "Lua",
"] = "another \"one\"",

We can have both robustness and aesthetics by testing for each case whether it needs the square brackets;
again, we will leave thisimprovement as an exercise.

Saving tables with cycles

To handle tables with generic topology (i.e., with cycles and shared subtables) we need a different ap-
proach. Constructors cannot create such tables, so we will not use them. To represent cycles we need
names, so our next function will get as arguments the value to be saved plusits name. Moreover, we must
keep track of the names of the tables already saved, to reuse them when we detect a cycle. We will use
an extra table for this tracking. This table will have previously saved tables as indices and their names
as the associated values.

The resulting codeisin Figure 15.3, “ Saving tables with cycles’.

119

Data Files and Serialization

Figure 15.3. Saving tableswith cycles

function basicSerialize (0)
-- assune '0' is a number or a string
return string.format("%", o)

end

function save (nanme, val ue, saved)

saved = saved or {} -- initial value
io.wite(nane, " =")
if type(value) == "nunber" or type(value) == "string" then
io.wite(basicSerialize(value), "\n")
el seif type(value) == "table" then
i f saved[val ue] then -- value already saved?
io.wite(saved[value], "\n") -- use its previous nane
el se
saved[val ue] = nane -- save nane for next tinme
io.wite("{}\n") -- create a new table
for k,v in pairs(value) do -- save its fields

k = basicSerialize(k)
local fname = string.format("%[%]", nane, k)
save(fnanme, v, saved)
end
end
el se
error("cannot save a " .. type(value))
end
end

Wekeep the restriction that the tables we want to save have only strings and numbers askeys. Thefunction
basi cSeri al i ze serializes these basic types, returning the result. The next function, save, doesthe
hard work. The saved parameter is the table that keeps track of tables aready saved. As an example,
suppose we build atable like this:

a = {x=1, y=2; {3,4,5}}
a[2] = a -- cycle
a.z = a[1l] -- shared subtable

Thecal save("a", a) will saveitasfollows:

a = {}

a[1] = {}
a[1][1] =
a[1][2] =
a[1][3] =

a[2] =
al"y"]
al "x"]
a["z"]

Inmmn 1 o

The actual order of these assignments may vary, asit depends on atable traversal. Nevertheless, the algo-
rithm ensures that any node needed in a new definition is already defined.

If we want to save several values with shared parts, we can make the calls to save them using the same
saved table. For instance, assume the following two tables:

120

Data Files and Seridization

a
b

one", "two"}, 3}

{{" :
{k =a[1]}

If we savethem independently, theresult will not have common parts. However, if weusethesamesaved
table for both callsto save, then the result will share common parts:

local t = {}
save("a", a,
save("b", b,

-->a =)
-->all] = {}
-->a[1][1]
-->a[1][2]
-->a[2] =3
-->b = {}

--> b["k"] = a[1]

n Onen
n t V\D"

Asisusual in Lua, there are several other alternatives. Among them, we can save a value without giving
it aglobal name (instead, the chunk builds a local value and returns it), we can use the list syntax when
possible (seethe exercisesfor this chapter), and so on. Luagives you the tools; you build the mechanisms.

Exercises

Exercise 15.1: Modify the codein Figure 15.2, “ Serializing tableswithout cycles’ so that it indents nested
tables. (Hint: add an extra parameter toser i al i ze with the indentation string.)

Exercise 15.2: Modify the code of the previous exercise so that it usesthe syntax [" key"] =val ue, as
suggested in the section called “ Saving tables without cycles’.

Exercise 15.3: Modify the code of the previous exercise so that it usesthe syntax [" key"] =val ue only
when necessary (that is, when the key is astring but not avalid identifier).

Exercise 15.4: Modify the code of the previous exercise so that it uses the constructor syntax for lists
whenever possible. For instance, it should serializethetable{ 14, 15, 19} as{14, 15, 19}, not
as{[1] = 14, [2] = 15, [3] = 19}. (Hint; start by saving the values of thekeys 1, 2, ..., as
long as they are not nil. Take care not to save them again when traversing the rest of the table.)

Exercise 15.5: The approach of avoiding constructors when saving tables with cyclesistoo radical. It is
possible to save the table in a more pleasant format using constructors for the simple case, and to use
assignments later only to fix sharing and loops. Reimplement the function save (Figure 15.3, “Saving
tableswith cycles”) using thisapproach. Addtoit al the goodiesthat you have implemented in the previous
exercises (indentation, record syntax, and list syntax).

121

Chapter 16. Compilation, Execution,
and Errors

Although we refer to Lua as an interpreted language, L ua always precompiles source code to an interme-
diateform beforerunningit. (Thisisnot abig deal: many interpreted languages do the same.) The presence
of a compilation phase may sound out of place in an interpreted language. However, the distinguishing
feature of interpreted languages is not that they are not compiled, but that it is possible (and easy) to exe-
cute code generated on the fly. We may say that the presence of afunction like dof i | e iswhat entitles
usto call Luaan interpreted language.

In this chapter, we will discuss in more details the process that Lua uses for running its chunks, what
compilation means (and does), how Luarunsthat compiled code, and how it handles errorsin that process.

Compilation

Previously, we introduced dof i | e as a kind of primitive operation to run chunks of Lua code, but
dof i | e isactualy an auxiliary function: the function | oadf i | e does the hard work. Like dof i | e,
| oadfi | e loads a Lua chunk from afile, but it does not run the chunk. Instead, it only compiles the
chunk and returns the compiled chunk as a function. Moreover, unlike dof i | e, | oadfi | e does not
raise errors, but instead returns error codes. We could define dof i | e asfollows:

function dofile (filenamne)
local f = assert(loadfile(filename))
return f()

end

Notethe use of assert toraisean error if | oadfi | e fails.

For simpletasks, dof i | e ishandy, because it doesthe complete jobin onecall. However, | oadfi | e is
more flexible. In case of error, | oadf i | e returns nil plus the error message, which alows us to handle
the error in customized ways. Moreover, if we need to run a file several times, we can call | oadfil e
onceand call itsresult several times. Thisapproach ismuch cheaper than severa callstodof i | e, because
it compiles the file only once. (Compilation is a somewhat expensive operation when compared to other
tasksin the language.)

Thefunction| oad issimilartol oadf i | e, except that it readsits chunk from astring or from afunction,
not from afile.! For instance, consider the next line:

f =load("i =i + 1")
After thiscode, f will be afunction that executesi = i + 1 wheninvoked:
i =0
f(); print(i) --> 1
f(); print(i) --> 2

Thefunction| oad ispowerful; weshould useit with care. It isal so an expensive function (when compared
to some alternatives) and can result in incomprehensible code. Before you use it, make sure that there is
no simpler way to solve the problem at hand.

YnLua5.1, function| oadst ri ng did therole of | oad for strings.

122

Compilation, Execution, and Errors

If we want to do a quick-and-dirty dost ri ng (i.e., to load and run a chunk), we can call the result from
| oad directly:

[oad(s) ()

However, if thereis any syntax error, | oad will return nil and the final error message will be something
like “ attempt to call a nil value” . For clearer error messages, it is better touseassert :

assert (1 oad(s)) ()

Usually, it does not make senseto usel oad on aliteral string. For instance, the next two lines are roughly
equivalent:

f

load("i =i + 1")

f

function () i =i + 1 end

However, the second line is much faster, because Lua compiles the function together with its enclosing
chunk. In thefirst line, the call to| oad involves a separate compilation.

Because | oad does not compile with lexical scoping, the two lines in the previous example may not be
truly equivalent. To see the difference, let us change the example alittle:

i =32

local i =0

f = load("i =i + 1; print(i)")

g = function () i =i + 1; print(i) end
f() --> 33

9() -->1

The function g manipulatesthe local i , as expected, but f manipulatesaglobal i , because| oad aways
compilesits chunksin the global environment.

The most typical use of | oad isto run external code (that is, pieces of code that come from outside our
program) or dynamically-generated code. For instance, we may want to plot afunction defined by the user;
the user enters the function code and then we use | oad to evaluate it. Note that | oad expects a chunk,
that is, statements. If we want to evaluate an expression, we can prefix the expression with return, so that
we get a statement that returns the value of the given expression. See the example:

print "enter your expression:"

local line = io.read()
| ocal func = assert(load("return " .. line))
print("the val ue of your expression is " .. func())

Because the function returned by | oad isaregular function, we can call it several times:

print "enter function to be plotted (with variable "x"):"

local line = io.read()

| ocal f = assert(load("return " line))

for i =1, 20 do
X =i -- global '"x'" (to be visible fromthe chunk)
print(string.rep("*", f()))

end

We can cal | oad aso with a reader function as its first argument. A reader function can return the
chunk in parts; | oad calls the reader successively until it returns nil, which signals the chunk's end. As
an example, the next call isequivalentto| oadfi | e:

123

Compilation, Execution, and Errors

f = load(io.lines(filenane, "*L"))

Aswesaw inChapter 7, The External World, thecall i 0. | i nes(fil ename, "*L") returnsafunction
that, at each call, returns a new line from the given file. So, | oad will read the chunk from the file line
by line. The following version is similar, but slightly more efficient:

f = load(io.lines(filenanme, 1024))
Here, theiterator returned by i 0. | i nes readsthefilein blocks of 1024 bytes.

L uatreats any independent chunk as the body of an anonymous variadic function. For instance, | oad(" a
= 1") returnsthe equivalent of the following expression:

function (...) a =1 end
Like any other function, chunks can declare local variables:

f = load("local a = 10; print(a + 20)")
f() --> 30

Using these features, we can rewrite our plot example to avoid the use of aglobal variable x:

print "enter function to be plotted (with variable '"x'):

local line = io.read()
local f = assert(load("local x = ...; return ™ .. line))
for i =1, 20 do
print(string.rep("*", f(i)))
end
In this code, we append the declaration™ | ocal x = ..." atthebeginning of the chunk to declarex as

alocal variable. Wethen call f with anargumenti that becomesthe value of the vararg expression (. . .).

The functions| oad and | oadf i | e never raise errors. In case of any kind of error, they return nil plus
an error message:

print(load("i i"))
-->nil [string "i i"]:1: '=" expected near 'i

Moreover, thesefunctions never have any kind of side effect, that is, they do not change or create variables,
do not writeto files, etc. They only compile the chunk to an internal representation and return the result as
an anonymous function. A common mistake is to assume that loading a chunk defines functions. In Lua,
function definitions are assignments; as such, they happen at runtime, not at compile time. For instance,
suppose we have afilef oo. | ua like this:

-- file '"foo.lua

function foo (x)
print(x)

end

We then run the command
f = loadfile("foo.lua")

This command compiles f oo but does not defineit. To define it, we must run the chunk:

f = loadfile("foo.lua")

print (foo) -->nil

f() -- run the chunk
foo("ok") --> ok

124

Compilation, Execution, and Errors

This behavior may sound strange, but it becomes clear if we rewrite the file without the syntax sugar:

-- file '"foo.lua

foo = function (x)
print (x)

end

In a production-quality program that needs to run external code, we should handle any errors reported
when loading a chunk. Moreover, we may want to run the new chunk in a protected environment, to avoid
unpleasant side effects. We will discuss environments in detail in Chapter 22, The Environment.

Precompiled Code

As| mentioned in the beginning of this chapter, Lua precompiles source code before running it. Luaalso
allows usto distribute code in precompiled form.

The simplest way to produce a precompiled file —also called a binary chunk in Lua jargon— is with
the | uac program that comes in the standard distribution. For instance, the next call creates a new file
pr og. | ¢ with aprecompiled version of afilepr og. | ua:

$ luac -0 prog.lc prog.lua

The Luainterpreter can execute this new file just like normal Lua code, performing exactly as it would
with the original source:

$ lua prog.lc

L ua accepts precompiled code mostly anywhere it accepts source code. In particular, both | oadfi | e
and | oad accept precompiled code.

We can writeaminimal | uac directly in Lua:

p = loadfile(arg[1])

f = io.open(arg[2], "wbh")

f:wite(string.dunp(p))

f:close()

The key function hereisst ri ng. dunp: it receives a Lua function and returns its precompiled code as
astring, properly formatted to be |oaded back by Lua.

The | uac program offers some other interesting options. In particular, option - | lists the opcodes that
the compiler generates for a given chunk. As an example, Figure 16.1, “Example of output from | uac -
| " shows the output of | uac with option - I on the following one-linefile:

a=x+y -z
Figure 16.1. Example of output from | uac - |

main <stdin:0,0> (7 instructions, 28 bytes at 0x988cb30)
0+ parans, 2 slots, O upvalues, 0 locals, 4 constants, 0 functions

1 [1] GETGLOBAL 0 -2 X
2 [1] GETGLOBAL 1 -3 oy
3 [1] ADD 001

4 [1] GETGLOBAL 1 -4 ; z
5 [1] SuB 001

6 [1] SETGLOBAL 0 -1 . a
7 [1] RETURN 01

125

Compilation, Execution, and Errors

(We will not discuss the internals of Lua in this book; if you are interested in more details about those
opcodes, aWeb search for " | ua opcode" should give you relevant material.)

Code in precompiled form is not always smaller than the original, but it loads faster. Another benefit is
that it gives a protection against accidental changesin sources. Unlike source code, however, maliciously
corrupted binary code can crash the Lua interpreter or even execute user-provided machine code. When
running usual code, there is nothing to worry about. However, you should avoid running untrusted code
in precompiled form. The function | oad has an option exactly for this task.

Besidesitsrequired first argument, | oad has three more arguments, all of them optional. The second isa
name for the chunk, used only in error messages. The fourth argument is an environment, which we will
discuss in Chapter 22, The Environment. The third argument is the one we are interested here; it controls
what kinds of chunks can be loaded. If present, this argument must be a string: the string "t " alows
only textual (normal) chunks; " b" alows only binary (precompiled) chunks; " bt ", the default, allows
both formats.

Errors

Errare humanum est. Therefore, we must handle errors the best way we can. Because Luais an extension
language, frequently embedded in an application, it cannot simply crash or exit when an error happens.
Instead, whenever an error occurs, Luamust offer ways to handle it.

Any unexpected condition that Lua encounters raises an error. Errors occur when a program tries to add
valuesthat are not numbers, call values that are not functions, index values that are not tables, and so on.
(We can modify this behavior using metatables, aswe will seelater.) We can also explicitly raise an error
calingthefunctioner r or , with an error message as an argument. Usually, thisfunction isthe appropriate
way to signal errorsin our code:

print "enter a number:"
n =io.read("n")
if not nthen error("invalid input") end

Thisconstruction of callinger r or subject to some conditionisso common that Luahasabuilt-in function
just for thisjob, caled assert :

print "enter a number:"
n = assert(io.read("*n"), "invalid input")

The function assert checks whether its first argument is not false and simply returns this argument;
if the argument isfalse, assert raises an error. Its second argument, the message, is optional. Beware,
however, that assert isaregular function. As such, Lua always evaluates its arguments before calling
the function. If we write something like

n = io.read()
assert (tonunmber(n), "invalid input:

n.. is not a nunber")
Lua will always do the concatenation, even when n is a number. It may be wiser to use an explicit test
in such cases.

When a function finds an unexpected situation (an exception), it can assume two basic behaviors: it can
return an error code (typically nil or false) or it can raise an error, caling er r or . There are no fixed
rules for choosing between these two options, but | use the following guideline: an exception that iseasily
avoided should raise an error; otherwise, it should return an error code.

126

Compilation, Execution, and Errors

For instance, let us consider mat h. si n. How should it behave when called on atable? Supposeit returns
an error code. If we need to check for errors, we would have to write something like this:

[ocal res = math. sin(x)
if not res then -- error?
error-handling code

However, we could as easily check this exception before calling the function:

i f not tonumnber(x) then -- X is not a number?
error-handling code

Frequently we check neither the argument nor the result of acall to si n; if the argument is not a number,
it means that probably there is something wrong in our program. In such situations, the simplest and most
practical way to handle the exception isto stop the computation and issue an error message.

Ontheother hand, let usconsideri 0. open, which opensafile. How should it behave when asked to open
afilethat does not exist? In this case, thereis no simple way to check for the exception before calling the
function. In many systems, the only way of knowing whether afile existsisby trying to openit. Therefore,
if i 0. open cannot open afile because of an external reason (such as “file does not exist” or “permission
denied”), it returnsfalse, plus a string with the error message. In this way, we have a chance to handle the
situation in an appropriate way, for instance by asking the user for another file name:

| ocal file, msg

r epeat
print "enter a file name:"
| ocal nanme = io.read()
if not name then return end -- no input
file, nsg = io.open(nane, "r")

if not file then print(nsg) end
until file

If we do not want to handle such situations, but still want to play safe, we simply use assert to guard
the operation:

file = assert(io.open(nane, "r"))
--> stdin:1: no-file: No such file or directory

Thisisatypical Luaidiom: if i 0. open fails, assert will raise an error. Notice how the error message,
which isthe second result fromi 0. open, goes as the second argument to assert .

Error Handling and Exceptions

For many applications, we do not need to do any error handling in Lua; the application program does this
handling. All Lua activities start from a call by the application, usually asking Luato run achunk. If there
isany error, this call returns an error code, so that the application can take appropriate actions. In the case
of the stand-aloneinterpreter, itsmain loop just prints the error message and continues showing the prompt
and running the given commands.

However, if we want to handle errors inside the Lua code, we should use the function pcal | (protected
call) to encapsulate our code.

Suppose we want to run a piece of Lua code and to catch any error raised while running that code. Our
first step is to encapsulate that piece of code in a function; more often than not, we use an anonymous
function for that. Then, we call that function through pcal | :

127

Compilation, Execution, and Errors

| ocal ok, nsg = pcall (function ()

sone code
i f unexpected_condition then error() end
sone code
print(a[i]) -- potential error: "a' may not be a table
sone code
end)
if ok then -- no errors while running protected code
regul ar code
el se -- protected code raised an error: take appropriate action
error-handling code

end

The function pcal | calls its first argument in protected mode, so that it catches any errors while the
function is running. The function pcal | never raises any error, no matter what. If there are no errors,
pcal | returnstrue, plusany valuesreturned by thecall. Otherwise, it returnsfal se, plusthe error message.

Despite its name, the error message does not have to be a string; a better name is error object, because
pcal | will return any Luavalue that we passto er r or :

| ocal status, err = pcall(function () error({code=121}) end)
print(err.code) --> 121

These mechanisms provide all we need to do exception handling in Lua. We throw an exception with
error and catch it with pcal | . The error message identifies the kind of error.

Error Messages and Tracebacks

Although we can use a value of any type as an error object, usually error objects are strings describing
what went wrong. When there is an internal error (such as an attempt to index a non-table value), Lua
generates the error object, which in that case is always a string; otherwise, the error object is the value
passed to the function er r or . Whenever the object is a string, Lua tries to add some information about
the location where the error happened:

| ocal status, err = pcall(function () error("my error") end)
print(err) --> stdin:1: ny error

The location information gives the chunk's name (st di n, in the example) plus the line number (1, in
the example).

Thefunction er r or hasan additional second parameter, which gives the level where it should report the
error. We use this parameter to blame someone elsefor the error. For instance, suppose we writeafunction
whose first task is to check whether it was called correctly:

function foo (str)

if type(str) ~= "string" then
error("string expected")
end
regul ar code
end

Then, someone calls this function with awrong argument:

128

Compilation, Execution, and Errors

foo({x=1})
Asitis, Luapointsitsfinger to f oo —after all, it wasit who called er r or — and not to the real culprit,
the caller. To correct this problem, we inform er r or that the error it is reporting occurred on level two
in the calling hierarchy (level oneis our own function):

function foo (str)

if type(str) ~= "string" then
error("string expected", 2)
end
regul ar code
end

Frequently, when an error happens, we want more debug information than only the location wherethe error
occurred. At least, we want a traceback, showing the complete stack of calls leading to the error. When
pcal | returnsitserror message, it destroys part of the stack (the part that goes from it to the error point).
Consequently, if wewant atraceback, we must build it beforepcal | returns. To do this, Luaprovidesthe
functionxpcal | . Itworkslikepcal | , but its second argument is amessage handler function. In case of
error, Luacallsthis message handler before the stack unwinds, so that it can use the debug library to gather
any extrainformation it wants about the error. Two common message handlersaredebug. debug, which
gives us a Lua prompt so that we can inspect by ourselves what was going on when the error happened,;
and debug. t r aceback, which builds an extended error message with a traceback. The latter is the
function that the stand-alone interpreter uses to build its error messages.

Exercises

Exercise 16.1: Frequently, it is useful to add some prefix to a chunk of code when loading it. (We saw an
example previoudly in this chapter, where we prefixed areturn to an expression being loaded.) Write a
function | oadwi t hpr ef i x that works like| oad, except that it adds its extra first argument (a string)
as a prefix to the chunk being loaded.

Like the origina | oad, | oadwi t hpr ef i x should accept chunks represented both as strings and as
reader functions. Even in the case that the origina chunk is a string, | oadwi t hpr ef i x should not
actually concatenate the prefix with the chunk. Instead, it should call | oad with a proper reader function
that first returns the prefix and then returns the original chunk.

Exercise 16.2: Writeafunction mul t i | oad that generalizes| oadwi t hpr ef i x by receiving alist of
readers, asin the following example:

f = multiload("local x = 10;",
io.lines("temp", "*L"),
"oprint(x)")

In the above example, mul ti | oad should load a chunk equivalent to the concatenation of the string
"l ocal...",thecontents of thet enp file, and the string " pri nt (x) " . Like| oadwi t hpr efi x,
from the previous exercise, mul t i | oad should not actually concatenate anything.

Exercise 16.3: Thefunction st ri ngr ep, in Figure 16.2, “ String repetition”, uses a binary multiplication
algorithm to concatenate n copies of agiven string s.

129

Compilation, Execution, and Errors

Figure 16.2. String repetition

function stringrep (s, n)
local r = ""
if n>0 then
while n > 1 do

ifn%2~=0then r =r .. s end
S =S .. S
n =mth.floor(n / 2)
end
r=r .. s
end
return r

end

For any fixed n, we can create aspecialized version of st r i ngr ep by unrolling the loop into a sequence
of ingtructionsr = r .. sands = s .. s.Asanexample forn = 5 theunrolling gives us
the following function:

function stringrep_5 (s)
local r = ""
r r
s S ..
s S ..
r ro..
return r
end

n n nn

Write afunction that, given n, returns a specialized function st r i ngr ep_n. Instead of using a closure,
your function should build the text of a Lua function with the proper sequence of instructions (amix of r

=r .. sands = s .. s)andthenusel oad to producethefina function. Compare the performance
of the generic function st ri ngr ep (or of aclosure using it) with your tailor-made functions.

Exercise 16.4: Can you find any value for f such that the call pcal | (pcal |, f) returnsfalse asits
first result? Why is this relevant?

130

Chapter 17. Modules and Packages

Usually, Luadoes not set policies. Instead, L ua provides mechanismsthat are powerful enough for groups
of developers to implement the policies that best suit them. However, this approach does not work well
for modules. One of the main goals of a module system is to allow different groups to share code. The
lack of acommon policy impedes this sharing.

Starting in version 5.1, Lua has defined a set of palicies for modules and packages (a package being a
collection of modules). These policies do not demand any extra facility from the language; programmers
can implement them using what we have seen so far. Programmers are free to use different policies. Of
course, alternative implementations may lead to programs that cannot use foreign modules and modules
that cannot be used by foreign programs.

From the point of view of the user, amodule is some code (either in Luaor in C) that can beloaded through
the function r equi r e and that creates and returns a table. Everything that the module exports, such as
functions and constants, it defines inside this table, which works as akind of namespace.

Asan example, all standard libraries are modules. We can use the mathematical library like this:

local m= require "math"
print(msin(3.14)) --> 0.0015926529164868

However, the stand-alone interpreter preloads all standard libraries with code equivalent to this:

math = require "nmath"

string = require "string"
This preloading allows usto write the usual notation mat h. si n, without bothering to require the module
mat h.

An obvious benefit of using tables to implement modules is that we can manipulate modules like any
other table and use the whole power of Luato create extra facilities. In most languages, modules are not
first-class values (that is, they cannot be stored in variables, passed as arguments to functions, etc.); those
languages need special mechanisms for each extra facility they want to offer for modules. In Lua, we get
extrafacilities for free.

For instance, there are several ways for a user to call afunction from amodule. The usual way isthis:

| ocal nod = require "nod"
nod. f oo()

The user can set any local name for the module:

local m= require "nod"
m f oo()

She can also provide alternative names for individual functions:

| ocal m
| ocal f

f(O)

She can also import only a specific function:

require "nmod"
m f oo

local f = require "nod".foo

(require("nod")).foo

131

Modules and Packages

fO)

The nice thing about these facilities is that they involve no special support from Lua. They use what the
language already offers.

The Function requi re

Despite its central role in the implementation of modulesin Lua, r equi r e is aregular function, with
no specia privileges. To load a module, we simply call it with a single argument, the module name.
Remember that, when the single argument to a function is a literal string, the parentheses are optional,
and it is customary to omit them in regular uses of r equi r e. Nevertheless, the following uses are all
correct, too:

local m=require(' math")

| ocal nodnane = 'math'
[ocal m = require(nodnane)

Thefunctionr equi r e triesto keep to aminimum itsassumptionsabout what amoduleis. For it, amodule
isjust any code that defines some values, such as functions or tables containing functions. Typicaly, that
code returns a table comprising the modul e functions. However, because this action is done by the module
code, not by r equi r e, some modules may chooseto return other values or even to have side effects (e.g.,
by creating global variables).

The first step of r equi r e isto check in the table package. | oaded whether the module is already
loaded. If so, r equi r e returns its corresponding value. Therefore, once a module is loaded, other calls
requiring the same module simply return the same value, without running any code again.

If the module is not loaded yet, r equi r e searches for a Lua file with the module name. (This search
is guided by the variable package. pat h, which we will discuss later.) If it finds such afile, it loads
it with | oadfi | e. The result is a function that we call aloader. (The loader is a function that, when
called, loads the module.)

If r equi r e cannot find a Luafile with the module name, it searches for a C library with that name.! (In
that case, the search is guided by the variable package. cpat h.) If it findsa C library, it loads it with
the low-level function package. | oadl i b, looking for a function caled | uaopen_nodnane. The
loader in this case is the result of | oadl i b, which isthe C function | uaopen_nodnane represented
as aLuafunction.

No matter whether the module was found in a Lua file or a C library, r equi r e now has a loader for
it. To finally load the module, r equi r e calls the loader with two arguments: the module name and
the name of the file where it got the loader. (Most modules just ignore these arguments.) If the loader
returns any value, r equi r e returns this value and stores it in the package. | oaded table, to return
the same value in future calls for this same module. If the loader returns no value, and the table entry
package. | oaded[@ ep{ nodnane}] isstill empty, r equi r e behaves as if the module returned
true. Without this correction, a subseguent call tor equi r e would run the module again.

To force require into loading the same module twice, we can erase the library entry from
package. | oaded:

package. | oaded. nodnane = nil

The next time the module is required, r equi r e will do al itswork again.

1IN the section called “C Modules’, we will discuss how to write C libraries.

132

Modules and Packages

A common complaint against r equi r e isthat it cannot pass arguments to the module being loaded. For
instance, the mathematical module might have an option for choosing between degrees and radians:

-- bad code
local math = require("math", "degree")

The problem here isthat one of the main goals of r equi r e isto avoid loading a module multiple times.
Once amodule is loaded, it will be reused by whatever part of the program that requires it again. There
would be a conflict if the same module were required with different parameters. In case you really want
your module to have parameters, it is better to create an explicit function to set them, like here:

| ocal nmod = require "nod"
nmod.init(0, O)

If the initialization function returns the module itself, we can write that code like this:
local nod = require "nod".init(0, 0)

In any case, remember that the module itself is loaded only once; it is up to it to handle conflicting ini-
tializations.

Renaming a module

Usually, we use modules with their original names, but sometimes we must rename a module to avoid
name clashes. A typical situation is when we need to load different versions of the same module, for
instance for testing. Lua modules do not have their names fixed internally, so usualy it is enough to
rename the . | ua file. However, we cannot edit the object code of a C library to correct the name of
its | uaopen_* function. To alow for such renamings, r equi r e uses a smal trick: if the module
name contains a hyphen, r equi r e strips from the name its suffix after the hyphen when creating the
| uaopen_* function name. For instance, if amoduleis named nod- v3. 4, r equi r e expectsits open
function to be named | uaopen_nod, instead of | uaopen_nod- v3. 4 (which would not be a valid
C name anyway). So, if we need to use two modules (or two versions of the same module) named nod,
we can rename one of them to nod- v1, for instance. Whenwecal nlL = require "nod-v1",
r equi r e will find the renamed file nod- v1 and, inside this file, the function with the original name
| uaopen_nod.

Path searching

When searching for a Luafile, the path that guidesr equi r e is a little different from typical paths. A
typical pathisalist of directorieswherein to search for agivenfile. However, 1SO C (the abstract platform
where Lua runs) does not have the concept of directories. Therefore, the path used by r equi r e isalist
of templates, each of them specifying an alternative way to transform a module name (the argument to
requi r) into afile name. More specifically, each templatein the path is afile name containing optional
guestion marks. For each template, r equi r e substitutes the module name for each question mark and
checks whether there is afile with the resulting name; if not, it goes to the next template. The templates
in a path are separated by semicolons, a character seldom used for file names in most operating systems.
For instance, consider the following path:

?;?.1ua; c:\wi ndows\ ?; /usr/local /lual/?/?.1ua
With this path, thecall requi re "sql " will try to open the following Luafiles:

sql

sqgl . lua

c: \wi ndows\ sql
/usr/local/lualsql/sqgl.lua

133

Modules and Packages

Thefunctionr equi r e assumes only the semicolon (as the component separator) and the question mark;
everything else, including directory separators and file extensions, is defined by the path itself.

The path that r equi re uses to search for Lua files is always the current value of the variable
package. pat h. Whenthe module package isinitialized, it setsthis variable with the value of the en-
vironment variable LUA PATH 5 _3; if thisenvironment variableis undefined, Luatriesthe environment
variable LUA_PATH. If both are unefined, Lua uses a compiled-defined default path.2 When using the
value of an environment variable, L ua substitutes the default path for any substring" ; ; " . For instance, if
weset LUA PATH 5 3to"nydir/?.1ua;;",thefina pathwill bethetemplate" nydi r/ ?. 1 ua"
followed by the default path.

The path used to search for aC library worksexactly inthe sameway, but itsvalue comesfrom thevariable
package. cpat h, instead of package. pat h. Similarly, this variable gets itsinitia value from the
environment variables LUA CPATH_5_ 3 or LUA CPATH. A typical value for this path in POSIX islike
this:

.1?.s0;/usr/local/lib/lual/b.2/?. so

Notethat the path definesthefile extension. The previousexampleuses. so for all templates; in Windows,
atypical path would be more like this one:

A2.dl; CAProgram Fi |l es\ Lua502\dl I\ ?.dl |

The function package. sear chpat h encodes all those rules for searching libraries. It takes a module
name and a path, and looks for a file following the rules described here. It returns either the name of the
first file that exists or nil plus an error message describing all files it unsuccessfully tried to open, asin
the next example:

> path = " \\2.dl|l; C\\Program Fi | es\\ Lua502\\dl I\\?2.dlI"
> print(package. searchpat h("X", path))
nil

no file .\ XdlI’
no file 'C\Program Fil es\Lua502\dl I\ X. dl |’

As an interesting exercise, in Figure 17.1, “A homemade package. sear chpat h” we implement a
function similar to package. sear chpat h.

Figure 17.1. A homemade package. sear chpat h

function search (nodnane, path)
nodnane = string. gsub(nodname, "%", "/")
| ocal msg = {}
for ¢ in string.gmatch(path, "[7~;]+") do
| ocal fname = string.gsub(c, "?", nodnane)

| ocal f = io.open(fname)
if f then
f:close()
return fname
el se
meg[#nmsg + 1] = string.format("\n\tno file "%'", fname);
end
end
return nil, table.concat(nsg) -- not found
end

2Since Lua 5.2, the stand-alone interpreter accepts the command-line option - E to prevent the use of those environment variables and force the

default.

134

Modules and Packages

The first step is to substitute the directory separator, assumed to be a dash in this example, for any dots.
(As we will see later, a dot has a special meaning in a module name.) Then the function loops over all
components of the path, wherein each component is a maximum expansion of non-semicolon characters.
For each component, the function substitutes the module name for the question marks to get the final file
name, and then it checks whether thereis such afile. If so, the function closesthe file and returnsits name.
Otherwise, it stores the failed name for a possible error message. (Note the use of a string buffer to avoid
creating useless long strings.) If no fileisfound, then it returns nil plus the final error message.

Searchers

In redlity, r equi r e is alittle more complex than we have described. The search for a Luafile and the
search for aC library are just two instances of amore general concept of searchers. A searcher issimply a
function that takes the module name and returns either aloader for that module or nil if it cannot find one.

The array package. sear cher s lists the searchers that r equi r e uses. When looking for a module,
r equi r e cals each searcher in the list passing the module name, until one of them finds aloader for the
module. If the list ends without a positive response, r equi r e raises an error.

The use of alist to drive the search for amodule allows great flexibility tor equi r e. For instance, if we
want to store modules compressed in zip files, we only need to provide a proper searcher function for that
and add it to thelist. In its default configuration, the searcher for Luafiles and the searcher for C libraries
that we described earlier are respectively the second and the third elementsin the list. Before them, there
isthe preload searcher.

The preload searcher allows the definition of an arbitrary function to load amodule. It uses atable, called
package. pr el oad, to map module namesto loader functions. When searching for amodule name, this
searcher ssimply looks for the given name in the table. If it finds a function there, it returns this function
as the module loader. Otherwise, it returns nil. This searcher provides a generic method to handle some
non-conventional situations. For instance, a C library statically linked to Lua can register its| uaopen_
function into the pr el oad table, sothat it will be called only when (and if) the user requires that module.
In this way, the program does not waste resources opening the module if it is not used.

The default content of package. sear cher s includes a fourth function that is relevant only for sub-
modules. We will discussit at the section called “ Submodules and Packages”.

The Basic Approach for Writing Modules in Lua

The simplest way to create amodule in Luaisreally simple: we create atable, put al functions we want
to export inside it, and return this table. Figure 17.2, “A simple module for complex numbers” illustrates
this approach.

135

Modules and Packages

Figure 17.2. A ssimple module for complex numbers

local M= {} -- the nodul e

-- creates a new conpl ex number

| ocal function new (r, i)
return {r=r, i=i}

end

M new = new -- add "new to the nodul e

-- constant i
Mi = new(0, 1)

function Madd (cl, c2)
return new(cl.r + c2.r, cl.i + c2.i)
end

function Msub (cl, c2)
return new(cl.r - c2.r, cl.i - c2.i)
end

function Mmul (cl, c2)
return new(cl.r*c2.r - cl.i*c2.i, cl.r*c2.i + cl.i*c2.r)
end

[ocal function inv (c)
local n=c.r*2 + c.i"2
return new(c.r/n, -c.i/n)

end

function Mdiv (cl, c2)
return Mmul (c1, inv(c2))
end

function Mtostring (c)
return string.format (" (%, %)", c.r, c.i)
end

return M
Note how we define newand i nv as private functions simply by declaring them local to the chunk.

Some people do not like the final return statement. One way of eliminating it isto assign the modul e table
directly into package. | oaded:

local M= {}
package.l oaded[...] = M
as before, without the return statenent

Remember that r equi r e calls the loader passing the module name as the first argument. So, the vararg
expression . . . inthetableindex resultsin that name. After this assignment, we do not need to return M
at the end of the module: if a module does not return avalue, r equi r e will return the current value of
package. | oaded[nodnane] (if itisnot nil). Anyway, | find it clearer to write the final return. If we
forget it, any trivial test with the module will detect the error.

136

Modules and Packages

Another approach to write amodule isto define al functions as locals and build the returning table at the
end, asin Figure 17.3, “Module with export list”.

Figure 17.3. Module with export list

| ocal function new (r, i) return {r=r, i=i} end

-- defines constant 'i
[ocal i = conplex. new(0, 1)

ot her functions follow the same pattern

return {

new = new,

[=i,

add = add,

sub = sub,

mul = mul,

div = div,

tostring = tostring,
}

What are the advantages of this approach? We do not need to prefix each name with M or something
similar; thereis an explicit export list; and we define and use exported and internal functionsin the same
way inside the module. What are the disadvantages? The export list is at the end of the module instead of
at the beginning, where it would be more useful as aquick documentation; and the export list is somewhat
redundant, as we must write each name twice. (This last disadvantage may become an advantage, as it
allows functions to have different names inside and outside the module, but | think programmers seldom
do this.)

Anyway, remember that no matter how we defineamodule, users should be ableto useit in astandard way:

| ocal cpx = require "conpl ex"
print(cpx.tostring(cpx.add(cpx. nem 3,4), cpx.i)))
--> (315)

Later, we will see how we can use some advanced L ua features, such as metatables and environments, for
writing modules. However, except for a nice technique to detect global variables created by mistake, | use
only the basic approach in my modules.

Submodules and Packages

L ua allows module names to be hierarchical, using a dot to separate name levels. For instance, a module
named nod. sub is a submodule of nod. A package is a complete tree of modules; it is the unit of dis-
tributionin Lua.

When we require a module called nod. sub, the function require will query first the ta
ble package. | oaded and then the table package. pr el oad, using the original module name
"nmod. sub" asthekey. Here, the dot isjust a character like any other in the module name.

However, when searching for afile that defines that submodule, r equi r e trandates the dot into another
character, usually the system's directory separator (e.g., a slash for POSIX or a backslash for Windows).
After thetrandation, r equi r e searchesfor the resulting name like any other name. For instance, assume
the slash as the directory separator and the following path:

137

Modules and Packages

./ ?.lua;/usr/local/lual/?. lua;/usr/local/lual/?/init.lua
Thecal require "a.b" will try to open the following files:

./alb.lua
/fusr/local/lual/alb.lua
/fusr/local/lua/al/b/init.lua

This behavior allows all modules of a package to live in asingle directory. For instance, if a package has
modules p, p. a, and p. b, their respectivefilescanbep/i nit. | ua, p/ a. |l ua, andp/ b. | ua, with
the directory p within some appropriate directory.

The directory separator used by Lua is configured at compile time and can be any string (remember,
Lua knows nothing about directories). For instance, systems without hierarchical directories can use an
underscore as the “directory separator”, sothatr equi re "a. b" will searchfor afilea_b. | ua.

Names in C cannot contain dots, so a C library for submodule a. b cannot export a function
| uaopen_a. b. Here r equi r e translates the dot into another character, an underscore. So, aC library
named a. b should nameitsinitialization function| uaopen_a_b.

Asan extrafacility, r equi r e hasone more searcher for loading C submodules. When it cannot find either
alLuafile or aC file for a submodule, this last searcher searches again the C path, but this time looking
for the package name. For example, if the program requires a submodule a. b. ¢ this searcher will look
for a. If it finds a C library for this name, then r equi r e looks into this library for an appropriate open
function, | uaopen_a_b_c inthisexample. Thisfacility allows adistribution to put several submodules
together, each with its own open function, into asingle C library.

From the point of view of Lua, submodules in the same package have no explicit relationship. Requiring
a module does not automatically load any of its submodules; similarly, requiring a submodule does not
automatically load its parent. Of course, the package implementer isfreeto create these links if she wants.
For instance, a particular module may start by explicitly requiring one or all of its submodules.

Exercises

Exercise 17.1: Rewritetheimplementation of double-ended queues (Figure 14.2, “ A double-ended queue”)
as aproper module.

Exercise 17.2: Rewrite the implementation of the geometric-region system (the section called “ A Taste of
Functional Programming”) as a proper module.

Exercise 17.3: What happens in the search for alibrary if the path has some fixed component (that is, a
component without a question mark)? Can this behavior be useful ?

Exercise 17.4: Write a searcher that searches for Luafiles and C libraries at the same time. For instance,
the path used for this searcher could be something like this:

./ ?. lua;./?.s0;/usr/lib/luab.2/?.so;/usr/share/luab. 2/?.1ua

(Hint: use package. sear chpat h to find a proper file and then try to load it, first with | oadfi | e
and next with package. | oadl i b.)

138

Part Ill. Lua-isms

Table of Contents

18. Iterators and the GENENIC fOriiii e 142
[tErators @NA CIOSUMESuiiiieeii ettt e e e et e e et e e et e e et eeeaeeeanaes 142

The Semantics of the GeNneriC fOr ..o 143

S (S oSSR = £ 10 PP 145
Traversing TablesS IN OGNiiiiiiii e 146

ROl L1 = (] £ T PR RPTPTN 147

19. Interlude: Markov Chain AlQOrthm ... e 149
20. Metatables and MetamethOdscc.uiiiiii e 152
Arithmetic Metamethods e 152
Relational Metamethodsoieeiii e 155
Library-Defined Metamethodscoouueuiiiiiee e 155
Table-AcCeSS MEtamEthOOSoveeiiiie e 156

The i ndex metamethodooiiiiiiii e 156

The __newi ndeX metamethodooviiiiiiiiii e 157

Tables with default VaIUBSiiiii e 158

Tracking taDl@ BCCESSESi it 159

ReBA-0NIY TADIES ...t 160

21. Object-Oriented Programimingoceeeue ettt ettt e et e e 162
L0 = PSP 163

T 7ol PP 165
MUILIPIE TNNEITEANCEeeee et eeaes 166
PIVBCY e et ane 168

The Single-Method APProachooiiiiiiii e 170

Dual REPIESENTALIONevveieieeii ettt ettt ettt e e et et et e e e een e eenans 170

22. The ENVIFONMENTeeiiiii ittt e et e et e e e e et e e et e e e e e et e e eaneeeenans 173
Global Variables with DynamiC NaMESoooiiiiiiiiiiiieec e 173
Global-Variable DeCIarationsccuuiieiiieie e e e ean s 174
NON-GIObal ENVIFONMENTSeiiiiieii e et e e et e e e e e eaa e 176
USING BNV e 177
Environments and MOAUIESoiiiiiii e a e 180
CENV AN T 08 oo 181

23 GAIDAGE ...t et 183
WEBK TADIES ... et 183
MEMOKIZE FUNCHIONSttt e e e e e et e e e e ean s 184
OBJECE AIITDULES ...ttt ettt 185
Revisiting Tables with Default ValUEScoouuuiiiiiiiiiiciiii e 186
EPhemeron TahlES ... 187

T 0= T4 £ PP 188

The Garbage COlIECLONcouuiieiiii ettt 190
Controlling the Pace of COIECHIONiiiiiiieei e 191

O o o111 === PP 194
COrOULING BASICSuietieet ettt ettt ettt e e et e et e e et e e et e e e e e et e e ean e eennas 194

WHO 1S ThE BOSS? ...ttt et e e et e et e e e e et e e et e eean s 196
COrOULINES 8S TTEIAEONSniet et e e et e e e e e et e e et e e ean e eeees 198
Event-Driven Programimingoceeeueeeeeie et ee et e et e e et eeeebi e e eate e e e eene e eees 200

25, REFIECHION ...ttt et et 205
INErOSPECHIVE FaCHTTIES ...t 205
Accessing 10Cal VariableSccovuuiiii e 207

Accessing Non-1ocal variablescoouuiiiiii 208

ACCESSING OthEr COMOULINEScevtieiiiii ettt e e e e e 209

[[070] PP 210

140

Luaisms

[0] 11 1= PP
S 1010 0701 1o [Pt
26. Interlude: Multithreading With COrOULINESoiiiiiiiiii e

141

Chapter 18. Iterators and the Generic

for

We have been using the generic for for several tasks through the book, such as reading the lines of afile
or traversing the matches of a pattern over asubject. However, we still do not know how to create our own
iterators. In this chapter, we will fill this gap. Starting with simple iterators, we will learn how to use al
the power of the generic for to write al kinds of iterators.

Ilterators and Closures

An iterator is any construction that allows us to iterate over the elements of a collection. In Lua, we
typically represent iterators by functions: each timewe call thefunction, it returnsthe “ next” element from
the collection. A typical exampleisi 0. r ead: eachtimewe call it, it returns the next line of the standard
input file, returning nil when there are no more lines to be read.

Any iterator needs to keep some state between successive calls, so that it knows where it is and how
to proceed from there. For i 0. r ead, C keeps that state in its stream structure. For our own iterators,
closures provide an excellent mechanism for keeping state. Remember that a closure is a function that
accesses one or more local variables from its enclosing environment. These variables keep their values
across successive calls to the closure, allowing the closure to remember where it is along a traversal. Of
course, to create anew closurewemust also createitsnon-local variables. Therefore, aclosure construction
typically involves two functions: the closureitself and afactory, the function that creates the closure plus
its enclosing variables.

As an example, let us write a simple iterator for alist. Unlike i pai r s, thisiterator does not return the
index of each element, only itsvalue:

function values (t)

local i =0

return function () i =i + 1; returnt[i] end
end

Inthisexample, val ues isthefactory. Eachtimewe call thisfactory, it createsanew closure (the iterator
itself). This closure keeps its state in its external variablest and i , which are aso created by val ues.
Each time we call the iterator, it returns a next value from the list t . After the last element the iterator
returns nil, which signals the end of the iteration.

We can use thisiterator in awhile loop:

t = {10, 20, 30}

iter = values(t) -- creates the iterator
while true do
local element = iter() -- calls the iterator
if element == nil then break end
print (el ement)
end

However, it is easier to use the generic for. After al, it was designed for this kind of iteration:

t = {10, 20, 30}
for element in values(t) do

142

Iterators and the Generic for

print (el ement)
end

The generic for does all the bookkeeping for an iteration loop: it keeps the iterator function internally, so
that we do not need the i t er variable; it calls the iterator for each new iteration; and it stops the loop
when theiterator returnsnil. (In the next section, we will seethat the generic for does even morethan that.)

As amore advanced example, Figure 18.1, “Iterator to traverse all words from the standard input” shows
an iterator to traverse al the words from the standard input.

Figure 18.1. Iterator to traverse all wordsfrom the standard input

function allwords ()

local line = io.read() -- current line
local pos =1 -- current position in the line
return function () -- iterator function
while Iine do -- repeat while there are lines
local w, e = string.match(line, "(%w)()", pos)
if wthen -- found a word?
pos = e -- next position is after this word
return w -- return the word
el se
line = io.read() -- word not found; try next line
pos =1 -- restart fromfirst position
end
end
return nil -- no nore lines: end of traversal
end
end

To do this traversal, we keep two values: the contents of the current line (variable| i ne), and where we
areonthisline (variable pos). With this data, we can always generate the next word. The main part of the
iterator functionisthecall tost ri ng. mat ch, which searchesfor aword in the current line starting at the
current position. It describes a“word” using the pattern '%w+', which matches one or more al phanumeric
characters. If it finds aword, it captures and returns the word and the position of the first character after it
(with an empty capture). The function then updates the current position and returns this word. Otherwise,
the iterator reads a new line and repeats the search. If there are no more lines, it returns nil to signal the
end of the iteration.

Despite its complexity, the use of al | wor ds is straightforward:

for word in allwords() do
print (word)
end

This is a common situation with iterators: they may not be easy to write, but they are easy to use. This
is not a big problem; more often than not, end users programming in Lua do not define iterators, but just
use those provided by the application.

The Semantics of the Generic for

One drawback of those previous iterators is that we need to create a new closure to initialize each new
loop. For many situations, thisis not areal problem. For instance, inthe al | wor ds iterator, the cost of
creating one single closure is negligible compared to the cost of reading a whole file. However, in some

143

Iterators and the Generic for

situations this overhead can be inconvenient. In such cases, we can use the generic for itself to keep the
iteration state. In this section, we will see the facilities that the generic for offersto hold state.

We saw that the generic for keepstheiterator function internally, during the loop. Actually, it keepsthree
values: the iterator function, an invariant state, and a control variable. Let us see the details now.

The syntax for the generic for isasfollows:

for var-list in exp-list do
body
end

Here,var - | i st isalist of oneor more variable names, separated by commas, andexp- | i st isalist of
one or more expressions, al so separated by commas. Usually the expression list has only one element, acall
to an iterator factory. In the next code, for instance, the list of variablesisk, v and thelist of expressions
hasthesingle element pai rs(t):

for k, vin pairs(t) do print(k, v) end

We call the first (or only) variable in the list the control variable. Its value is never nil during the loop,
because when it becomes nil the loop ends.

The first thing the for doesis to evaluate the expressions after the in. These expressions should result in
thethree values kept by thefor: theiterator function, theinvariant state, and theinitial value for the control
variable. Like in a multiple assignment, only the last (or the only) element of the list can result in more
than one value; and the number of values is adjusted to three, extra values being discarded or nils added
as needed. For instance, when we use simple iterators, the factory returns only the iterator function, so the
invariant state and the control variable get nil.

After thisinitialization step, the for callsthe iterator function with two arguments: the invariant state and
the control variable. From the standpoint of the for construct, the invariant state has no meaning at al.
Thefor only passesthe state value from the initialization step to al callsto the iterator function. Then the
for assigns the values returned by the iterator function to the variables declared by its variable list. If the
first returned value (the one assigned to the control variable) is nil, the loop terminates. Otherwise, the for
executes its body and calls the iteration function again, repeating the process.

More precisely, a construction like

for var_1, ..., var_n in explist do block end
is equivalent to the following code:

do

local f, _s, _var = explist
while true do

local var_1, ... , var_n = f(_s, _var)
_var = var_1
if _var == nil then break end
bl ock
end

end

So, if our iterator function isf, the invariant state is s, and the initial value for the control variable is ag,
the control variable will loop over the values a; = (s, ag), ap = f(s, a1), and so on, until g isnil. If the for
has other variables, they smply get the extra values returned by each call to f.

144

Iterators and the Generic for

Stateless lterators

Asthe nameimplies, a statelessiterator is an iterator that does not keep any state by itself. Therefore, we
can use the same stateless iterator in multiple loops, avoiding the cost of creating new closures.

Aswejust saw, thefor loop callsitsiterator function with two arguments: theinvariant state and the control
variable. A stateless iterator generates the next element for the iteration using only these two values. A
typical example of thiskind of iterator isi pai r s, which iterates over al elements of a sequence:

a = {"one", "two", "three"}

for i, vin ipairs(a) do
print(i, v)

end

The whole state of the iteration comprises the table being traversed (the invariant state, which does not
change during the loop), plus the current index (the control variable). Bothi pai r s (the factory) and the
iterator are quite smple; we could write them in Lua as follows:

local function iter (t, i)
i =i +1
local v = t[i]
if v then
returni, v
end
end

function ipairs (t)
returniter, t, O
end

When Luacalsi pai rs(t) inafor loop, it getsthreevalues. thefunctioni t er astheiterator, thetable
t astheinvariant state, and zero as the initial value for the control variable. Then, Luacallsi ter (t,
0) ,whichresultsin 1, t [1] (unlesst [1] isdready nil). In the second iteration, Luacallsi ter (t,
1) ,whichresultsin 2, t [2] , and so on, until the first nil element.

Thefunction pai r s, which iterates over all elements of atable, issimilar, except that itsiterator function
isnext , whichisaprimitive function in Lua

function pairs (t)
return next, t, nil
end

The call next (t, k), wherek isakey of thetablet, returns a next key in the table, in an arbitrary
order, plus the value associated with this key as a second return value. Thecall next (t, nil) returns
afirst pair. When there are no more pairs, next returnsnil.

We might use next directly, without calling pai r s:
for k, vin next, t do
| oop body

end

Remember that the for loop adjustsits expression list to three results, so that it getsnext , t , and nil; this
isexactly what it getswhenit calspai rs(t).

145

Iterators and the Generic for

Another interesting example of a stateless iterator is one to traverse a linked list. (Linked lists are not
frequent in Lua, but sometimes we need them.) A first thought could be to use only the current node as
the control variable, so that the iterator function could return its next node:

| ocal function getnext (node)
return node. next
end

function traverse (list)
return getnext, nil, list
end

However, thisimplementation would skip the first node. Instead, we can use the following code:

| ocal function getnext (list, node)
if not node then
return |ist
el se
return node. next
end
end

function traverse (list)
return getnext, list, nil
end

The trick here is to use the first node as the invariant state (the second value returned by t r aver se),
besides the current node as the control variable. The first time the iterator function get next is called,
node will be nil, and so the function will return | i st asthe first node. In subsequent calls, node will
not be nil, and so the iterator will return node. next , as expected.

Traversing Tables in Order

A common confusion happens when programmers try to order the entries of atable. In atable, the entries
form a set, and have no order whatsoever. If we want to order them, we have to copy the keysto an array
and then sort the array.

We saw an example of this technique in the “Most Frequent Words® program, in Chapter 11, Interlude:
Most Frequent Words. Let us see here another example. Suppose that we read a source file and build a
table that gives, for each function name, the line where this function is defined; something like this:

lines = {
["luaH set"] = 10,
["luaH get"] = 24,
["luaH present"] = 48,

}

Now we want to print these function names in alphabetical order. If we traverse this table with pai r s,
the names appear in an arbitrary order. We cannot sort them directly, because these names are keys of the
table. However, when we put them into an array, then we can sort them. First, we must create an array
with these names, then sort it, and finally print the result:

a = {}
for nin pairs(lines) do a[#a + 1] = n end
tabl e. sort (a)

146

Iterators and the Generic for

for _, ninipairs(a) do print(n) end

Some people get confused here. After all, for Lua, arrays also have no order (they are tables, after all).
But we know how to count! So, we impose the order, when we access the array with ordered indices. That
is why we should always traverse arrays with i pai r s, rather than pai r s. The first function imposes
the key order 1, 2, etc., whereas the latter uses the natural arbitrary order of the table (which may not be
what we need, even though usually it is).

Now we are ready to write an iterator that traverses atable following the order of its keys:

function pairsByKeys (t, f)
local a = {}

for nin pairs(t) do -- create a list with all keys
a[#a + 1] =n

end

table.sort(a, f) -- sort the list

local i =0 -- iterator variable

return function () -- iterator function
i =i +1
return a[i], t[a[i]] -- return key, value

end

end

Thefactory function pai r sByKeys first collectsthe keysinto an array, then it sortsthe array, and finally
it returns the iterator function. At each step, the iterator returns the next key and value from the origina
table, following the order inthe array a. An optiona parameter f allows the specification of an alternative
order.

With this function, it is easy to solve our initial problem of traversing atable in order:

for nane, line in pairsByKeys(lines) do
print(name, line)
end

Asusual, al the complexity is hidden inside the iterator.

True lterators

The name“iterator” isalittle misleading, because our iterators do not iterate: what iteratesisthe for loop.
Iterators only provide the successive valuesfor theiteration. Maybe a better name would be “ generator” —
which generates elements for the iteration— but “iterator” is already well established in other languages,
such as Java.

However, there is another way to build iterators wherein iterators actually do the iteration. When we use
such iterators, we do not write aloop; instead, we simply call the iterator with an argument that describes
what the iterator must do at each iteration. More specifically, the iterator receives as argument a function
that it callsinsideits loop.

Asaconcrete example, let us rewrite once morethe al | wor ds iterator using this style:

function allwords (f)
for line in io.lines() do
for word in string.gmatch(line, "%w") do
f (wor d) -- call the function
end

147

Iterators and the Generic for

end
end

To use thisiterator, we must supply the loop body as a function. If we want only to print each word, we
simply useprint:

al words(print)

Often, we use an anonymous function as the body. For instance, the next code fragment counts how many
times the word “hello” appearsin the input file:

Il ocal count = 0O
al words(function (w)
if w=="hello" then count = count + 1 end
end)
print(count)

The same task, written with the previous iterator style, is not very different:

|l ocal count =0
for win allwords() do
if w=="hello" then count = count + 1 end
end
print(count)

True iterators were popular in older versions of Lua, when the language did not have the for statement.
How do they compare with generator-style iterators? Both styles have approximately the same overhead:
onefunction call per iteration. On the one hand, it iseasier to write theiterator with true iterators (although
we can recover this easinesswith coroutines, aswewill seein the section called “ Coroutines as Iterators’).
On the other hand, the generator style is more flexible. Firgt, it allows two or more paralel iterations.
(For instance, consider the problem of iterating over two files comparing them word by word.) Second,
it allows the use of break and return inside the iterator body. With atrue iterator, areturn returns from
the anonymous function, not from the function doing the iteration. For these reasons, overall | usually
prefer generators.

Exercises

Exercise 18.1: Write an iterator f r ont o such that the next loop becomes equivalent to a numeric for:

for i in fromo(n, n) do
body
end

Can you implement it as a stateless iterator?

Exercise 18.2: Add a step parameter to the iterator from the previous exercise. Can you still implement
it as astatelessiterator?

Exercise 18.3: Writeaniterator uni quewor ds that returnsall wordsfrom agiven filewithout repetitions.
(Hint: start with the al | wor ds code in Figure 18.1, “lterator to traverse al words from the standard
input”; use atable to keep al words aready reported.)

Exercise 18.4: Write an iterator that returns all non-empty substrings of a given string.

Exercise 18.5: Write atrue iterator that traverses all subsets of a given set. (Instead of creating anew table
for each subset, it can use the same table for al its results, only changing its contents between iterations.)

148

Chapter 19. Interlude: Markov Chain
Algorithm

Our next complete program is an implementation of the Markov chain algorithm, described by Kernighan
& Pikein their book The Practice of Programming (Addison-Wesley, 1999).

The program generates pseudo-random text based on what words can follow a sequence of n previous
words in a base text. For thisimplementation, we will assume that n istwo.

The first part of the program reads the base text and builds a table that, for each prefix of two words,
givesalist of the words that follow that prefix in the text. After building the table, the program usesit to
generate random text, wherein each word follows two previous words with the same probability asin the
base text. As aresult, we have text that is very, but not quite, random. For instance, when applied to this
book, the output of the program has pieces like this: “ Constructors can also traver se a table constructor,
then the parentheses in the following line does the whole file in a field n to store the contents of each
function, but to show its only argument. If you want to find the maximum element in an array can return
both the maximum value and continues showing the prompt and running the code. The following words
are reserved and cannot be used to convert between degrees and radians.”

To use a two-word prefix as a key in tables, we will represent it by the two words concatenated with a
space in between:

function prefix (wl, w2)
returnwl .. " " .. W2
end

We use the string NONORD (a newline) to initialize the prefix words and to mark the end of the text. For
instance, for thetext "t he more we try the nore we do" thetable of following words would
belike this:

{ ["\n\n"] = {"the"},
["\n the"] = {"nore"},

["the nore"] = {"we", "we"},
["nore we"] = {"try", "do"},
[“we try"] = {"the"},

["try the"] = {"nore"},
["we do*] = {"\n"},

}

The program keeps its table in the variable st at et ab. To insert a new word in alist in this table, we
use the following function:

function insert (prefix, value)
local list = statetab[prefix]
if list == nil then
statetab[prefix] = {val ue}
el se
list[#ist + 1] = val ue
end
end

It first checks whether that prefix already has alist; if not, it creates anew one with the new value. Other-
wise, it inserts the new value at the end of the existing list.

149

Interlude: Markov Chain Algorithm

To build the st at et ab table, we keep two variables, wl and w2, with the last two words read. We
read the words using the iterator al | wor ds, from the section called “Iterators and Closures’, but we
adapted the definition of “word” to include optional punctuation marks, such as commas and periods (see
Figure 19.1, “Auxiliary definitions for the Markov program”). For each new word read, we add it to the
list associated with wl—-w2 and then update wl and w2.

After building the table, the program starts to generate a text with MAXGEN words. First, it re-initializes
variableswl and w2. Then, for each prefix, it chooses a next word randomly from the list of valid next

words, prints this word, and updates wl and w2. Figure 19.1, “Auxiliary definitions for the Markov pro-
gram” and Figure 19.2, “The Markov program” show the complete program.

Figure 19.1. Auxiliary definitionsfor the Markov program

function allwords ()

local line = io.read() -- current line
local pos =1 -- current position in the line
return function () -- iterator function
while Iine do -- repeat while there are lines
local w, e = string.match(line, "(%w[,;.:]1?)()", pos)
if wthen -- found a word?
pos = e -- update next position
return w -- return the word
el se
line = io.read() -- word not found; try next |ine
pos =1 -- restart fromfirst position
end
end
return nil -- no nore lines: end of traversa
end
end

function prefix (wl, w2)
return wl .. " " .. w2
end

| ocal statetab = {}

function insert (prefix, value)
| ocal list = statetab[prefix]
if list == nil then
statetab[prefix] = {val ue}
el se
list[#ist + 1] = val ue
end
end

150

Interlude: Markov Chain Algorithm

Figure 19.2. The Markov program

| ocal MAXGEN = 200
| ocal NOMORD = "\ n"
-- build table

local wl, w2 = NOAORD, NOWORD

for nextword in allwords() do
i nsert(prefix(wl, w2), nextword)
wl = w2; w2 = nextword;

end

i nsert(prefix(wl, w2), NOADRD)

-- generate text
wl = NOAMORD;, w2 = NOWORD -- reinitialize
for i = 1, MAXGEN do
local list = statetab[prefix(wl, w2)]
-- choose a randomitemfromli st
local r = math. random(#li st)
| ocal nextword = list[r]
if nextword == NOWORD then return end
io.wite(nextword, " ")
wl = w2; w2 = nextword
end

Exercises

Exercise 19.1: Generalize the Markov-chain algorithm so that it can use any size for the sequence of
previous words used in the choice of the next word.

151

Chapter 20. Metatables and
Metamethods

Usually, each value in Lua has a quite predictable set of operations. We can add numbers, we can con-
catenate strings, we can insert key—value pairs into tables, and so on. However, we cannot add tables, we
cannot compare functions, and we cannot call a string. Unless we use metatabl es.

Metatables allow us to change the behavior of a value when confronted with an unknown operation. For
instance, using metatables, we can define how Lua computes the expressiona + b, wherea and b are
tables. Whenever Luatriesto add two tables, it checkswhether either of them has ametatable and whether
this metatable hasan __add field. If Luafindsthisfield, it calls the corresponding value —the so-called
metamethod, which should be a function— to compute the sum.

We can think about metatables as a restricted kind of classes, in object-oriented terminology. Like class-
es, metatables define the behavior of its instances. However, metatables are more restricted than classes,
because they can only give behavior to a predefined set of operations; also, metatables do not have in-
heritance. Nevertheless, we will see in Chapter 21, Object-Oriented Programming how to build a quite
complete class system on top of metatables.

Each value in Lua can have a metatable. Tables and userdata have individual metatables; values of other
types share one single metatable for all values of that type. Lua aways creates new tables without metat-
ables:

t ={}
print(getnetatable(t)) -->nil

We can useset net at abl e to set or change the metatable of atable:

tl = {}
set et at abl e(t, t1)
print(getnetatable(t) == t1) --> true

From Lua, we can set the metatables only of tabl es; to manipul ate the metatabl es of values of other typeswe
must use C code or the debug library. (The main reason for thisrestriction isto curb excessive use of type-
wide metatables. Experience with older versions of Lua has shown that those global settings frequently
lead to non-reusable code.) The string library sets a metatable for strings; all other types by default have

no metatable:
print(getnetatable("hi")) --> table: 0x80772e0
print (get net at abl e(" xuxu")) --> table: 0x80772e0
print (get net at abl e(10)) --> nil
print (getnetatable(print)) --> nil

Any table can be the metatable of any value; a group of related tables can share a common metatable,
which describes their common behavior; a table can be its own metatable, so that it describes its own
individual behavior. Any configuration is valid.

Arithmetic Metamethods

In this section, we will introduce a running example to explain the basics of metatables. Suppose we have
amodule that uses tables to represent sets, with functions to compute set union, intersection, and the like,
as shown in Figure 20.1, “A simple module for sets’.

152

M etatables and Metamethods

Figure 20.1. A simple modulefor sets
| ocal Set = {}
-- create a new set with the values of a given |ist

function Set.new (I)
| ocal set = {}

for _, vinipairs(l) do set[v] = true end
return set
end

function Set.union (a, b)
local res = Set.new}
for k in pairs(a) do res[K]
for k in pairs(b) do res[K]
return res

end

true end
true end

function Set.intersection (a, b)
local res = Set.new}
for k in pairs(a) do
res[k] = b[K]
end
return res
end

-- presents a set as a string
function Set.tostring (set)
local | = {} -- list to put all elenents fromthe set
for e in pairs(set) do
[[#] + 1] = tostring(e)
end
return "{" .. table.concat(l, ", ") .. "}"
end

return Set
Now, we want to use the addition operator to compute the union of two sets. For that, we will arrange for
all tables representing sets to share a metatable. This metatable will define how they react to the addition
operator. Our first step isto create aregular table, which we will use as the metatable for sets:

local m = {} -- nmetatable for sets

The next step isto modify Set . new, which creates sets. The new version has only one extraline, which
setsnt as the metatable for the tables that it creates:

function Set.new (1) -- 2nd version
| ocal set = {}
set net at abl e(set, m)

for , vinipairs(l) do set[v] = true end
return set
end

After that, every set we create with Set . newwill have that same table as its metatable:

153

M etatables and Metamethods

sl = Set.new{10, 20, 30, 50}

s2 = Set.new{30, 1}

print (get met at abl e(sl)) --> table: 0x00672B60
print (get met at abl e(s2)) --> table: 0x00672B60

Finally, we add to the metatablethe metamethod _add, afield that describes how to perform the addition:
nm._ add = Set.union

After that, whenever Luatries to add two sets, it will call Set . uni on, with the two operands as argu-
ments.

With the metamethod in place, we can use the addition operator to do set unions:

s3 = sl + s2
print(Set.tostring(s3)) --> {1, 10, 20, 30, 50}

Similarly, we may set the multiplication operator to perform set intersection;

n.__mul = Set.intersection

print(Set.tostring((sl + s2)*s1)) --> {10, 20, 30, 50}

For each arithmetic operator there is a corresponding metamethod name. Besides addition and multiplica
tion, there are metamethods for subtraction (__sub), float division (__di v), floor division (__i di v),
negation (__unm), modulo (__nod), and exponentiation (__pow). Similarly, there are metamethods for
all bitwise operations: bitwises AND (__band), OR(__bor), exclusve OR (__bxor),NOT (__bnot),
left shift (__shl), andright shift (__shr). Wemay define also abehavior for the concatenation operator,
withthefield __concat .

When we add two sets, there is ho question about what metatable to use. However, we may write an
expression that mixes two values with different metatables, for instance like this:

S
S

Set. new{ 1, 2, 3}
s + 8

When looking for a metamethod, Lua performs the following steps: if the first value has a metatable with
the required metamethod, L ua uses this metamethod, independently of the second value; otherwise, if the
second value has a metatable with the required metamethod, Lua uses it; otherwise, Lua raises an error.
Therefore, the last example will call Set . uni on, aswill theexpressions10 + s and"hell 0" + s
(because both numbers and strings do not have a metamethod __add).

Lua does not care about these mixed types, but our implementation does. If werunthes = s + 8
example, we will get an error inside the function Set . uni on:

bad argunent #1 to 'pairs' (table expected, got nunber)

If wewant morelucid error messages, we must check the type of the operands explicitly before attempting
to perform the operation, for instance with code like this:

function Set.union (a, b)

if getnetatable(a) ~= m or getnetatable(b) ~= nt then
error("attenpt to 'add' a set with a non-set value", 2)

end

as before

Remember that the second argument to er r or (2, in this example) sets the source location in the error
message to the code that called the operation.

154

M etatables and Metamethods

Relational Metamethods

Metatables also allow us to give meaning to the relational operators, through the metamethods _ eq
(equal to), __ It (lessthan), and __| e (less than or equal to). There are no separate metamethods for
the other three relational operators: Luatrandatesa ~= btonot (a == b),a > btob < a,
anda >= btob <= a.

In older versions, Lua translated all order operators to a single one, by trandatinga <= btonot (b
< a) . However, thistrandation isincorrect when we have apartial order, that is, when not all elements
in our type are properly ordered. For instance, most machines do not have atotal order for floating-point
numbers, because of the value Not a Number (NaN). According to the IEEE 754 standard, NaN represents
undefined values, such as the result of 0/0. The standard specifies that any comparison that involves NaN
should result in false. This means that NaN <= x isawaysfase but x < NaNisalso fase. It also
means that the trandation froma <= btonot (b < a) isnotvaidinthiscase.

In our example with sets, we have a similar problem. An obvious (and useful) meaning for <= in setsis
set containment: a <= b meansthat a is a subset of b. With this meaning, it ispossiblethata <= b
andb < a areboth false. Therefore, we must implement both | e (less or equal, the subset relation)
and |t (lessthan, the proper subset relation):

nt. le = function (a, b) -- subset
for k in pairs(a) do
if not b[k] then return false end

end
return true

end

nt. It = function (a, b) -- proper subset
return a <= b and not (b <= a)

end

Finally, we can define set equality through set containment:

nt. eq = function (a, b)
return a <= b and b <= a
end

After these definitions, we are ready to compare sets:

sl = Set.newf2, 4}

s2 = Set.new4, 10, 2}

print(sl <= s2) --> true
print(sl < s2) --> true
print(sl >= s1) --> true
print(sl > sl) --> fal se
print(sl == s2 * s1) --> true

The equality comparison has some restrictions. If two objects have different basic types, the equality
operation resultsin false, without even calling any metamethod. So, a set will always be different from a
number, no matter what its metamethod says.

Library-Defined Metamethods

So far, all the metamethods we have seen arefor the Luacore. It isthe virtual machine who detects that the
valuesinvolved in an operation have metatables with metamethods for that particular operation. However,

155

M etatables and Metamethods

because metatables are regular tables, anyone can use them. So, it is a common practice for libraries to
define and use their own fields in metatables.

Thefunctiont ost ri ng provides atypical example. Aswe saw earlier,t oSt ri ng representstablesin
arather smple format:

print({}) --> table: 0x8062ac0

Thefunctionpri nt awayscallst ost ri ng toformat its output. However, when formatting any value,
t ostri ng first checks whether the value hasa __t ost ri ng metamethod. In thiscase, t ostri ng
calls the metamethod to do its job, passing the object as an argument. Whatever this metamethod returns
istheresult of t ostri ng.

In our example with sets, we have already defined a function to present a set asa string. So, we need only
tosetthe_ t ostri ng field in the metatable:

n. tostring = Set.tostring

After that, whenever we call pri nt with a set as its argument, pri nt callstostri ng that cals
Set.tostring:

sl = Set.new10, 4, 5}
print(sl) --> {4, 5, 10}

Thefunctionsset net at abl e and get net at abl e also use ametafield, in this case to protect metat-
ables. Suppose we want to protect our sets, so that users can neither see nor change their metatables. If we
seta__net at abl e field in the metatable, get et at abl e will return the value of thisfield, whereas
set net at abl e will raise an error:

nm._ netatable = "not your business”

sl = Set.new{}
print (get et at abl e(sl)) --> not your business
set net at abl e(s1, {})

stdin:1: cannot change protected netatable

Since Lua 5.2, pai r s aso have a metamethod, so that we can modify the way a table is traversed and
add atraversal behavior to non-table objects. When an object hasa ___pai r s metamethod, pai r s will
cal it to do al itswork.

Table-Access Metamethods

The metamethods for arithmetic, bitwise, and relational operators al define behavior for otherwise erro-
neous situations; they do not change the normal behavior of the language. Lua also offersaway to change
the behavior of tables for two normal situations, the access and modification of absent fieldsin atable.

The i ndex metamethod

We saw earlier that, when we access an absent field in atable, the result is nil. Thisistrue, but it is not
the whole truth. Actually, such accesses trigger the interpreter to look for an __i ndex metamethod: if
there is no such method, as usually happens, then the access results in nil; otherwise, the metamethod will
provide the result.

The archetypal example hereisinheritance. Suppose we want to create several tables describing windows.
Each table must describe several window parameters, such as position, size, color scheme, and the like.
All these parameters have default values and so we want to build window objects giving only the non-

156

M etatables and Metamethods

default parameters. A first alternative is to provide a constructor that fills in the absent fields. A second
alternative isto arrange for the new windows to inherit any absent field from a prototype window. First,
we declare the prototype:

-- create the prototype with default val ues
prototype = {x =0, y =0, width = 100, hei ght = 100}

Then, we define a constructor function, which creates new windows sharing a metatable:

local m = {} -- create a netatable
-- declare the constructor function
function new (0)

set net at abl e(o, m)

return o
end

Now, we definethe i ndex metamethod:

nt. index = function (_, key)
return prototype[key]
end

After this code, we create a new window and query it for an absent field:

w = new{ x=10, y=20}
print(w. wi dth) --> 100

Lua detects that w does not have the requested field, but has a metatable with an __i ndex field. So,
Luacallsthis i ndex metamethod, with arguments w (the table) and " wi dt h" (the absent key). The
metamethod then indexes the prototype with the given key and returns the resuilt.

Theuseof the i ndex metamethod for inheritance is so common that L ua provides a shortcut. Despite
being called amethod, the __i ndex metamethod does not need to be afunction: it can be atable, instead.
When it isafunction, Luacallsit with the table and the absent key as its arguments, as we have just seen.
Whenitisatable, Luaredoesthe accessin thistable. Therefore, in our previous example, we could declare
__index simply likethis:

nt. index = prototype

Now, when Lua looks for the metatable's __i ndex field, it finds the value of pr ot ot ype, which
is a table. Consequently, Lua repeats the access in this table, that is, it executes the equivalent of
pr ot ot ype["w dt h"] . Thisaccess then gives the desired result.

The use of atableasan i ndex metamethod provides a fast and simple way of implementing single
inheritance. A function, although more expensive, provides more flexibility: we can implement multiple
inheritance, caching, and several other variations. Wewill discusstheseformsof inheritancein Chapter 21,
Object-Oriented Programming, when we will cover object-oriented programming.

When wewant to accessatablewithout invokingits i ndex metamethod, weusethefunctionr anget .
Thecal rawget (t, i) doesaraw accessto tablet, that is, a primitive access without considering
metatables. Doing a raw access will not speed up our code (the overhead of a function call kills any gain
we could have), but sometimes we need it, as we will see later.

The __new ndex metamethod

The___newi ndex metamethod does for table updateswhat i ndex does for table accesses. When we
assign avalueto an absent index in atable, the interpreter looksfor a___newi ndex metamethod: if there

157

M etatables and Metamethods

is one, the interpreter cals it instead of making the assignment. Like i ndex, if the metamethod is a
table, the interpreter does the assignment in this table, instead of in the original one. Moreover, thereisa
raw function that allows us to bypass the metamethod: thecall r awset (t, k, v) doesthe equivalent
tot[k] = v without invoking any metamethod.

Thecombineduseofthe__i ndex and___newi ndex metamethodsallowsseveral powerful constructsin
Lua, such asread-only tables, tableswith default values, and inheritance for object-oriented programming.
In this chapter, we will see some of these uses. Object-oriented programming has its own chapter, later.

Tables with default values

Thedefault value of any fieldin aregular tableisnil. It iseasy to change this default value with metatabl es:

function setDefault (t, d)
local mt = {_ index = function () return d end}
setnetatabl e(t, m)

end

tab = {x=10, y=20}

print(tab.x, tab.z) --> 10 nil
set Defaul t (tab, 0)
print(tab.x, tab.z) --> 10 0

After the call to set Def aul t, any access to an absent field int ab callsits __i ndex metamethod,
which returns zero (the value of d for this metamethod).

Thefunction set Def aul t createsanew closure plus anew metatable for each table that needs a default
value. This can be expensive if we have many tables that need default values. However, the metatable has
the default value d wired into its metamethod, so we cannot use asingle metatable for tableswith different
default values. To allow the use of a single metatable for all tables, we can store the default value of each
table in the table itself, using an exclusive field. If we are not worried about name clashes, we can use a

key like" " for our exclusive field:
local mt = {_ index = function (t) returnt.___ end}
function setDefault (t, d)
t.___ =d
setnetat abl e(t, m)
end

Note that now we create the metatable mt and its corresponding metamethod only once, outside Set De-
faul t.

If we are worried about name clashes, it is easy to ensure the uniqueness of the special key. All we need
isanew exclusive table to use as the key:

| ocal key = {} -- uni que key
local mt = {_ index = function (t) return t[key] end}
function setDefault (t, d)

t[key] =d
set net at abl e(t, m)
end

An aternative approach for associating each table with itsdefault valueisatechnique | call dual represen-
tation, which uses a separate table where the indices are the tables and the values are their default values.
However, for the correct implementation of this approach, we need a special breed of table called weak
tables, and so we will not useit here; we will return to the subject in Chapter 23, Garbage.

158

M etatables and Metamethods

Another alternativeisto memorize metatablesin order to reuse the same metatabl e for tables with the same
default. However, that needs weak tablestoo, so that again we will haveto wait until Chapter 23, Garbage.

Tracking table accesses

Suppose we want to track every single access to a certain table. Both __i ndex and __newi ndex are
relevant only when the index does not exist in the table. So, the only way to catch all accesses to a table
is to keep it empty. If we want to monitor all accesses to a table, we should create a proxy for the rea
table. This proxy is an empty table, with proper metamethods that track all accesses and redirect them to
the original table. The codein Figure 20.2, “ Tracking table accesses’ implements thisidea.

Figure 20.2. Tracking table accesses

function track (t)
[ocal proxy = {} -- proxy table for 't'

-- create netatable for the proxy

local m = {
__index = function (_, k)
print("*access to element " .. tostring(k))
return t[k] -- access the original table
end,

__newi ndex = function (_, k, v)
print("*update of elenment "
"to tostring(v))
t[k] =V -- update original table
end,

tostring(k)

__pairs = function ()

return function (_, k) -- iteration function
| ocal nextkey, nextvalue = next(t, k)
if nextkey ~= nil then -- avoid | ast value
print("*traversing el ement " t ostri ng(next key))
end
return nextkey, nextval ue
end

end,

__len = function () return #t end

}

set net at abl e(proxy, nt)

return proxy
end

The following example illustrates its use:

>t = {} -- an arbitrary table
>t track(t)

t[2] = "hello"

--> *update of element 2 to hello
print(t[2])

\Y
1

\Y

159

M etatables and Metamethods

--> *access to element 2
--> hello

The metamethods __ i ndex and __newi ndex follow the guidelines that we set, tracking each access
and then redirecting it to the original table. The __pai r s metamethod allows us to traverse the proxy as
if it were the original table, tracking the accesses along the way. Finaly, the | en metamethod gives
the length operator through the proxy:

t = track({10, 20})
print (#t) --> 2
for k, v in pairs(t) do print(k, v) end
--> *traversing elenment 1
-->1 10
--> *traversing el ement 2
-->2 20

If we want to monitor several tables, we do not need a different metatable for each one. Instead, we can
somehow map each proxy to its original table and share acommon metatable for all proxies. This problem
issimilar to the problem of associating tables to their default values, which we discussed in the previous
section, and allows the same solutions. For instance, we can keep the original tablein aproxy'sfield, using
an exclusive key, or we can use a dual representation to map each proxy to its corresponding table.

Read-only tables

It is easy to adapt the concept of proxies to implement read-only tables. All we have to do isto raise an
error whenever we track any attempt to update the table. For the __i ndex metamethod, we can use a
table —the original table itself— instead of a function, as we do not need to track queries; it is simpler
and rather more efficient to redirect all queriesto the original table. This use demands a new metatable for
each read-only proxy, with__i ndex pointing to the original table:

function readOnly (t)
[ocal proxy = {}
local m = { -- create netatable
__index =t,
__newi ndex = function (t, k, v)
error("attenpt to update a read-only table", 2)
end
}
set net at abl e(proxy, nt)
return proxy
end

As an example of use, we can create aread-only table for weekdays:

days = readOnl y{" Sunday", "Monday", "Tuesday", "Wdnesday",
"Thur sday", "Friday", "Saturday"}

print (days[1]) --> Sunday

days[2] = "Noday"
--> stdin:1: attenpt to update a read-only table

Exercises

Exercise 20.1: Define a metamethod __ sub for sets that returns the difference of two sets. (The set a -
b isthe set of dlements from a that arenotin b.)

160

M etatables and Metamethods

Exercise 20.2: Defineametamethod | en for setsso that #s returnsthe number of elementsinthesets.

Exercise 20.3: An aternative way to implement read-only tables might use a function asthe __i ndex
metamethod. Thisalternative makes accesses more expensive, but the creation of read-only tablesis cheap-
er, as al read-only tables can share a single metatable. Rewrite the function r eadOnl y using this ap-
proach.

Exercise 20.4: Proxy tables can represent other kinds of objectsbesidestables. fileasarray Writeafunction
fil eAsArray that takes the name of a file and returns a proxy to that file, so that after acall t =
fileAsArray("nyFile"),anaccesstot[i] returnsthei -th byte of that file, and an assignment
tot[i] updatesitsi -th byte.

Exercise 20.5: Extend the previous example to allow us to traverse the bytes in the file with pai r s(t)
and get the file length with #t .

161

Chapter 21. Object-Oriented
Programming

A tablein Luais an object in more than one sense. Like objects, tables have a state. Like objects, tables
have an identity (a self) that isindependent of their values; specifically, two objects (tables) with the same
value are different objects, whereas an object can have different values at different times. Like objects,
tables have alife cycle that is independent of who created them or where they were created.

Objects have their own operations. Tables also can have operations, as in the following fragment:
Account = {bal ance = 0}
function Account.w t hdraw (v)
Account . bal ance = Account. bal ance - v
end

This definition creates a new function and stores it in field wi t hdr aw of the object Account . Then,
we can call it like here:

Account . wi t hdr aw(100. 00)
This kind of function is almost what we call a method. However, the use of the global name Account
inside the function isahorrible programming practice. First, thisfunction will work only for this particular
object. Second, even for this particular object, the function will work only as long as the object is stored

in that particular global variable. If we change the object's name, wi t hdr aw does not work any more:

a, Account = Account, nil
a. w thdraw(100. 00) -- ERRCOR!

Such behavior violates the principle that objects have independent life cycles.

A more principled approach isto operate on the receiver of the operation. For that, our method would need
an extra parameter with the value of the receiver. This parameter usually has the name self or this:

function Account.wi thdraw (self, v)
sel f. bal ance = sel f.bal ance - v
end
Now, when we call the method we have to specify the object that it has to operate on:
al = Account; Account = nil
al.withdraw(al, 100.00) -- OK
With the use of a self parameter, we can use the same method for many objects:
a2 = {bal ance=0, wi thdraw = Account.w t hdraw}
a2.wi t hdr aw(a2, 260. 00)
This use of a self parameter is a central point in any object-oriented language. Most OO languages have

this mechanism hidden from the programmer, so that she does not have to declare this parameter (although
she still can use the name self or this inside a method). Lua also can hide this parameter, with the colon

162

Object-Oriented Programming

operator. Using it, we can rewrite the previous method call asa2: wi t hdr aw(260. 00) and the pre-
vious definition as here:

function Account:w thdraw (v)
sel f. bal ance = sel f. balance - v
end

The effect of the colon isto add an extra argument in a method call and to add an extra hidden parameter
in amethod definition. The colon is only a syntactic facility, although a convenient one; there is nothing
really new here. We can define a function with the dot syntax and call it with the colon syntax, or vice-
versa, aslong as we handle the extra parameter correctly:

Account = { bal ance=0,
wi thdraw = function (self, v)
sel f. bal ance = self.balance - v
end

}

function Account:deposit (v)
sel f. bal ance = sel f. balance + v
end

Account . deposi t (Account, 200. 00)
Account : wi t hdr aw(100. 00)

Classes

So far, our objects have an identity, state, and operations on this state. They till lack a class system,
inheritance, and privacy. Let us tackle the first problem: how can we create several objects with similar
behavior? Specifically, how can we create several accounts?

M ost obj ect-oriented languages of fer the concept of class, whichworksasamold for the creation of objects.
In such languages, each object is an instance of a specific class. Lua does not have the concept of class;
the concept of metatablesis somewhat similar, but using it asaclass would not lead ustoo far. Instead, we
can emulate classes in Lua following the lead from prototype-based languages like Self. (Javascript also
followed that path.) In these languages, objects have no classes. Instead, each object may have aprototype,
which is aregular object where the first object looks up any operation that it does not know about. To
represent a class in such languages, we simply create an object to be used exclusively as a prototype for
other objects (its instances). Both classes and prototypes work as a place to put behavior to be shared by
several objects.

In Lua, we can implement prototypes using the idea of inheritance that we saw in the section called “The
__i ndex metamethod”. More specificaly, if we have two objects A and B, all we have to do to make
B aprototype for Aisthis:

setnetatabl e(A, {__index = B})

After that, A looks up in B for any operation that it does not have. To see B as the class of the object A
is not much more than a change in terminology.

Let us go back to our example of a bank account. To create other accounts with behavior similar to Ac-
count , we arrange for these new objectsto inherit their operationsfrom Account , usingthe i ndex
metamethod.

163

Object-Oriented Programming

local mt = {__index = Account}

function Account.new (0)
o=o0 or {} -- create table if user does not provide one
set net at abl e(o, mt)
return o

end

After this code, what happens when we create a new account and call a method on it, like this?

a = Account. new{bal ance = 0}
a: deposi t (100. 00)

When we create the new account, a, it will have m as its metatable. When we call
a: deposi t (100. 00) ,weareactualy calinga. deposi t (a, 100. 00) ; thecolonisonly syntac-
tic sugar. However, Luacannot find a" deposi t " entry inthetable a; hence, Lualooksintothe i n-
dex entry of the metatable. The situation now is more or less like this:

get net at abl e(a) . __i ndex. deposit(a, 100.00)
Themetatableof aisnmt ,andnt . __i ndex isAccount . Therefore, the previous expression evaluates
to this one:

Account . deposit(a, 100.00)

Thatis, Luacallstheoriginal deposi t function, but passing a asthe self parameter. So, the new account
a inherited the function deposi t from Account . By the same mechanism, it inherits al fields from
Account .

We can make two small improvements on this scheme. Thefirst oneisthat we do not need to create anew
table for the metatable role; instead, we can use the Account table itself for that purpose. The second
one is that we can use the colon syntax for the new method, too. With these two changes, method new
becomeslike this:

function Account: new (0)
o=o0 or {}

self. index = self
set met at abl e(o, self)
return o

end

Now, when we call Account : new() , the hidden parameter sel f getsAccount asitsvaue, we make
Account. i ndex alsoequal to Account , and set Account asthe metatable for the new object. It
may seem that we do not gained much with the second change (the colon syntax); the advantage of using
sel f will become apparent when we introduce class inheritance, in the next section.

The inheritance works not only for methods, but also for other fields that are absent in the new account.
Therefore, a class can provide not only methods, but also constants and default values for its instance
fields. Remember that, in our first definition of Account , we provided afield bal ance with value 0.
So, if we create a new account without an initial balance, it will inherit this default value:

b = Account: new()
print (b. bal ance) -->0

Whenwecall thedeposi t method on b, it runsthe equivalent of the following code, becausesel f isb:

164

Object-Oriented Programming

b. bal ance = b. bal ance + v
The expression b. bal ance evaluatesto zero and the method assigns an initial deposit to b. bal ance.

Subsequent accessesto b. bal ance will not invoke the index metamethod, because now b has its own
bal ance field.

Inheritance

Because classes are objects, they can get methods from other classes, too. This behavior makesinheritance
(in the usual object-oriented meaning) quite easy to implement in Lua.

Let us assume we have a base class like Account , in Figure 21.1, “the Account class’.
Figure21.1. the Account class

Account = {bal ance = 0}

function Account:new (0)
o=o0 or {}

self. index = self
set met at abl e(o, self)
return o

end

function Account:deposit (V)
sel f. bal ance = sel f. balance + v
end

function Account:wi thdraw (v)
if v > self.balance then error"insufficient funds" end
sel f. bal ance = sel f. balance - v

end

From this class, we want to derive a subclass Speci al Account that alows the customer to withdraw
morethan hisbalance. We start with an empty classthat simply inheritsall itsoperationsfromitsbaseclass:

Speci al Account = Account: new()
Upto now, Speci al Account isjust aninstance of Account . The magic happens now:

s = Speci al Account: new{! i ni t=1000. 00}
Speci al Account inheritsnewfrom Account , like any other method. Thistime, however, when new
executes, its sel f parameter will refer to Speci al Account . Therefore, the metatable of s will be
Speci al Account , whose value at field __i ndex is aso Speci al Account . So, s inherits from
Speci al Account , whichinheritsfrom Account . Later, when we evaluates: deposi t (100. 00),
Luacannot find adeposit fieldins, soitlooksinto Speci al Account ; it cannot find adeposi t
field there, too, so it looksinto Account ; thereit finds the original implementation for a deposit.

What makes a Speci al Account specia is that we can redefine any method inherited from its super-
class. All we have to do isto write the new method:

function Special Account: wi thdraw (v)

165

Object-Oriented Programming

if v - self.balance >= self:getLimt() then
error"insufficient funds"
end
sel f. bal ance = self. balance - v
end

function Special Account:getLimt ()
return self.limt or O
end

Now, when we call s: wi t hdr awm(200. 00) , Lua does not go to Account , because it finds the new
wi t hdr aw method in Speci al Account first. Ass. i mt is1000.00 (remember that we set this
field when we created s), the program does the withdrawal, leaving s with a negative balance.

An interesting aspect of objects in Lua is that we do not need to create a new class to specify a new
behavior. If only a single object needs a specific behavior, we can implement that behavior directly in
the object. For instance, if the account s represents some special client whose limit is always 10% of her
balance, we can modify only this single account:

function s:getLimt ()
return self.balance * 0.10
end

After this declaration, the call s: wi t hdr aw(200. 00) runs the wi t hdr aw method from Spe-
ci al Account, butwhenwi t hdr awcallssel f: get Li mi t,itisthislast definition that it invokes.

Multiple Inheritance

Because objects are not primitive in Lua, there are several ways to do object-oriented programming in
Lua. The approach that we have seen, using the index metamethod, is probably the best combination
of simplicity, performance, and flexibility. Nevertheless, there are other implementations, which may be
more appropriate for some particular cases. Here we will see an dternative implementation that allows
multiple inheritance in Lua.

The key to thisimplementation isthe use of afunction for the metafield __i ndex. Remember that, when
atable'smetatable hasafunctioninthe i ndex field, Luawill call thisfunction whenever it cannot find
akey intheoriginal table. Then, i ndex canlook up for the missing key in how many parentsit wants.

Multiple inheritance means that a class does not have a unique superclass. Therefore, we should not use a
(super)class method to create subclasses. Instead, we will define an independent function for this purpose,
cr eat ed ass, which has as arguments all superclasses of the new class; see Figure 21.2, “An imple-
mentation of multiple inheritance”. This function creates a table to represent the new class and sets its
metatable with an __i ndex metamethod that does the multiple inheritance. Despite the multiple inheri-
tance, each object instance still belongs to one single class, where it looks for all its methods. Therefore,
the relationship between classes and superclassesis different from the relationship between instances and
classes. Particularly, a class cannot be the metatable for its instances and for its subclasses at the same
time. In Figure 21.2, “An implementation of multiple inheritance”, we keep the class as the metatable for
its instances, and create another table to be the metatable of the class.

166

Object-Oriented Programming

Figure 21.2. An implementation of multiple inheritance

-- look up for "k' in list of tables '"plist’
[ocal function search (k, plist)

for i =1, #plist do
local v = plist[i][K] -- try "i'-th superclass
if v then return v end
end
end

function createC ass (...)
local ¢ = {} -- new cl ass
| ocal parents = {...} -- list of parents

-- class searches for absent nmethods in its list of parents
setmetatable(c, {__index = function (t, k)

return search(k, parents)
end})

-- prepare 'c' to be the netatable of its instances
C.__index =c¢

-- define a new constructor for this new class
function c:new (0)

o=o0 or {}

set net at abl e(o, c¢)

return o
end

return c -- return new cl ass
end

Let usillustrate the use of cr eat e ass with a small example. Assume our previous class Account
and another class, Named, with only two methods: set name and get name.

Naned = {}

function Naned: get name ()
return sel f.name

end

function Naned: setnane (n)
self.name = n
end

To create anew class NanmedAccount that isasubclass of both Account and Naned, we simply call
creat ed ass:

NamedAccount = createC ass(Account, Named)
To create and to use instances, we do as usual:

account = NanedAccount:new{ namre = "Paul "}
print (account: get nane()) --> Paul

Now let us follow how Lua evaluates the expression account : get nanme() ; more specificaly, let us
follow theevaluation of account [" get nanme"] . Luacannot find thefield " get nane" inaccount ;

167

Object-Oriented Programming

s0, it looksfor thefield i ndex ontheaccount 'smetatable, whichis NamedAccount inour exam-
ple. But NanedAccount also cannot providea" get nane" field, so Lualooksfor thefield i ndex
of NamedAccount 's metatable. Because this field contains a function, Lua cals it. This function then
looks for " get nane" first in Account , without success, and then in Naned, where it finds a non-nil
value, which isthe final result of the search.

Of course, due to the underlying complexity of this search, the performance of multiple inheritanceis not
the same as single inheritance. A simple way to improve this performance is to copy inherited methods
into the subclasses. Using this technique, the index metamethod for classes would be like this:

setnetatable(c, {__index = function (t, k)
l ocal v = search(k, parents)

t[k] =v -- save for next access
return v
end})

With this trick, accesses to inherited methods are as fast as to local methods, except for the first access.
The drawback is that it is difficult to change method definitions after the program has started, because
these changes do not propagate down the hierarchy chain.

Privacy

Many people consider privacy (also called information hiding) to be an integral part of an object-oriented
language: the state of each object should beitsowninternal affair. In some object-oriented languages, such
as C++ and Java, we can control whether afield (also called an instance variable) or amethod is visible
outsidethe object. Smalltalk, which popularized object-oriented languages, makesall variables private and
all methods public. Simula, the first ever object-oriented language, did not offer any kind of protection.

The standard implementation of objectsin Lua, which we have shown previously, does not offer privacy
mechanisms. Partly, thisis a consequence of our use of a general structure (tables) to represent objects.
Moreover, Lua avoids redundancy and artificial restrictions. If you do not want to access something that
livesinside an object, just do not do it. A common practiceisto mark all private nameswith an underscore
at the end. Y ou immediately feel the smell when you see a marked name being used in public.

Nevertheless, another aim of Luaisto be flexible, offering the programmer meta-mechanisms that enable
her to emulate many different mechanisms. Although the basic design for objects in Lua does not offer
privacy mechanisms, we can implement objectsin a different way, to have access control. Although pro-
grammers do not use this implementation frequently, it is instructive to know about it, both because it
explores some interesting aspects of Lua and because it is a good solution for more specific problems.

The basic idea of this alternative design is to represent each object through two tables: one for its state
and another for its operations, or its interface. We access the object itself through the second table, that
is, through the operations that compose itsinterface. To avoid unauthorized access, the table representing
the state of an object is not kept in afield of the other table; instead, it is kept only in the closure of the
methods. For instance, to represent our bank account with this design, we could create new objects running
the following factory function:

functi on newAccount (initial Bal ance)
| ocal self = {balance = initial Bal ance}

| ocal withdraw = function (v)
sel f. bal ance = sel f.bal ance - v
end

168

Object-Oriented Programming

| ocal deposit = function (v)
sel f. bal ance = sel f. bal ance + v
end

| ocal getBal ance = function () return self.bal ance end

return {
wi t hdraw = w t hdr aw,
deposit = deposit,
get Bal ance = get Bal ance

}

end

First, the function creates a table to keep the internal object state and storesit in the local variable sel f .
Then, the function creates the methods of the object. Finally, the function creates and returns the external
object, which maps method names to the actual method implementations. The key point here is that these
methods do not get sel f as an extra parameter; instead, they accesssel f directly. Because thereis no
extra argument, we do not use the colon syntax to manipulate such objects. We call their methods just
like regular functions:

accl = newAccount (100. 00)
accl. w t hdraw(40. 00)
print(accl. get Bal ance()) --> 60

Thisdesign givesfull privacy to anything storedinthesel f table. After thecall tonewAccount returns,
there is no way to gain direct access to this table. We can access it only through the functions created
inside newAc count . Although our example puts only one instance variable into the private table, we can
store all private parts of an object in this table. We can aso define private methods: they are like public
methods, but we do not put them in the interface. For instance, our accounts may give an extra credit of
10% for userswith balances above a certain limit, but we do not want the users to have accessto the details
of that computation. We can implement this functionality as follows:

function newAccount (initial Bal ance)
| ocal self = {
bal ance = initial Bal ance,
LI M = 10000. 00,

}

| ocal extra = function ()
if self.balance > self.LIMthen
return sel f. bal ance*0. 10
el se
return 0
end
end

| ocal getBal ance = function ()
return self.balance + extra()
end

as before

Again, thereis no way for any user to access the function ext r a directly.

169

Object-Oriented Programming

The Single-Method Approach

A particular case of the previous approach for object-oriented programming occurs when an object has
a single method. In such cases, we do not need to create an interface table; instead, we can return this
single method as the object representation. If this sounds alittle weird, it is worth remembering iterators
likei o. | i nes orstring. gmat ch. Aniterator that keeps state internally is nothing more than asin-
gle-method object.

Another interesting case of single-method objects occurs when this single-method is actually a dispatch
method that performs different tasks based on a distinguished argument. A prototypical implementation
for such an object isas follows:

function newlbject (val ue)
return function (action, v)

if action == "get" then return val ue
el seif action == "set" then value = v
el se error("invalid action")
end

end

end
Its use is straightforward:

d = newObj ect (0)

print(d("get")) -->0
d("set", 10)
print(d("get")) --> 10

Thisunconventional implementation for objectsis quite effective. Thesyntax d(" set ", 10), although
peculiar, is only two characters longer than the more conventional d: set (10) . Each object uses one
single closure, which is usually cheaper than one table. There is no inheritance, but we have full privacy:
the only way to access an object state is through its sole method.

Tcl/Tk uses a similar approach for its widgets. The name of awidget in Tk denotes a function (a widget
command) that can perform al kinds of operations over the widget, according to its first argument.

Dual Representation

Another interesting approach for privacy uses a dual representation. Let us start seeing what a dua rep-
resentation is.

Usually, we associate attributes to tables using keys, like this:
tabl e[key] = val ue

However, we can use adual representation: we can use atable to represent akey, and use the object itself
asakey in that table:

key = {}
key[tabl e] = val ue

A key ingredient here is the fact that we can index tables in Lua not only with numbers and strings, but
with any value —in particular with other tables.

170

Object-Oriented Programming

As an example, in our Account implementation, we could keep the balances of all accounts in atable
bal ance, instead of keeping them in the accounts themselves. Our wi t hdr aw method would become
likethis:

function Account.wi thdraw (self, v)
bal ance[sel f] = bal ance[self] - v
end

What we gain here? Privacy. Even if a function has access to an account, it cannot directly access its
balance unless it also has access to the table bal ance. If the table bal ance is kept in aloca inside
the module Account , only functions inside the module can accessit and, therefore, only those functions
can manipulate account balances.

Before we go on, | must discuss a big naivety of thisimplementation. Once we use an account asakey in
thebal ance table, that account will never become garbage for the garbage collector. It will be anchored
there until some code explicitly removes it from that table. That may not be a problem for bank accounts
(as an account usually has to be formally closed before going away), but for other scenarios that could
be a big drawback. In the section called “ Object Attributes’, we will see how to solve this problem. For
now, we will ignoreit.

Figure21.3, “Accountsusing adual representation” shows again an implementation for accounts, thistime
using adual representation.

Figure 21.3. Accountsusing a dual representation
| ocal bal ance = {}
Account = {}

function Account:w thdraw (v)
bal ance[sel f] = bal ance[self] - v
end

function Account:deposit (V)
bal ance[sel f] = bal ance[self] + v
end

function Account: bal ance ()
return bal ance[sel f]
end

function Account:new (0)
o=o0 or {} -- create table if user does not provide one
set net at abl e(o, self)
self. index = self
bal ance[o] = 0 -- initial balance
return o
end

We use this classjust like any other one:
a = Account: new{}

a: deposi t (100. 00)
print (a: bal ance())

171

Object-Oriented Programming

However, we cannot tamper with an account balance. By keeping the table bal ance private to the mod-
ule, this implementation ensures its safety.

Inheritance works without modifications. This approach has a cost quite similar to the standard one, both
in terms of time and of memory. New objects need one new table and one new entry in each private table
being used. The access bal ance[sel f] can be dightly slower than sel f. bal ance, because the
latter uses a local variable while the first uses an externa variable. Usually this difference is negligible.
Aswe will seelater, it also demands some extrawork from the garbage collector.

Exercises

Exercise 21.1: Implement a class St ack, with methods push, pop, t op,andi senpty.

Exercise 21.2: Implement aclass St ackQueue asasubclass of St ack. Besides the inherited methods,
add to this class amethod i nser t bot t om which inserts an element at the bottom of the stack. (This
method allows us to use objects of this class as queues.)

Exercise 21.3: Reimplement your St ack class using a dual representation.

Exercise 21.4: A variation of the dual representation is to implement objects using proxies (the section
called “Tracking table accesses’). Each object is represented by an empty proxy table. An internal table
maps proxies to tables that carry the object state. This internal table is not accessible from the outside,
but methods useit to trandlate their sel f parametersto thereal tables where they operate. Implement the
Account example using this approach and discuss its pros and cons.

172

Chapter 22. The Environment

Global variables are a necessary evil of most programming languages. On one hand, the use of global
variables can easily lead to complex code, entangling apparently unrelated parts of aprogram. On the other
hand, the judicious use of global variables can better expresstruly global aspects of a program; moreover,
global constants are innocuous, but dynamic languages like Lua have no way to distinguish constants
from variables. An embedded language like Lua adds another ingredient to this mix: a global variableis
avariablethat isvisible in the whole program, but Lua has no clear concept of a program, having instead
pieces of code (chunks) called by the host application.

Lua solves this conundrum by not having global variables, but going to great lengthsto pretend it has. In
afirst approximation, we can think that Lua keeps all its global variables in a regular table, called the
global environment. Later in this chapter, we will see that Lua can keep its “global” variables in several
environments. For now, we will stick to that first approximation.

The use of atable to store global variables simplifies the internal implementation of Lua, because there
isno need for adifferent data structure for global variables. Another advantage is that we can manipulate
thistable like any other table. To help such manipulations, Lua stores the global environment itself in the
global variable G (Asaresult, G _Gisequal to_G) For instance, the following code prints the names
of all the variables defined in the global environment:

for nin pairs(_G do print(n) end

Global Variables with Dynamic Names

Usually, assignment is enough for accessing and setting global variables. However, sometimes we need
some form of meta-programming, such as when we need to manipulate a global variable whose name is
stored in another variable or is somehow computed at run time. To get the value of such avariable, some
programmers are tempted to write something like this:

value = load("return var name) ()

If var name isx, for example, the concatenation will result in"r et urn x", which when run achieves
the desired result. However, this code involves the creation and compilation of a new chunk, which is
somewhat expensive. We can accomplish the same effect with the following code, which is more than an
order of magnitude more efficient than the previous one:

val ue = _{d varnane]
Becausethe environment isaregular table, we can simply index it with thedesired key (the variable name).

Inasimilar way, we can assign avalueto aglobal variablewhose nameiscomputed dynamically by writing
_(g varnane] = val ue.Beware, however: some programmers get alittle excited with thesefacilities
and end up writing codelike_d "a"] = _{ "b"],whichisjust acomplicated way to writea = b.

A generalization of the previous problem is to allow fields in the dynamic name, such as"i o. r ead"
or"a.b.c.d".If wewrite_{Jd "io.read"], clealy we will not get the field r ead from the table
i 0. But we can write afunction get f i el d suchthat getfi el d("i o. read") returnsthe expected
result. Thisfunction is mainly aloop, which startsat _Gand evolvesfield by field:

function getfield (f)
local v = _G -- start with the table of globals

173

The Environment

for win string.gmatch(f, "[%_][%w]*") do

v = v[wy]
end
return v

end
Werely on gmat ch toiterate over all identifiersinf .

The corresponding function to set fields is a little more complex. An assignment likea. b.c.d = vis
equivalent to the following code:

local temp = a.b.c
tenmp.d = v

That is, we must retrieve up to the last name and then handle this last name separately. The function

setfield,inFigure22.1,“Thefunctionset f i el d”, doesthetask and also createsintermediate tables
in a path when they do not exist.

Figure22.1. Thefunctionsetfi el d

function setfield (f, v)

local t = _G -- start with the table of globals
for w, din string.gmatch(f, "([%][%v]*)(%?)") do
if d=="." then -- not |ast nane?
t[w =t[w or {} -- create table if absent
t = t[w -- get the table
el se -- last nane
t[w =v -- do the assignment
end
end

end

The pattern there captures the field name in the variable wand an optional following dot in the variable d.
If afield nameisnot followed by adot, then it is the last name.

With the previous functions in place, the next call createsaglobal tablet , another tablet . x, and assigns
10tot. x. y:

setfield("t.x.y", 10)

print(t.x.y) --> 10
print(getfield("t.x.y")) --> 10

Global-Variable Declarations

Global variables in Lua do not need declarations. Although this behavior is handy for small programs,
in larger programs a simple typo can cause bugs that are difficult to find. However, we can change this
behavior if we like. Because Lua keeps its global variables in a regular table, we can use metatables to
detect when L ua accesses non-existent variables.

A first approach simply detects any access to absent keys in the global table:

setnetatable(_G ({

174

The Environment

__newi ndex = function (_, n)

error("attenpt to wite to undecl ared variable " n, 2)
end,
__index = function (_, n)
error("attenpt to read undeclared variable " n, 2)
end,
})

After this code, any attempt to access a non-existent global variable will trigger an error:

> print(a)
stdin:1l: attenpt to read undeclared variable a

But how do we declare new variables? One option isto user awset , which bypasses the metamethod:

function declare (name, initval)
rawset (_G nane, initval or false)
end

(The or with false ensures that the new global aways gets a value different from nil.)

A simpler option is to restrict assignments to new global variables only inside functions, allowing free
assignments in the outer level of achunk.

To check whether an assignment is in the main chunk, we must use the debug library. The call
debug. getinfo(2, "S") returnsatable whosefield what tellswhether the function that called the
metamethod is a main chunk, a regular Lua function, or a C function. (We will see debug. geti nfo
in more detail in the section called “Introspective Facilities’.) Using this function, we can rewrite the
___newi ndex metamethod like this;

__newi ndex = function (t, n, v)
| ocal w = debug.getinfo(2, "S").what

if w~="min" and w~= "C"' then
error("attenpt to wite to undecl ared variable " n, 2)
end
rawset (t, n, v)
end

Thisnew version also accepts assignmentsfrom C code, asthiskind of code usually knowswhat it isdoing.

If we need to test whether a variable exists, we cannot simply compare it to nil because, if it is nil, the
access will raise an error. Instead, we user awget , which avoids the metamethod:

if rawget (_G var) == nil then
-- '"var' is undecl ared

end

Asitis, our scheme does not allow global variables with nil values, as they would be automatically con-
sidered undeclared. But itisnot difficult to correct this problem. All we needisan auxiliary tablethat keeps
the names of declared variables. Whenever ametamethod is called, it checksin thistable whether the vari-
ableis undeclared. The code can be like the onein Figure 22.2, “ Checking global-variable declaration”.

175

The Environment

Figure 22.2. Checking global-variable declaration

| ocal decl aredNanes = {}

setnetatable(_G {
__newi ndex = function (t, n, v)
i f not decl aredNanmes[n] then
| ocal w = debug.getinfo(2, "S").what
if w~="min" and w~= "C"' then
error("attenpt to wite to undeclared vari abl e
end
decl aredNames[n] = true
end
rawset (t, n, v) -- do the actual set
end,

.n, 2)

__index = function (_, n)
i f not decl aredNanmes[n] then
error("attenmpt to read undeclared variabl e
el se
return nil
end
end,

.n, 2)

)

Now, even an assignment likex = ni | isenough to declare aglobal variable.

The overhead for both solutions is negligible. With the first solution, the metamethods are never called
during normal operation. In the second, they can be called, but only when the program accesses avariable
holding anil.

The Lua distribution comes with amodule st ri ct . | ua that implements a global-variable check that
uses essentially the code in Figure 22.2, “Checking global-variable declaration”. It is a good habit to use
it when developing Lua code.

Non-Global Environments

In Lua, global variables do not need to betruly global. As| already hinted, L ua does not even have global
variables. That may sound strange at first, as we have been using global variables all along this text. As
| said, Lua goes to great lengths to give the programmer an illusion of global variables. Now we will see
how Luabuilds thisillusion.*

First, let us forget about global variables. Instead, we will start with the concept of free names. A free

name is a name that is not bound to an explicit declaration, that is, it does not occur inside the scope of a

corresponding local variable. For instance, both x andy arefreenamesin thefollowing chunk, but z isnot:

local z = 10
X =y + z

Now comesthe important part: The Lua compiler trandates any free name x inthe chunk to _ ENV. x. So,
the previous chunk is fully equivalent to this one:

local z = 10
_ENV.x = ENV.y + z

This mechanism was one of the parts of Luathat changed most from version 5.1 to 5.2. Very little of the following discussion appliesto Lua5.1.

176

The Environment

But what isthisnew _ENV variable?

_ENV cannot be aglobal variable; wejust said that Lua has no global variables. Again, the compiler does
thetrick. | already mentioned that L uatreats any chunk as an anonymous function. Actually, L uacompiles
our original chunk as the following code:

| ocal _ENV = sone val ue
return function (...)
local z = 10
_ENV.x = ENV.y + z
end

That is, Luacompilesany chunk in the presence of a predefined upvalue (an external local variable) called
_ENV. So, any variable is either local, if it is abounded name, or afield in _ENV, which itself isalocal
variable (an upvalue).

Theinitial valuefor _ENV can be any table. (Actually, it does not need to be atable; more about that | ater.)
Any such tableiscalled an environment. To preservetheillusion of global variables, Luakeepsinternally a
tablethat it usesasaglobal environment. Usually, when weload achunk, thefunction| oad initializesthis
predefined upvalue with that global environment. So, our original chunk becomes equivalent to this one:

local _ENV = the gl obal environnent
return function (...)

local z = 10

_ENV.x = ENV.y + z
end

The result of al these arrangements is that the x field of the global environment gets the value of the y
field plus 10.

At first sight, this may seem arather convoluted way to manipulate global variables. | will not argue that
it isthe smplest way, but it offers aflexibility that is difficult to achieve with a simpler implementation.

Before we go on, let us summarize the handling of global variablesin Lua:
e The compiler creates alocal variable ENV outside any chunk that it compiles.
e The compiler trandates any free namevar to_ENV. var .

e Thefunction| oad (or| oadf i | e)initializesthefirst upvalue of achunk with the global environment,
which isaregular table kept internally by Lua.

After al, it isnot that complicated.

Some people get confused because they try to infer extra magic from these rules. There is no extramagic.
In particular, the first two rules are done entirely by the compiler. Except for being predefined by the
compiler, ENVisaplain regular variable. Outside the compiler, the name _ENV has no special meaning
at all to Lua? Similarly, the tranglation from x to _ENV. x isaplain syntactic translation, with no hidden
meanings. In particular, after the trandation, _ ENV will refer to whatever _ENV variableisvisible at that
point in the code, following the standard visibility rules.

Using ENV

In this section, we will see some ways to explore the flexibility brought by ENV. Keep in mind that we
must run most examplesin this section as asingle chunk. If we enter code line by linein interactive mode,

’Tobe completely honest, Luausesthat name for error messages, so that it reportsan error involving avariable_ENV. x asbeing about gl obal x.

177

The Environment

each line becomes a different chunk and therefore each will have adistinct _ ENV variable. To run apiece
of code as asingle chunk, we can either run it from afile or enclose it in ado--end block.

Because ENV isaregular variable, we can assign to and access it as any other variable. The assignment
_ENV = ni | will invalidate any direct access to global variablesin the rest of the chunk. This can be
useful to control what variables our code uses:

local print, sin = print, math.sin

_ENV = ni |l

print(13) --> 13
print(sin(13)) --> 0.42016703682664
print(math.cos(13)) -- error!

Any assignment to afree name (a“global variable”) will raise asimilar error.

We can writethe _ENV explicitly to bypass alocal declaration:

a = 13 -- gl obal

local a = 12

print(a) --> 12 (local)
print(_ENV. a) --> 13 (gl obal)

We can do the samewith _G

a =13 -- gl obal

local a = 12

print(a) --> 12 (local)
print(_G a) --> 13 (global)

Usually, Gand_ENV refer to the same table but, despite that, they are quite different entities. ENVisa
local variable, and all accessesto “global variables’ inreality areaccessestoit. Gisaglobal variablewith
no specia status whatsoever. By definition, _ENV always refers to the current environment; _Gusually
refersto the global environment, provided it is visible and no one changed its value.

Themain use for _ENV isto change the environment used by a piece of code. Once we change the envi-
ronment, all global accesses will use the new table;

-- change current environnent to a new enpty table
_ENvV = {}
a=1 -- create a field in _ENV
print(a)
--> stdin:4: attenpt to call global "print' (a nil val ue)

If the new environment is empty, we have lost al our global variables, including pri nt . So, we should
first populate it with some useful values, for instance with the global environment:

a =15 -- create a global variable
_ENV = {g = _G -- change current environnent
a=1 -- create a field in _ENV
g.print(_ENV.a, g.a) --> 1 15

Now, when we access the “global” g (which livesin _ENV, not in the global environment) we get the
global environment, wherein Luawill find the function pri nt .

We can rewrite the previous example using the name _Ginstead of g:

a =15 -- create a global variable

178

The Environment

ENV = { G= _@G -- change current environnent
a=1 -- create a field in _ENV
_Gprint(_ENV.a, _G a) --> 1 15

Theonly special statusof _Ghappenswhen Luacreatestheinitial global tableand makesitsfield _Gpoints
toitself. Luadoes not care about the current value of thisvariable. Nevertheless, it is customary to usethis
same name whenever we have areference to the global environment, as we did in the rewritten example.

Another way to populate our new environment is with inheritance:

a=1

| ocal newgt = {} -- create new environment
setnetatabl e(newgt, {_ index = _G)

_ENV = newgt -- set it

print(a) --> 1

In this code, the new environment inherits both pri nt and a from the global one. However, any assign-
ment goesto the new table. Thereisno danger of changing avariableinthe global environment by mistake,
although we still can change them through _ G

-- continuing the previous chunk

a =10

print(a, _G a) --> 10 1
_Ga =20

print(_G a) --> 20

Being aregular variable, _ENV follows the usual scoping rules. In particular, functions defined inside a
chunk access _ENV as they access any other external variable:

_ENV = {_G=_G
I ocal function foo ()

_Goprint(a) -- conpiled as ' _ENV._G print(_ENV.a)'
end
a =10
foo() --> 10
_ENV = {_G=_G a = 20}
foo() --> 20

If we define anew local variable called ENV, references to free names will bind to that new variable:

a=2
do
local _ENV = {print = print, a = 14}
print(a) --> 14
end
print(a) --> 2 (back to the original _ENV)

Therefore, it is not difficult to define a function with a private environment:

function factory (_ENV)
return function () return a end

end

fl1 = factory{a = 6}

f2 = factory{a = 7}
print(f1()) --> 6

179

The Environment

print(f2()) --> 7

Thef act ory function creates simple closures that return the value of their “global” a. When the closure
iscreated, itsvisible ENV variableisthe parameter ENV of theenclosing f act or y function; therefore,
each closure will use its own external variable (as an upvalue) to access its free names.

Using the usual scoping rules, we can manipulate environments in several other ways. For instance, we
may have several functions sharing a common environment, or a function that changes the environment
that it shares with other functions.

Environments and Modules

In the section called “The Basic Approach for Writing Modulesin Lua’, when we discussed how to write
modules, | mentioned that one drawback of those methods was that it was all too easy to pollute the
global space, for instance by forgetting alocal in a private declaration. Environments offer an interesting
technique for solving that problem. Once the module main chunk has an exclusive environment, not only
all itsfunctions share this table, but also all its global variables go to this table. We can declare all public
functions as global variables and they will go to a separate table automatically. All the module has to do
isto assign thistableto the ENV variable. After that, when we declare afunction add, it goesto M add:

local M= {}
_ENV = M
function add (c1, c2)
return new(cl.r + c2.r, cl.i + c2.i)
end

Moreover, we can call other functions from the same module without any prefix. In the previous code,
add gets newfrom its environment, that is, it callsM new.

This method offers a good support for modules, with little extra work for the programmer. It needs no
prefixes at al. There is no difference between calling an exported function and a private one. If the pro-
grammer forgets alocal, he does not pollute the global namespace; instead, a private function simply be-
comes public.

Nevertheless, currently | still prefer the original basic method. It may need more work, but the resulting
code statesclearly what it does. To avoid creating aglobal by mistake, | use the simple method of assigning
nil to _ENV. After that, any assignment to a global name will raise an error. This approach has the extra
advantage that it works without changes in older versions of Lua. (In Lua 5.1, the assignment to _ ENV
will not prevent errors, but it will not cause any harm, either.)

To access other modul es, we can use one of the methods we discussed in the previous section. For instance,
we can declare alocal variable that holds the global environment:

local M= {}
local G= _G
_ENV = nil

We then prefix global names with _Gand module names with M

A more disciplined approach is to declare as locals only the functions we need or, at most, the modules
we need:

-- nodul e setup
local M= {}

180

The Environment

-- Inport Section:

-- declare everything this nodul e needs from outsi de
| ocal sqrt = math.sqgrt

local io =io0

-- no nore external access after this point
_ENV = ni |l

This technique demands more work, but it documents the module dependencies better.

_ENV and | oad

As | mentioned earlier, | oad usualy initializes the _ENV upvalue of a loaded chunk with the global
environment. However, | oad has an optional fourth parameter that allows us to give a different initial
valuefor _ENV. (Thefunction| oadf i | e hasasimilar parameter.)

For an initial example, consider that we have a typical configuration file, defining several constants and
functions to be used by a program; it can be something like this:

-- file "config.lua
wi dth = 200
hei ght = 300

We can load it with the following code:

env = {}
| oadfile("config.lua", "t", env)()

The whole code in the configuration file will run in the empty environment env, which works as akind
of sandbox. In particular, al definitions will go into this environment. The configuration file has no way
to affect anything else, even by mistake. Even malicious code cannot do much damage. It can do adenial
of service (DoS) attack, by wasting CPU time and memory, but nothing else.

Sometimes, we may want to run a chunk several times, each time with a different environment table. In
that case, the extraargument to | oad is not useful. Instead, we have two other options.

Thefirst optionisto usethefunctiondebug. set upval ue, fromthedebug library. Asitsnameimplies,
set upval ue alows usto change any upvalue of agiven function. The next fragment illustrates its use:

f =load("b = 10; return a")
env = {a = 20}

debug. setupval ue(f, 1, env)
print(f()) --> 20
print (env.b) --> 10

The first argument in the call to set upval ue isthe function, the second is the upvalue index, and the
third is the new value for the upvalue. For this kind of use, the second argument is always one: when a
function represents a chunk, Lua assures that it has only one upvalue and that this upvalueis _ENV.

A small drawback of this option is its dependence on the debug library. This library breaks some usual
assumptions about programs. For instance, debug. set upval ue breaks Lua's visibility rules, which
ensures that we cannot access alocal variable from outside its lexical scope.

Another option torunachunk with several different environmentsisto twist the chunk alittlewhen loading
it. Imagine that we add the following line just before the chunk:

181

The Environment

_ENV = ...

Remember that Lua compiles any chunk as a variadic function. So, that extra line of code will assign to
the _ENV variable the first argument passed to the chunk, thereby setting that argument as the environ-
ment. The following code snippet illustrates the idea, using the function | oadwi t hpr ef i x that you
implemented in Exercise 16.1:

prefix ="_ENV = ...;"

f = loadwi thprefix(prefix, io.lines(filename, "*L"))
envl = {}

f(envl)

env2 = {}
f(env2)

Exercises

Exercise 22.1: The function get f i el d that we defined in the beginning of this chapter is too forgiving,
asit accepts“fields’ likemat h?si norstri ng!!'! gsub. Rewriteit so that it accepts only single dots
as name separators.

Exercise 22.2: Explain in detail what happens in the following program and what it will print.

| ocal foo
do
local _ENV = ENV
function foo () print(X) end
end
X =13
_ENV = nil
foo()
X=0

Exercise 22.3: Explain in detail what happens in the following program and what it will print.

[ocal print = print
function foo (_ENV, a)

print(a + b)
end
foo({b = 14}, 12)
foo({b = 10}, 1)

182

Chapter 23. Garbage

L ua does automatic memory management. Programs can create objects (tables, closures, etc.), but there
is no function to delete objects. Lua automatically deletes objects that become garbage, using garbage
collection. Thisfrees us from most of the burden of memory management and, more importantly, frees us
from most of the bugs related to this activity, such as dangling pointers and memory leaks.

In an ideal world, the garbage collector would be invisible to the programmer, like a good cleaner that
does not interfere with other workers. However, sometimes even the smarter collector needs our help. We
may need to stop it at some performance-critical periods or alow it to work only in some specific times.
Moreover, a garbage collector can collect only what it can be sure is garbage; it cannot guess what we
consider garbage. No garbage collector alows us to forget all worries about resource management, such
as hoarding memory and external resources.

Wesk tables, finalizers, and the function col | ect gar bage arethe main mechanismsthat we can usein
Luato help the garbage collector. Weak tables allow the collection of Lua objects that are still accessible
to the program; finalizers allow the collection of external objects that are not directly under control of the
garbage collector. Thefunction col | ect gar bage alows usto control the pace of the collector. In this
chapter, we will discuss these mechanisms.

Weak Tables

As we said, a garbage collector cannot guess what we consider garbage. A typical example is a stack,
implemented with an array and an index to the top. We know that the valid part of the array goes only up
to the top, but Lua does not. If we pop an element by simply decrementing the top, the object left in the
array is not garbage to Lua. Similarly, any object stored in a global variable is not garbage to Lua, even
if our program will never use it again. In both cases, it is up to us (i.e., our program) to assign nil to these
positions so that they do not lock an otherwise disposable object.

However, simply cleaning our references is not always enough. Some constructions need extra collabora-
tion between the program and the collector. A typical example happens when we want to keep a list of
all live objects of some kind (e.g., files) in our program. This task seems simple: all we haveto doisto
insert each new object into the list. However, once the object is part of the list, it will never be collected!
Even if nothing else pointsto it, the list does. Lua cannot know that this reference should not prevent the
reclamation of the abject, unless we tell Lua about this fact.

Weak tables are the mechanism that we use to tell Luathat areference should not prevent the reclamation
of an object. A weak reference is areference to an object that is not considered by the garbage collector.
If all references pointing to an object are weak, the collector will collect the object and del ete these weak
references. Lua implements weak references through weak tables: a weak table is a table whose entries
areweak. Thismeans that, if an object is held only in wesk tables, Luawill eventualy collect the object.

Tables have keys and values, and both can contain any kind of object. Under normal circumstances, the
garbage collector does not collect objects that appear as keys or as values of an accessible table. That is,
both keys and values are strong references, as they prevent the reclamation of objects they refer to. In a
weak table, both keys and values can be weak. This meansthat there are three kinds of weak tables: tables
with weak keys, tables with weak values, and tables where both keys and values are weak. Irrespective of
the kind of table, when akey or avalue is collected the whole entry disappears from the table.

The weakness of atable is given by the field __node of its metatable. The value of this field, when
present, should be a string: if this string is" k", the keys in the table are weak; if thisstring is" v", the
valuesinthetable are weak; if thisstringis" kv" , both keys and values are weak. The following example,
although artificial, illustrates the basic behavior of weak tables:

183

Garbage

a = {}
m = {__node = "k"}
set net at abl e(a, m) -- now 'a' has weak keys
key = {} -- creates first key
al key] =
key = {} -- creates second key
al key] =
col | ect gar bage() -- forces a garbage collection cycle
for k, v in pairs(a) do print(v) end
--> 2

In this example, the second assignment key = {} overwrites the reference to the first key. The call to
col | ect gar bage forces the garbage collector to do a full collection. As there is no other reference
to the first key, Lua collects this key and removes the corresponding entry in the table. The second key,
however, is still anchored in the variable key, so Luadoes not collect it.

Notice that only objects can be removed from aweak table. Values, such as numbers and Booleans, are
not collectible. For instance, if we insert a numeric key in the table a (from our previous example), the
collector will never removeit. Of course, if the value corresponding to anumeric key iscollected in atable
with weak values, then the whole entry is removed from the table.

Strings present a subtlety here: although strings are collectible from an implementation point of view, they
are not like other collectible objects. Other objects, such astables and closures, are created explicitly. For
instance, whenever Lua evaluates the expression { } , it creates a new table. However, does Lua create a
new string when it evaluates " a" . . " b" ? What if there is already a string " ab" in the system? Does
Luacreate anew one? Can the compiler create this string before running the program? It does not matter:
these are implementation details. From the programmer's point of view, strings are values, not objects.
Therefore, like anumber or aBoolean, astring key is not removed from aweak table unless its associated
valueis collected.

Memorize Functions

A common programming techniqueisto trade spacefor time. We can speed up afunction by memorizingits
results so that, later, when we call the function with the same argument, the function can reuse that result.

Imagine ageneric server that takesrequestsintheform of stringswith Luacode. Eachtimeit getsarequest,
it runs| oad on the string, and then callsthe resulting function. However, | oad isan expensive function,
and some commands to the server may be quite frequent. Instead of calling | oad repeatedly each time it
receives acommon command like" cl oseconnecti on() ", the server can memorize the results from
| oad using anauxiliary table. Beforecalling | oad, the server checksin the table whether the given string
already has atrandation. If it cannot find a match, then (and only then) the server calls| oad and stores
the result into the table. We can pack this behavior in a new function:

| ocal results = {}
function nmem| oadstring (S)
local res = results[s]

if res == nil then -- result not avail abl e?
res = assert(load(s)) -- compute new result
results[s] =res -- save for later reuse

end

return res

end

1AIthough the established English word “memorize” describes precisely what we want to do, the programming community created a new word,
memoize, to describe this technique. | will stick to the original word.

184

Garbage

The savings with this scheme can be huge. However, it may also cause unsuspected waste. Although some
commands repeat over and over, many other commands happen only once. Gradually, thetabler esul t s
accumulates all commands the server has ever received plustheir respective codes; after enough time, this
behavior will exhaust the server's memory.

A weak table provides a simple solution to this problem. If the r esul t s table has weak values, each
garbage-collection cycle will remove al trandations not in use at that moment (which means virtually

all of them):
| ocal results = {}
setnetatabl e(results, {_ nmpde = "v"}) -- make val ues weak
function nem| oadstring (s)
as before

Actually, because the indices are always strings, we can make this table fully weak, if we want:
setmetatabl e(results, {__node = "kv"})
The net result isthe same.

The memorization technique is useful aso to ensure the uniqueness of some kind of object. For instance,
assume a system that represents colors as tables, with fields r ed, gr een, and bl ue in some range. A
naive color factory generates a new color for each new request:

function createRG& (r, g, b)
return {red = r, green = g, blue = b}
end

Using memorization, we can reuse the same tablefor the same color. To create aunique key for each color,
we simply concatenate the color indices with a separator in between:

local results = {}
setnetatabl e(results, {__nmode = "v"}) -- make val ues weak
function createRG (r, g, b)
local key = string.format("%-%-%l", r, g, b)
| ocal color = results[key]
if color == nil then
color = {red =r, green = g, blue = b}
resul ts[key] = col or
end
return col or
end

An interesting consequence of thisimplementation is that the user can compare colors using the primitive
equality operator, because two coexistent equal colors are always represented by the same table. Any
given color can be represented by different tables at different times, because from time to time the garbage
collector clearsther esul t s table. However, aslong as a given color isin use, it is not removed from
resul t s. So, whenever acolor survives long enough to be compared with a new one, its representation
also has survived long enough to be reused by the new color.

Object Attributes

Another important use of weak tables is to associate attributes with objects. There are endless situations
where we need to attach some attribute to an object: names to functions, default values to tables, sizes
to arrays, and so on.

185

Garbage

When the object isatable, we can store the attribute in the table itself, with an appropriate unique key. (As
we saw before, asimple and error-proof way to create aunique key isto create anew table and useit asthe
key.) However, if the object is not atable, it cannot keep its own attributes. Even for tables, sometimeswe
may not want to store the attribute in the original object. For instance, we may want to keep the attribute
private, or we do not want the attribute to disturb atabletraversal. In al these cases, we need an alternative
way to map attributes to objects.

Of course, an external table provides an ideal way to map attributes to objects. It iswhat we called a dual
representation in the section called “Dual Representation”. We use the objects askeys, and their attributes
as values. An external table can keep attributes of any type of object, as Lua alows us to use any type
of object as akey. Moreover, attributes kept in an external table do not interfere with other objects, and
can be as private as the table itself.

However, this seemingly perfect solution has a huge drawback: once we use an object asakey in atable,
we lock the object into existence. Lua cannot collect an object that is being used as a key. For instance,
if we use aregular table to map functions to its names, none of these functions will ever be collected.
As you might expect, we can avoid this drawback by using a weak table. This time, however, we need
weak keys. The use of weak keys does not prevent any key from being collected, once there are no other
referencesto it. On the other hand, the table cannot have weak values; otherwise, attributes of live objects
could be collected.

Revisiting Tables with Default Values

In the section called “Tables with default values’, we discussed how to implement tables with non-nil
default values. We saw one particular technique and commented that two other techniques needed weak
tables, so we postponed them. Now it istimeto revisit the subject. Aswe will see, these two techniquesfor
default valuesare actually particular applications of thetwo general techniquesthat we have just discussed:
dua representation and memorization.

In the first solution, we use aweak table to map each table to its default value:

| ocal defaults = {}
set net at abl e(defaults, {_ node = "k"})
local mt = {_ index = function (t) return defaults[t] end}
function setDefault (t, d)
defaults[t] = d
setnetat abl e(t, m)
end

Thisisatypical use of adual representation, wherewe usedef aul t s[t] torepresentt . def aul t . If
thetabledef aul t s did not have weak keys, it would anchor al tables with default valuesinto permanent
existence.

In the second solution, we use distinct metatables for distinct default values, but we reuse the same metat-
able whenever we repeat a default value. Thisis atypical use of memorization:

| ocal metas = {}
set net at abl e(nmetas, {__node = "v"})
function setDefault (t, d)

local m = metas[d]

if m ==nil then
n = {__index = function () return d end}
metas[d] = nt -- menorize

end

set net at abl e(t, mt)

186

Garbage

end
In this case, we use weak values to allow the collection of metatables that are not being used anymore.

Given these two implementationsfor default values, which isbest? Asusual, it depends. Both have similar
complexity and similar performance. The first implementation needs a few memory words for each table
with a default value (an entry in def aul t s). The second implementation needs a few dozen memory
words for each distinct default value (anew table, anew closure, plusan entry in thetable et as). So, if
your application has thousands of tables with afew distinct default values, the second implementation is
clearly superior. On the other hand, if few tables share common defaults, then you should favor the first
implementation.

Ephemeron Tables

A tricky situation occurs when, in atable with weak keys, avalue refersto its own key.

This scenario is more common than it may seem. As a typical example, consider a constant-function
factory. Such afactory takes an object and returns a function that, whenever called, returns that object:

function factory (0)
return (function () return o end)
end

Thisfactory isagood candidate for memorization, to avoid the creation of anew closure when thereisone
already available. Figure 23.1, “ Constant-function factory with memorization” shows thisimprovement.

Figure 23.1. Constant-function factory with memorization

do
local mem = {} -- nenorization table
setnetatable(mrem {__node = "k"})
function factory (0)
| ocal res = menio]
if not res then
res = (function () return o end)
menfo] = res
end
return res
end
end

There is a catch, however. Note that the value (the constant function) associated with an object in mrem
refers back to its own key (the object itself). Although the keys in that table are weak, the values are not.
From astandard interpretation of weak tables, nothing would ever be removed from that memorizing table.
Because values are not weak, there is always a strong reference to each function. Each function refers to
its corresponding object, so thereis always a strong reference to each key. Therefore, these objects would
not be collected, despite the weak keys.

This strict interpretation, however, is not very useful. Most people expect that a value in atable is only
accessible through its respective key. We can think of the above scenario as a kind of cycle, where the
closure refers to the object that refers back (through the memorizing table) to the closure.

Lua solves the above problem with the concept of ephemeron tabl es In Lua, a table with weak keys
and strong values is an ephemeron table. In an ephemeron table, the accessibility of a key controls the

2Ephemeron tables wereintroduced in Lua5.2. Lua 5.1 till has the problem we described.

187

Garbage

accessihility of its corresponding value. More specifically, consider an entry (k,v) in an ephemeron table.
Thereferenceto visonly strong if thereis some other external reference to k. Otherwise, the collector will
eventually collect k and remove the entry from the table, even if v refers (directly or indirectly) to k.

Finalizers

Although the goal of the garbage collector is to collect Lua objects, it can also help programs to release
external resources. For that purpose, several programming languages offer finalizers. A finalizer isafunc-
tion associated with an object that is called when that object is about to be collected.

Luaimplements finalizers through the metamethod __gc, asthe following exampleillustrates:

o ={x ="hi"}

setnetatable(o, {__gc = function (0) print(o.x) end})
o=nil

col | ect gar bage() --> hi

In this example, we first create a table and give it a metatable that hasa __ gc metamethod. Then we
erase the only link to the table (the global variable 0) and force a complete garbage collection. During the
collection, Lua detects that the table is no longer accessible, and therefore callsits finalizer —the __gc
metamethod.

A subtlety of finalizersin Luaisthe concept of marking an object for finalization. We mark an object for
finalization by setting ametatable for it with anon-null __gc metamethod. If we do not mark the object,
it will not be finalized. Most code we write works naturally, but some strange cases can occur, like here:

o ={x ="hi"}
nt = {}

set net at abl e(o, m)

nt. gc = function (0) print(o.x) end
o =nil

col | ect gar bage() --> (prints nothing)

Here, the metatable we set for 0 does not have a ___gc metamethod, so the object is not marked for
finalization. Even if we later add a__ gc field to the metatable, Lua does not detect that assignment as
something special, so it will not mark the object.

Aswesaid, thisisseldom aproblem; it isnot usual to change metamethods after setting ametatable. If you
really need to set the metamethod later, you can provide any value for the _ gc field, as a placeholder:

o={x ="hi"}

nt = {_ gc = true}

set net at abl e(o, mt)

nt. gc = function (0) print(o.x) end
o=nil

col | ect gar bage() --> hi

Now, because the metatable hasa___gc field, o is properly marked for finalization. There is no problem
if you do not set a metamethod later; Luaonly callsthefinalizer if it is a proper function.

When the collector finalizes several objectsin the same cycle, it calstheir finalizersin the reverse order
that the objects were marked for finalization. Consider the next example, which creates a linked list of
objects with finalizers:

m ={_gc = function (0) print(o[1]) end}

188

Garbage

[ist = nil
for i =1, 3 do
list = setnetatable({i, link = list}, m)
end
[ist = nil
col | ect gar bage()

Thefirst object to be finalized is object 3, which was the last to be marked.

A common misconception isto think that links among objects being collected can affect the order that they
are finalized. For instance, one can think that object 2 in the previous example must be finalized before
object 1 becausethereisalink from 2 to 1. However, links can form cycles. Therefore, they do not impose
any order to finalizers.

Another tricky point about finalizers is resurrection. When a finalizer is called, it gets the object being
finalized as a parameter. So, the object becomes alive again, at least during the finalization. | call thisa
transient resurrection. Whilethefinalizer runs, nothing stopsit from storing the object inaglobal variable,
for instance, so that it remains accessible after the finalizer returns. | call this a permanent resurrection.

Resurrection must be transitive. Consider the following piece of code:

A={x ="this is A"}

B={f = A

setnetatable(B, {__gc = function (o) print(o.f.x) end})
A B = nil

col | ect gar bage() -->thisis A

The finalizer for B accesses A, so A cannot be collected before the finalization of B. Lua must resurrect
both B and A before running that finalizer.

Because of resurrection, Lua collects objects with finalizers in two phases. The first time the collector
detects that an object with a finalizer is not reachable, the collector resurrects the object and queues it to
be finalized. Onceitsfinalizer runs, Lua marks the object as finalized. The next time the collector detects
that the object is not reachable, it deletes the object. If we want to ensure that all garbage in our program
has been actually released, we must call col | ect gar bage twice; the second call will delete the objects
that were finalized during the first call.

The finalizer for each object runs exactly once, due to the mark that Lua puts on finalized objects. If an
object is not collected until the end of a program, Lua will call its finalizer when the entire Lua state
is closed. This last feature allows a form of at exi t functions in Lua, that is, functions that will run
immediately before the program terminates. All we have to do is to create a table with a finalizer and
anchor it somewhere, for instancein aglobal variable:

local t = {__gc = function ()
-- your 'atexit' code cones here
print("finishing Lua progrant)
end}
set net at abl e(t, t)
_grrAa] =t

Another interesting technique allows a program to call a given function every time Lua completes a col-
lection cycle. Asafinalizer runs only once, the trick here is to make each finalization create a new object
to run the next finalizer, asin Figure 23.2, “Running a function at every GC cycle’.

189

Garbage

Figure 23.2. Running a function at every GC cycle

do

local mt = {_ gc = function (0)
-- whatever you want to do
print("new cycle")
-- creates new object for next cycle
set net at abl e({}, getnetatable(o))

end}

-- creates first object

setnetatabl e({}, nt)

end

col | ect gar bage() --> new cycle
col | ect gar bage() --> new cycle
col | ect gar bage() --> new cycle

Theinteraction of objects with finalizers and weak tables also has a subtlety. At each cycle, the collector
clearsthe valuesin weak tables before calling the finalizers, but it clearsthe keys after it. The rationale for
thisbehavior isthat frequently we use tableswith weak keysto hold properties of an object (aswe discussed
in the section called “Object Attributes’), and therefore finalizers may need to access those attributes.
However, we use tables with weak values to reuse live objects; in this case, objects being finalized are
not useful anymore.

The Garbage Collector

Up to version 5.0, Lua used a simple mark-and-sweep garbage collector (GC). This kind of collector is
sometimes called a* stop-the-world” collector. Thismeansthat, from timeto time, Luawould stop running
the main program to perform a whole garbage-collection cycle. Each cycle comprises four phases: mark,
cleaning, sweep, and finalization.

The collector starts the mark phase by marking as alive its root set, which comprises the objects that Lua
has direct access to. In Lua, this set is only the C registry. (As we will see in the section called “The
registry”, both the main thread and the global environment are predefined entriesin thisregistry.)

Any object stored in alive object is reachable by the program, and therefore is marked as alive too. (Of
course, entries in weak tables do not follow this rule.) The mark phase ends when all reachable objects
are marked as alive.

Before starting the sweep phase, Lua performs the cleaning phase, where it handles finalizers and weak
tables. Firdt, it traverses all objects marked for finalization looking for non-marked objects. Those objects
are marked as alive (resurrected) and put in a separate list, to be used in the finalization phase. Then,
Lua traverses its weak tables and removes from them all entries wherein either the key or the value is
not marked.

The sweep phase traverses all Lua objects. (To alow this traversal, Lua keeps all objects it createsin a
linked list.) If an object isnot marked asalive, Luacollectsit. Otherwise, Luaclearsitsmark, in preparation
for the next cycle.

Finally, in the finalization phase, Lua calls the finalizers of the objects that were separated in the cleaning
phase.

The use of areal garbage collector means that Lua has no problems with cycles among object references.
We do not need to take any special action when using cyclic data structures; they are collected like any
other data.

190

Garbage

Inversion 5.1, Luagot an incremental collector. This collector performs the same steps asthe old one, but
it does not need to stop the world whileit runs. Instead, it runsinterleaved with the interpreter. Every time
the interpreter allocates some amount of memory, the collector runs a small step. (This means that, while
the collector is working, the interpreter may change an object's reachability. To ensure the correctness of
the collector, some operations in the interpreter have barriers that detect dangerous changes and correct
the marks of the objectsinvolved.)

Lua 5.2 introduced emergency collection. When a memory allocation fails, Lua forces a full collection

cycleandtriesagaintheallocation. These emergenciescan occur any time Luaallocatesmemory, including
points where Luais not in a consistent state to run code; so, these collections are unable to run finalizers.

Controlling the Pace of Collection

Thefunctioncol | ect gar bage allowsusto exert some control over the garbage collector. It isactually
several functionsin one: its optional first argument, a string, specifies what to do. Some options have an
integer as a second argument, which we call dat a.

The options for the first argument are:

"stop": stops the collector until another call to col | ect gar bage with the option
"restart".

"restart": restarts the collector.

“collect": performs a complete garbage-collection cycle, so that all unreachable objects are

collected and finalized. Thisisthe default option.

"step": performs some garbage-collection work. The second argument, dat a, specifiesthe
amount of work, which is equivalent to what the collector would do after allocating
dat a bytes.

“count": returns the number of kilobytes of memory currently in use by Lua. Thisresultisa

floating-point number that multiplied by 1024 gives the exact total number of bytes.
The count includes dead objects that have not yet been collected.

"set pause": sets the collector's pause parameter. The dat a parameter gives the new value in
percentage points: when dat a is 100, the parameter is set to 1 (100%).

"setsteprmul ": setsthe collector's step multiplier (st epnul) parameter. The new value is given
by dat a, also in percentage points.

Thetwo parameters pause and st epnul control the collector's character. Any garbage collector trades
memory for CPU time. At one extreme, the collector might not run at all. It would spend zero CPU time,
at the price of ahuge memory consumption. At the other extreme, the collector might run acomplete cycle
after every single assignment. The program would use the minimum memory necessary, at the price of
a huge CPU consumption. The default values for pause and st epmul try to find a balance between
those two extremes and are good enough for most applications. In some scenarios, however, it is worth
trying to optimize them.

The pause parameter controls how long the collector waits between finishing a collection and starting
anew one. A pause of zero makes Lua start a new collection as soon as the previous one ends. A pause
of 200% waits for memory usage to double before restarting the collector. We can set a lower pause if
we want to trade more CPU time for lower memory usage. Typically, we should keep this value between
0 and 200%.

191

Garbage

The step-multiplier parameter (st epmul) controls how much work the collector doesfor each kilobyte of
memory allocated. The higher thisvaluethelessincremental the collector. A huge value like 100000000%
makes the collector work like a non-incremental collector. The default value is 200%. Vaues lower than
100% make the collector so slow that it may never finish a collection.

The other options of col | ect gar bage give us control over when the collector runs. Again, the default
control is good enough for most programs, but some specific applications may benefit from a manual
control. Games often need this kind of control. For instance, if we do not want any garbage-collection
work during some periods, we can stop it with acall col | ect gar bage(" st op") and then restart it
with col | ect gar bage("restart"). In systems where we have periodic idle phases, we can keep
the collector stopped and call col | ect gar bage(" st ep", n) duringtheidletime. To set how much
work to do at each idle period, we can either choose experimentally an appropriate value for n or call
col | ect gar bage inaloop, with n set to zero (meaning minimal steps), until the idle period expires.

Exercises

Exercise 23.1: Write an experiment to determine whether Lua actually implements ephemeron tables.
(Remember to call col | ect gar bage to force a garbage collection cycle)) If possible, try your code
both in Lua5.1 and in Lua5.2/5.3 to see the difference.

Exercise 23.2: Consider the first example of the section called “Finalizers’, which creates a table with a
finalizer that only prints amessage when activated. What happensif the program ends without a collection
cycle? What happens if the program callsos. exi t ? What happensif the program ends with an error?

Exercise 23.3: Imagine you have to implement a memorizing table for a function from strings to strings.
Making the table weak will not do the removal of entries, because weak tables do not consider strings as
collectabl e objects. How can you implement memorization in that case?

Exercise 23.4: Explain the output of the program in Figure 23.3, “Finalizers and memory”.
Figure 23.3. Finalizersand memory

|l ocal count = 0O

local m = {_ gc = function () count = count - 1 end}
local a = {}
for i =1, 10000 do

count = count + 1
a[i] = setnetatable({}, nt)
end

col | ect gar bage()
print(collectgarbage("count”) * 1024, count)
a=nil

col I ect gar bage()
print(collectgarbage("count”) * 1024, count)
col I ect gar bage()
print(collectgarbage("count”) * 1024, count)

Exercise 23.5: For this exercise, you need at |east one Lua script that uses lots of memory. If you do not
have one, writeit. (It can be as simple as aloop creating tables.)

* Run your script with different values for pause and st epnul . How they affect the performance and
memory usage of the script? What happens if you set the pause to zero? What happens if you set the

192

Garbage

pause to 1000? What happens if you set the step multiplier to zero? What happens if you set the step
multiplier to 10000007

» Adapt your script so that it keeps full control over the garbage collector. It should keep the collector
stopped and call it from time to time to do some work. Can you improve the performance of your script

with this approach?

193

Chapter 24. Coroutines

We do not need coroutines very often, but whenwedo, it isan unparalleled feature. Coroutinescan literally
turn upside-down the relationship between callers and callees, and this flexibility solves what | call the
"who-is-the-boss" (or "who-has-the-main-loop") problem in software architecture. Thisisageneralization
of several seemingly unrelated problems, such asentanglement in event-driven programs, building iterators
through generators, and cooperative multithreading. Coroutines solve all these problems in simple and
efficient ways.

A coroutine is similar to a thread (in the sense of multithreading): it is a line of execution, with its own
stack, itsown local variables, and its own instruction pointer; it sharesglobal variablesand mostly anything
else with other coroutines. The main difference between threads and coroutines is that a multithreaded
program runs several threads in parallel, while coroutines are collaborative: at any given time, aprogram
with coroutines is running only one of its coroutines, and this running coroutine suspends its execution
only when it explicitly requests to be suspended.

In this chapter we will cover how coroutines work in Lua and how we can use them to solve a diverse
set of problems.

Coroutine Basics

Luapacksall its coroutine-related functionsin thetablecor out i ne. Thefunction cr eat e creates new
coroutines. It has a single argument, a function with the code that the coroutine will run (the coroutine
body). It returns avalue of type " t hr ead" , which represents the new coroutine. Often, the argument to
cr eat e isan anonymous function, like here;

co = coroutine.create(function () print("hi") end)
print(type(co)) --> thread

A coroutine can be in one of four states: suspended, running, normal, and dead. We can check the state
of acoroutine with the function cor out i ne. st at us:

print(coroutine.status(co)) --> suspended
When we create acoroutine, it startsin the suspended state; a coroutine does not run its body automatically
when we create it. The function cor out i ne. r esune (re)starts the execution of a coroutine, changing
its state from suspended to running:

coroutine.resune(co) --> hij
(If you run this code in interactive mode, you may want to finish the previous line with a semicolon, to
suppress the display of the result from r esune.) In this first example, the coroutine body simply prints
"hi " and terminates, leaving the coroutine in the dead state:

print(coroutine.status(co)) --> dead
Until now, coroutines look like nothing more than a complicated way to call functions. The real power of
coroutines stemsfromthefunctionyi el d, which allowsarunning coroutineto suspend itsown execution

so that it can be resumed later. Let us see asimple example:

co = coroutine.create(function ()
for i =1, 10 do

194

Coroutines

print("co", i)
coroutine.yield()
end
end)

Now, the coroutine body does a loop, printing numbers and yielding after each print. When we resume
this coroutine, it startsits execution and runs until thefirstyi el d:

coroutine.resune(co) --> Cco 1

If we check its status, we can see that the coroutine is suspended and, therefore, can be resumed:
print(coroutine.status(co)) --> suspended

From the coroutine's point of view, all activity that happens while it is suspended is happening inside

its call toyi el d. When we resume the coroutine, this call to yi el d finally returns and the coroutine
continues its execution until the next yield or until its end:

coroutine.resune(co) --> Cco 2
coroutine.resune(co) --> Cco 3
coroutine.resune(co) --> Cco 10
coroutine.resune(co) -- prints nothing

During the last call to r esune, the coroutine body finishes the loop and then returns, without printing
anything. If wetry to resumeit again, r esune returns false plus an error message:

print(coroutine.resune(co))
--> fal se cannot resume dead coroutine

Notethat r esun®e runsin protected mode, like pcal | . Therefore, if thereisany error inside acoroutine,
Luawill not show the error message, but instead will return it to ther esune call.

When a coroutine resumes another, it is not suspended; after al, we cannot resume it. However, it is not
running either, because the running coroutine is the other one. So, its own statusiswhat we call the normal
state.

A useful facility in Luais that a pair resume-yield can exchange data. The first r esune, which has no
corresponding yi el d waiting for it, passes its extra arguments to the coroutine main function:

co = coroutine.create(function (a, b, c)
print("co", a, b, ¢ + 2)
end)
coroutine.resunme(co, 1, 2, 3) -->co 1 2 5

A cdl to corout i ne. r esune returns, after the true that signals no errors, any arguments passed to
the corresponding yi el d:

co = coroutine.create(function (a,b)
coroutine.yield(a + b, a - b)
end)
print(coroutine.resune(co, 20, 10)) -->true 30 10

Symmetrically, cor out i ne. yi el d returns any extra arguments passed to the corresponding r esune:

195

Coroutines

co = coroutine.create (function (x)
print("col", x)
print("co2", coroutine.yield())

end)
coroutine.resune(co, "hi") -->col hi
coroutine.resune(co, 4, 5) -->c02 4 5

Finally, when acoroutine ends, any values returned by its main function go to the corresponding r esune:

co = coroutine.create(function ()
return 6, 7
end)
print(coroutine.resune(co)) -->true 6 7

We seldom use all these facilities in the same coroutine, but all of them have their uses.

Although the general concept of coroutinesiswell understood, the details vary considerably. So, for those
that already know something about coroutines, it isimportant to clarify these details before we go on. Lua
offerswhat we call asymmetric coroutines. This meansthat it has a function to suspend the execution of a
coroutine and adifferent function to resume a suspended coroutine. Some other languages offer symmetric
coroutines, where there is only one function to transfer control from one coroutine to another.

Some people call asymmetric coroutines semi-coroutines. However, other people use the same term se-
mi-coroutine to denote a restricted implementation of coroutines, where a coroutine can suspend its exe-
cution only when it is not calling any function, that is, when it has no pending callsin its control stack. In
other words, only the main body of such semi-coroutines can yield. (A generator in Python is an example
of this meaning of semi-coroutines.)

Unlike the difference between symmetric and asymmetric coroutines, the difference between coroutines
and generators (as presented in Python) is a deep one; generators are simply not powerful enough to im-
plement some of the most interesting constructions that we can write with full coroutines. Lua offersfull,
asymmetric coroutines. Those that prefer symmetric coroutines can implement them on top of the asym-
metric facilities of Lua (see Exercise 24.6).

Who Is the Boss?

One of the most paradigmatic examples of coroutines is the producer—consumer problem. Let us suppose
that we have a function that continually produces values (e.g., reading them from a file) and another
function that continually consumes these values (e.g., writing them to another file). These two functions
could look like this:

function producer ()
whil e true do
local x = io.read() -- produce new val ue
send(x) -- send it to consumer
end
end

function consuner ()
while true do
| ocal x = receive() -- receive value from producer
io.wite(x, "\n") -- consune it
end

196

Coroutines

end

(To simplify thisexample, both the producer and the consumer run forever. It isnot hard to change them to
stop when thereisno more datato handle.) The problem hereishow to match send withr ecei ve.ltisa
typical instance of the “who-has-the-main-loop” problem. Both the producer and the consumer are active,
both have their own main loops, and both assume that the other is a callable service. For this particular
example, it iseasy to change the structure of one of the functions, unrolling itsloop and making it apassive
agent. However, this change of structure may be far from easy in other real scenarios.

Coroutines provide an ideal tool to match producers and consumers without changing their structure, be-
cause a resume-yield pair turns upside-down the typical relationship between the caller and its callee.
When acoroutine callsyi el d, it does not enter into a new function; instead, it returns a pending call (to
resumne). Similarly, acall tor esune does not start a new function, but returns a call to yi el d. This
property is exactly what we need to match asend with ar ecei ve in such away that each one acts as
if it were the master and the other the dave. (That is why | called this the "who-is-the-boss' problem.)
So, r ecei ve resumes the producer, so that it can produce a new value; and send yields the new value
back to the consumer:

function receive ()
| ocal status, value = coroutine.resune(producer)
return val ue

end

function send (x)
coroutine.yield(x)
end

Of course, the producer must now run inside a coroutine:
producer = coroutine.create(producer)

In this design, the program starts by calling the consumer. When the consumer needs an item, it resumes
the producer, which runs until it has an item to give to the consumer, and then stops until the consumer
resumes it again. Therefore, we have what we call a consumer-driven design. Another way to write the
program is to use a producer-driven design, where the consumer is the coroutine. Although the details
seem reversed, the overall idea of both designsis the same.

We can extend this design with filters, which are tasks that sit between the producer and the consumer
doing some kind of transformation in the data. A filter is a consumer and a producer at the same time,
S0 it resumes a producer to get new values and yields the transformed values to a consumer. As atrivial
example, we can add to our previous code afilter that inserts aline number at the beginning of each line.
The codeisin Figure 24.1, “Producer—consumer with filters’.

197

Coroutines

Figure 24.1. Producer—consumer with filters

function receive (prod)
| ocal status, value = coroutine.resune(prod)
return val ue

end

function send (Xx)
coroutine.yiel d(x)
end

function producer ()
return coroutine.create(function ()
while true do
local x = io.read() -- produce new val ue
send(x)
end
end)
end

function filter (prod)
return coroutine.create(function ()
for line = 1, math. huge do

local x = receive(prod) -- get new val ue
X = string.format ("%d %", line, Xx)
send(x) -- send it to consuner
end
end)
end

function consuner (prod)
while true do
local x = receive(prod) -- get new val ue
io.wite(x, "\n") -- consume new val ue
end
end

consuner (filter(producer()))
Itslast line ssimply creates the components it needs, connects them, and starts the final consumer.

If you thought about POSIX pipes after reading the previous example, you are not alone. After all, corou-
tines are akind of (non-preemptive) multithreading. With pipes, each task runsin a separate process; with
coroutines, each task runsin aseparate coroutine. Pipes provide abuffer between the writer (producer) and
the reader (consumer) so there is some freedom in their relative speeds. This isimportant in the context
of pipes, because the cost of switching between processes is high. With coroutines, the cost of switching
between tasks is much smaller (roughly equivalent to a function call), so the writer and the reader can
run hand in hand.

Coroutines as lterators

We can see loop iterators as a particular example of the producer—consumer pattern: an iterator produces
itemsto be consumed by the loop body. Therefore, it seems appropriate to use coroutinesto writeiterators.
Indeed, coroutines provide apowerful tool for thistask. Again, thekey featureistheir ability to turninside

198

Coroutines

out the relationship between caller and callee. With this feature, we can write iterators without worrying
about how to keep state between successive cals.

To illustrate this kind of use, let uswrite an iterator to traverse all permutations of a given array. It is not
an easy task to write directly such an iterator, but it is not so difficult to write a recursive function that
generates all these permutations. Theideaissimple: put each array element in thelast position, in turn, and
recursively generate all permutations of the remaining elements. The code isin Figure 24.2, “ A function
to generate permutations’.

Figure 24.2. A function to generate per mutations

function perngen (a, n)

n =n or #a -- default for 'n'" is size of 'a
if n<=1then -- nothing to change?
printResult(a)
el se
for i =1, n do

-- put i-th elenent as the | ast one
a[n], a[i] = a[i], a[n]

-- generate all permutations of the other elenents
pernmgen(a, n - 1)

-- restore i-th el enent
a[n], a[i] = a[i], a[n]
end
end
end

To put it to work, we must define an appropriate pr i nt Resul t function and call per ngen with proper
arguments:

function printResult (a)

for i =1, #a do io.wite(a[i], " ") end
io.wite("\n")
end
permgen ({1, 2,3, 4})
-->2341
-->3241
-->3421
-->2134
-->12 34

After we have the generator ready, it is an automatic task to convert it to an iterator. First, we change
print Result toyi el d:

function perngen (a, n)
n =n or #a
if n<=1then
coroutine.yield(a)
el se
as before

199

Coroutines

Then, we define a factory that arranges for the generator to run inside a coroutine and creates the iterator
function. The iterator simply resumes the coroutine to produce the next permutation:

function permutations (a)
l ocal co = coroutine.create(function () perngen(a) end)
return function () -- iterator
| ocal code, res = coroutine.resume(co)
return res
end
end

With this machinery in place, it istrivial to iterate over all permutations of an array with afor statement:

for p in pernutations{"a", "b", "c"} do
print Resul t (p)

end
-->
-->
-->
-->
-->
-->

QT O O OT
L 0 TO
O 0O ocTO2 Q0

The function per mut at i ons uses a common pattern in Lua, which packs a call to resume with its
corresponding coroutine inside afunction. This pattern is so common that L ua provides a specia function
forit: corouti ne. wr ap. Likecr eat e, wr ap creates a new coroutine. Unlike cr eat e, w ap does
not return the coroutineitself; instead, it returnsafunction that, when called, resumesthe coroutine. Unlike
the original r esume, that function does not return an error code as its first result; instead, it raises the
error in case of error. Using wr ap, we can write per mut at i ons asfollows:

function pernutations (a)
return coroutine.wap(function () perngen(a) end)
end

Usually, cor out i ne. wr ap issimpler to usethan cor out i ne. cr eat e. It gives us exactly what we
need from a coroutine: afunction to resume it. However, it is also less flexible. There is no way to check
the status of a coroutine created with wr ap. Moreover, we cannot check for runtime errors.

Event-Driven Programming

It may not be obvious at first sight, but the typical entanglement created by conventional event-driven
programming is another consequence of the who-is-the-boss problem.

In atypical event-driven platform, an external entity generates eventsto our program in a so-called event
loop (or run loop). It is clear who isthe bossthere, and it is not our code. Our program becomes a dave of
the event loop, and that makesit acollection of individual event handlerswithout any apparent connection.

To make things a little more concrete, let us assume that we have an asynchronous 1/0 library similar to
I i buv. Thelibrary hasfour functions that concern our small example:

['ib.runloop();

lib.readline(stream call back);
lib.witeline(stream |ine, callback);
[ib.stop();

200

Coroutines

The first function runs the event loop, which will process the incoming events and call the associated
callbacks. A typical event-driven programinitializes some stuff and then call sthisfunction, which becomes
the main loop of the application. The second function instructsthelibrary to read aline of the given stream
and, when it isdone, to call the given callback function with the result. The third function is similar to the
second, but for writing aline. The last function breaks the event loop, usually to finish the program.

Figure 24.3, “An ugly implementation of the asynchronous I/O library” presents an implementation for
such alibrary.

Figure 24.3. An ugly implementation of the asynchronous /O library

| ocal cndQueue = {} -- queue of pendi ng operations
local lib = {}

function lib.readline (stream call back)
| ocal nextCnd = function ()
cal | back(streamread())
end
tabl e. i nsert (cndQueue, next Cnd)
end

function lib.witeline (stream |ine, callback)
| ocal nextCnd = function ()
cal | back(streamwite(line))
end
tabl e. i nsert (cndQueue, next Cnd)
end

function lib.stop ()
tabl e.insert(cndQueue, "stop")
end

function lib.runloop ()
while true do
| ocal nextCnd = table.renmpve(cnmdQueue, 1)

i f next == "stop" then
br eak
el se
next Cnd() -- perform next operation
end
end
end

return lib

It isavery ugly implementation. Its “event queue” isin fact alist of pending operations that, when per-
formed (synchronously!), will generate the events. Despiteitsuglyness, it fulfillsthe previous specification
and, therefore, allows usto test the following examples without the need for areal asynchronous library.

Let usnow write atrivial program with that library, which reads all lines from itsinput stream into atable
and writes them to the output stream in reverse order. With traditional 1/0, the program would belike this:

local t = {}
local inp = io.input() -- input stream

201

Coroutines

[ocal out = io.output() -- output stream

for Iine in inp:lines() do

t[#t + 1] = line
end
for i = #t, 1, -1 do
out:wite(t[i], "\n")
end

Now we rewrite that program in an event-driven style on top of the asynchronous 1/0 library; the result
isin Figure 24.4, “Reversing afile in event-driven fashion”.

Figure 24.4. Reversing afilein event-driven fashion

local lib = require "async-1lib"
local t = {}

local inp = io.input()

| ocal out = io0.output()

| ocal i

-- write-line handl er
| ocal function putline ()

i =i -1
if i == 0 then -- no nore lines?
lib.stop() -- finish the main | oop
el se -- wite line and prepare next one
lib.witeline(out, t[i] .. "\n", putline)
end
end

-- read-1line handl er
| ocal function getline (line)

if line then -- not ECF?
t[#t + 1] = line -- save line
lib.readline(inp, getline) -- read next one
el se -- end of file
i = #t + 1 -- prepare wite | oop
putline() -- enter wite | oop
end
end
lib.readline(inp, getline) -- ask to read first line
i b.runloop() -- run the main | oop

Asistypical in an event-driven scenario, all our loops are gone, because the main loop isin the library.
They got replaced by recursive calls disguised as events. We could improve things by using closuresin
a continuation-passing style, but we still could not write our own loops; we would have to rewrite them
through recursion.

Coroutines allow us to reconcile our loops with the event loop. The key ideaisto run our main code as a
coroutinethat, at each request to the library, setsthe callback asafunction to resumeitself and then yields.
Figure 24.5, “Running synchronous code on top of the asynchronous library” uses this ideato implement
alibrary that runs conventional, synchronous code on top of the asynchronous /O library.

202

Coroutines

Figure 24.5. Running synchronous code on top of the asynchronouslibrary
local lib = require "async-1ib"

function run (code)
| ocal co = coroutine.wap(function ()

code()

lib.stop() -- finish event | oop when done
end)
co() -- start coroutine
[ib.runloop() -- start event |oop

end

function putline (stream 1line)
| ocal co = coroutine.running() -- calling coroutine
| ocal callback = (function () coroutine.resune(co) end)
l[ib.witeline(stream 1line, call back)
coroutine.yield()

end

function getline (stream 1line)
| ocal co = coroutine.running() -- calling coroutine
| ocal callback = (function (lI) coroutine.resume(co, |) end)
lib.readline(stream call back)
| ocal line = coroutine.yield()
return line
end

As its name implies, the r un function runs the synchronous code, which it takes as a parameter. It first
creates a coroutine to run the given code and finish the event loop when it is done. Then, it resumes this
coroutine (which will yield at itsfirst 1/0O call) and then enters the event loop.

Thefunctionsget | i ne and put | i ne simulate synchronous 1/0. As outlined, both call an appropriate
asynchronous function passing as the callback a function that resumes the calling coroutine. (Note the
use of the cor out i ne. r unni ng function to access the calling coroutine.) After that, they yield, and
the control goes back to the event loop. Once the operation completes, the event loop calls the callback,
resuming the coroutine that triggered the operation.

With that library in place, we are ready to run synchronous code on the top of the asynchronous library.
As an example, the following fragment implements once more our reverse-lines example:

run(function ()
local t = {}
[ocal inp
| ocal out

i 0.1nput()
i 0.out put ()

while true do

I ocal line = getline(inp)
if not line then break end
t[#t + 1] = line

end

for i = #t, 1, -1 do
putline(out, t[i] .. "\n")

end

203

Coroutines

end)

The code is equal to the original synchronous one, except that it uses get /put | i ne for I/O and runs
insideacall tor un. Underneath its synchronous structure, it actually runsin an event-driven fashion, and
it isfully compatible with other parts of the program written in a more typical event-driven style.

Exercises

Exercise 24.1: Rewrite the producer—consumer example in the section called “Who Is the Boss?’ using a
producer-driven design, where the consumer is the coroutine and the producer is the main thread.

Exercise 24.2: Exercise 6.5 asked you to write a function that prints all combinations of the elementsin
agiven array. Use coroutines to transform this function into a generator for combinations, to be used like

here:
for ¢ in conbinations({"a", "b", "c"}, 2) do
printResult(c)
end

Exercise 24.3: In Figure 24.5, “ Running synchronous code on top of the asynchronous library”, both the
functionsget | i ne and put | i ne create a new closure each time they are called. Use memorization to
avoid thiswaste.

Exercise 24.4: Write a line iterator for the coroutine-based library (Figure 24.5, “Running synchronous
code on top of the asynchronous library”), so that you can read the file with afor loop.

Exercise 24.5: Can you use the coroutine-based library (Figure 24.5, “ Running synchronous code on top
of the asynchronous library”) to run multiple threads concurrently? What would you have to change?

Exercise24.6: Implement at r ansf er functioninLua. If youthink about resume-yield assimilar to call—
return, atransfer would be like a goto: it suspends the running coroutine and resumes any other coroutine,
given asan argument. (Hint: use akind of dispatch to control your coroutines. Then, atransfer would yield
to the dispatch signaling the next coroutine to run, and the dispatch would resume that next coroutine.)

204

Chapter 25. Reflection

Reflection is the ability of a program to inspect and modify some aspects of its own execution. Dynamic

languages like Lua naturally support several reflective features: environments allow run-time inspection
of global variables; functionsliket ype and pai r s allow run-time inspection and traversal of unknown
data structures; functions like | oad and r equi r e alow a program to add code to itself or update its
own code. However, many things are still missing: programs cannot introspect on their local variables,
programs cannot trace their execution, functions cannot know their calers, etc. The debug library fills
many of these gaps.

Thedebug library comprisestwo kinds of functions: introspective functions and hooks. I ntrospective func-
tions alow us to inspect several aspects of the running program, such as its stack of active functions,
current line of execution, and values and names of local variables. Hooks allow us to trace the execution
of aprogram.

Despite its name, the debug library does not give us a debugger for Lua. Nevertheless, it provides al the
primitives that we need to write our own debuggers, with varying levels of sophistication.

Unlike the other libraries, we should use the debug library with parsimony. First, some of itsfunctionality
is not exactly famous for performance. Second, it breaks some sacred truths of the language, such as that
we cannot access alocal variable from outside its lexical scope. Although the library is readily available
asastandard library, | prefer to require it explicitly in any chunk that usesit.

Introspective Facilities

The main introspective function in the debug library isget i nf o. Itsfirst parameter can be afunction or
a stack level. When we call debug. get i nf o(f 0o) for afunction f 0o, it returns a table with some
data about this function. The table can have the following fields:

sour ce: This field tells where the function was defined. If the function was defined in
astring (through a call to | oad), sour ce isthat string. If the function was
defined in afile, sour ce isthe file name prefixed with an at-sign.

short _src: This field gives a short version of sour ce (up to 60 characters). It is useful
for error messages.

I i nedefi ned: This field gives the number of the first line in the source where the function
was defined.

| astlinedefined: Thisfieldgivesthe number of thelast linein the source where the function was
defined.

what : This field tells what this function is. Options are " Lua" if f oo is aregular
Luafunction, " C" if itisa C function, or " mai n" if it is the main part of a
Lua chunk.

name: Thisfield gives areasonable namefor the function, such asthe name of aglobal

variable that stores this function.

nanewhat : This field tells what the previous field means. This field can be " gl obal ",
"l ocal ","met hod","field",or"" (theempty string). The empty string
means that Lua did not find a name for the function.

nups: Thisisthe number of upvalues of that function.

205

Reflection

npar ans: Thisisthe number of parameters of that function.
i svararg: Thistells whether the function is variadic (a Boolean).
activelines: Thisfield isatable representing the set of active lines of the function. An active

lineisaline with some code, as opposed to empty lines or lines containing only
comments. (A typical use of this information is for setting breakpoints. Most
debuggers do not allow usto set a breakpoint outside an activeline, asit would
be unreachable.)

func: Thisfield has the function itself.

Whenf 0o isaC function, Luadoes not have much dataabout it. For such functions, only thefieldswhat ,
name, namewhat , nups, and f unc are meaningful.

When we call debug. get i nf o(n) for some number n, we get data about the function active at that
stack level. A stack level isanumber that refersto aparticular function that is active at that moment. The
function calling get i nf o haslevel one, the function that called it haslevel two, and so on. (At level zero,
we get dataabout get i nf o itself, aC function.) If n islarger than the number of active functions on the
stack, debug. get i nf o returns nil. When we query an active function, by calling debug. geti nfo
with a stack level, the resulting table has two extrafields: cur r ent | i ne, the line where the function is
at that moment; andi st ai | cal | (aBoolean), trueif thisfunction was called by atail call. (In this case,
thereal caller of thisfunction is not on the stack anymore.)

The field nane istricky. Remember that, because functions are first-class values in Lua, a function may
not have a name, or may have several names. Luatries to find a name for a function by looking into the
code that called the function, to see how it was called. This method works only when we call get i nf o
with a number, that is, when we ask information about a particular invocation.

The function get i nf o is not efficient. Lua keeps debug information in a form that does not impair
program execution; efficient retrieval is asecondary goal here. To achieve better performance, get i nf o
has an optional second parameter that selects what information to get. In this way, the function does not
waste time collecting data that the user does not need. The format of this parameter is a string, where each
letter selects agroup of fields, according to the following table:

n selects name and nanmewhat
f selectsf unc
S selects sour ce, short _src, what, | i nede-

fined,and! astl i nedefi ned

| selectscurrent | i ne

L selectsacti vel i nes

u selectsnup, npar ans, andi svar ar g

The following function illustrates the use of debug. get i nf o by printing a primitive traceback of the
active stack:

function traceback ()

for level = 1, math. huge do
| ocal info = debug.getinfo(level, "SI")
if not info then break end
if info.what == "C' then -- is a C function?
print(string.format ("%l\tC function", |evel))
el se -- a Lua function

print(string.format ("%\t[%]: %", |evel,

206

Reflection

i nfo.short_src, info.currentline))
end
end
end

It is not difficult to improve this function, by including more data from geti nfo. Actudly,
the debug library offers such an improved version, the function t r aceback. Unlike our version,
debug. t raceback doesnot print its result; instead, it returns a (potentially long) string containing the
traceback:

> print(debug. traceback())
stack traceback:
stdin:1: in main chunk
[Q: in?

Accessing local variables

We can inspect thelocal variables of any active functionwith debug. get | ocal . Thisfunction hastwo
parameters: the stack level of the function we are querying and a variable index. It returns two values: the
nameand the current value of thevariable. If thevariableindex islarger than the number of activevariables,
get | ocal returnsnil. If the stack level isinvalid, it raises an error. (We can use debug. getinfoto
check the validity of the stack level.)

Lua numbers local variables in the order that they appear in a function, counting only the variables that
are active in the current scope of the function. For instance, consider the following function:

function foo (a, b)
| ocal x
do local ¢ = a - b end
local a =1
while true do
| ocal nanme, val ue = debug.getlocal (1, a)
if not nane then break end
print (nane, val ue)
a=a+1
end
end

Thecal f oo(10, 20) will print this:

a 10
b 20
X ni |
a 4

The variable with index 1isa (thefirst parameter), 2isb, 3isx, and 4 istheinner a. At the point where
get | ocal iscalled, c isaready out of scope, while nane and val ue are not yet in scope. (Remember
that local variables are only visible after their initialization code.)

Starting with Lua 5.2, negative indices get information about the extra arguments of a variadic function:
index -1 refersto thefirst extraargument. The name of thevariableinthiscaseisalways" (*vararg) ".

We can also change the values of local variables, with debug. set | ocal . Itsfirst two parametersare a
stack level and avariableindex, likeinget | ocal . Itsthird parameter is the new value for the variable.
It returns the variable name or nil if the variable index is out of scope.

207

Reflection

Accessing non-local variables

The debug library aso alows us to access the non-local variables used by a Luafunction, with get up-
val ue. Unlikelocal variables, the non-local variablesreferred by afunction exist even when the function
isnot active (thisiswhat closures are about, after all). Therefore, the first argument for get upval ue is
not a stack level, but a function (a closure, more precisely). The second argument is the variable index.
Lua numbers non-local variables in the order in which they are first referred in a function, but this order
is not relevant, because a function cannot access two non-local variables with the same name.

We can also update non-local variables, with debug. set upval ue. Asyou might expect, it has three
parameters. a closure, a variable index, and the new value. Like set | ocal , it returns the name of the
variable, or nil if the variable index is out of range.

Figure 25.1, “Getting the value of a variable” shows how we can access the value of a variable from a
calling function, given the variable's name.

Figure 25.1. Getting the value of a variable
function getvarval ue (nane, |evel, isenv)
| ocal val ue
| ocal found = fal se

level = (level or 1) + 1

-- try local variables

for i =1, math. huge do
[ocal n, v = debug.getlocal (level, i)
if not n then break end
if n == nane then
value = v
found = true
end
end
if found then return "local", value end

-- try non-local variables
| ocal func = debug.getinfo(level, "f").func
for i =1, math. huge do

| ocal n, v = debug. getupval ue(func, i)

if not n then break end

if n == nane then return "upval ue", v end
end

if isenv then return "noenv" end -- avoid | oop

-- not found; get value fromthe environnment

local _, env = getvarvalue("_ENV', level, true)
if env then
return "global", env[nane]
el se -- no _ENV avail abl e
return "noenv"
end
end

208

Reflection

It can be used like here:

> |ocal a = 4; print(getvarvalue("a")) --> | ocal 4
> a = "xx"; print(getvarvalue("a")) --> gl obal XX

The parameter | evel tells where on the stack the function should look; one (the default) means the
immediate caller. The plus one in the code corrects the level to include the call to get var val ue itself.
| will explain the parameter i senv in amoment.

The function first looks for alocal variable. If there is more than one local with the given name, it must
get the one with the highest index; thus, it must always go through the whole loop. If it cannot find any
local variable with that name, then it tries the non-local variables. For that, it gets the calling closure,
with debug. get i nf o, and then it traversesits non-local variables. Finaly, if it cannot find a non-local
variable with that name, then it goes for a global variable: it calls itself recursively to access the proper
_ENV variable and then looks up the name in that environment.

The parameter i senv avoids atricky problem. It tells when we are in a recursive call, looking for the
variable _ENV to query aglobal name. A function that uses no global variables may not have an upvalue
_ENV. Inthat case, if wetried to consult _ENV as a global, we would enter a recursive loop, because we
would need _ENV to get its own value. So, when i senv is true and the function cannot find a local or
an upvalue, it does not try the global variables.

Accessing other coroutines

All introspective functions from the debug library accept an optional coroutine as their first argument, so
that we can inspect the coroutine from the outside. For instance, consider the next example:

co = coroutine.create(function ()
local x = 10
coroutine.yield()
error("sone error")

end)

coroutine.resune(co)
print (debug. traceback(co))

Thecdl tot r aceback will work on the coroutine co, resulting in something like this:
stack traceback:
[C: in function "yield
temp:3: in function <tenp: 1>

The trace does not go through the call to r esume, because the coroutine and the main program run in
different stacks.

When a coroutine raises an error, it does not unwind its stack. This means that we can inspect it after the
error. Continuing our example, the coroutine hits the error if we resumeit again:

print(coroutine.resune(co)) --> fal se tenp: 4: some error
Now, if we print its traceback, we get something like this:

stack traceback:
[C: in function "error’

209

Reflection

temp:4: in function <tenp: 1>
We can also inspect local variables from a coroutine, even after an error:

print (debug. getl ocal (co, 1, 1)) --> X 10

Hooks

The hook mechanism of the debug library allows usto register afunction to be called at specific eventsas
aprogram runs. There are four kinds of events that can trigger a hook:

« call events happen every time Lua calls afunction;

* return events happen every time a function returns;

line events happen when Lua starts executing a new line of code;

 count events happen after a given number of instructions. (Instructions here mean internal opcodes,
which we visited briefly in the section called “ Precompiled Code’.)

Lua calls all hooks with a string argument that describes the event that generated the call: " cal | " (or
“tail call"),"return","line",or"count".Forlineevents, it aso passesasecond argument,
the new line number. To get more information inside a hook, we have to call debug. get i nf o.

Toregister ahook, we call debug. set hook with two or three arguments: the first argument is the hook
function; the second argument is a mask string, which describes the events we want to monitor; and the
optional third argument is a number that describes at what frequency we want to get count events. To
monitor the call, return, and line events, we add their first letters (c, r, or |) into the mask string. To
monitor the count event, we simply supply a counter as the third argument. To turn off hooks, we call
set hook with no arguments.

As asimple example, the following code installs a primitive tracer, which prints each line the interpreter
executes:

debug. set hook(print, "I")

Thiscall smply installspr i nt asthe hook function and instructs Luato call it only at line events. A more
elaborated tracer can use get i nf o to add the current file name to the trace:

function trace (event, line)
| ocal s = debug. getinfo(2).short_src
print(s .. ":" l'ine)

end

debug. set hook(trace, "I")

A useful function to use with hooksisdebug. debug. This simple function gives us a prompt that exe-
cutes arbitrary Lua commands. It is roughly equivalent to the following code:

function debugl ()
while true do
io.wite("debug> ")
local line = io.read()
if line == "cont" then break end

210

Reflection

assert(load(line))()
end
end

When the user enters the “command” cont , the function returns. The standard implementation is very
simple and runs the commands in the global environment, outside the scope of the code being debugged.
Exercise 25.4 discusses a better implementation.

Profiles

Besides debugging, another common application for reflection is profiling, that is, an analysis of the be-
havior of a program regarding its use of resources. For atiming profile, it is better to use the C interface:
the overhead of a Lua call for each hook is too high and may invalidate any measurement. However, for
counting profiles, Lua code does a decent job. In this section, we will develop a rudimentary profiler that
lists the number of times each function in a program is called during a run.

The main data structures of our program are two tables: one maps functions to their call counters, and the
other maps functions to their names. The indices to both tables are the functions themselves.

| ocal Counters = {}
| ocal Names = {}

We could retrieve the function names after the profiling, but remember that we get better resultsif we get
the name of afunction whileit is active, because then Lua can |ook at the code that is calling the function
to find its name.

Now we define the hook function. Itsjob is to get the function being called, increment the corresponding
counter, and collect the function name. The codeisin Figure 25.2, “Hook for counting number of calls’.

Figure 25.2. Hook for counting number of calls

[ocal function hook ()
| ocal f = debug.getinfo(2, "f").func
| ocal count = Counters[f]
if count == nil then -- first tine 'f' is called?
Counters[f] =1
Nanes[f] = debug.getinfo(2, "Sn")

el se -- only increment the counter
Counters[f] = count + 1
end
end

The next step is to run the program with that hook. We will assume that the program we want to analyze
isin afile and that the user gives thisfile name as an argument to the profiler, like this:

% |l ua profiler main-prog
With this scheme, the profiler can get the filenamein ar g[1] , turn on the hook, and run the file:

local f = assert(loadfile(arg[1]))

debug. set hook(hook, "c") =-- turn on the hook for calls
f() -- run the main program
debug. set hook() -- turn off the hook

211

Reflection

The last step isto show the results. The function get nane, in Figure 25.3, “ Getting the name of a func-
tion”, produces a name for a function.

Figure 25.3. Getting the name of a function

function getnane (func)
l ocal n = Nanes[func]

if n.what == "C' then
return n.nane
end
local Ic = string.format("[%]: %", n.short_src, n.linedefined)
if n.what ~= "main" and n.namewhat ~= "" then
return string.format ("% (%)", |lc, n.name)
el se
return lc
end
end

Because function names in Lua are so uncertain, we add to each function its location, given as a pair
file:line. If afunction has no name, then we use just its location. For a C function, we use only its name
(asit has no location). After that definition, we print each function with its counter:

for func, count in pairs(Counters) do
print (get name(func), count)
end

If we apply our profiler to the Markov example that we devel oped in Chapter 19, Interlude: Markov Chain
Algorithm, we get aresult like this:

[markov. lua]: 4 884723
wite 10000
[markov.lua]:0 1

read 31103

sub 884722

This result means that the anonymous function at line 4 (which is the iterator function defined inside
al | wor ds) was called 884723 times, wri t e (i 0. wri t) was called 10000 times, and so on.

There are several improvements that we can make to this profiler, such asto sort the output, to print better
function names, and to embellish the output format. Nevertheless, this basic profiler is already useful as
itis.

Sandboxing

Inthesectioncalled“_ENVand| oad”, wesaw how easy itistousel oad torunalLuachunk inarestricted
environment. Because L uadoes all communication with the external world through library functions, once
we remove these functions, we also remove the possibility of a script to have any effect on the external
world. Nevertheless, we are still susceptible to denial of service (DoS) attacks, with a script wasting large
amounts of CPU time or memory. Reflection, in the form of debug hooks, provides an interesting approach
to curb such attacks.

A first step isto use acount hook to limit the number of instructionsthat a chunk can execute. Figure 25.4,
“A naive sandbox with hooks’ shows a program to run agiven file in that kind of sandbox.

212

Reflection

Figure 25.4. A naive sandbox with hooks
| ocal debug = require "debug"

-- maxi num "steps” that can be perfornmed
| ocal steplimt = 1000

| ocal count =0 -- counter for steps

| ocal function step ()
count = count + 1
if count > steplimt then
error("script uses too much CPU")
end
end

-- load file
| ocal f = assert(loadfile(arg[1], "t", {}))

debug. set hook(step, "", 100) -- set hook
f() -- run file

The program loads the given file, sets the hook, and runsthefile. It sets the hook as a count hook, so that
Lua calls the hook every 100 instructions. The hook (the function st ep) only increments a counter and
checksit against afixed limit. What can possibly go wrong?

Of course, we must restrict the size of the chunks that we load: a huge chunk can exhaust memory only by
being loaded. Another problem isthat aprogram can consume huge amounts of memory with surprisingly
few instructions, as the next fragment shows:

"123456789012345"

local s =
=1, 36 dos =s .. s end

for i

With less than 150 instructions, this tiny fragment will try to create a string with one terabyte. Clearly,
restricting only steps and program size is not enough.

One improvement is to check and limit memory use in the st ep function, as we show in Figure 25.5,
“Controlling memory use”.

213

Reflection

Figure 25.5. Controlling memory use

-- maxi rum nmenory (in KB) that can be used
local memimt = 1000

-- maxi num "steps” that can be perfornmed
| ocal steplimt = 1000

[ocal function checknmem ()
if collectgarbage("count™) > meminmt then
error("script uses too nmuch nenory")
end
end

| ocal count = 0
| ocal function step ()
checkmem()
count = count + 1
if count > steplimt then
error("script uses too much CPU")
end
end

as before

Because memory can grow so fast with so few instructions, we should set avery low limit or call the hook
in small steps. More concretely, a program can do a thousandfold increase in the size of a string in 40
instructions. So, either we call the hook with a higher frequency than every 40 steps or we set the memory
limit to one thousandth of what we can really afford. | would probably choose both.

A subtler problem isthe string library. We can call any function from thislibrary as a method on a string.
Therefore, we can call these functions even if they are not in the environment; literal strings smuggle them
into our sandbox. No function in the string library affects the external world, but they bypass our step
counter. (A call toaC function countsasoneinstruction in Lua.) Somefunctionsin the string library can be
quite dangerousfor DoS attacks. For instance, thecall (" x") : rep(2730) swallows1 GB of memoryin
asingle step. As another example, Lua5.2 takes 13 minutes to run the following call in my new machine:

s = "01234567890123456789012345678901234567890123456789"
Sofind(". *. ok x x x k ok x xy)

An interesting way to restrict the access to the string library isto use call hooks. Every time afunction is
called, we check whether it isauthorized. Figure 25.6, “ Using hooksto bar callsto unauthorized functions”
implements this idea.

214

Reflection

Figure 25.6. Using hooksto bar callsto unauthorized functions
| ocal debug = require "debug"

-- maxi num "steps” that can be perfornmed
| ocal steplimt = 1000

| ocal count =0 -- counter for steps

-- set of authorized functions
| ocal validfunc = {
[string.upper] = true,
[string.lower] = true,
-- other authorized functions

}

| ocal function hook (event)
if event == "call" then
| ocal info = debug.getinfo(2, "fn")
if not validfunc[info.func] then
error("calling bad function: "
end
end
count = count + 1
if count > steplimt then
error("script uses too nuch CPU")
end
end

(info.name or "?"))

-- load chunk
local f = assert(loadfile(arg[1], "t", {}))

debug. set hook(hook, "", 100) -- set hook
f() -- run chunk

In that code, the table val i df unc represents a set with the functions that the program can call. The
function hook uses the debug library to access the function being called and then checks whether that
functionisintheval i df unc set.

An important point in any sandbox implementation is what functions we allow inside the sandbox. Sand-
boxes for data description can restrict all or most functions. Other sandboxes must be more forgiving,
maybe offering their own restricted implementations for some functions (e.g., | oad restricted to small
text chunks, file access restricted to a fixed directory, or pattern matching restricted to small subjects).

We should never think in terms of what functionsto remove, but what functionsto add. For each candidate,
we must carefully consider its possible weaknesses, which may be subtle. Asarule of thumb, all functions
from the mathematical library are safe. Most functions from the string library are safe; just be careful with
resource-consuming ones. The debug and package libraries are off-limits; almost everything there can be
dangerous. The functions set net at abl e and get net at abl e are aso tricky: first, they can allow
access to otherwise inaccessible values; moreover, they allow the creation of tables with finalizers, where
someone can install all sorts of “time bombs” (code that can be executed outside the sandbox, when the
tableis collected).

215

Reflection

Exercises

Exercise 25.1: Adapt get var val ue (Figure 25.1, “Getting the value of avariable”) to work with dif-
ferent coroutines (like the functions from the debug library).

Exercise 25.2: Write a function set var val ue similar to get var val ue (Figure 25.1, “Getting the
value of avariable’).

Exercise 25.3: Write aversion of get var val ue (Figure 25.1, “Getting the value of a variable”) that
returns a table with all variables that are visible at the calling function. (The returned table should not
include environmental variables; instead, it should inherit them from the original environment.)

Exercise 25.4: Write an improved version of debug. debug that runs the given commands as if they
werein the lexical scope of the calling function. (Hint: run the commands in an empty environment and
usethe i ndex metamethod attached to the function get var val ue to do all accessesto variables.)

Exercise 25.5: Improve the previous exercise to handle updates, too.

Exercise 25.6: Implement some of the suggested improvements for the basic profiler that we developed
in the section called “Profiles’.

Exercise 25.7: Write alibrary for breakpoints. It should offer at least two functions:

set br eakpoi nt (function, |ine) --> returns handl e
renovebr eakpoi nt (handl e)

We specify abreakpoint by afunction and alineinside that function. When the program hits a breakpoint,
the library should call debug. debug. (Hint: for a basic implementation, use a line hook that checks
whether it isin abreakpoint; to improve performance, use acall hook to trace program execution and only
turn on the line hook when the program is running the target function.)

Exercise 25.8: One problem with the sandbox in Figure 25.6, “Using hooks to bar calls to unauthorized
functions” is that sandboxed code cannot call its own functions. How can you correct this problem?

216

Chapter 26. Interlude: Multithreading
with Coroutines

In thisinterlude, we will see an implementation of a multithreading system on top of coroutines.

Aswe saw earlier, coroutines allow a kind of collaborative multithreading. Each coroutine is equivalent
to athread. A pair yield—resume switches control from one thread to another. However, unlike regular
multithreading, coroutines are non preemptive. While a coroutine is running, we cannot stop it from the
outside. It suspends execution only when it explicitly requests so, through a cal to yi el d. For several
applications, this is not a problem, quite the opposite. Programming is much easier in the absence of
preemption. We do not need to be paranoid about synchronization bugs, because all synchronization among
threads is explicit in the program. We just need to ensure that a coroutine yields only when it is outside
acritical region.

However, with non-preemptive multithreading, whenever any thread calls a blocking operation, the whole
program blocks until the operation completes. For many applications, this behavior is unacceptable, which
leads many programmers to disregard coroutines as areal aternative to conventional multithreading. As
we will see here, this problem has an interesting (and obvious, with hindsight) solution.

L et usassume atypical multithreading situation: we want to download several remote filesthrough HTTP.
To download several remote files, first we must learn how to download one remote file. In this example,
wewill usethe LuaSocket library. To download afile, we must open aconnectiontoitssite, send arequest
to thefile, receive thefile (in blocks), and close the connection. In Lua, we can write this task as follows.
First, we load the LuaSocket library:

| ocal socket = require "socket"

Then, we define the host and the file we want to download. In this example, we will download the Lua
5.3 manua from the Luasite:

host
file

"www. | ua. org"
"/ manual /5. 3/ manual . ht i "

Then, we open a TCP connection to port 80 (the standard port for HT TP connections) of that site:
c = assert(socket.connect(host, 80))
This operation returns a connection object, which we use to send the file request:

| ocal request = string.format(
"CGET % HITP/1.0\r\nhost: %\r\n\r\n", file, host)
c: send(request)

Next, we read the file in blocks of 1 kB, writing each block to the standard output:

repeat
| ocal s, status, partial = c:receive(2710)
io.wite(s or partial)

until status == "cl osed"

The method r ecei ve returns either a string with what it read or nil in case of error; in the latter case, it
also returns an error code (st at us) and what it read until the error (par ti al). When the host closes
the connection, we print that remaining input and break the receive loop.

217

Interlude: Multithread-
ing with Coroutines

After downloading the file, we close the connection:
c:close()

Now that we know how to download one file, let us return to the problem of downloading several files.
The trivial approach is to download one at a time. However, this sequential approach, where we start
reading a file only after finishing the previous one, is too slow. When reading a remote file, a program
spends most of its time waiting for data to arrive. More specifically, it spends most of its time blocked
in the call to r ecei ve. So, the program could run much faster if it downloaded all files concurrently.
Then, while a connection has no data available, the program can read from another connection. Clearly,
coroutines offer a convenient way to structure these simultaneous downloads. We create a new thread for
each download task. When a thread has no data available, it yields control to a simple dispatcher, which
invokes another thread.

To rewrite the program with coroutines, we first rewrite the previous download code as a function. The
resultisin Figure 26.1, “Function to download a Web page”.

Figure 26.1. Function to download a Web page

functi on downl oad (host, file)
| ocal ¢ = assert(socket.connect(host, 80))
| ocal count =0 -- counts nunber of bytes read
[ocal request = string.format(
"CGET % HTTP/1.0\r\nhost: 9%\r\n\r\n", file, host)

c: send(request)
while true do

| ocal s, status = receive(c)

count = count + #s

if status == "closed" then break end
end
c:close()
print(file, count)

end

Because we are not interested in the remote file contents, this function counts and prints the file size,
instead of writing the file to the standard output. (With several threads reading severa files, the output
would shuffle all files.)

In this new code, we use an auxiliary function (r ecei ve) to receive data from the connection. In the
sequential approach, its code would be like this:

function receive (connection)
| ocal s, status, partial = connection:receive(2210)
return s or partial, status

end

For the concurrent implementation, this function must receive data without blocking. Instead, if there is
not enough data available, it yields. The new codeislike this:

function receive (connection)

connection: setti meout (0) -- do not bl ock

| ocal s, status, partial = connection:receive(2710)

if status == "timeout" then
coroutine.yield(connection)

end

218

Interlude: Multithread-
ing with Coroutines

return s or partial, status
end

Thecall toset ti meout (0) makes any operation over the connection a non-blocking operation. When
theresulting statusis” t i meout ", it means that the operation returned without completion. In this case,
the thread yields. The non-false argument passed to yi el d signas to the dispatcher that the thread is
still performing its task. Note that, even in case of atimeout, the connection returns what it read until the
timeout, which isin thevariable par ti al .

Figure 26.2, “The dispatcher” shows the dispatcher plus some auxiliary code.

Figure 26.2. The dispatcher

tasks = {} -- list of all live tasks

function get (host, file)
-- create coroutine for a task
| ocal co = coroutine.wap(function ()
downl oad(host, file)
end)
-- insert it in the list
tabl e.insert(tasks, co)
end

function dispatch ()

local i =1
while true do
if tasks[i] == nil then -- no other tasks?
if tasks[1] == nil then -- list is enpty?
br eak -- break the | oop
end
i =1 -- else restart the | oop
end
local res = tasks[i]() -- run a task
if not res then -- task finished?
tabl e. remove(tasks, i)
el se
i =i +1 -- go to next task
end
end
end

The table t asks keeps a list of all live tasks for the dispatcher. The function get ensures that each
download task runs in an individual thread. The dispatcher itself is mainly aloop that goes through all
tasks, resuming them one by one. It must also remove from the list the tasks that have finished. It stops
the loop when there are no more tasksto run.

Finally, the main program creates the tasks it needs and calls the dispatcher. To download some distribu-
tions from the Lua site, the main program could be like this:

get ("www. | ua.org", "/ftp/lua-5.3.2.tar.gz")
get ("www. | ua.org", "/ftp/lua-5.3.1.tar.gz")
get ("www. | ua.org", "/ftp/lua-5.3.0.tar.gz")
get ("www. |l ua.org", "/ftp/lua-5.2.4.tar.gz")
get ("www. | ua.org", "/ftp/lua-5.2.3.tar.gz")

219

Interlude: Multithread-
ing with Coroutines

di spat ch() -- main |oop

The sequentia implementation takes fifteen seconds to download thesefiles, in my machine. Thisimple-
mentation with coroutines runs more than three times faster.

Despite the speedup, this last implementation is far from optimal. Everything goes fine while at least
one thread has something to read. However, when no thread has data to read, the dispatcher does a busy
wait, going from thread to thread only to check that they still have no data. As a result, this coroutine
implementation uses three orders of magnitude more CPU than the sequential solution.

To avoid this behavior, we can use the function sel ect from LuaSocket: it allows a program to block
while waiting for a status change in a group of sockets. The changesin our implementation are small: we
have to change only the dispatcher, as shown in Figure 26.3, “Dispatcher using sel ect ”.

Figure 26.3. Dispatcher using sel ect

function dispatch ()
local i =1
| ocal tinedout = {}
while true do

if tasks[i] == nil then -- no other tasks?
if tasks[1] == nil then -- list is enpty?
br eak -- break the | oop
end
i =1 -- else restart the | oop
ti medout = {}
end
local res = tasks[i]() -- run a task
if not res then -- task finished?
tabl e. remove(tasks, i)
el se -- time out
i =i +1
ti medout [#ti medout + 1] = res
i f #timedout == #tasks then -- all tasks bl ocked?
socket . sel ect (ti medout) -- wait
end
end
end

end

Along the loop, this new dispatcher collects the timed-out connectionsin thetablet i nedout . (Remem-
ber that r ecei ve passes such connections to yi el d, thus r esume returns them.) If al connections
time out, the dispatcher calls sel ect to wait for any of these connections to change status. This final
implementation runs as fast as the previous implementation, with coroutines. Moreover, asit does not do
busy waits, it uses just as much CPU as the sequential implementation.

Exercises

Exercise 26.1: Implement and run the code presented in this chapter.

220

Part IV. The C API

Table of Contents

27. An Overview of the C AP ... e 223
A FITSt EXBMPIE «.eeeeeee e 223

THE SEACK .ot 225
PUSHING EBlEMENLS ... e 226

QUENYING ElEIMENLS ...ttt e e e enaans 227

Other StaCK OPEIAIONScieeeeee ettt enaans 229

Error Handling With the C AP ... 231

Error handling in application COOEuuiiiiiiiiiiii e 232

Error handling in library Codecoouuiiiiiiii e 232

MEMOTY AITOCELIONveeeeet et 233

28. Extending Y our APPIICEIIONcoeutieiieii et 236
THE BASICS ...ttt aaaas 236
Table MaANIPUIBLTONceieiiee ettt ettt e et e e e e e e eebi e eees 237
SOME SNOMT CULS ..ttt ettt e et e e e e 240

Calling LUG FUNCLIONSovtiieiiiii ettt ettt e e e e e 241

A Generic Call FUNCHIONcoevtieiii e enaaas 242

29. CalliNG C IOM LU ettt ettt e et e e et e e e 247
C FUNCLIONS ...ttt e e et et e et e e e enan s 247
CONINUBLIONS ...ttt e et e e et e et e e e e et e e e e ena s 249

C MOUUIES ... ettt ettt e e et et e e e e et e e e eata e eeee 251

30. Techniques for Writing C FUNCLIONScouutiiiiiii i e e 254
ATTaY MaNiPUIBLTONeeiii ettt 254
SHNG MANIPUIBLION ...ttt e e s 255
Storing State in C FUNCHIONSciiiiiie et 258

THE TEOISIIY ettt et 258

UPVAIUBS ..ttt ettt aaaas 260

Shared UPVEIUESouiiiiiie e 263

31. User-Defined TYPES IN € ..ottt e e 265
UL 0 - = TSP UPPPPTRUPPPIN 265
MEBLBLADIES ... et 268
ODJECE-OFNENLEA ACCESS ... eeeett ettt ettt ettt ettt e ettt ettt et e aa e e e ra e e ennans 270
ATTEY ACCESS ...ttt ettt ettt e e e et 271
(Lo g O L (o = - PP PP TPPPPP 272

32. MaANAGING RESOUICTESueieiitiet ettt ettt ettt ettt et et e et e et et e e e eba s 274
A DITECIONY TTEIGLOT ...ttt ettt e e et e ettt e et et e e e et e e eena e aeens 274

AN XML PaISEr oo et 277

33. THreads @nd SEALESieiiiii et ettt e et e et e et et e e e e e eees 286
MUITIPIE TRIEAAS ...t e 286

LU SEBEES ... eveeeee ettt ettt ettt 289

222

Chapter 27. An Overview of the C API

Luais an embedded language. This meansthat Luais not a stand-alone application, but alibrary that we
can link with other applications to incorporate Lua facilities into them.

You may be wondering: if Luais not a stand-alone program, how come we have been using Lua stand-
alonethrough the whole book until now? The solution to this puzzleisthe Luainterpreter —the executable
| ua. Thisexecutable isasmall application, around six hundred lines of code, that usesthe Lualibrary to
implement the stand-aloneinterpreter. The program handlesthe interface with the user, taking her filesand
stringsto feed them to the Lualibrary, which doesthe bulk of thework (such asactually running Luacode).

Thisahility to be used asalibrary to extend an application iswhat makes L uaan embeddable language. At
the same time, a program that uses L ua can register new functionsin the Lua environment; such functions
areimplemented in C (or another language), so that they can add facilities that cannot be written directly
in Lua. Thisiswhat makes Lua an extensible language.

These two views of Lua (as an embeddable language and as an extensible language) correspond to two
kinds of interaction between C and Lua. In the first kind, C has the control and Luaisthe library. The C
code in this kind of interaction is what we call application code. In the second kind, Lua has the control
and C isthe library. Here, the C code is called library code. Both application code and library code use
the same API to communicate with Lua, the so-called C API.

The C APl isthe set of functions, constants, and typesthat allow C codeto interact with L ual it comprises
functionsto read and write Luaglobal variables, to call Luafunctions, to run pieces of Luacode, to register
C functions so that they can later be called by Lua code, and so on. Virtually anything that L ua code can
do can also be done by C code through the C API.

The C API follows the modus operandi of C, which is quite different from that of Lua. When program-
ming in C, we must care about type checking, error recovery, memory-allocation errors, and several other
sources of complexity. Most functionsin the APl do not check the correctness of their arguments; it isour
responsibility to make sure that the arguments are valid before calling a function.? If we make mistakes,
we can get acrash instead of awell-behaved error message. Moreover, the APl emphasizes flexibility and
simplicity, sometimes at the cost of ease of use. Common tasks may involve several API calls. This may
be boring, but it gives us full control over al details.

Asitstitle says, the goal of this chapter isto give an overview of what isinvolved when we use Luafrom
C. Do not try to understand all the details of what is going on now; wewill fill themin later. Nevertheless,
do not forget that you always can find more details about specific functions in the Lua reference manual.
Moreover, you can find several examples of APl usesin the Luadistribution itself. The Lua stand-alone
interpreter (I ua. c) provides examples of application code, while the standard libraries (I mat hl i b. c,
I strlib.c,etc) provide examples of library code.

From now on, we are wearing a C programmer's hat.

A First Example

We will start this overview with a simple example of an application program: a stand-alone Lua inter-
preter. We can write a bare-bones stand-alone interpreter as in Figure 27.1, “A bare-bones stand-alone
Luainterpreter”.

1Throughout thistext, the term “function” actually means “function or macro”. The API implements several facilities as macros.
2You can compile Lua with the macro LUA_USE_API CHECK defined to enable some checks; this option is particularly useful when debugging
your C code. Nevertheless, several errors simply cannot be detected in C, such asinvalid pointers.

223

An Overview of the C API

Figure 27.1. A bare-bones stand-alone Lua inter preter

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude "lua. h"

#i nclude "l auxlib. h"
#i nclude "lualib.h"

int min (void) {
char buff[256];

int error;
lua_State *L = luaL_newstate(); /* opens Lua */
| uaL_openlibs(L); /* opens the standard libraries */

while (fgets(buff, sizeof(buff), stdin) !'= NULL) {
error = lualL_l oadstring(L, buff) || lua_pcall(L, 0, 0, 0);
if (error) {
fprintf(stderr, "%\n", lua_tostring(L, -1));
lua_pop(L, 1); [/* pop error nmessage fromthe stack */

}
}
lua_cl ose(L);
return O;

}

The header file | ua. h declares the basic functions provided by Lua. It includes functions to create a
new Lua environment, to invoke Luafunctions, to read and write global variables in the environment, to
register new functions to be called by Lua, and so on. Everything declared in| ua. h hasal ua_ prefix
(e.g.,l ua_pcal I).

The header filel aux! i b. h declaresthe functions provided by the auxiliary library (auxlib). All its dec-
larations start with | uaL_ (e.g.,| uaL_I| oadst ri ng). Theauxiliary library uses the basic API provid-
ed by | ua. h to provide a higher abstraction level, in particular with abstractions used by the standard
libraries. The basic API strives for economy and orthogonality, whereas the auxiliary library strives for
practicality for afew common tasks. Of course, itisvery easy for your program to create other abstractions
that it needs, too. Keep in mind that the auxiliary library has no access to the internals of Lua. It doesits
entire job through the official basic API declared in| ua. h. Whatever it does, your program can do too.

The Lua library defines no C global variables at all. It keeps all its state in the dynamic structure
| ua_St at e; al functionsinside Luareceive apointer to this structure as an argument. This design makes
Luareentrant and ready to be used in multithreaded code.

Asits name implies, the function | uaL_newst at e creates anew Lua state. When | uaL_newst at e
creates a fresh state, its environment contains no predefined functions, not even pri nt . To keep Lua
small, all standard libraries come as separate packages, so that we do not haveto usethem if wedo not need
to. The header filel ual i b. h declares functions to open the libraries. The function | uaL_openl i bs
opens al standard libraries.

After creating a state and populating it with the standard libraries, it is time to handle user input. For each
line the user enters, the program first compiles it with | uaL_| oadst ri ng. If there are no errors, the
call returns zero and pushes the resulting function on the stack. (We will discuss this mysterious stack in
the next section.) Then the program calls| ua_pcal | , which popsthe function from the stack and runsit
in protected mode. Likel uaL_| oadstri ng,l ua_pcal | returnszeroif thereareno errors. In case of

224

An Overview of the C API

error, both functions push an error message on the stack; we then get thismessagewith| ua_t ostri ng
and, after printing it, remove it from the stack with | ua_pop.

Real error handling can be quite complex in C, and how to do it depends on the nature of our application.
The Lua core never writes anything directly to any output stream; it signals errors by returning error
messages. Each application can handle these messages in away most appropriate to its needs. To simplify
our discussions, we will assumefor our next examplesasimple error handler like the following one, which
prints an error message, closes the Lua state, and finishes the whole application:

#i ncl ude <stdarg. h>
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

void error (lua_State *L, const char *fnmt, ...) {
va_list argp;
va_start(argp, fnt);
viprintf(stderr, fnt, argp);
va_end(argp);
| ua_cl ose(L);
exi t (EXI T_FAI LURE) ;

}

Later we will discuss more about error handling in the application code.

Because we can compile Lua as either C or C++ code, | ua. h does not include the following boilerplate
commonly used in C libraries:

#i fdef _ cpl uspl us
extern "C" {
#endi f

#i fdef _ cpl uspl us

}
#endi f

If we have compiled Luaas C code and are using it in C++, we canincludel ua. hpp instead of | ua. h.
Itisdefined asfollows:

extern "C" {
#i ncl ude "I ua. h"

}
The Stack

A major component in the communication between Lua and C is an omnipresent virtual stack. Almost
all API calls operate on values on this stack. All data exchange from Luato C and from C to Lua occurs
through this stack. Moreover, we can use the stack to keep intermediate results, too.

We face two problems when trying to exchange values between Lua and C: the mismatch between a
dynamic and a static type system and the mismatch between automatic and manual memory management.

InLua whenwewritet [k] = v, bothk andv can have several different types; event can havedifferent
types, due to metatables. If we want to offer this operationin C, however, any givenset t abl e function

225

An Overview of the C API

must have afixed type. Wewould need dozens of different functionsfor this single operation (onefunction
for each combination of typesfor the three arguments).

We could solve this problem by declaring some kind of union type in C —let uscal it | ua_Val ue—
that could represent all Luavalues. Then, we could declareset t abl e as

void lua_settable (lua_Value a, lua_Value k, lua_Value v);

This solution has two drawbacks. First, it can be difficult to map such a complex type to other languages;
we designed Lua to interface easily not only with C/C++, but also with Java, Fortran, C#, and the like.
Second, Lua does garbage collection: if we keep aLuatablein aC variable, the Luaengine has no way to
know about this use; it may (wrongly) assume that this table is garbage and collect it.

Therefore, the Lua API does not define anything like al ua_Val ue type. Instead, it uses the stack to
exchange values between Luaand C. Each slot in this stack can hold any Luavalue. Whenever we want to
ask for avalue from Lua (such as the value of a global variable), we call Lua, which pushes the required
value onto the stack. Whenever we want to pass avalue to Lua, wefirst push the value onto the stack, and
then we call Lua (which will pop the value). We still need a different function to push each C type onto
the stack and a different function to get each C type from the stack, but we avoid combinatorial explosion.
Moreover, because this stack is part of the Lua state, the garbage collector knows which values Cisusing.

Nearly all functionsin the API usethe stack. Aswe saw inour first example, | uaL_| oadst ri ng leaves
its result on the stack (either the compiled chunk or an error message); | ua_pcal | gets the function to
be called from the stack and leaves any error message there too.

Lua manipulates this stack in a strict LIFO discipline (Last In, First Out). When we call Lua, it changes
only the top part of the stack. Our C code has more freedom; specificaly, it can inspect any element in
the stack and even insert and delete elements at any position.

Pushing elements

The API has a push function for each Lua type with a direct representation in C: | ua_pushni | for
the constant nil, | ua_pushbool ean for Booleans (integers, in C), | ua_pushnunber for doubles,
| ua_pushi nt eger for integers, | ua_pushl st ri ng for arbitrary strings (a pointer to char plusa
length), and | ua_pushst ri ng for zero-terminated strings:

voi d | ua_pushni | (lua_State *L);

voi d | ua_pushbool ean (lua_State *L, int bool);

voi d | ua_pushnunber (lua_State *L, |ua_Nunber n);

void | ua_pushinteger (lua_State *L, lua_lnteger n);

void lua_pushlstring (lua_State *L, const char *s, size_t len);
voi d | ua_pushstring (lua_State *L, const char *s);

There are also functionsto push C functions and userdata val ues onto the stack; wewill discussthem later.

Thetypel ua_Nunber isthe numeric float typein Lua. It isdoubl e by default, but we can configure
Lua at compiletimetousef| oat or evenl ong doubl e. Thetypel ua_I nt eger isthe numeric
integer type in Lua. Usually, it isdefined as| ong | ong, which is a signed 64-hit integer. Again, it is
trivial to configure Luato usei nt or | ong for this type. The combination f | oat —i nt, with 32-bit
floats and integers, creates what we call Small Lua, which is particularly interesting for small machines
and restricted hardware.*

3For historical reasons, the term “number” in the API refers to doubles.
“For these configurations, have alook in thefilel uaconf . h.

226

An Overview of the C API

Strings in Lua are not zero-terminated; they can contain arbitrary binary data. In consequence, the basic
function to push a string onto the stack is | ua_pushl st ri ng, which requires an explicit length as
an argument. For zero-terminated strings, we can use dlso | ua_pushst ri ng, whichusesstr| en to
supply the string length. Luanever keeps pointersto external strings (or to any other external object except
C functions, which are always static). For any string that it has to keep, Lua either makes an internal copy
or reuses one. Therefore, we can free or modify our buffers as soon as these functions return.

Whenever we push an element onto the stack, it is our responsibility to ensure that the stack has space
for it. Remember, you are a C programmer now; Lua will not spoil you. When Lua starts and any time
that Lua calls C, the stack has at least 20 free dots. (The header file | ua. h defines this constant as
LUA M NSTACK.) This spaceismorethan enough for most common uses, so usually we do not even think
about it. However, some tasks need more stack space, in particular if we have a loop pushing elements
onto the stack. In those cases, we need to call | ua_checkst ack, which checks whether the stack has
enough space for our needs:

int lua _checkstack (lua_State *L, int sz);

Here, sz isthe number of extraslotswe need. If possible, | ua_checkst ack growsthe stack to accom-
modate the required extra size. Otherwise, it returns zero.

The auxiliary library offers a higher-level function to check for stack space:
void luaL_checkstack (lua_State *L, int sz, const char *mnsgQ);

Thisfunctionissimilar to | ua_checkst ack but, if it cannot fulfill the request, it raises an error with
the given message, instead of returning an error code.

Querying elements

To refer to elements on the stack, the API usesindices. The first element pushed on the stack hasindex 1,
the next one hasindex 2, and so on. We can al so access el ements using the top of the stack as our reference,
with negative indices. In this case, -1 refers to the element on top (that is, the last element pushed), -2 to
the previous element, and so on. For instance, thecall | ua_t ostring(L, -1) returnsthevaueon
the top of the stack as a string. As we will see, there are several occasions when it is natural to index the
stack from the bottom (that is, with positive indices), and several other occasions when the natural way
isto use negative indices.

To check whether astack element hasaspecific type, the API offersafamily of functionscalled| ua_i s*,
where the * can be any Lua type. So, there are | ua_i snil, | ua_i snunber, lua_i sstring,
| ua_i st abl e, and thelike. All these functions have the same prototype:

int lua_is* (lua_State *L, int index);
Actudly, | ua_i snunmber does not check whether the value has that specific type, but whether the
value can be converted to that type; | ua_i sstring is similar: in particular, any number satisfies

[ua_i sstring.

There is also a function | ua_t ype, which returns the type of an element on the stack. Each type is
represented by arespective constant: LUA_ TNI L, LUA_ TBOOLEAN, LUA TNUMBER, LUA_TSTRI NG,
etc. We use this function mainly in conjunction with a switch statement. It is also useful when we need to
check for strings and numbers without potential coercions.

To get avalue from the stack, there arethe | ua_t o* functions:

i nt | ua_t obool ean (lua_State *L, int index);

227

An Overview of the C API

const char *lua_tolstring (lua_State *L, int index,
size_t *len);

lua_State *lua_tothread (lua_State *L, int index);

| ua_Nunber | ua_tonunmber (lua_State *L, int index);

lua_Integer lua_tointeger (lua_State *L, int index);

We can call any of these functions even when the given element does not have an appropriate type. The
function | ua_t obool ean works for any type, converting any Lua value to a C Boolean according
to the Lua rules for conditions. zero for the values nil and false, and one for any other Lua value. The
functions | ua_t ol string and | ua_t ot hr ead return NULL for values with incorrect types. The
numeric functions, however, have no way to signal awrong type, so they simply return zero. Formerly we
wouldneedtocall | ua_i snunber tocheck thetype, but Lua5.2 introduced thefollowing new functions:

| ua_Nunber | ua_tonunmberx (lua_State *L, int idx, int *isnunj;
lua_Integer lua_tointegerx (lua_State *L, int idx, int *isnum;

Theout parameter i snumreturns aBoolean that indicates whether the Luavalue was successfully coerced
to the desired type.

The function | ua_t ol st ri ng returns a pointer to an internal copy of the string and stores the string's
length in the position given by | en. We must not change this internal copy (there isaconst thereto
remind us). Lua ensures that this pointer isvalid as long as the corresponding string value is on the stack.
When a C function called by Luareturns, Lua clears its stack; therefore, as arule, we should never store
pointers to L ua strings outside the function that got them.

Any stringthat | ua_t ol st ri ng returns always has an extra zero at its end, but it can have other zeros
inside it. The size returned through the third argument, | en, is the real string's length. In particular, as-
suming that the value on the top of the stack is a string, the following assertions are always valid:

size_t len;

const char *s = lua_tolstring(L, -1, & en); /* any Lua string */
assert(s[len] == '"\0");

assert(strlen(s) <= len);

Wecancall ua_t ol stri ngwithNULL asitsthird argument if we do not need thelength. Better yet, we
canusethemacrol ua_t ost ri ng, whichsimply callsl ua_t ol stri ng withaNULL third argument.

Toillustrate the use of these functions, Figure 27.2, “Dumping the stack” presents auseful helper function
that dumps the entire content of the stack.

228

An Overview of the C API

Figure 27.2. Dumping the stack

static void stackDunp (lua_State *L) {

int i;
int top = lua_gettop(L); /* depth of the stack */
for (i =1; i <=top; i++) { [/* repeat for each level */
int t = lua_type(L, i);
switch (t) {
case LUA TSTRING { /* strings */
printf("" ' %"'", lua_tostring(L, i));
br eak;
}
case LUA TBOOLEAN. { /* Bool eans */
printf(lua_toboolean(L, i) ? "true" : "false");
br eak;
}
case LUA TNUMBER { [/* nunbers */
printf("%", |ua_tonunber(L, i));
br eak;
}
default: { /* other values */
printf("%", lua_typenane(L, t));
br eak;
}
}
printf(" "); [* put a separator */

}
printf("\n"); /* end the listing */
}

This function traverses the stack from bottom to top, printing each element according to its type. It prints
strings between quotes; for numbers it uses a " %g" format; for values with no C equivaents (tables,
functions, etc.), it prints only their types. (I ua_t ypenane converts atype code to atype name.)

In Lua 5.3, we can still print all numbers with | ua_t onunber and the " %g" format, as integers are
always coercible to floats. However, we may prefer to print integers as integers, to avoid losing precision.
In that case, we can use the new function | ua_i si nt eger to distinguish integers from floats:

case LUA TNUMBER { [/* nunbers */
if (lua_isinteger(L, i)) [/* integer? */
printf("%1d", lua_tointeger(L, i));
else /* float */
printf("%", |ua_tonunber(L, i));
br eak;

}
Other stack operations

Besides the previous functions, which exchange values between C and the stack, the API offers aso the
following operations for generic stack manipulation:

int lua_gettop (lua_State *L);
void | ua_settop (lua_State *L, int index);
voi d | ua_pushvalue (lua_State *L, int index);

229

An Overview of the C API

void lua_rotate (lua_State *L, int index, int n);

void | ua_renove (lua_State *L, int index);

void lua_insert (lua_State *L, int index);

void | ua_repl ace (lua_State *L, int index);

voi d | ua_copy (lua_State *L, int fromdx, int toidx);

The function | ua_get t op returns the number of elements on the stack, which is also the index of the
top element. The function | ua_set t op sets the top (that is, the number of elements on the stack) to a
specific value. If the previous top was higher than the new one, the function discards the extratop values.
Otherwise, it pushes nils on the stack to get the given size. In particular, | ua_sett op(L, 0) empties
the stack. We can also use negative indices with | ua_set t op. Using this facility, the API offers the
following macro, which pops n elements from the stack:

#define lua_pop(L,n) lua_settop(L, -(n) - 1)
Thefunction| ua_pushval ue pushes on the stack a copy of the element at the given index.

The function | ua_r ot at e isnew in Lua 5.3. As the name implies, it rotates the stack elements from
the given index to the top of the stack by n positions. A positive n rotates the elements in the direction
of the top; a negative n rotates in the other direction. Thisis a quite versatile function, and two other API
operations are defined as macros using it. Oneis| ua_r enove, which removes the element at the given
index, shifting down the elements above this position to fill in the gap. Its definition is as follows:

#define lua_remove(L,idx) \
(lua_rotate(L, (idx), -1), lua_pop(L, 1))

That is, it rotates the stack by one position, moving the desired element to the top, and then pops that
element. The other macrois| ua_i nser t , which movesthe top element into the given position, shifting
up the elements above this position to open space:

#define lua_insert (L, idx) lua_rotate(L, (idx), 1)

The function | ua_r epl ace pops a value and sets it as the value of the given index, without moving
anything; finally, | ua_copy copies the value at one index to another, leaving the original untouched.”
Note that the following operations have no effect on a non-empty stack:

|ua_settop(L, -1); [/* set top to its current value */
lua_insert(L, -1); /* nove top elenent to the top */
| ua_copy(L, x, x); [/* copy an elenent to its own position */
lua_rotate(L, x, 0); /* rotates by zero positions */

The program in Figure 27.3, “ Example of stack manipulation” usesst ack Dunp (defined in Figure 27.2,
“Dumping the stack”) to illustrate these stack operations.

SThe function | ua_copy wasintroduced in Lua5.2.

230

An Overview of the C API

Figure 27.3. Example of stack manipulation

#i ncl ude <stdi o. h>
#i ncl ude "l ua. h"
#i ncl ude "l auxlib.h"

static void stackDunp (lua_State *L) {
as in Figure 27.2, “Dunping the stack”

}

int min (void) {
lua_State *L = luaL_newstate();

| ua_pushbool ean(L, 1);

| ua_pushnunber (L, 10);

[ua_pushnil (L);

| ua_pushstring(L, "hello");

stackDunmp(L);
[* will print: true 10 nil ‘*hello" */

| ua_pushval ue(L, -4); stackDump(L);
[* will print: true 10 nil ‘'hello" true */

lua_replace(L, 3); stackDunmp(L);
[* will print: true 10 true ‘'hello */

| ua_settop(L, 6); stackDump(L);
[* will print: true 10 true ‘'hello" nil nil */

lua_rotate(L, 3, 1); stackDunp(L);
[* will print: true 10 nil true ‘'hello" nil */

| ua_renmove(L, -3); stackDunmp(L);
[* will print: true 10 nil ‘'hello" nil */

| ua_settop(L, -5); stackDunmp(L);
[* will print: true */

| ua_cl ose(L);
return O;

}
Error Handling with the C API

All structuresin Lua are dynamic: they grow as needed, and eventually shrink again when possible. This
means that the possibility of a memory-alocation failure is pervasive in Lua. Almost any operation can
face this eventuality. Moreover, many operations can raise other errors; for instance, an accessto aglobal
variablecantrigger an__i ndex metamethod and that metamethod may raise an error. Finally, operations
that allocate memory eventually trigger the garbage collector, which may invoke finalizers, which can
raise errors too. In short, the vast mgjority of functionsin the Lua API can result in errors.

Instead of using error codesfor each operation inits API, Luauses exceptionsto signa errors. Unlike C++
or Java, the C language does not offer an exception handling mechanism. To circumvent thisdifficulty, Lua

231

An Overview of the C API

Error

Error

usesthe set j np facility from C, which results in a mechanism somewhat similar to exception handling.
Therefore, most API functions can raise an error (that is, call | ongj np) instead of returning.

When we write library code (C functions to be called from Lua), the use of long jumps requires no extra
work from our part, because Lua catches any error. When we write application code (C code that cals
Lua), however, we must provide away to catch those errors.

handling in application code

When our application calls functions in the Lua API, it is exposed to errors. As we just discussed, Lua
usually signals these errors through long jumps. However, if there is no corresponding set j np, thein-
terpreter cannot make along jump. In that case, any error in the API causes Luato call a panic function
and, if that function returns, exit the application. We can set our own panic functionwith | ua_at pani c,
but there is not much that it can do.

To properly handle errorsin our application code, we must call our code through Lua, so that it setsan ap-
propriate context to catch errors—that is, it runsthe codein the context of aset j np. Inthe sameway that
wecan run Luacodein protected modeusing pcal | ,wecanrunC codeusing!l ua_pcal | . More specif-
ically, we pack the code in a function and call that function through Lua, using | ua_pcal | . With this
setting, our C code will run in protected mode. Even in case of memory-allocation failure, | ua_pcal |
returns a proper error code, leaving the interpreter in a consistent state. The following fragment shows
theidea

static int foo (lua_State *L) {
code to run in protected node
return O;

}

int secure_foo (lua_State *L) {
| ua_pushcfunction(L, foo); /* push
return (lua_pcall (L, 0, 0, 0) == 0);

foo' as a Lua function */

}

In this example, no matter what happens, a cal to secure_f oo will return a Boolean signaling
the success of f 00. In particular, note that the stack already has some preallocated slots and that
| ua_pushcf unct i on does not allocate memory, so it cannot raise any error. (The prototype of the
function f oo isarequirement of | ua_pushcf unct i on, which creates afunction in Lua representing
a C function. We will cover the details about C functionsin Luain the section called “C Functions’.)

handling in library code

Luais asafe language. This means that no matter what we write in Lua, no matter how wrong it is, we
can aways understand the behavior of aprogram in terms of Luaitself. Moreover, errors are detected and
explained in terms of Lua, too. Y ou can contrast that with C, where the behavior of many wrong programs
can be explained only in terms of the underlying hardware (e.g., error positions are given as instruction
addresses).

Whenever we add new C functionsto Lua, we can break its safety. For instance, a function equivalent to
the BASIC command poke, which stores an arbitrary byte at an arbitrary memory address, could cause
all sorts of memory corruption. We must strive to ensure that our add-ons are safe to Lua and provide
good error handling.

As we discussed earlier, C programs have to set their error handling through | ua_pcal | . When we
write library functions for Lua, however, usualy they do not need to handle errors. Errors raised by a

232

An Overview of the C API

library function will be caught either by apcal | inLuaor by al ua_pcal | in the application code.
So, whenever a function in a C library detects an error, it can simply call | ua_error (or better yet
| uaL_err or,whichformatsthe error messageand then callsl ua_er r or). Thefunctionl ua_err or
tidies any loose endsin the Lua system and jumps back to the protected call that originated that execution,
passing along the error message.

Memory Allocation

The Lua core does not assume anything about how to allocate memory. It calls neither mal | oc nor r e-
al | oc to alocate memory. Instead, it does al its memory allocation and deall ocation through one single
allocation function, which the user must provide when she creates a L ua state.

Thefunction| ualL_newst at e, which we have been using to create states, is an auxiliary function that
creates a Lua state with a default alocation function. This default allocation function uses the standard
functionsmal | oc—r eal | oc—f r ee from the C standard library, which are (or should be) good enough
for most applications. However, it is quite easy to get full control over Luaallocation, by creating our state
with the primitive| ua_newst at e:

lua_State *lua_newstate (lua Alloc f, void *ud);

This function takes two arguments: an allocation function and a user data. A state created in thisway does
all its allocation and deallocation by calling f ; even the structure | ua_St at e isallocated by f .

An dlocation function must match thetypel ua_Al | oc:

typedef void * (*lua_Alloc) (void *ud,
void *ptr,
size_t osize,
size_t nsize);

The first parameter is always the user data provided to | ua_newst at e; the second parameter is the
address of the block being (re)allocated or rel eased; the third parameter is the original block size; and the
last parameter isthe requested block size. If pt r isnot NULL, Luaensuresthat it was previously allocated
withsizeosi ze. (Whenpt r isNULL, the previoussize of the block wasclearly zero, so Luausesosi ze
for some debug information.)

Luauses NULL to represent ablock of size zero. When nsi ze is zero, the allocation function must free
the block pointed to by pt r and return NULL, which corresponds to a block of the required size (zero).
When pt r isNULL, the function must allocate and return ablock with the given size; if it cannot allocate
the given block, it must return NULL. If pt r isNULL and nsi ze is zero, both rules apply: the net result
is that the all ocation function does nothing and returns NULL.

Finally, when pt r isnon-NULL and nsi ze is non-zero, the allocation function should reallocate the
block, liker eal | oc, and return the new address (which may or may not be the same as the original).
Again, incaseof errors, it must return NULL. L uaassumesthat the all ocation function never failswhen the
new size is smaller than or equal to the old one. (Lua shrinks some structures during garbage collection,
and it is unable to recover from errors there.)

The standard allocation function used by | uaL_newst at e has the following definition (extracted di-
rectly from thefilel auxl i b. c):

void *I _alloc (void *ud, void *ptr, size_t osize, size_t nsize) {
(void)ud; (void)osize; [/* not used */
if (nsize == 0) {

233

An Overview of the C API

free(ptr);
return NULL,;
}
el se
return reall oc(ptr, nsize);

}

It assumes that f r ee(NULL) does nothing and that real | oc(NULL, size) is equivaent to
mal | oc(si ze) . ThelSO C standard mandates both behaviors.

We can recover the memory alocator of aLuastate by callingl ua_get al | ocf:
lua_Alloc lua_getallocf (lua State *L, void **ud);

If ud isnot NULL, the function sets* ud with the value of the user data for this allocator. We can change
the memory allocator of aLuastate by callingl ua_set al | ocf:

void lua_setallocf (lua_State *L, lua_Alloc f, void *ud);

Keep in mind that any new allocator will be responsible for freeing blocks that were alocated by the
previous one. More often than not, the new function is awrapper around the old one, for instance to trace
allocations or to synchronize accesses to the heap.

Internally, Lua does not cache free memory blocks for reuse. It assumes that the allocation function does
this caching; good allocators do. Lua also does not attempt to minimize fragmentation. Studies show that
fragmentation is more the result of poor allocation strategies than of program behavior; good allocators
do not create much fragmentation.

It is difficult to beat a well-implemented allocator, but sometimes you may try. For instance, Lua gives
you the old size of any block that it frees or reallocates. Therefore, a specialized allocator does not need
to keep information about the block size, reducing the memory overhead for each block.

Another situation where you can improve memory allocation isin multithreading systems. Such systems
typically demand synchronization for their memory-allocation functions, as they use a globa resource
(the heap). However, the access to a Lua state must be synchronized too —or, better yet, restricted to
one thread, asin our implementation of | pr oc in Chapter 33, Threads and Sates. So, if each Lua state
allocates memory from a private pool, the allocator can avoid the costs of extra synchronization.

Exercises

Exercise 27.1: Compile and run the simple stand-aloneinterpreter (Figure 27.1, “ A bare-bones stand-alone
Luainterpreter”).

Exercise 27.2: Assume the stack is empty. What will be its contents after the following sequence of calls?

| ua_pushnunber (L, 3.5);

| ua_pushstring(L, "hello");
[ua_pushnil (L);
lua_rotate(L, 1, -1);

| ua_pushval ue(L, -2);

[ua_renove(L, 1);
lua_insert(L, -2);

Exercise 27.3: Use the function st ackDunp (Figure 27.2, “Dumping the stack”) to check your answer
to the previous exercise.

234

An Overview of the C API

Exercise 27.4: Writealibrary that allows a script to limit the total amount of memory used by its Lua state.
It may offer asingle function, set | i mi t, to set that limit.

The library should set its own allocation function. This function, before calling the original allocator,
checks the total memory in use and returns NULL if the requested memory exceeds the limit.

(Hint: thelibrary can use the user data of the allocation function to keep its state: the byte count, the current
memory limit, etc.; remember to use the original user data when calling the original alocation function.)

235

Chapter 28. Extending Your
Application

An important use of Luais as a configuration language. In this chapter, we will illustrate how we can
use Lua to configure a program, starting with a simple example and evolving it to perform increasingly
complex tasks.

The Basics

As our first task, let us imagine a simple configuration scenario: our C program has a window and we
want the user to be able to specify theinitial window size. Clearly, for such asimpletask, there are several
options simpler than using L ua, like environment variables or files with name-value pairs. But even using
a simple text file, we have to parse it somehow; so, we decide to use a Lua configuration file (that is,
aplain text file that happens to be a Lua program). In its simplest form, this file can contain something
like the following:

-- define w ndow size
wi dth = 200
hei ght = 300

Now, we must use the Lua API to direct Lua to parse this file and then to get the values of the global
variables wi dt h and hei ght . The function | oad, in Figure 28.1, “Getting user information from a
configuration file”, does thisjob.

Figure 28.1. Getting user information from a configuration file

int getglobint (lua_State *L, const char *var) {
int isnum result;
| ua_get gl obal (L, var);
result = (int)lua_tointegerx(L, -1, & snum;

if (lisnum
error(L, ""%' should be a nunber\n", var);
| ua_pop(L, 1); /* renmove result fromthe stack */
return result;
}
void load (lua_State *L, const char *fname, int *w, int *h) {
if (luaL_l oadfile(L, fnanme) || lua_pcall (L, 0, 0, 0))
error(L, "cannot run config. file: %", lua_tostring(L, -1));
*w = getglobint(L, "wdth");
*h = getglobint(L, "height");
}

It assumes that we have already created a Lua state, following what we saw in the previous chapter. It
calsl ualL_l oadfi | e to load the chunk from the file f name, and then calls| ua_pcal | to runthe
compiled chunk. In case of errors (e.g., a syntax error in our configuration file), these functions push the
error message onto the stack and return a non-zero error code; our program then uses| ua_t ostri ng
with index -1 to get the message from the top of the stack. (We defined the function er r or in the section
called “ A First Example’.)

After running the chunk, the program needs to get the values of the global variables. For that, it cals
the auxiliary function get gl obi nt (alsoin Figure 28.1, “ Getting user information from a configuration

236

Extending Y our Application

file") twice. Thisfunction first cals| ua_get gl obal , whose single parameter (besides the omnipresent
| ua_St at e) isthevariable name, to push the corresponding global value onto the stack. Next, get gl o-
bi nt uses| ua_t oi nt eger x to convert thisvalue to an integer, ensuring that it has the correct type.

Isit worth using Lua for that task? As | said before, for such a simple task, a simple file with only two
numbers in it would be easier to use than Lua. Even so, the use of Lua brings some advantages. First,
Luahandles al syntax details for us; our configuration file can even have comments! Second, the user is
already able to do some complex configurations with it. For instance, the script may prompt the user for
some information, or it can query an environment variable to choose a proper size:

-- configuration file

if getenv("DlI SPLAY") == ":0.0" then
wi dt h = 300; height = 300

el se
wi dth = 200; height = 200

end

Even in such simple configuration scenarios, it is hard to anticipate what users will want; but as long as
the script defines the two variables, our C application works without changes.

A final reason for using Luaisthat now it is easy to add new configuration facilities to our program; this
ease fosters an attitude that resultsin programs that are more flexible.

Table Manipulation

Let us adopt that attitude: now, we want to configure a background color for the window, too. We will
assume that the final color specification is composed of three numbers, where each number is a color
component in RGB. Usually, in C, these numbers are integersin some range like [0,255] . In Lua, we will
use the more natural range[0,1].

A naive approach here isto ask the user to set each component in a different global variable:

-- configuration file
wi dth = 200

hei ght = 300
background_red = 0. 30
background_green = 0. 10
background_blue = 0

This approach has two drawbacks: it is too verbose (real programs may need dozens of different colors,
for window background, window foreground, menu background, etc.); and there is no way to predefine

common colors, so that, later, the user can simply write something like backgr ound = VWH TE. To
avoid these drawbacks, we will use atable to represent acolor:

background = {red = 0.30, green = 0.10, blue = 0}

The use of tables gives more structure to the script; now it is easy for the user (or for the application) to
predefine colors for later use in the configuration file:

BLUE = {red = 0, green = 0, blue = 1.0}
other color definitions

background = BLUE

237

Extending Y our Application

To get these valuesin C, we can do as follows:

| ua_get gl obal (L, "background");
if (!lua_istable(L, -1))
error(L, "'background' is not a table");

red = getcolorfield(L, "red");
green = getcolorfield(L, "green");
blue = getcolorfield(L, "blue");

We first get the value of the global variable backgr ound and ensure that it is a table; then we use
get col orfi el d to get each color component.

Of course, the function get col or fi el d isnot part of the Lua API; we must defineit. Again, we face
the problem of polymorphism: there are potentially many versions of get col or f i el d functions, vary-
ing the key type, value type, error handling, etc. The Lua API offers one function, | ua_get t abl e, that
worksfor al types. It takes the position of the table on the stack, pops the key from the stack, and pushes
the corresponding value. Our private get col or fi el d, defined in Figure 28.2, “ A particular get col -
or fi el dimplementation”,

Figure 28.2. A particular get col or fi el d implementation
#def i ne MAX_COLOR 255

/* assume that table is on the top of the stack */
int getcolorfield (lua_State *L, const char *key) {
int result, isnum
lua_pushstring(L, key); /* push key */
lua_gettable(L, -2); [/* get background[key] */
result = (int)(lua_tonunberx(L, -1, & snum) * MAX COLOR);
if (!'isnum
error(L, "invalid component '%' in color", key);
| ua_pop(L, 1); [/* renpve nunber */
return result;

}

assumes that the table is on the top of the stack; so, after pushing the key with | ua_pushstri ng, the
table will be at index -2. Before returning, get col or fi el d pops the retrieved value from the stack,
leaving the stack at the same level that it was before the call.

We will extend our example alittle further and introduce color names for the user. The user can still use
color tables, but she can also use predefined namesfor the more common colors. To implement thisfeature,
we need a color tablein our C application:

struct Col orTabl e {

char *nane;

unsi gned char red, green, blue;
} colortable[] = {

{"WH TE", MAX_COLOR, MAX_COLOR, MAX_COLOR},
{"RED", MAX_COLOR, 0, 0},
{" GREEN', 0, MAX_COLOR 0},
{"BLUE", 0, 0, MAX_COLOR},

ot her col ors
{NULL, O, O, 0} [/* sentinel */

238

Extending Y our Application

b

Our implementation will create global variables with the color names and initialize these variables using
color tables. Theresult isthe same as if the user had the following linesin her script:

VWH TE = {red
RED {red
ot her col ors

1.0, blue
0, bl ue

1.0, green
1.0, green

1.0}
0}

To set the table fields, we define an auxiliary function, set col or f i el d; it pushes the index and the
field value on the stack, and then calls| ua_set t abl e:

/* assume that table is on top */

void setcolorfield (lua_State *L, const char *index, int value) {
| ua_pushstring(L, index); /* key */
| ua_pushnunber (L, (double)value / MAX_ COLOR); [/* value */
| ua_settable(L, -3);

}

Like other API functions, | ua_set t abl e works for many different types, so it gets al its operands
from the stack. It takes the table index as an argument and pops the key and the value. The function
set col or fi el d assumesthat beforethe call thetableison thetop of the stack (index -1); after pushing
the index and the value, the table will be at index -3.

The next function, set col or, defines asingle color. It creates a table, sets the appropriate fields, and
assigns this table to the corresponding global variable:

void setcolor (lua_State *L, struct ColorTable *ct) {
| ua_newt abl e(L); /* creates a table */
setcolorfield(L, "red", ct->red);
setcolorfield(L, "green", ct->green);
setcolorfield(L, "blue", ct->blue);
| ua_set gl obal (L, ct->nane); /[* 'name' = table */

}

Thefunction| ua_newt abl e creates an empty table and pushesit on the stack; the three callsto set -
col orfi el d set the table fields; finally, | ua_set gl obal pops the table and sets it as the value of
the global with the given name.
With these previous functions, the following loop will register al colors for the configuration script:
int i =0;
while (colortable[i].name !'= NULL)
setcol or (L, &colortable[i++]);

Remember that the application must execute this loop before running the script.

Figure 28.3, “Colors as strings or tables” shows another option for implementing named colors.

239

Extending Y our Application

Figure 28.3. Colorsasstringsor tables

| ua_get gl obal (L, "background");
if (lua_isstring(L, -1)) { /* value is a string? */

const char *nane = lua_tostring(L, -1); /* get string */
int i; /* search the color table */
for (i = 0; colortable[i].name != NULL; i++) {
if (strcnp(colornane, colortable[i].name) == 0)
br eak;
}
if (colortable[i].name == NULL) /* string not found? */
error(L, "invalid color nanme (%)", colornane);

else { /* use colortable[i] */
red = colortable[i].red;
green = colortable[i].green
blue = colortable[i]. bl ue;
}
} else if (lua_istable(L, -1)) {
red = getcolorfield(L, "red");
green = getcolorfield(L, "green");
bl ue = getcolorfield(L, "blue");
} else
error(L, "invalid value for 'background ");

Instead of global variables, the user can denote color names with strings, writing her settings as back-

ground = "BLUE". Therefore, backgr ound can be either atable or a string. With this design, the
application does not need to do anything before running the user's script. Instead, it needs more work to
get acolor. When it getsthe value of the variable backgr ound, it must test whether the valueis astring,
and then look up the string in the color table.

What isthe best option? In C programs, the use of strings to denote optionsis not agood practice, because
the compiler cannot detect misspellings. In Lua, however, the error message for a misspelt color will
probably be seen by the author of the configuration “program”. The distinction between programmer and
user isblurred, and so the difference between a compilation error and a run-time error is blurred, too.

With strings, the value of backgr ound would be the misspelled string; hence, the application can add
thisinformation to the error message. The application can also compare strings regardless of case, so that
auser canwrite" whi te", " WH TE", or even " Whi t e" . Moreover, if the user script is small and there
are many colors, it may be inefficient to register hundreds of colors (and to create hundreds of tables and
global variables) when the user needs only afew. With strings, we avoid this overhead.

Some short cuts

Although the C API strives for simplicity, Lua is not radical. So, the API offers short cuts for several
common operations. Let us see some of them.

Because indexing a table with a string key is so common, Lua has a specialized version of
| ua_gett abl e forthiscase: | ua_get fi el d. Using thisfunction, we can rewrite the two lines

[ua_pushstring(L, key);
lua_gettable(L, -2); [/* get background[key] */

ingetcolorfieldas

lua_getfield(L, -1, key); [* get background[key] */

240

Extending Y our Application

(Aswe do not push the string onto the stack, the table index is still -1 whenwecall | ua_getfi el d.)

Because it is common to check the type of avaluereturned by | ua_get t abl e, in Lua5.3 thisfunction
(and similar ones like | ua_get fi el d) now returns the type of its result. Therefore, we can simplify
further the access and the check inget col or fi el d:

if (lua_getfield(L, -1, key) != LUA TNUMBER)
error(L, "invalid conponent in background color");

As you might expect, Lua offers also a specialized version of | ua_set t abl e for string keys, called
| ua_set fi el d. Using this function, we can rewrite our previous definition for set col orfi el d as
follows:

void setcolorfield (lua_State *L, const char *index, int value) {
| ua_pushnunber (L, (doubl e)value / MAX COLOR);
lua_setfield(L, -2, index);

}

Asasmall optimization, we can also replaceour useof | ua_newt abl e inthefunctionset col or.Lua
offersanother function, | ua_cr eat et abl e, where we create atable and pre-allocate space for entries.
Lua declares these functions like this:

void lua_createtable (lua_State *L, int narr, int nrec);
#def i ne | ua_newt abl e(L) | ua_createtable(L, 0, 0)

The parameter nar r isthe expected number of elements in the sequence part of thetable (that is, entries
with sequential integer indices), and nr ec is the expected number of other elements. In set col or , we
could writel ua_creat etabl e(L, 0, 3) asahint that the table will get three entries. (Lua code
does a similar optimization when we write a constructor.)

Calling Lua Functions

A great strength of Luaisthat a configuration file can define functions to be called by the application. For
instance, we can write in C an application to plot the graph of a function and define in Lua the function
to be plotted.

The API protocol to call afunction is simple: first, we push the function to be called; second, we push
the arguments to the call; thenwe use | ua_pcal | to do the actual call; finally, we get the results from
the stack.

As an example, let us assume that our configuration file has afunction like this:

function f (x, y)
return (x*2 * math.sin(y)) / (1 - x)
end

We want to evaluate, inC,z = f(x, y) forgivenx andy. Assuming that we have aready opened
the Lualibrary and run the configuration file, the function f in Figure 28.4, “ Calling a Lua function from
C’ evaluatesthat code.

241

Extending Y our Application

Figure 28.4. Calling a Lua function from C

/* call a function 'f' defined in Lua */
double f (lua_State *L, double x, double y) {
int isnum
doubl e z;

/* push functions and argunents */

| ua_getgl obal (L, "f"); [/* function to be called */
| ua_pushnunber (L, Xx); /* push 1st argunent */

| ua_pushnunber (L, y); /* push 2nd argunent */

/* do the call (2 argunents, 1 result) */
if (lua_pcall (L, 2, 1, 0) !'= LUA K
error(L, "error running function 'f': %",
lua_tostring(L, -1));

/* retrieve result */
z = lua_tonunberx(L, -1, & snum;
if (!isnum
error(L, "function 'f' should return a nunber");
lua_pop(L, 1); [/* pop returned value */
return z;

}

The second and third arguments to | ua_pcal | are the number of arguments we are passing and the
number of results we want. The fourth argument indicates a message-handling function; we will discuss
it in amoment. Asin a Lua assignment, | ua_pcal | adjusts the actua number of results to what we
have asked for, pushing nilsor discarding extravalues as needed. Before pushing theresults, | ua_pcal |
removes from the stack the function and its arguments. When a function returns multiple results, the first
result is pushed first; for instance, if there are three results, the first one will be at index -3 and the last
at index -1.

If thereisany error whilel ua_pcal | isrunning,| ua_pcal | returnsan error code; moreover, it pushes
the error message on the stack (but still pops the function and its arguments). Before pushing the message,
however, | ua_pcal | calls the message handler function, if there is one. To specify a message handler
function, we use the last argument of | ua_pcal | . Zero means no message handler function; that is, the
final error message is the original message. Otherwise, this argument should be the index on the stack
where the message handler function is located. In such cases, we should push the handler on the stack
somewhere below the function to be called.

For normal errors, | ua_pcal | returnstheerror code LUA ERRRUN. Two special kinds of errorsdeserve
different codes, because they never run the message handler. The first kind is a memory allocation error.
For such errors, | ua_pcal | returns LUA ERRVEM The second kind is an error while Lua is running
the message handler itself. In this case, itis of little use to call the handler again, so| ua_pcal | returns
immediately with acode LUA ERRERR. Since version 5.2, Lua differentiates a third kind of error: when
afinalizer raises an error, | ua_pcal | returns the code LUA ERRGCMM (error in a GC metamethod).
This code indicates that the error is not directly related to the call itself.

A Generic Call Function

Asamore advanced example, wewill build awrapper for calling Luafunctions, using thest dar g facility
in C. Our wrapper function, let us call it cal | _va, takes the name of a global function to be called, a

242

Extending Y our Application

string describing the types of the arguments and results, then the list of arguments, and finally alist of
pointersto variables to store the results; it handles all the details of the API. With this function, we could
write our examplein Figure 28.4, “Calling a Lua function from C” simply like this:

call _va(L, "f", "dd>d", x, y, &z);
Thestring " dd>d" means “two arguments of type double, oneresult of type double’. This descriptor can
use the letters d for double, i for integer, and s for strings; a > separates arguments from the results. If

the function has no results, the > is optional.

Figure 28.5, “A generic call function” shows the implementation of cal | _va.

Figure 28.5. A generic call function
#i ncl ude <stdarg. h>

void call _va (lua_State *L, const char *func,
const char *sig, ...) {
va_list vl;
int narg, nres; /* nunber of argunents and results */

va_start(vl, sig);
| ua_get gl obal (L, func); [/* push function */

push and count arguments (Figure 28.6, “Pushing argunents for the generic

nres = strlen(sig); [/* nunber of expected results */

if (lua_pcall (L, narg, nres, 0) !'=0) /* do the call */
error(L, "error calling '%': %", func,
lua_tostring(L, -1));

retrieve results (Figure 28.7, “Retrieving results for the generic call

va_end(vl);

}

Despite its generality, this function follows the same steps of our first example: it pushes the function,
pushes the arguments (Figure 28.6, “Pushing arguments for the generic call function™), does the call, and
gets the results (Figure 28.7, “Retrieving results for the generic call function™).

243

Extending Y our Application

Figure 28.6. Pushing argumentsfor the generic call function
for (narg = 0; *sig; narg++) { /* repeat for each argunment */

/* check stack space */
| uaL_checkstack(L, 1, "too many argunents");

switch (*sig++) {

case 'd': /* double argunent */
| ua_pushnunber (L, va_arg(vl, double));
br eak;

case 'i': /* int argunent */
| ua_pushi nteger (L, va_arg(vl, int));
br eak;

case 's': [/* string argunent */
| ua_pushstring(L, va_arg(vl, char *));
br eak;

case '>': [/* end of argunents */

goto endargs; [/* break the l[oop */
defaul t:

error(L, "invalid option (%)", *(sig - 1));

}

endar gs:

244

Extending Y our Application

Figure 28.7. Retrieving resultsfor the generic call function

nres = -nres; [* stack index of first result */
while (*sig) { /* repeat for each result */
switch (*sig++) {

case 'd': { [/* double result */
int isnum
double n = lua_tonunmberx(L, nres, & snum;
if (lisnum
error(L, "wong result type");
*va_arg(vl, double *) = n;

br eak;

}

case 'i': { /* int result */
int isnum
int n =lua_tointegerx(L, nres, & snum;
if (lisnum

error(L, "wong result type");

*va_arg(vl, int *) = n;
br eak;

}

case 's': { [/* string result */
const char *s = lua_tostring(L, nres);
if (s == NULL)

error(L, "wong result type");

*va_arg(vl, const char **) = s;
br eak;

}

defaul t:
error(L, "invalid option (%)", *(sig - 1));

}
nres++;

}

Most of its codeis straightforward, but there are some subtleties. First, it does not need to check whether
func isafunction: | ua_pcal | will trigger that error. Second, because it pushes an arbitrary number of
arguments, it must ensure that there is enough stack space. Third, because the function can return strings,
cal | _va cannot pop the results from the stack. It is up to the caller to pop them, after it finishes using
any string results (or after copying them to appropriate buffers).

Exercises

Exercise 28.1: Write a C program that reads a Lua file defining a function f from numbers to numbers
and plots that function. (Y ou do not need to do anything fancy; the program can plot the results printing
ASCI| asterisks as we did in the section called “ Compilation”.)

Exercise 28.2: Modify the function cal | _va (Figure 28.5, “A generic call function”) to handle Boolean
values.

245

Extending Y our Application

Exercise 28.3; Let us suppose a program that needs to monitor several weather stations. Internally, it uses
afour-byte string to represent each station, and there is a configuration file to map each string to the actual
URL of the corresponding station. A Lua configuration file could do this mapping in several ways:

» abunch of global variables, one for each station;
* atable mapping string codesto URLS;
« afunction mapping string codesto URLSs.

Discussthe pros and cons of each option, considering thingslikethetotal number of stations, the regularity
of the URLs (e.g., there may be aformation rule from codes to URLS), the kind of users, etc.

246

Chapter 29. Calling C from Lua

When we say that Lua can call C functions, this does not mean that Lua can call any C function.! As
we saw in the previous chapter, when C calls a Lua function, it must follow a simple protocol to pass
the arguments and to get the results. Similarly, for Luato call a C function, the C function must follow
a protocol to get its arguments and to return its results. Moreover, for Luato call a C function, we must
register the function, that is, we must give its address to Luain an appropriate way.

When Lua calls a C function, it uses the same kind of stack that C usesto call Lua. The C function gets
its arguments from the stack and pushes the results on the stack.

An important point here is that the stack is not a global structure; each function has its own private local
stack. When Lua calls a C function, the first argument will always be at index 1 of thislocal stack. Even
when aC function calls L uacodethat call sthe same (or another) C function again, each of theseinvocations
sees only its own private stack, with itsfirst argument at index 1.

C Functions

As afirst example, let us see how to implement a simplified version of a function that returns the sine
of agiven number:

static int | _sin (lua_State *L) {
double d = lua_tonunmber(L, 1); /* get argunent */
l ua_pushnumber (L, sin(d)); /* push result */
return 1; /* nunber of results */

}

Any function registered with Luamust have this same prototype, definedinl ua. h asl ua_CFuncti on:
typedef int (*lua_CFunction) (lua_State *L);

From the point of view of C, a C function gets as its single argument the Lua state and returns an integer
with the number of valuesit is returning on the stack. Therefore, the function does not need to clear the
stack before pushing its results. After it returns, Lua automatically saves its results and clears its entire
stack.

Before we can call this function from Lua, we must register it. We do this bit of magic with
| ua_pushcf uncti on: it getsapointer to a C function and creates avalue of type" f unct i on" that
represents this function inside Lua. Once registered, a C function behaves like any other function inside
Lua.

A quick-and-dirty way to test our function | _si n isto put its code directly into our basic interpreter
(Figure 27.1, “A bare-bones stand-alone Lua interpreter”) and add the following lines right after the call
tol uaL_openli bs:

| ua_pushcfunction(L, | _sin);
| ua_set gl obal (L, "nysin");

Thefirst line pushes avalue of type function; the second line assignsit to the global variablemysi n. After
these modifications, we can use the new function nysi n in our Lua scripts. In the next section, we will
discuss better waysto link new C functionswith Lua. Here, wewill explore how to write better C functions.

HThereare packages that allow Luato call any C function, but they are neither as portable as Lua nor safe.

247

Calling C from Lua

For amore professional sine function, we must check the type of its argument. The auxiliary library helps
us with thistask. The function | uaL_checknunber checks whether a given argument is a number: in
case of error, it throws an informative error message; otherwise, it returns the number. The modification
to our function is minimal:

static int | _sin (lua_State *L) {
doubl e d = lualL_checknunber (L, 1);
| ua_pushnunber (L, sin(d));
return 1; /* nunber of results */

}

With the above definition, if you call nysi n(' a'), you get an error like thisone:
bad argunment #1 to 'nysin' (nunber expected, got string)

The function | uaL_checknunber automatically fills the message with the argument number (#1),
the function name (" nysi n"), the expected parameter type (nunber), and the actual parameter type
(string).

As a more complex example, let us write a function that returns the contents of a given directory. Lua
does not provide thisfunctionin its standard libraries, because SO C does not offer functionsfor thisjob.
Here, we will assume that we have a POSIX compliant system. Our function—wewill call itdi r inLua,
I _dir in C—getsasargument astring with the directory path and returnsalist with the directory entries.

For instance, acal likedi r ("/ hore/ | ua"™) may returnthetable{".", "..", "src", "bin",
"1i b"}.Thecomplete code for thisfunctionisin Figure 29.1, “ A function to read adirectory”.

248

Calling C from Lua

Figure 29.1. A function toread a directory

#i ncl ude <dirent. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>

#i ncl ude "1l ua. h"
#i ncl ude "l auxlib.h"

static int |I_dir (lua_State *L) {
DR *dir;
struct dirent *entry;
int i;
const char *path = [ualL_checkstring(L, 1);

/* open directory */

dir = opendir(path);

if (dir == NULL) { /* error opening the directory? */
lua_pushnil (L); /* return nil... */
| ua_pushstring(L, strerror(errno)); /* and error nessage */
return 2; /* nunber of results */

}

/* create result table */

| ua_newt abl e(L);

i =1

while ((entry = readdir(dir)) !'= NULL) { /* for each entry */
| ua_pushinteger(L, i++); [/* push key */
| ua_pushstring(L, entry->d_nanme); /* push value */
| ua_settable(L, -3); /* table[i] = entry name */

}

closedir(dir);
return 1; /* table is already on top */

}

It starts getting the directory path with | ualL_checkstring, which is the equivalent of
| uaL_checknunber for strings. Then it opens this directory with opendi r . In case it cannot open
the directory, the function returns nil plus an error message that it gets with st r er r or . After opening
the directory, the function creates a new table and populates it with the directory entries. (Each time we
cal r eaddi r, it returns anext entry.) Finaly, it closes the directory and returns 1, in C, meaning that it
is returning the value on top of its stack to Lua. (Remember that | ua_set t abl e pops the key and the
value from the stack. Therefore, after the loop, the element on the top of the stack is the result table.)

In some conditions, this implementation of | _di r may cause a memory leak. Three of the Lua func-
tions that it calls can fail due to insufficient memory: | ua_new abl e, | ua_pushstri ng, and
| ua_sett abl e. If any of these functionsfails, it will raise an error and interrupt | _di r, which there-
forewill not call cl osedi r . In Chapter 32, Managing Resources, we will see an aternative implemen-
tation for a directory function that corrects this problem.

Continuations

Throughl ua_pcal | andl ua_cal | ,aCfunction called from Luacan call Luaback. Severa functions
in the standard library do that: t abl e. sort can call an order function; st ri ng. gsub can cal are-

249

Calling C from Lua

placement function; pcal | andxpcal | cal functionsin protected mode. If we remember that the main
Lua code was itself called from C (the host program), we have a call sequence like C (host) cals Lua
(script) that calls C (library) that calls Lua (callback).

Usually, Lua handles these sequences of calls without problems; after all, this integration with C is a
hallmark of the language. There is one situation, however, where thisinterlacement can cause difficulties:
coroutines.

Each coroutine in Lua hasits own stack, which keeps information about the pending calls of the coroutine.
Specifically, the stack stores the return address, the parameters, and the local variables of each call. For
calls to Lua functions, the interpreter needs only this stack, which we call the soft stack. For callsto C
functions, however, the interpreter must use the C stack, too. After al, the return address and the local
variables of a C function live in the C stack.

It is easy for the interpreter to have multiple soft stacks, but the runtime of 1SO C has only one internal
stack. Therefore, coroutines in Lua cannot suspend the execution of a C function: if thereis a C function
inthe call path from aresumeto itsrespective yield, Lua cannot save the state of that C function to restore
it in the next resume. Consider the next example, in Lua5.1:

co = coroutine.wap(function ()
print(pcall (coroutine.yield))
end)
co()
--> fal se attenpt to yield across netanethod/ C call boundary

Thefunctionpcal | isaC function; therefore, Lua 5.1 cannot suspend it, because thereisno way in 1SO
C to suspend a C function and resume it later.

Luab.2 and later versions ameliorated that difficulty with continuations. Lua 5.2 implements yields using
long jumps, in the same way that it implements errors. A long jump simply throws away any information
about C functionsin the C stack, so it isimpossible to resume those functions. However, aC function f 0o
can specify a continuation function f oo_k, which is another C function to be called when it istime to
resume f 00. That is, when the interpreter detects that it should resume f 00, but that a long jump threw
away the entry for f 0o in the C stack, it callsf oo_k instead.

To make things alittle more concrete, |et us see the implementation of pcal | asan example. In Lua5.1,
this function had the following code:

static int luaB pcall (lua_State *L) {
i nt status;
| uaL_checkany(L, 1); /* at |east one parameter */
status = lua_pcal I (L, lua_gettop(L) - 1, LUA MILTRET, 0);
| ua_pushbool ean(L, (status == LUA OK)); /[* status */
lua_insert(L, 1); /* status is first result */
return lua_gettop(L); /* return status + all results */

}

If thefunctionbeing called through| ua_pcal | yielded, it would beimpossibletoresumel uaB_pcal |
later. Therefore, the interpreter raised an error whenever we attempted to yield inside a protected call. Lua
5.3 implementspcal | roughly likein Figure 29.2, “Implementation of pcal | with continuations’ 2

>The API for continuationsin Lua5.2 is alittle different. Check the reference manual for details.

250

Calling C from Lua

Figure 29.2. Implementation of pcal | with continuations

static int finishpcall (lua_State *L, int status, intptr_t ctx) ({

(voi d) ctx; /* unused paramneter */
status = (status !'= LUA OK && status != LUA YIELD);
| ua_pushbool ean(L, (status == 0)); /[/* status */

lua_insert(L, 1); /* status is first result */
return lua_gettop(L); /* return status + all results */

}
static int luaB pcall (lua_State *L) {
i nt status;
| uaL_checkany(L, 1);
status = lua_pcal I k(L, lua_gettop(L) - 1, LUA MITRET, O,
0, finishpcall);
return finishpcall (L, status, 0);
}

There are three important differences from the Lua 5.1 version: first, the new version replaces the call
tol ua_pcal | byacaltol ua_pcal | k; second, it puts everything done after that call in a new auxil-
iary function f i ni shpcal | ; third, the status returned by | ua_pcal | k can be LUA_YI ELD, besides
LUA _OKor anerror.

If there are no yields, | ua_pcal | k works exactly likel ua_pcal | . If thereis ayield, however, then
things are quite different. If afunction called by the original | ua_pcal | triestoyield, Lua5.3 raisesan
error, like Lua 5.1. But when a function called by the new | ua_pcal | k yields, there is no error: Lua
does along jump and discards the entry for | uaB_pcal | from the C stack, but keeps in the soft stack
of the coroutine areference to the continuation function givento| ua_pcal | k (fi ni shpcal | ,inour
example). Later, when the interpreter detectsthat it should returnto | uaB_pcal | (whichisimpossible),
it instead calls the continuation function.

The continuation function f i ni shpcal | can also be called when there is an error. Unlike the original
| uaB_pcal | ,fini shpcal | cannot get thevaluereturned by | ua_pcal | k. So, it getsthisvaue as
an extra parameter, st at us. When there are no errors, st at us isLUA_YI ELDinstead of LUA OK, so
that the continuation function can check how it is being called. In case of errors, st at us isthe original
error code.

Besides the status of the call, the continuation function also receives a context. The fifth parameter to
| ua_pcal | k isan arbitrary integer that is passed asthe last parameter to the continuation function. (The
type of this parameter, i nt pt r _t, allows pointers to be passed as context, too.) This value allows the
original function to pass some arbitrary information directly to its continuation. (Our example does not
use thisfacility.)

The continuation system of Lua 5.3 is an ingenious mechanism to support yields, but it is not a panacea.
Some C functions would need to pass too much context to their continuations. Examples include
t abl e. sort, which usesthe C stack for recursion, and st r i ng. gsub, which must keep track of cap-
tures and a buffer for its partial result. Although it is possible to rewrite them in a “yieldable” way, the
gains do not seem to be worth the extra complexity and performance losses.

C Modules

A Luamoduleisachunk that defines several Luafunctionsand storesthem in appropriate places, typically
asentriesin atable. A C module for Lua mimics this behavior. Besides the definition of its C functions,
it must also define a special function that plays the role of the main chunk in aLua library. This function

251

Calling C from Lua

should register al C functions of the module and storethem in appropriate places, again typically asentries
in atable. Like a Lua main chunk, it should also initialize anything else that needs initialization in the
module.

Luaperceives C functions through this registration process. Once a C function is represented and stored in
Lua, Luacallsit through adirect reference to its address (which iswhat we give to Luawhen weregister a
function). In other words, Lua does not depend on afunction name, package location, or visibility rulesto
call afunction, onceit is registered. Typically, a C module has one single public (extern) function, which
is the function that opensthe library. All other functions can be private, declared asst ati c inC.

When we extend Lua with C functions, it is a good idea to design our code as a C module, even when
we want to register only one C function: sooner or later (usually sooner) we will need other functions. As
usual, the auxiliary library offers ahelper function for thisjob. The macrol uaL_newl i b takesan array
of C functions with their respective names and registers all of them inside a new table. As an example,
suppose we want to create alibrary with thefunction| _di r that we defined earlier. First, we must define
the library functions:

static int | _dir (lua_State *L) {
as before

}

Next, we declare an array with all functions in the module with their respective names. This array has
elementsof typel uaL_Reg, whichisastructurewith two fields: afunction name (astring) and afunction
pointer.

static const struct luaL_Reg nylib [] = {
{"dir", 1_dir},

{NULL, NULL} /* sentinel */

i

In our example, thereisonly onefunction (I _di r)todeclare. Thelast pair inthearray isalways{ NULL,
NULL} , to mark its end. Finally, we declare amain function, using | uaL_new i b:

int luaopen_nylib (lua_State *L) {
lualL_newl i b(L, nylib);
return 1,

}

Thecal tol uaL_new i b creates anew table and fills it with the pairs name—function specified by the
array nyl i b. When it returns, | uaL_new i b leaves on the stack the new table wherein it opened the
library. The function | uaopen_nyl i b then returns 1 to return thistable to Lua.

After finishing the library, we must link it to the interpreter. The most convenient way to do it is with
the dynamic linking facility, if your Lua interpreter supports this facility. In this case, you must create a
dynamic library with your code (myl i b. dl | in Windows, nyl i b. so in Linux-like systems) and put it
somewhere in the C path. After these steps, you can load your library directly from Lua, withr equi r e:

local nylib = require "nylib"

This call links the dynamic library nmyl i b with Lua, finds the function | uaopen_nyl i b, registers it
as a C function, and calls it, opening the module. (This behavior explains why | uaopen_nyl i b must
have the same prototype as any other C function.)

The dynamic linker must know the name of the function | uaopen_nyl i b in order to find it. It will
alwayslook for | uaopen__ concatenated with the name of the module. Therefore, if our moduleis called

252

Calling C from Lua

nyl i b, that functionshould becalled| uaopen_nyl i b. (Wediscussed the details of thisfunction name
in Chapter 17, Modules and Packages.)

If your interpreter does not support dynamic linking, then you haveto recompile Luawith your new library.
Besides this recompilation, you need some way of telling the stand-alone interpreter that it should open
thislibrary when it opens anew state. A simple way to do thisisto add | uaopen_nyl i b into thelist of
standard librariesto be opened by | uaL_openl i bs, inthefilel i nit. c.

Exercises

Exercise 29.1: Writeavariadic summat i on function, in C, that computes the sum of its variable number
of numeric arguments:

print (sunmation()) --> 0
print(sunmation(2.3, 5.4)) --> 7.7
print(sunmation(2.3, 5.4, -34)) --> -26.3

print(summation(2.3, 5.4, {}))
--> stdin:1: bad argument #3 to 'sunmation'
(number expected, got table)

Exercise 29.2: Implement afunction equivalent tot abl e. pack, from the standard library.
Exercise 29.3: Write a function that takes any number of parameters and returns them in reverse order.
print(reverse(1, "hello", 20)) --> 20 hel |l o 1

Exercise 29.4: Write afunction f or each that takes atable and a function and calls that function for each
key—value pair in the table.

foreach({x = 10, y = 20}, print)
--> X 10
-->y 20

(Hint: check the function | ua_next inthe Luamanual.)

Exercise 29.5: Rewrite the function f or each, from the previous exercise, so that the function being
caled canyield.

Exercise 29.6: Create a C module with all functions from the previous exercises.

253

Chapter 30. Techniques for Writing C
Functions

Both the official API and the auxiliary library provide several mechanisms to help writing C functions.
In this chapter, we cover the mechanisms for array manipulation, string manipulation, and storing Lua
valuesin C.

Array Manipulation

An*“array”, inLua, isjust atable used in aspecific way. We can manipulate arrays using the same generic
functions we use to manipulate tables, namely | ua_sett abl e and | ua_get t abl e. However, the
API provides special functions to access and update tables with integer keys:

void lua geti (lua_State *L, int index, int key);
void lua_ seti (lua_State *L, int index, int key);

Lua versions prior to 5.3 offered only raw versions of these functions, | ua_rawgeti and
| ua_rawseti.They aresimilartol ua_geti and| ua_seti , but do raw accesses (that is, without
invoking metamethods). When the difference in unimportant (e.g., the table has no metamethods), the raw
versions can be dlightly faster.

The description of | ua_geti and | ua_seti is alittle confusing, as it involves two indices. i n-
dex refers to where the table is on the stack; key refers to where the element isin the table. The call
lua_geti (L, t, key) isequivaent to the following sequence whent is positive (otherwise, we
must compensate for the new item on the stack):

| ua_pushnunber (L, key);
| ua_gettable(L, t);

Thecdllua_seti (L, t, key) (againfort positive) isequivalent to this sequence:

| ua_pushnunber (L, key);
lua_insert(L, -2); /* put 'key' below previous value */
| ua_settable(L, t);

As a concrete example of the use of these functions, Figure 30.1, “The function map in C” implements
the function map: it applies a given function to all elements of an array, replacing each element by the
result of the call.

254

Techniques for Writing C Functions

Figure 30.1. Thefunction map in C

i nt
int i, n;

/* 1st argunent nust
| uaL_checktype(L, 1,

/* 2nd argunent nust
| uaL_checktype(L, 2,

n =lualL_len(L, 1);

I map (lua_State *L) {

be a table (t) */
LUA TTABLE);

be a function (f) */
LUA_TFUNCTI ON) ;

/* get size of table */

for (i =1; i <=n; i++) {
| ua_pushval ue(L, 2); /* push f */
lua_geti(L, 1, i); [/* push t[i] */
lua_call (L, 1, 1); [* call f(t[i]) */
lua_seti (L, 1, i); [/* t[i] =result */

}

return O; /* no results */

}

This example a so introduces three new functions: | uaL_checkt ype,l uaL_| en,andl ua_cal | .

The function | uaL_checkt ype (from | auxl i b. h) ensures that a given argument has a given type;
otherwise, it raises an error.

The primitive | ua_l en (not used in the example) is equivalent to the length operator. Because of
metamethods, this operator may result in any kind of object, not only numbers; therefore, | ua_I en re-
turns its result on the stack. The function | uaL_| en (the one used in the example, from the auxiliary
library) returns the length as an integer, raising an error if the coercion is not possible.

Thefunction| ua_cal | doesan unprotected call. Itissimilartol ua_pcal | , but it propagates errors,
instead of returning an error code. When we are writing the main code in an application, we should not use
| ua_cal | , because we want to catch any errors. When we are writing functions, however, it is usually
agoodideatousel ua_cal | ;if thereisan error, just leave it to someone who cares about it.

String Manipulation

When a C function receives a string argument from Lua, there are only two rulesthat it must observe: not
to pop the string from the stack while using it and never to modify the string.

Things get more demanding when a C function needs to create a string to return to Lua. Now, it isup to
the C codeto take care of buffer allocation/deall ocation, buffer overflows, and other tasksthat are difficult
in C. So, the Lua API provides some functions to help with these tasks.

The standard API provides support for two of the most basic string operations; substring extraction and
string concatenation. To extract a substring, remember that the basic operation| ua_pushl stri ng gets
thestring length as an extraargument. Therefore, if wewant to passto Luaasubstring of astring s ranging
from positioni toj (inclusive), all we haveto doisthis:

lua_pushlstring(L, s +i, j - 1 + 1);

255

Techniques for Writing C Functions

As an example, suppose we want a function that splits a string according to a given separator (a sin-
gle character) and returns a table with the substrings. For instance, thecall spl it (" hi : ho: t here",

":") should return thetable{"hi ", "ho", "there"}.Figure30.2, “Splitting a string” presents
asimple implementation for this function.

Figure 30.2. Splittinga string

static int | _split (lua_State *L) {

const char *s = lualL_checkstring(L, 1); /* subject */
const char *sep = lualL_checkstring(L, 2); /* separator */
const char *e;

int i =1,

lua_newtable(L); /* result table */

/* repeat for each separator */

while ((e = strchr(s, *sep)) != NULL) {
| ua_pushl string(L, s, e - s); [/* push substring */
lua_rawseti (L, -2, i++); /[* insert it in table */
s =e + 1, [* skip separator */

}

/* insert last substring */
| ua_pushstring(L, s);
lua_rawseti (L, -2, i);

return 1; /* return the table */

}

It uses no buffers and can handle arbitrarily long strings: Luatakes care of all the memory allocation. (As
we created the table, we know it has no metatable; so, we can manipulate it with the raw operations.)

To concatenate strings, L ua provides a specific function, called | ua_concat . It isequivalent to the con-
catenation operator (. .) in Lua it converts numbersto strings and triggers metamethods when necessary.
Moreover, it can concatenate more than two strings at once. The call | ua_concat (L, n) will con-
catenate (and pop) the top-most n values on the stack and push the result.

Another helpful functionisl ua_pushfstri ng:
const char *lua_pushfstring (lua_State *L, const char *fm, ...);

Itissomewhat similar tothe Cfunctionspri nt f ,inthat it createsastring according to aformat string and
some extra arguments. Unlikespr i nt f , however, we do not need to provide a buffer. Lua dynamically
createsthe string for us, aslarge asit needsto be. The function pushes the resulting string on the stack and
returns a pointer to it. This function accepts the following directives:

%s inserts a zero-terminated string

%l insertsani nt

% inserts a Luafloat

% inserts a pointer

% inserts a Luainteger

% insertsani nt asaone-byte character

256

Techniques for Writing C Functions

%J insertsani nt asaUTF-8 byte sequence

%o inserts a percent sign

It accepts no modifiers, such as width or precision.l

Bothl ua_concat andl ua_pushf st ri ng areuseful when wewant to concatenate only afew strings.
However, if we need to concatenate many strings (or characters) together, a one-by-one approach can be
quite inefficient, as we saw in the section called “ String Buffers’. Instead, we can use the buffer facility
provided by the auxiliary library.

Initssimpler usage, the buffer facility workswith two functions: one givesusabuffer of any sizewherewe
can compose our string; the other converts the contents of the buffer into a Lua stri ng.2 Figure 30.3, “The
functionst ri ng. upper ” illustratesthose functionswith theimplementation of st r i ng. upper , right
from the sourcefilel strlib. c.

Figure 30.3. Thefunction st ri ng. upper

static int str_upper (lua_State *L) {

size t 1;

size t i;

| uaL_Buf fer b;

const char *s = lualL_checkl string(L, 1, &);
char *p = lualL_buffinitsize(L, &b, 1);

for (i =0; i <|1; i++)

p[i] = toupper(uchar(s[i]));
| uaL_pushresul tsize(&b, 1);
return 1;

}

Thefirst step for using abuffer fromtheauxiliary library isto declareavariablewithtypel ualL_Buf f er .
Thenext stepistocal | uaL_buf fi ni t si ze to get apointer for abuffer with the given size; we can
then usethisbuffer freely to create our string. Thelast stepistocall | ual_pushresul t si ze toconvert
the buffer contents into a new Lua string and push that sting onto the stack. The size in this second call
is the final size of the string. Often, asin our example, this size is equal to the size of the buffer, but it
can be smaller. If we do not know the exact size of the resulting string, but have an upper bound, we can
conservatively allocate alarger size.

Notethat | uaL_pushr esul t si ze doesnot get aL uastate asitsfirst argument. After theinitialization,
a buffer keeps a reference to the state, so we do not need to pass it when calling other functions that
manipulate buffers.

We can also use the auxlib buffers by adding content to them piecemeal, without knowing an upper
bound on the size of the result. The auxiliary library offers several functions to add things to a buffer:
| uaL_addval ue adds a Lua string that is on the top of the stack; | ualL_addlI st ri ng adds strings
with an explicit length; | uaL_addst ri ng adds zero-terminated strings; and | uaL_addchar adds
single characters. These functions have the following prototypes:

void lualL_buffinit (lua_State *L, luaL_Buffer *B);

voi d | ualL_addval ue (luaL_Buffer *B);

void lualL_addl string (luaL_Buffer *B, const char *s, size t |);
void lualL_addstring (luaL_Buffer *B, const char *s);

The directive p wasintroduced in Lua5.2. The directives| and Uwere introduced in Lua5.3.
2These two functions were introduced in Lua5.2.

257

Techniques for Writing C Functions

voi d | uaL_addchar (luaL_Buffer *B, char c);
void |uaL_pushresult (lualL_Buffer *B);

Figure 30.4, “A simplified implementation for t abl e. concat ” illustrates the use of these functions
with asimplified implementation of the functiont abl e. concat .

Figure 30.4. A simplified implementation for t abl e. concat

static int tconcat (lua_State *L) ({
| uaL_Buffer b;
int i, n;
| uaL_checktype(L, 1, LUA TTABLE);
n = lualL_len(L, 1);
lualL_buffinit(L, &b);

for (i =1, i <=n; i++) {
lua_geti(L, 1, i); [/* get string fromtable */
| uaL_addval ue(b); /* add it to the buffer */
}
| uaL_pushresul t (&b);
return 1,

}

Inthat function, wefirstcall | uaL_buf f i ni t toinitializethe buffer. Wethen add elementsto the buffer
one by one, in thisexample using | uaL_addval ue. Finally, | uaL_pushr esul t flushes the buffer
and leaves the final string on the top of the stack.

When we use the auxlib buffer, we have to worry about one detail. After weinitialize abuffer, it may keep
some internal data in the Lua stack. Therefore, we cannot assume that the stack top will remain where
it was before we started using the buffer. Moreover, athough we can use the stack for other tasks while
using a buffer, the push/pop count for these uses must be balanced every time we access the buffer. The
only exception to thisruleis| uaL_addval ue, which assumes that the string to be added to the buffer
is on the top of the stack.

Storing State in C Functions

Frequently, C functions need to keep some non-local data, that is, data that outlive their invocation. In
C, wetypically use global (ext er n) or static variables for this need. When we are programming library
functionsfor Lua, however, neither works well. First, we cannot store ageneric LuavalueinaC variable.
Second, alibrary that uses such variables will not work with multiple Lua states.

A better approach is to get some help from Lua. A Lua function has two places to store non-local data:
global variables and non-local variables. The C API offers two similar placesto store non-local data: the
registry and upvalues.

The registry

The registry is a global table that can be accessed only by C code. Typicaly, we use it to store data to
be shared among several modules.

The registry is aways located at the pseudo-index LUA REQ STRYI NDEX. A pseudo-index is like an
index into the stack, except that its associated value is not on the stack. Most functions in the Lua API

3Actua||y, we can access it from Lua using the debug function debug. get r egi st ry, but we really should not use this function except for

debugging.

258

Techniques for Writing C Functions

that accept indices as arguments also accept pseudo-indices —the exceptions being those functions that
manipulate the stack itself, such as|l ua_r enmove and| ua_i nsert . For instance, to get a value stored
with key " Key" intheregistry, we can use the following call:

lua_getfield(L, LUA REGQ STRYI NDEX, "Key");

Theregistry isaregular Luatable. Assuch, we canindex it with any non-nil Luavalue. However, because
all C modules share the same registry, we must choose with care what values we use as keys, to avoid
collisions. String keys are particularly useful when we want to allow other independent libraries to access
our data, because all they need to know is the key name. For those keys, there is no bulletproof method
of choosing names, but there are some good practices, such as avoiding common names and prefixing our
names with the library name or something likeiit. (Prefixeslikel ua or | ual i b are not good choices.)

We should never use our own numbers as keys in the registry, because Lua reserves numeric keys for its
reference system. This system comprises a pair of functions in the auxiliary library that allow us to store
valuesin atable without worrying about how to create unique keys. Thefunction| uaL_r ef creates new
references:

int ref = luaL_ref(L, LUA REQ STRYI NDEX) ;

Thepreviouscall popsavaluefrom the stack, storesit into the registry with afresh integer key, and returns
thiskey. We call this key areference.

As the name implies, we use references mainly when we need to store a reference to a Lua value inside
a C structure. As we have seen, we should never store pointers to Lua strings outside the C function that
retrieved them. Moreover, Lua does not even offer pointers to other objects, such as tables or functions.
So, we cannot refer to Lua objects through pointers. Instead, when we need such pointers, we create a
reference and storeitin C.
To push the value associated with areferencer ef onto the stack, we simply write this:

lua_rawgeti (L, LUA REG STRYI NDEX, ref);
Finally, to release both the value and the reference, we call | uaL_unr ef :

lual_unref (L, LUA REGQ STRYI NDEX, ref);
After thiscall, anew call to | uaL_r ef may return this reference again.
The reference system treats nil as a special case. Whenever we cal | ualL_r ef for anil value, it does
not create a new reference, but instead returns the constant reference LUA_REFNI L. The following call
has no effect:

luaL_unref (L, LUA REG STRYI NDEX, LUA REFNIL);
The next one pushes a nil, as expected:

lua_rawgeti (L, LUA REG STRYI NDEX, LUA REFNIL);

The reference system also defines the constant LUA_NOREF, which isan integer different from any valid
reference. It is useful to signal that avalue treated as areferenceisinvalid.

When we create a L ua state, the registry comes with two predefined references:

LUA RI DX _MAI NTHREAD keepsthe Lua stateitself, which is also its main thread.

259

Techniques for Writing C Functions

LUA RI DX GLOBALS keeps the global environment.

Another safe way to create unique keys in the registry is to use as key the address of a static variable in
our code: The C link editor ensures that this key is unique across al loaded libraries. To use this option,
we need the function | ua_pushl i ght user dat a, which pushes on the stack a value representing aC
pointer. The following code shows how to store and retrieve a string from the registry using this method:

/* variable with a unique address */
static char Key = '"k';

/* store a string */

[ua_pushl i ghtuserdata(L, (void *)&Key); /* push address */

| ua_pushstring(L, nyStr); /* push value */

lua_settabl e(L, LUA REG STRYINDEX); /* registry[&Key] = nmyStr */

/* retrieve a string */

[ua_pushl i ghtuserdata(L, (void *)&Key); /* push address */
lua_gettable(L, LUA REA STRYINDEX); /* retrieve value */
nyStr = lua_tostring(L, -1); /* convert to string */

Wewill discuss light userdata in more detail in the section called “Light Userdata”.

To simplify the use of variable addresses as unique keys, Lua 5.2 introduced two new functions:
| ua_rawget pandl ua_rawset p. They aresimilartol ua_rawgeti andl ua_r awset i , but they
use C pointers (translated to light userdata) as keys. With them, we can write the previous code like this:

static char Key = 'k';

/* store a string */
| ua_pushstring(L, nyStr);
| ua_rawset p(L, LUA REGQ STRYI NDEX, (void *)&Key);

/* retrieve a string */
| ua_rawget p(L, LUA REGQ STRYI NDEX, (void *)&Key);
nyStr = lua_tostring(L, -1);

Both functions use raw accesses. As the registry does not have a metatable, a raw access has the same
behavior as aregular access, and it is slightly more efficient.

Upvalues

While the registry offers global variables, the upvalue mechanism implements an equivalent of C static
variablesthat are visible only inside a particular function. Every time we create a new C function in Lua,
we can associate with it any number of upvalues, each one holding asingle Luavalue. Later, when we call
the function, it has free access to any of its upva ues, using pseudo-indices.

We call this association of a C function with its upvalues a closure. A C closure is a C approximation
to a Lua closure. In particular, we can create different closures using the same function code, but with
different upvalues.

To see asimple example, let us create a function newCount er in C. (We defined a similar functionin
Luain Chapter 9, Closures.) This function is a factory: it returns a new counter function each timeiit is
caled, asin this example:

cl = newCounter()

260

Techniques for Writing C Functions

print(cl(), cl(), c1()) --> 1 2 3
c2 = newCounter ()
print(c2(), c2(), c1()) --> 1 2 4

Although all counters share the same C code, each one keeps its own independent counter. The factory
functionislikethis:

static int counter (lua_State *L); /* forward declaration */

int newCounter (lua_State *L) {
| ua_pushi nteger (L, 0);
| ua_pushccl osure(L, &counter, 1);
return 1,

}

Thekey function hereisl| ua_pushccl osur e, which creates anew closure. Its second argument is the
base function (count er , in the example) and the third is the number of upvalues (1, in the example).
Before creating anew closure, we must push on the stack theinitial valuesfor itsupvalues. In our example,
we push zero as the initial value for the single upvalue. As expected, | ua_pushccl osur e leaves the
new closure on the stack, so the closure is ready to be returned as the result of newCount er .

Now, let us see the definition of count er :

static int counter (lua_State *L) {
int val = lua_tointeger(L, |ua_upval ueindex(1));
| ua_pushi nteger (L, ++val); /* new value */
| ua_copy(L, -1, lua_upvalueindex(1)); [/* update upval ue */
return 1; /* return new value */

}

Here, the key element isthe macro | ua_upval uei ndex, which produces the pseudo-index of an up-
value. In particular, the expression | ua_upval uei ndex(1) givesthe pseudo-index of thefirst upval-
ue of the running function. Again, this pseudo-index is like any stack index, except that it does not live
on the stack. So, the call to| ua_t oi nt eger retrieves the current value of the first (and only) upvalue
as an integer. Then, the function count er pushesthe new value ++val , copiesit as the new upvalue's
value, and returnsit.

As a more advanced example, we will implement tuples using upvalues. A tuple is a kind of constant
structure with anonymousfields; we can retrieve a specific field with anumerical index, or we can retrieve
all fields at once. In our implementation, we represent tuples as functions that store their values in their
upvalues. When called with a numerical argument, the function returns that specific field. When called
without arguments, it returns all itsfields. The following code illustrates the use of tuples:

X = tuple.new(10, "hi", {}, 3)

print(x(1)) --> 10
print(x(2)) --> hij
print(x()) --> 10 hi table: 0x8087878 3

In C, we will represent all tuples by the same functiont _t upl e, presented in Figure 30.5, “An imple-
mentation of tuples’.

261

Techniques for Writing C Functions

Figure 30.5. An implementation of tuples
#i nclude "l auxlib.h"

int t tuple (lua_State *L) {
lua_Integer op = luaL_optinteger(L, 1, 0);

if (op==0) { /* no argunments? */
int i;
/* push each valid upval ue onto the stack */
for (i = 1; !lua_isnone(L, lua_upvalueindex(i)); i++)
| ua_pushval ue(L, |ua_upval uei ndex(i));
returni - 1; /* nunber of values */

else { [/* get field 'op' */

| uaL_argcheck(L, 0 < op && op <= 256, 1,
"i ndex out of range");
if (lua_isnone(L, |ua_upval uei ndex(op)))
return O0; /* no such field */

| ua_pushval ue(L, |ua_upval uei ndex(op));
return 1,

}

}

int t new (lua_State *L) {
int top = lua_gettop(L);
| uaL_argcheck(L, top < 256, top, "too many fields");
| ua_pushccl osure(L, t_tuple, top);
return 1;

}

static const struct luaL_Reg tuplelib [] = {
{"new', t_new},

{NULL, NULL}

1

int luaopen_tuple (lua_State *L) {
lual_newl i b(L, tuplelib);
return 1;

}

Because we can call atuple with or without a numeric argument, t _t upl e uses| ualL_opti nt eger
to get itsoptional argument. Thisfunctionissimilar tol uaL_checki nt eger, but it does not complain
if the argument is absent; instead, it returns a given default value (0, in the example).

The maximum number of upvalues to a C function is 255, and the maximum index we can use with
| ua_upval uei ndex is256. So, we usel ualL_ar gcheck to ensure these limits.

When we index a non-existent upvalue, the result is a pseudo-value whose type is LUA_ TNONE. (When
we access a stack index above the current top, we also get a pseudo-value with this type LUA_ TNONE.)
Our functiont _t upl e uses| ua_i snone to test whether it has a given upvalue. However, we should
never usel ua_upval uei ndex with anegative index or with an index greater than 256 (which is one
plus the maximum number of upvalues for a C function), so we must check for this condition when the
user provides the index. The function | uaL_ar gcheck checks a given condition, raising an error with
anice messageif the condition fails;

262

Techniques for Writing C Functions

>t = tuple.new(2, 4, 5)
> t(300)
--> stdin:1: bad argument #1 to 't' (index out of range)

Thethird argument to | uaL_ar gcheck provides the argument number for the error message (1, in the
example), and the fourth argument provides acomplement to themessage (" i ndex out of range").

The function to create tuples, t _new (also in Figure 30.5, “An implementation of tuples’), is trivial:
because its arguments are already on the stack, it first checks that the number of fields respects the limit
for upvalues in a closure and then call | ua_pushccl osur e to create aclosure of t _t upl e with all
its arguments as upvalues. Finaly, the array t upl el i b and the function | uaopen_t upl e (also in
Figure 30.5, “An implementation of tuples’) are the standard code to create a library t upl e with that
single function new.

Shared upvalues

Often, we need to share some values or variables among all functionsin alibrary. Although we can use
theregistry for that task, we can also use upvalues.

Unlike Lua closures, C closures cannot share upvalues. Each closure has its own independent upvalues.
However, we can set the upvalues of different functions to refer to a common table, so that this table
becomes a common environment where the functions can share data.

Lua offers a function that eases the task of sharing an upvalue among all functions of alibrary. We have
been opening C librarieswith | uaL_new i b. Luaimplements this function as the following macro:

#define luaL_newib(L,1ib) \
(luaL_new i btabl e(L,lib), luaL_setfuncs(L,Iib,0))

Themacro | uaL_new i bt abl e just creates a new table for the library. (This table has a preallocated
size equal to the number of functionsin the given library.) Thefunction| ualL_set f uncs then adds the
functionsinthelist| i b to that new table, which is on the top of the stack.

Thethird parameter to| uaL_set f uncs iswhat we are interested in here. It gives the number of shared
upvalues the new functionsin the library will have. Theinitial values for these upvalues should be on the
stack, as happenswith | ua_pushccl osur e. Therefore, to create alibrary where al functions share a
common table as their single upvalue, we can use the following code:

/* create library table ('"lib" is its list of functions) */

lualL_newl i btabl e(L, lib);

/* create shared upval ue */

| ua_newt abl e(L);

/* add functions in list "lib" to the new library, sharing
previous table as upval ue */

| uaL_setfuncs(L, lib, 1);

The last call aso removes the shared table from the stack, leaving there only the new library.

Exercises

Exercise 30.1: Implement afilter function in C. It should receive alist and a predicate and return a new
list with all elements from the given list that satisfy the predicate:

t =filter({1, 3, 20, -4, 5}, function (x) return x < 5 end)
-- t ={1, 3, -4}

263

Techniques for Writing C Functions

(A predicateisjust afunction that tests some condition, returning a Boolean.)

Exercise 30.2: Modify the function| _spl i t (from Figure 30.2, “ Splitting a string”) so that it can work
with strings containing zeros. (Among other changes, it should use mencthr instead of st r chr .)

Exercise 30.3: Reimplement the functiont r ansl i t er at e (Exercise 10.3) in C.

Exercise 30.4: Implement a library with a modification of t r ansl i t er at e so that the trandliteration
tableisnot given as an argument, but instead iskept by thelibrary. Y our library should offer the following
functions:

lib.settrans (table) -- set the transliteration table
lib.gettrans () -- get the transliteration table
lib.transliterate(s) -- transliterate 's' according to the

current table
Use the registry to keep the trandliteration table.
Exercise 30.5: Repeat the previous exercise using an upvalue to keep the trandliteration table.

Exercise 30.6: Do you think it is a good design to keep the trandliteration table as part of the state of the
library, instead of being aparametertot ransl i t er at e?

264

Chapter 31. User-Defined Types in C

In the previous chapter, we saw how to extend Luawith new functions writtenin C. Now, wewill see how
to extend Lua with new types written in C. We will start with a small example; through the chapter, we
will extend it with metamethods and other goodies.

Our running example in this chapter will be a quite simple type: Boolean arrays. The main motivation
for this example is that it does not involve complex algorithms, so we can concentrate on API issues.
Nevertheless, the exampleisuseful by itself. Of course, we can usetablesto implement arrays of Booleans
in Lua. But a C implementation, where we store each entry in one single bit, uses less than 3% of the
memory used by atable.

Our implementation will need the following definitions:

#include <limts. h>

#define BITS PER WORD (CHAR BI T * sizeof (unsigned int))
#define | _WORD(i) ((unsigned int)(i) / BITS PER WORD)
#define | _BIT(i) (1 << ((unsigned int)(i) %BITS PER WORD))

Bl TS PER WORDisthe number of bitsin an unsigned integer. The macro | _ WORD computes the word
that stores the bit corresponding to agiven index, and | _BI T computes a mask to access the correct bit
inside this word.

We will represent our arrays with the following structure:
typedef struct BitArray {
int size;
unsi gned int values[1]; /* variable part */
} BitArray;

We declare the array val ues with size 1 only as a placeholder, because C 89 does not allow an array
with size 0; we will set the actual size when we allocate the array. The next expression computes the total
sizefor an array with n elements:

sizeof (BitArray) + I _WORD(n - 1) * sizeof (unsigned int)

(We subtract one from n because the original structure already includes space for one element.)

Userdata

In thisfirst version, we will use explicit calls to set and get values, asin the next example:

a = array.new 1000)

for i =1, 1000 do

array.set(a, i, i %2 == 0) --a[i] = (i %2 ==0)
end
print(array.get(a, 10)) --> true
print(array.get(a, 11)) --> fal se
print(array.size(a)) --> 1000

Later wewill see how to support both an object-oriented style, likea: get (i) , and aconventional syntax,
likea[i] . For al versions, the underlying functions are the same, defined in Figure 31.1, “Manipulating
aBoolean array”.

265

User-Defined Typesin C

Figure 31.1. Manipulating a Boolean array

static int newarray (lua_State *L) {

int i;

size_t nbytes;

BitArray *a;

int n = (int)lualL_checkinteger(L, 1); /* nunber of bits */
| uaL_argcheck(L, n >= 1, 1, "invalid size");

nbytes = sizeof (BitArray) + I _WORD(n - 1)*sizeof (unsigned int);
a = (BitArray *)lua_newserdata(L, nbytes);

a->size = n;
for (i =0; i <
a->val ues[i]

| WORD(n - 1); i++)

O; /* initialize array */

return 1; /* new userdata is already on the stack */

}

static int setarray (lua_State *L) {
BitArray *a = (BitArray *)lua_touserdata(L, 1);
int index = (int)lualL_checkinteger(L, 2) - 1;

| uaL_argcheck(L, a !'= NULL, 1, "'array' expected");

| uaL_argcheck(L, 0 <= index && index < a->size, 2,
"index out of range");

| uaL_checkany(L, 3);

if (lua_toboolean(L, 3))

a->val ues[| _WORD(index)] |=1_BIT(index); [* set bit */
el se

a->val ues[| _WORD(index)] & ~I_BIT(index); /* reset bit */
return O;

}

static int getarray (lua_State *L) {
BitArray *a = (BitArray *)lua_touserdata(L, 1);
int index = (int)lualL_checkinteger(L, 2) - 1;

| uaL_argcheck(L, a !'= NULL, 1, "'"array' expected");
| uaL_argcheck(L, 0 <= index && index < a->size, 2,
"index out of range");

| ua_pushbool ean(L, a->values[|_WORD(index)] & I _BIT(index));
return 1,

}
Let us see them, bit by bit.

Our first concern is how to represent a C structure in Lua. Lua provides a basic type specifically for this
task, called userdata. A userdata offers araw memory area, with no predefined operations in Lua, which
we can use to store anything.

Thefunction| ua_newuser dat a allocatesablock of memory with agiven size, pushesthe correspond-
ing userdata on the stack, and returns the block address:

266

User-Defined Typesin C

void *lua_newuserdata (lua_State *L, size_t size);

If for some reason we need to allocate memory by other means, it is very easy to create a userdata with
the size of a pointer and to store there a pointer to the real memory block. We will see examples of this
technique in Chapter 32, Managing Resources.

Our first function in Figure 311, “Manipulating a Boolean array”, newarray, USesS
| ua_newuser dat a to create new arrays. Its code is straightforward. It checks its sole parameter (the
array size, in bits), computesthe array size in bytes, creates a userdatawith the appropriate size, initializes
itsfields, and returns the userdata to Lua.

The next function is set ar r ay, which receives three arguments: the array, the index, and the new val-
ue. It assumes that indices start at one, as usua in Lua. Because Lua accepts any value for a Boolean,
we use | uaL_checkany for the third parameter: it ensures only that there is a value (any value) for
this parameter. If we call set ar r ay with bad arguments, we get explanatory error messages, as in the
following examples:

array.set(0, 11, 0)

--> stdin:1: bad argument #1 to 'set' ('array' expected)
array.set(a, 1)
--> stdin:1: bad argument #3 to 'set' (val ue expected)

The last function in Figure 31.1, “Manipulating a Boolean array” is get ar r ay, the function to retrieve
anentry. Itissimilartoset arr ay.

We will also define afunction to retrieve the size of an array and some extra code to initialize our library;
see Figure 31.2, “Extra code for the Boolean array library”.

Figure 31.2. Extra code for the Boolean array library

static int getsize (lua_State *L) {
BitArray *a = (BitArray *)lua_touserdata(L, 1);
| uaL_argcheck(L, a !'= NULL, 1, "'array' expected");
| ua_pushi nteger (L, a->size);
return 1,

}

static const struct luaL_Reg arraylib [] = {
{"new', newarray},

{"set", setarray},

{"get", getarray},

{"size", getsize},

{ NULL, NULL}

b

int luaopen_array (lua_State *L) {
lual_newl i b(L, arraylib);
return 1,

}

Again,weusel uaL_new i b, fromtheauxiliary library. It createsatable and fillsit with the pairsname-
function specified by the array arr ayl i b.

267

User-Defined Typesin C

Metatables

Our current implementation has a major vulnerability. Suppose the user writes something like
array.set(io.stdin, 1, false).Thevaueofi o.stdin isa userdatawith a pointer to a
stream (FI LE *). Because it is a userdata, ar r ay. set will gladly accept it as a valid argument; the
probable result will be a memory corruption (with luck we will get an index-out-of-range error instead).
Such behavior is unacceptable for any Lualibrary. No matter how we use alibrary, it should neither cor-
rupt C data nor cause the Lua system to crash.

The usual method to distinguish one type of userdata from another isto create a unique metatable for that
type. Every time we create a userdata, we mark it with the corresponding metatable; every time we get a
userdata, we check whether it has the right metatable. Because L ua code cannot change the metatable of
auserdata, it cannot deceive these checks.

We also need a place to store this new metatable, so that we can access it to create new userdata and to
check whether a given userdata has the correct type. As we saw earlier, there are two options for storing
the metatable: in the registry or as an upvalue for the functionsin the library. It is customary, in Lua, to
register any new C type into the registry, using a type name as the index and the metatable as the value.
As with any other registry index, we must choose a type name with care, to avoid clashes. Our example
will usethe name" LuaBook. ar ray" for its new type.

Asusual, the auxiliary library offers some functions to help us here. The new auxiliary functions we will
use are these:

i nt | uaL_newret atable (lua_State *L, const char *tnane);
void lualL _getnetatable (lua _State *L, const char *tnane);
voi d *l ualL_checkudat a (lua_State *L, int index,

const char *tnane);

The function | uaL_newnet at abl e creates a new table (to be used as a metatable), leaves the
new table on the top of the stack, and maps the table to the given name in the registry. The func-
tion | uaL_get net at abl e retrieves the metatable associated with t nane from the registry. Finaly,
| uaL_checkudat a checkswhether the object at the given stack position is a userdatawith a metatable
that matchesthe given name. It raisesan error if the object isnot auserdataor if it does not have the correct
metatable; otherwise, it returns the userdata address.

Now we can start our modifications. The first step is to change the function that opens the library so that
it creates the metatable for arrays:

int luaopen_array (lua_State *L) {
| uaL_newnet at abl e(L, "LuaBook.array");
lual_newl i b(L, arraylib);
return 1,

}

The next step isto change newar r ay so that it setsthis metatablein all arraysthat it creates:
static int newarray (lua_State *L) {
as before

| uaL_get net at abl e(L, "LuaBook. array");
| ua_set net at abl e(L, -2);

268

User-Defined Typesin C

return 1; /* new userdata is already on the stack */

}

Thefunction| ua_set et at abl e pops atable from the stack and sets it as the metatable of the object
at the given index. In our case, this object isthe new userdata.

Finally, set arr ay, get arr ay, and get si ze have to check whether they have got a valid array as
their first argument. To simplify their tasks, we define the following macro:

#def i ne checkarray(L) \
(BitArray *)lualL_checkudata(L, 1, "LuaBook.array")

Using this macro, the new definition for get si ze is straightforward:

static int getsize (lua_State *L) {
BitArray *a = checkarray(L);
| ua_pushi nteger (L, a->size);
return 1;

}

Becauseset ar r ay andget ar r ay aso sharecodeto read and check theindex astheir second argument,
we factor out their common partsin anew auxiliary function (get par ans).

Figure 31.3. New versionsfor set arr ay/get arr ay

static unsigned int *getparanms (lua_State *L,
unsi gned int *mask) {
BitArray *a = checkarray(L);
int index = (int)lualL_checkinteger(L, 2) - 1;

| uaL_argcheck(L, 0 <= index && index < a->size, 2,
"index out of range");

mask = | _BIT(index); / mask to access correct bit */
return &a->val ues[|_WORD(index)]; /* word address */

}

static int setarray (lua_State *L) {
unsi gned i nt nask;
unsigned int *entry = getparanms(L, &msk);
| uaL_checkany(L, 3);
if (lua_toboolean(L, 3))
*entry | = mask;
el se
*entry &= ~nask;

return O;

}

static int getarray (lua_State *L) {
unsi gned i nt nask;
unsigned int *entry = getparanms(L, &msk);
| ua_pushbool ean(L, *entry & nmask);
return 1,

}

269

User-Defined Typesin C

With thisnew function, set ar r ay and get ar r ay are straightforward, see Figure 31.3, “New versions
for set array/get array”. Now, if we call them with an invalid userdata, we will get a proper error

message:

a = array.get(io.stdin, 10)
--> bad argument #1 to 'get' (LuaBook.array expected, got FILE*)

Object-Oriented Access

Our next step is to transform our new type into an object, so that we can operate on its instances using
the usual object-oriented syntax, like this:

a = array.new(1000)

print(a:size()) --> 1000
a:set (10, true)
print(a:get(10)) --> true

Rememberthata: si ze() isequivalenttoa. si ze(a) . Therefore, wehaveto arrangefor theexpression
a. si ze toreturn our function get si ze. The key mechanism hereisthe i ndex metamethod. For
tables, Lua calls this metamethod whenever it cannot find avalue for a given key. For userdata, Luacalls
it in every access, because userdata have no keys at all.

Assume that we run the following code:

do
| ocal netaarray = getnetatable(array. new(l))
netaarray. __index = netaarray
netaarray.set = array. set
netaarray.get = array. get
netaarray. si ze = array. si ze
end

Inthefirst line, we create an array only to get its metatable, which we assign to net aar r ay. (We cannot
set the metatable of a userdata from Lua, but we can get it.) Then we set net aarray. __i ndex to
nmet aar r ay. When we evaluate a. si ze, Luacannot find thekey " si ze" in the object a, because the
object is a userdata. Therefore, Lua tries to get this value from the field __i ndex of the metatable of
a, which happensto be net aar r ay itself. But met aarr ay. si zeisarray. si ze,soa. si ze(a)
resultsinarr ay. si ze(a) , aswe wanted.

Of course, we can write the same thing in C. We can do even better: now that arrays are objects, with their
own operations, we do not need to have these operationsin the table ar r ay anymore. The only function
that our library still hasto export isnew, to create new arrays. All other operations come only as methods.
The C code can register them directly as such.

Theoperationsget si ze,get arr ay, andset ar r ay do not change from our previous approach. What
will change is how we register them. That is, we have to change the code that opensthe library. First, we
need two separate function lists: one for regular functions and one for methods.

static const struct luaL_Reg arraylib_f [] = {
{"new', newarray},
{ NULL, NULL}

b

static const struct luaL_Reg arraylib_m[] = {

{"set", setarray},

270

User-Defined Typesin C

{"get", getarray},
{"size", getsize},
{ NULL, NULL}

b

The new version of the open function | uaopen_ar r ay hasto create the metatable, assign it to its own
__i ndex field, register all the methods there, and create and fill the ar r ay table:

int luaopen_array (lua_State *L) {
| uaL_newnet at abl e(L, "LuaBook.array"); /* create netatable */
| ua_pushval ue(L, -1); /* duplicate the netatable */
lua_setfield(L, -2, " _ index"); [/* nm.__index = nt */
luaL_setfuncs(L, arraylib_m 0); [/* register netanethods */
lualL_newl i b(L, arraylib f); [/* create |lib table */
return 1,

}

Hereweusel ual_set f uncs again, to set thefunctionsfromthelist ar r ayl i b_minto the metatable,
which is on the top of the stack. Then we call | uaL_new i b to create a new table and register the
functionsfromthelistarrayl i b_f there.

Asafinal touch, wewill adda__t ost ri ng methodto our new type, sothatpri nt (a) prints" array"
plus the size of the array inside parentheses. The function itself is here:

int array2string (lua_State *L) {
BitArray *a = checkarray(L);
| ua_pushfstring(L, "array(%)", a->size);
return 1,

}

Thecall tol ua_pushf st ri ng formatsthe string and leavesit on the top of the stack. We also have to
addarray2stringtothelistarrayl i b_mtoincludeit in the metatable of array objects:

static const struct luaL_Reg arraylib_m[] = {
{"__tostring", array2string},
ot her net hods

b
Array Access

A better alternative to the object-oriented notation is to use aregular array notation to access our arrays.
Instead of writing a: get (i), wecould simply writea[i] . For our example, thisis easy to do, because
our functionsset ar r ay and get ar r ay already receive their argumentsin the order that they are given
to the corresponding metamethods. A quick solution isto define these metamethods directly in Lua:

| ocal netaarray = getnetatable(array.new(l))

nmetaarray. __index = array. get
net aarray. __new ndex = array. set
netaarray. __len = array.size

(Wemust run this code on the original implementation for arrays, without the modificationsfor object-ori-
ented access.) That isal we need to use the standard syntax:

a = array.new(1000)
a[10] = true -- 'setarray'

271

User-Defined Typesin C

print(a[10]) -- 'getarray' --> true
print (#a) -- 'getsize' --> 1000

If we prefer, we can register these metamethodsin our C code. For this, we again modify our initialization
function; see Figure 31.4, “New initialization code for the Bit Array library”.

Figure 31.4. New initialization code for the Bit Array library

static const struct luaL_Reg arraylib f [] = {
{"new', newarray},
{NULL, NULL}

b

static const struct luaL_Reg arraylib_mJ[] = {

{"_newi ndex", setarray},
{"__index", getarray},
{"__len", getsize},
{"__tostring", array2string},
{

NULL, NULL}
b

int luaopen_array (lua_State *L) {
| uaL_newnret at abl e(L, "LuaBook.array");
| uaL_setfuncs(L, arraylib_m O0);
lual_newl i b(L, arraylib_f);
return 1,

}

In this new version, again we have only one public function, new. All other functions are available only
as metamethods for specific operations.

Light Userdata

The kind of userdata that we have been using until now is called full userdata. Lua offers another kind
of userdata, called light userdata.

A light userdatais avalue that represents a C pointer, that is, avoi d * value. A light userdataisavalue,
not an object; we do not create them (in the same way that we do not create numbers). To put a light
userdata onto the stack, we call | ua_pushl i ght user dat a:

void | ua_pushlightuserdata (lua_State *L, void *p);

Despite their common name, light userdata and full userdata are quite different things. Light userdata are
not buffers, but bare pointers. They have no metatables. Like numbers, light userdata are not managed by
the garbage collector.

Sometimes, people use light userdata as a cheap aternative to full userdata. This is not a typical use,
however. First, light userdata do not have metatables, so there is no way to know their types. Second,
despite the name, full userdata are inexpensive, too. They add little overhead compared to amal | oc for
the given memory size.

Thereal use of light userdata comes from equality. Asafull userdatais an object, it isonly equal to itself.
A light userdata, on the other hand, represents a C pointer value. As such, it is equal to any userdata that
represents the same pointer. Therefore, we can use light userdata to find C objectsinside Lua.

272

User-Defined Typesin C

We have already seen atypical use of light userdata, as keys in the registry (the section called “The reg-
istry”). There, the equality of light userdata was fundamental. Every time we push the same address with
| ua_pushl i ght user dat a, we get the same Lua value and, therefore, the same entry in the registry.

Another typical scenario in Luaisto have Lua objects acting as proxies to corresponding C objects. For
instance, the 1/0O library uses Lua userdata to represent C streams inside Lua. When the action goes from
Luato C, the mapping from the Lua object to the C object is easy. Again using the example of the |/O
library, each Lua stream keeps a pointer to its corresponding C stream. However, when the action goes
from C to Lua, the mapping can be tricky. As an example, suppose we have some kind of callback in our
I/0 system (e.g., to tell that there is data to be read). The callback receives the C stream where is should
operate. From that, how can we find its corresponding L ua object? Because the C stream is defined by the
C standard library, not by us, we cannot store anything there.

Light userdata provide anice solution for thismapping. Wekeep atablewheretheindicesarelight userdata
with the stream addresses, and the values are the full userdata that represent the streamsin Lua. In a
callback, once we have a stream address, we use it —as a light userdata— as an index into that table to
retrieve its corresponding L ua object. (The table should probably have weak values; otherwise, those full
userdata would never be collected.)

Exercises

Exercise 31.1: Modify the implementation of set ar r ay so that it accepts only Boolean values.

Exercise 31.2: We can see a Boolean array as a set of integers (the indices with true values in the array).
Addto theimplementation of Boolean arraysfunctionsto compute the union and intersection of two arrays.
These functions should receive two arrays and return a new one, without modifying its parameters.

Exercise 31.3: Extend the previous exercise so that we can use addition to get the union of two arrays and
multiplication for the intersection.

Exercise 31.4: Modify theimplementation of the __t ost r i ng metamethod so that it showsthe full con-
tents of the array in an appropriate way. Use the buffer facility (the section called “ String Manipulation™)
to create the resulting string.

Exercise 31.5: Based on the example for Boolean arrays, implement asmall C library for integer arrays.

273

Chapter 32. Managing Resources

In our implementation of Boolean arraysin the previous chapter, we did not need to worry about managing
resources. Those arrays need only memory. Each userdata representing an array has its own memory,
which is managed by Lua. When an array becomes garbage (that is, inaccessible by the program), Lua
eventually collectsit and freesits memory.

Lifeisnot alwaysthat easy. Sometimes, an object needs other resources besides raw memory, such asfile
descriptors, window handles, and the like. (Often these resources are just memory too, but managed by
some other part of the system.) In such cases, when the object becomes garbage and is collected, somehow
these other resources must be released too.

Aswe saw inthe section called “Finalizers’, Luaprovidesfinalizersin theform of the__gc metamethod.
Toillustrate the use of this metamethod in C and of the API asawhole, in this chapter wewill develop two
Luabindings for external facilities. The first exampleis another implementation for afunction to traverse
adirectory. The second (and more substantial) example isabinding to Expat, an open source XML parser.

A Directory lterator

In the section called “ C Functions’, we implemented afunction di r to traverse directories that returned
atable with all files from a given directory. Our new implementation will return an iterator that returns
anew entry each time it is called. With this new implementation, we will be able to traverse a directory
with aloop likethis:

for fname in dir.open(".") do
print (f name)
end

Toiterate over adirectory, in C, we need a Dl R structure. Instances of DI R are created by opendi r and
must be explicitly released with acall to cl osedi r . Our previousimplementation kept its DI Rinstance
as alocal variable and closed this instance after retrieving the last file name. Our new implementation
cannot keep this DI R instance in a local variable, because it must query this value over severa calls.
Moreover, it cannot close the directory only after retrieving the last name; if the program breaks the loop,
the iterator will never retrieve this last name. Therefore, to make sure that the DI R instance is aways
released, we will store its address in a userdata and use the __gc metamethod of this userdata to release
the directory structure.

Despite its central role in our implementation, this userdata representing a directory does not need to be
visible to Lua. The function di r . open returns an iterator function, and this function is what Lua sees.
The directory can be an upvalue of the iterator function. As such, theiterator function has direct accessto
this structure, but L ua code does not (and does not need to).

In all, we need three C functions. First, we need the function di r . open, a factory function that Lua
callsto create iterators; it must open a Dl R structure and create a closure of the iterator function with this
structure as an upvalue. Second, we need the iterator function. Third, we need the __gc metamethod,
which closesa Dl R structure. As usual, we aso need an extra function to makeinitial arrangements, such
asto create and initialize a metatable for directories.

Let us start our code with the functiondi r . open, showninFigure32.1, “Thedi r . open factory func-
tion”.

274

Managing Resources

Figure32.1. Thedi r . open factory function

#i ncl ude <dirent. h>
#i ncl ude <errno. h>
#i ncl ude <string. h>

#i ncl ude "l ua. h"
#i ncl ude "l auxlib.h"

/* forward declaration for the iterator function */
static int dir_iter (lua_State *L);

static int | _dir (lua_State *L) {
const char *path = lualL_checkstring(L, 1);

/* create a userdata to store a DIR address */
DR **d = (DIR **)l ua_newuserdata(L, sizeof(DIR *));

/* pre-initialize it */
*d = NULL;

/[* set its netatable */
| uaL_get net at abl e(L, "LuaBook.dir");
| ua_set net at abl e(L, -2);

/* try to open the given directory */

*d = opendir (path);

if (*d == NULL) /* error opening the directory? */
lualL_error(L, "cannot open %: %", path, strerror(errno));

/* creates and returns the iterator function;
its sole upvalue, the directory userdata,
is already on the top of the stack */

| ua_pushccl osure(L, dir_iter, 1);

return 1,

}

A subtlepointinthisfunctionisthat it must create the userdatabefore opening the directory. If it first opens
the directory, and then the call to | ua_newuser dat a raises a memory error, the function loses and
leaksthe DI Rstructure. With the correct order, the DI R structure, once created, isimmediately associated
with the userdata; whatever happens after that, the gc metamethod will eventually release the structure.

Another subtle point is the consistency of the userdata. Once we set its metatable, the gc metamethod
will be called no matter what. So, before setting the metatable, we pre-initialize the userdata with NULL
to ensure that it has some well-defined value.

Thenext functionisdi r _i t er (inFigure32.2, “Other functionsfor thedi r library”), theiterator itself.

275

Managing Resources

Figure 32.2. Other functionsfor thedi r library

static int dir_iter (lua_State *L) {
DIR *d = *(DIR **)lua_touserdata(L, |ua_upval ueindex(1));
struct dirent *entry = readdir(d);
if (entry !'= NULL) {
| ua_pushstring(L, entry->d_namne);
return 1,

}

else return O; /* no nore values to return */

static int dir_gc (lua_State *L) {
DR *d = *(DIR **)lua_touserdata(L, 1);
if (d) closedir(d);

return O;

}

static const struct luaL_Reg dirlib [] = {
{"open", | _dir},

{NULL, NULL}
b

int luaopen_dir (lua_State *L) {
| uaL_newnet at abl e(L, "LuaBook.dir");

/* set its __gc field */
| ua_pushcfunction(L, dir_gc);
lua_setfield(L, -2, "_gc");

/* create the library */
luaL_newl i b(L, dirlib);
return 1,

}

Its code is straightforward. It getsthe DI R structure's address from itsupvalueand callsr eaddi r toread
the next entry.

The function di r_gc (also in Figure 32.2, “Other functions for the di r library”) is the _ gc
metamethod. This metamethod closes a directory. As we mentioned before, it must take one precaution:;
in case of errorsin theinitialization, the directory can be NULL.

The last function in Figure 32.2, “ Other functions for the di r library”, | uaopen_di r, isthe function
that opens this one-function library.

Thiscomplete example hasaninteresting subtlety. At first, it may seemthatdi r _gc should check whether
its argument is a directory and whether it has not been closed already. Otherwise, a malicious user could
call it with another kind of userdata (a file, for instance) or finalize a directory twice, with disastrous
conseguences. However, there is no way for a Lua program to access this function: it is stored only in
the metatable of directories, which in turn are stored as upvalues of the iteration functions. Lua programs
cannot access these directories.

276

Managing Resources

An XML Parser

Now we will look at a simplified implementation of a Lua binding for Expat, which we will call | xp.
Expat is an open source XML 1.0 parser writtenin C. It implements SAX, the Smple API for XML. SAX
is an event-based API. This means that a SAX parser reads an XML document and, as it goes, reports to
the application what it finds, through callbacks. For instance, if we instruct Expat to parse a string like
"<tag cap="5">hi </tag>", it will generate three events: a start-element event, when it reads the
substring " <t ag cap="5">"; atext event (also called a character data event), when it reads " hi " ;
and an end-element event, when it reads " </ t ag>" . Each of these events calls an appropriate callback
handler in the application.

Herewe will not cover the entire Expat library. We will concentrate only on those parts that illustrate new
techniques for interacting with Lua. Although Expat handles more than a dozen different events, we will
consider only thethree eventsthat we saw in the previous exampl e (start el ements, end elements, and text) 1

The part of the Expat API that we need for this example is small. First, we need the functions to create
and destroy an Expat parser:

XM__Parser XM__ParserCreate (const char *encoding);
voi d XM__Parser Free (XM__Parser p);

Theencodi ng argument is optional; we will use NULL in our binding.
After we have a parser, we must register its callback handlers:

voi d XM__Set El errent Handl er (XML_Par ser p,
XM__St art El ement Handl er start,
XM._EndEl enent Handl er end);

voi d XM__Set Char act er Dat aHandl er (XM._Par ser p,
XM__Char act er Dat aHandl er hndl) ;

The first function registers handlers for start and end elements. The second function registers handlers for
text (character data, in XML parlance).

All callback handlers take a user data as their first parameter. The start-element handler receives also the
tag name and its attributes:

typedef void (*XM._StartEl enent Handl er) (voi d *uDat a,
const char *nane,
const char **atts);

The attributes come as a NULL-terminated array of strings, where each pair of consecutive strings holds
an attribute name and its value. The end-element handler has only one extra parameter, the tag name:

typedef void (*XM._EndEl enent Handl er) (voi d *uDat a,
const char *nane);

Finally, atext handler receives only the text as an extra parameter. This text string is not null-terminated;
instead, it has an explicit length:

typedef void (*XM._Charact er Dat aHandl er) (voi d *uDat a,

The package LuaExpat offers aquite complete interface to Expat.

277

Managing Resources

const char *s,
int len);

To feed text to Expat, we use the following function:;
int XM__Parse (XM__Parser p, const char *s, int len, int islLast);

Expat receives the document to be parsed in pieces, through successive callsto the function XML_Par se.
The last argument to XML_ Par se, the Boolean i sLast , informs Expat whether that piece is the last
one of adocument. This function returns zero if it detects a parse error. (Expat also provides functions to
retrieve error information, but we will ignore them here, for the sake of simplicity.)

The last function we need from Expat allows us to set the user data that will be passed to the handlers:
void XM__Set UserData (XM._Parser p, void *uData);

Now let us have alook at how we can usethislibrary in Lua. A first approach isadirect approach: ssimply
export all those functions to Lua. A better approach is to adapt the functionality to Lua. For instance,
because Luais untyped, we do not need different functionsto set each kind of callback. Better yet, we can
avoid the callback registering functions altogether. Instead, when we create a parser, we give a callback
table that contains all callback handlers, each with an appropriate key related to its corresponding event.
For instance, if we want to print alayout of a document, we could use the following callback table:

|l ocal count = O

cal | backs = {
Start El ement = function (parser, tagnane)
io.wite("+ ", string.rep(" ", count), tagname, "\n")
count = count + 1

end,

EndEl ement = function (parser, tagnane)

count = count - 1

io.wite("- ", string.rep(" ", count), tagname, "\n")
end,

}

Fed with theinput " <t 0> <yes/ > </t 0>", these handlers would print this output:

+ to
+ yes
- yes
- to

With this API, we do not need functions to manipulate callbacks. We manipulate them directly in the
callback table. Thus, the whole API needs only three functions. one to create parsers, one to parse a piece
of text, and oneto close aparser. Actualy, we will implement the last two functions as methods of parser
objects. A typical use of the API could be like this:

local Ixp = require "I xp"
p = | xp. new cal | backs) -- create new parser

for I inio.lines() do -- iterate over input lines

278

Managing Resources

assert (p: parse(l)) -- parse the line
assert (p: parse("\n")) -- add newl ine
end
assert (p: parse()) -- finish docunent
p: cl ose() -- close parser

Now let us turn our attention to the implementation. Thefirst decision is how to represent a parser in Lua.
It is quite natural to use a userdata containing a C structure, but what do we need to put in it? We need at
least the actual Expat parser and the callback table. We must also store a Lua state, because these parser
objects are all that an Expat callback receives, and the callbacks need to call Lua. We can store the Expat
parser and the Lua state (which are C values) directly in a C structure. For the callback table, whichisa
Luavalue, one option isto create areferencetoit in the registry and store that reference. (We will explore
thisoption in Exercise 32.2). Another optionisto use auser value. Each userdata can have one single Lua
value directly associated with it; this value is called a user val ue.? With this option, the definition for a
parser object is as follows:

#incl ude <stdlib. h>
#i ncl ude "expat.h"
#i ncl ude "l ua. h"

#i nclude "l auxlib.h"

typedef struct |xp_userdata {

XM__Par ser parser; /* associ ated expat parser */
lua_State *L;
} | xp_userdat a;

The next step isthe function that creates parser objects, | xp_nmake_par ser . Figure 32.3, “Function to
create XML parser objects’ showsits code.

2InLua 5.2, this user value must be table.

279

Managing Resources

Figure 32.3. Function to create XML parser objects

/* forward declarations for callback functions */
static void f_StartEl enent (void *ud,
const char *nane,
const char **atts);
static void f_CharData (void *ud, const char *s, int |en);
static void f_EndEl ement (void *ud, const char *nane);

static int |xp_make_parser (lua_State *L) {
XM__Parser p;

/* (1) create a parser object */
| xp_userdata *xpu = (I xp_userdata *)!|ua_newiserdata(L,
si zeof (| xp_userdata));

/* pre-initialize it, in case of error */
Xpu->par ser = NULL;

/[* set its nmetatable */
| uaL_get net at abl e(L, "Expat");
| ua_set net at abl e(L, -2);

* (2) create the Expat parser */
= xpu->parser = XM__ParserCreate(NULL);

f(!p)
lualL_error(L, "XM__ParserCreate failed");

/
p
[

/* (3) check and store the callback table */

| uaL_checktype(L, 1, LUA TTABLE);

| ua_pushval ue(L, 1); /* push table */

| ua_setuserval ue(L, -2); /* set it as the user value */

/* (4) configure Expat parser */

XM__Set User Dat a(p, xpu);

XM__Set El ement Handl er (p, f_StartEl enent, f_EndEl enent);
XM__Set Char act er Dat aHandl er (p, f_CharDat a);

return 1,

}

This function has four main steps:

« Itsfirst step follows acommon pattern: it first creates a userdata; then it pre-initializes the userdatawith
consistent values; and finally it setsits metatable. (The pre-initialization ensuresthat if thereisany error
during the initialization, the finalizer will find the userdata in a consistent state.)

 Instep 2, the function creates an Expat parser, storesit in the userdata, and checks for errors.

 Step 3 ensures that the first argument to the function is actually atable (the callback table), and sets it
asthe user value for the new userdata.

e Thelast step initializes the Expat parser. It sets the userdata as the object to be passed to the callback
functions and it sets the callback functions. Notice that these callback functions are the same for all
parsers; after all, it isimpossible to dynamically create new functionsin C. Instead, those fixed C func-
tions will use the callback table to decide which Lua functions they should call each time.

280

Managing Resources

The next step is the parse method | xp_par se (Figure 32.4, “Function to parse an XML fragment”),
which parses apiece of XML data.

Figure 32.4. Function to parse an XML fragment

static int |xp_parse (lua_State *L) {
i nt status;
size_t len;
const char *s;
| xp_userdata *xpu;

/* get and check first argument (should be a parser) */
xpu = (I xp_userdata *)lualL_checkudata(L, 1, "Expat");

/* check if it is not closed */
| uaL_ar gcheck(L, xpu->parser != NULL, 1, "parser is closed");

/* get second argunent (a string) */
s = lualL_optlstring(L, 2, NULL, & en);

/* put callback table at stack index 3 */
| ua_settop(L, 2);
| ua_getuserval ue(L, 1);

Xpu->L = L; /* set Lua state */

/* call Expat to parse string */
status = XM__Parse(xpu->parser, s, (int)len, s == NULL);

/* return error code */
| ua_pushbool ean(L, status);
return 1;

}

It gets two arguments: the parser object (the self of the method) and an optional piece of XML data. When
called without any data, it informs Expat that the document has no more parts.

When| xp_par se callsXM._Par se, thelatter function will call the handlersfor each relevant element
that it finds in the given piece of document. These handlers will need to access the callback table, so
| xp_par se putsthistable at stack index three (right after the parameters). Thereisone more detail inthe
call to XML_Par se: remember that the last argument to this function tells Expat whether the given piece
of text isthe last one. When we call par se without an argument, s will be NULL, so thislast argument
will betrue.

Now let usturn our attentiontothefunctionsf _Char Dat a,f _St art El enent ,andf _EndEl enent
which handle the callbacks. All these three functions have a similar structure: each checks whether the
callback table defines a Lua handler for its specific event and, if so, prepares the arguments and then calls
this Lua handler.

Let usseefirstthef _Char Dat a handler, in Figure 32.5, “Handler for character data’.

281

Managing Resources

Figure 32.5. Handler for character data

static void f_CharData (void *ud, const char *s, int len) {
| xp_userdata *xpu = (| xp_userdata *)ud;
lua_State *L = xpu->L;

/* get handler from call back table */
lua_getfield(L, 3, "CharacterData");
if (lua_isnil(L, -1)) { /* no handler? */
| ua_pop(L, 1);
return;

}

| ua_pushval ue(L, 1); /* push the parser ('self"') */
| ua_pushl string(L, s, len); [/* push Char data */
lua_call (L, 2, 0); [/* call the handler */

}

Its code is quite smple. The handler receives al xp_user dat a structure as its first argument, due to
our call to XML_Set User Dat a when we created the parser. After retrieving the Lua state, the handler
can access the callback table at stack index 3, asset by | xp_par se, and the parser itself at stack index
1. Then it callsits corresponding handler in Lua (when present), with two arguments: the parser and the
character data (a string).

Thef EndEl enent handler is quite similar to f _Char Dat a; see Figure 32.6, “Handler for end ele-
ments”’.

Figure 32.6. Handler for end elements

static void f_EndEl ement (void *ud, const char *nane) ({
| xp_userdata *xpu = (| xp_userdata *)ud;
lua_State *L = xpu->L;

lua_getfield(L, 3, "EndEl enent");

if (lua_isnil(L, -1)) { /* no handler? */
| ua_pop(L, 1);
return;

}

| ua_pushval ue(L, 1); /* push the parser ('self"') */
| ua_pushstring(L, nane); /* push tag name */
lua_call (L, 2, 0); [/* call the handler */

}

It also calls its corresponding Lua handler with two arguments —the parser and the tag name (again a
string, but now null-terminated).

Figure 32.7, “Handler for start elements’ showsthelast handler, f _St art El enent .

282

Managing Resources

Figure 32.7. Handler for start elements

static void f_StartEl enent (void *ud,
const char *nane,
const char **atts) {
| xp_userdata *xpu = (| xp_userdata *)ud;
lua_State *L = xpu->L;

lua_getfield(L, 3, "StartElenent");

if (lua_isnil(L, -1)) { /* no handler? */
| ua_pop(L, 1);
return;

}

| ua_pushval ue(L, 1); /* push the parser ('self') */
| ua_pushstring(L, nane); [/* push tag nane */

/* create and fill the attribute table */
| ua_newt abl e(L);
for (; *atts; atts += 2) {
| ua_pushstring(L, *(atts + 1));
lua_setfield(L, -2, *atts); /* table[*atts] = *(atts+1) */
}

lua_call (L, 3, 0); [/* call the handler */
}

It callsthe Luahandler with three arguments: the parser, the tag name, and alist of attributes. This handler
is alittle more complex than the others, because it needs to trandlate the tag's list of attributes into Lua.
It uses a quite natural translation, building atable that maps attribute names to their values. For instance,
adtart tag like

<to net hod="post" priority="high">
generates the following table of attributes:
{method = "post", priority = "high"}

The last method for parsersiscl ose, in Figure 32.8, “Method to close an XML parser”.

Figure 32.8. Method to closean XML parser

static int Ixp_close (lua_State *L) {
| xp_userdata *xpu =
(I xp_userdata *)lualL_checkudata(L, 1, "Expat");

/* free Expat parser (if there is one) */
i f (xpu->parser)
XM__Par ser Fr ee(xpu- >par ser);
Xpu->parser = NULL; /* avoids closing it again */
return O;

}

When we close a parser, we have to free its resources, namely the Expat structure. Remember that, due to
occasional errors during its creation, a parser may not have this resource. Notice how we keep the parser
in a consistent state as we close it, so there is no problem if we try to close it again or when the garbage

283

Managing Resources

collector finalizes it. Actually, we will use exactly this function as the finalizer. This ensures that every
parser eventually freesits resources, even if the programmer does not close it.

Figure 32.9, “Initialization code for the | xp library” is the final step: it shows | uaopen_| xp, which
opensthe library, putting al previous parts together.

Figure 32.9. Initialization codefor thel xp library

static const struct luaL_Reg | xp_neths[]
{"parse", |xp_parse},

{"close", |xp_close},

{"__gc", Ixp_close},

{NULL, NULL}

1

1
—~~

static const struct luaL_Reg | xp_funcs[]
{"new', |xp_make_ parser},
{NULL, NULL}

b

1
—~~

int [uaopen_Ixp (lua_State *L) {
/* create nmetatable */
| uaL_newnet at abl e(L, "Expat");

/* metatable. index = netatable */
| ua_pushval ue(L, -1);
lua_setfield(L, -2, "__index");

/* register nethods */
| uaL_set funcs(L, |xp_neths, 0);

/* register functions (only |xp.new */
luaL_newl i b(L, |xp_funcs);
return 1,

}

We use here the same scheme that we used in the object-oriented Boolean-array example from the section
called “Object-Oriented Access’: we create a metatable, makeits i ndex field point to itself, and put
all the methods inside it. For that, we need a list with the parser methods (I xp_met hs). We also need
alist with the functions of this library (I xp_f uncs). Asis common with object-oriented libraries, this
list has a single function, which creates new parsers.

Exercises

Exercise 32.1: Modify thefunctiondi r _i t er inthedirectory example so that it closesthe DI Rstructure
as soon as it reaches the end of the traversal. With this change, the program does not need to wait for a
garbage collection to release aresource that it knows it will not need anymore.

(When you close the directory, you should set the address stored in the userdata to NULL, to signal to the
finalizer that the directory is aready closed. Also, di r _i t er will have to check whether the directory
is closed before using it.)

Exercise 32.2: Inthe | xp example, we used user values to associate the callback table with the userdata
that represents a parser. This choice created a small problem, because what the C callbacks receive is the

284

Managing Resources

| xp_user dat a structure, and that structure does not offer direct access to the table. We solved this
problem by storing the callback table at afixed stack index during the parse of each fragment.

An dternative design would be to associate the callback table with the userdata through references (the
section called “ Theregistry”): we create areferenceto the callback table and store the reference (an integer)
inthel xp_user dat a structure. Implement this alternative. Do not forget to release the reference when
closing the parser.

285

Chapter 33. Threads and States

Luadoes not support true multithreading, that is, preemptive threads sharing memory. There are two rea-
sons for this lack of support. The first reason is that ISO C does not offer it, and so there is no portable
way to implement this mechanism in Lua. The second and stronger reason is that we do not think multi-
threading is a good ideafor Lua.

Multithreading was devel oped for low-level programming. Synchronization mechanisms like semaphores
and monitors were proposed in the context of operating systems (and seasoned programmers), not appli-
cation programs. It is very hard to find and correct bugs related to multithreading, and several of these
bugs can lead to security breaches. Moreover, multithreading can lead to performance penalties related to
the need of synchronization in some critical parts of a program, such as the memory allocator.

The problems with multithreading arise from the combination of preemption with shared memory, so we
can avoid them either using non-preemptive threads or not sharing memory. Lua offers support for both.
Lua threads (also known as coroutines) are collaborative, and therefore avoid the problems created by
unpredictablethread switching. L uastates share no memory, and thereforeform agood basefor parallelism
in Lua. We will cover both optionsin this chapter.

Multiple Threads

A thread isthe essence of acoroutinein Lua. We can think of a coroutine as athread plusaniceinterface,
or we can think of athread as a coroutine with alower-level API.

From the C API perspective, you may find it useful to think of athread as a stack—which iswhat athread
actually is, from an implementation point of view. Each stack keepsinformation about the pending calls of
athread, plusthe parametersand local variables of each call. In other words, astack hasall theinformation
that athread needs to continue running. So, multiple threads mean multiple independent stacks.

Most functions in Lua's C APl operate on a specific stack. How does Lua know which stack to use?
When calling | ua_pushnunber , how do we say where to push the number? The secret is that the type
| ua_St at e, thefirst argument to these functions, represents not only aL uastate, but also athread within
that state. (Many people argue that this type should be called | ua_Thr ead. Maybe they are right.)

Whenever we create a Lua state, Lua automatically creates a main thread within this state and returns a
| ua_St at e representing this thread. This main thread is never collected. It is released together with the
state, when we close the state with | ua_cl ose. Programsthat do not bother with threads run everything
in this main thread.

We can create other threadsin astate calling| ua_newt hr ead:
lua_State *lua_newthread (lua_State *L);

Thisfunction pushesthe new thread on the stack, asavalueof type" t hr ead" ,andreturnsal ua_St at e
pointer representing this new thread. For instance, consider the following statement:

L1 = lua_new hread(L);

After running it, we will have two threads, L1 and L, both referring internally to the same Lua state. Each
thread has its own stack. The new thread L1 starts with an empty stack; the old thread L has a reference
to the new thread on top of its stack:

printf("%\n", lua_gettop(Ll)); -->0
printf("%\n", lualL_typenane(L, -1)); --> thread

286

Threads and States

Except for the main thread, threads are subject to garbage collection, like any other Lua object. When we
create anew thread, the value pushed on the stack ensures that the thread is not collected. We should never
use a thread that is not properly anchored in the state. (The main thread is internally anchored, so we do
not have to worry about it.) Any call to the Lua APl may collect a non-anchored thread, even a call using
this thread. For instance, consider the following fragment:

lua_State *L1 = lua_newt hread (L);
| ua_pop(L, 1); /* L1 now is garbage for Lua */
| ua_pushstring(L1, "hello");

Thecall tol ua_pushst ri ng may trigger the garbage collector and collect L1, crashing the application,
despite the fact that L1 isin use. To avoid this, always keep a reference to the threads you are using, for
instance on the stack of an anchored thread, in the registry, or in aLuavariable.

Once we have anew thread, we can use it like the main thread. We can push to and pop elements from its
stack, we can use it to call functions, and the like. For instance, the following code does the call f (5) in
the new thread and then moves the result to the old thread:

| ua_get gl obal (L1, "f"); /* assume a gl obal function 'f' */
| ua_pushi nteger (L1, 5);

lua_call (L1, 1, 1);

[ua_xmove(L1l, L, 1);

The function | ua_xnove moves Lua vaues between two stacks in the same state. A call like
| ua_xnove(F, T, n) popsn elementsfrom the stack F and pushesthemon T.

For these uses, however, we do not need anew thread; we could just use the main thread aswell. The main
point of using multiple threads is to implement coroutines, so that we can suspend their executions and
resume them later. For that, we need the function | ua_r esune:

int lua_resume (lua_State *L, lua_State *from int narg);

To start running a corouting, we use | ua_r esune aswe use| ua_pcal | : we push the function to be
called (which is the coroutine body), push its arguments, and call | ua_r esune passing in nar g the
number of arguments. (The f r omparameter is the thread that is doing the call or NULL.) The behavior
is also much like | ua_pcal | , with three differences. First, | ua_r esune does not have a parameter
for the number of wanted results; it aways returns all results from the called function. Second, it does
not have a parameter for a message handler; an error does not unwind the stack, so we can inspect the
stack after the error. Third, if the running function yields, | ua_r esune returns the code LUA_YI ELD
and leaves the thread in a state that can be resumed later.

When | ua_r esunme returns LUA_YI ELD, the visible part of the thread's stack contains only the values
passedtoyi el d. A cal tol ua_get t op will return the number of yielded values. To move these values
to another thread, we can use|l ua_xnove.

To resume a suspended thread, we call | ua_r esune again. In such calls, Lua assumes that all values
on the stack are to be returned by the call to yi el d. For instance, if we do not touch the thread's stack
between areturnfrom| ua_r esumne andthenextresume, yi el d will return exactly thevaluesit yielded.

Typically, we start a coroutine with a Luafunction asits body. This Luafunction can call other functions,
and any of these functions can occasionaly yield, terminating the call to | ua_r esune. For instance,
assume the following definitions:

function foo (x) coroutine.yield(10, x) end

function fool (x) foo(x + 1); return 3 end

Now, we run this C code:

287

Threads and States

lua_State *L1 = | ua_newt hread(L);
| ua_get gl obal (L1, "fool");

| ua_pushi nt eger (L1, 20);
lua_resume(Ll, L, 1);

Thecall tol ua_r esune will return LUA_YI ELD, to signal that the thread yielded. At this point, the L1
stack hasthe values giventoyi el d:

printf("%l\n", lua_gettop(Ll)); --> 2
printf("%ld\n", lua_tointeger(L1l, 1)); --> 10
printf("%1d\n", lua_tointeger(Ll, 2)); --> 21

When we resume the thread again, it continues from where it stopped (the cal to yi el d). From there,
f oo returnstof ool, whichinturnreturnsto| ua_r esune:

lua_resune(Ll, L, 0);
printf("%\n", lua_gettop(Ll)); -->1
printf("%I1d\n", lua_tointeger(Ll, 1)); --> 3

Thissecond call to | ua_r esune will return LUA _OK, which means anormal return.

A coroutine can also call C functions, which can call back other Luafunctions. We have already discussed
how to use continuations to alow those Lua functions to yield (the section called “ Continuations’). A C
function can yield, too. In that case, it also must provide a continuation function to be called when the
thread resumes. To yield, a C function must call the following function:

int lua_yieldk (lua_State *L, int nresults, int ctx,
| ua_CFunction k);

We should use this function always in areturn statement, such as here:

static inf myCfunction (lua_State *L) {

return lua_yieldk(L, nresults, ctx, Kk);

}

This call immediately suspends the running coroutine. Thenr esul t s parameter isthe number of values
on the stack to be returned to therespectivel ua_r esune; ct x isthe context information to be passed to
the continuation; and k isthe continuation function. When the coroutine resumes, the control goes directly
to the continuation function k. After yielding, myCf unct i on cannot do anything else; it must delegate
any further work to its continuation.

Let us see atypical example. Suppose we want to write a function that reads some data, yielding if the
datais not available. We may write the function in C like this:

int readK (lua_State *L, int status, |ua_KContext ctx) ({
(void)status; (void)ctx; /* unused paraneters */
if (something to_read()) {
| ua_pushstring(L, read_sonme_data());
return 1,
}
el se
return lua_yieldk(L, 0, 0, & eadK);

}

T E] ready mentioned, the AP for continuations prior to Lua5.3isalittledifferent. In particular, the continuation function hasonly one parameter,

the Lua state.

288

Threads and States

int primread (lua_State *L) {
return readkK(L, 0, 0);
}

In this example, pri m_r ead does not need to do any initialization, so it calls directly the continuation
function (r eadK). If thereisdatato read, r eadK reads and returns this data. Otherwise, it yields. When
the thread resumes, it calls the continuation function again, which will try again to read some data.

If a C function has nothing else to do after yielding, it can call | ua_yi el dk without a continuation
function or usethe macro | ua_yi el d:

return lua_yield(L, nres);

After this call, when the thread resumes, control returns to the function that called ny Cf unct i on.

Lua States

Eachcall tol uaL_newst at e (ortol ua_newst at e) createsanew Luastate. Different Luastates are
completely independent of each other. They share no data at all. This means that no matter what happens
inside alL uastate, it cannot corrupt another Luastate. This also meansthat L ua states cannot communicate
directly; we have to use some intervening C code. For instance, given two statesL1 and L2, thefollowing
command pushesin L2 the string on the top of the stack in L1:

| ua_pushstring(L2, lua tostring(Ll, -1));

Because data must pass through C, Lua states can exchange only types that are representable in C, like
strings and numbers. Other types, such as tables, must be serialized to be transferred.

In systems that offer multithreading, an interesting design is to create an independent Lua state for each
thread. This design results in threads similar to POSIX processes, where we have concurrency without
shared memory. In this section, we will develop a prototype implementation for multithreading following
this approach. | will use POSIX threads (pt hr eads) for thisimplementation. It should not be difficult
to port the code to other thread systems, asit uses only basic facilities.

The system we are going to develop is very simple. Its main purpose is to show the use of multiple Lua
states in amultithreading context. After we have it up and running, we can add several advanced features
on top of it. Wewill call our library | pr oc. It offersonly four functions:

| proc. start (chunk) starts a new process to run the given chunk (a string). The library
implements a Lua process as a C thread plus its associated Lua
State.

| proc. send(channel , sendsall given values (which should be strings) to the given channel

val 1, val2, ...) identified by its name, also a string. (The exercises will ask you to

add support for sending other types.)
| proc. recei ve(channel) receives the values sent to the given channel.

| proc.exit() finishes a process. Only the main process needs this function. If
this process ends without calling | pr oc. exi t , the whole pro-
gram terminates, without waiting for the end of the other processes.

Thelibrary identifies channels by strings and uses them to match senders and receivers. A send operation
can send any number of string values, which are returned by the matching receive operation. All commu-
nication is synchronous:. a process sending a message to a channel blocks until there is aprocess receiving
from this channel, while a process receiving from a channel blocks until there is a process sending to it.

289

Threads and States

Likeitsinterface, theimplementation of | pr oc isalso simple. It usestwo circular double-linked lists, one
for processes waiting to send a message and another for processes waiting to receive a message. It uses
a single mutex to control access to these lists. Each process has an associated condition variable. When a
process wants to send a message to a channel, it traverses the receiving list looking for a process waiting
for that channel. If it finds one, it removes the process from the waiting list, moves the message's values
from itself to the found process, and signals the other process. Otherwise, it inserts itself into the sending
list and waits on its condition variable. To receive a message, it does a symmetrical operation.

A main element in the implementation is the structure that represents a process:

#i ncl ude <pt hread. h>
#i ncl ude "l ua. h"
#i ncl ude "l auxlib. h"

t ypedef struct Proc {
lua_State *L;
pthread_t thread;
pt hread_cond_t cond;
const char *channel ;
struct Proc *previous, *next;
} Proc;

Thefirst two fields represent the Lua state used by the process and the C thread that runs the process. The
third field, cond, is the condition variable that the thread uses to block itself when it has to wait for a
matching send/receive. The fourth field stores the channel that the processiswaiting, if any. The last two
fields, pr evi ous and next , are used to link the process structure into awaiting list.

The following code declares the two waiting lists and the associated mutex:

static Proc *waitsend = NULL;
static Proc *waitrecei ve = NULL;

static pthread _nutex t kernel access = PTHREAD MUTEX | NI Tl ALI ZER,;

Each process needs a Pr oc structure, and it needs to access this structure whenever its script callssend
or r ecei ve. The only parameter that these functions receive is the process's Lua state; therefore, each
process should store its Pr oc structure inside its Lua state. In our implementation, each state keeps its
corresponding Pr oc structure as a full userdata in the registry, associated with the key " SELF". The
auxiliary function get sel f retrievesthe Pr oc structure associated with a given state:

static Proc *getself (lua_State *L) {
Proc *p;
lua_getfield(L, LUA REGQ STRYI NDEX, " _ SELF");
p = (Proc *)lua_touserdata(L, -1);
[ua_pop(L, 1);
return p;

}

The next function, moveval ues, moves values from a sender process to areceiver process:

static void nmovevalues (lua_State *send, lua_State *rec) {

int n =lua_gettop(send);

int i;

| uaL_checkst ack(rec, n, "too many results");

for (i =2; i <=n; i++) [* nove values to receiver */

| ua_pushstring(rec, lua_tostring(send, i));

290

Threads and States

It movesto the receiver all valuesin the sender stack but the first, which will be the channel. Note that, as
we are pushing an arbitrary number of elements, we have to check for stack space.

Figure 33.1, “Function to search for aprocess waiting for achannel” definesthefunctionsear chmat ch,
which traverses alist looking for a process that is waiting for a given channel.

Figure 33.1. Function to search for a process waiting for a channel

static Proc *searchmatch (const char *channel, Proc **list) {
Proc *node;
/* traverse the list */
for (node = *list; node != NULL; node = node->next) {
if (strcnp(channel, node->channel) == 0) { /* nmatch? */
/* renpve node fromthe list */
if (*lIist == node) /* is this node the first elenent? */
*[ist = (node->next == node) ? NULL : node->next;
node- >pr evi ous- >next node- >next ;
node- >next - >pr evi ous node- >pr evi ous;
return node;

}
}

return NULL; /* no match found */

}

If it finds one, it removes the process from the list and returns it; otherwise, the function returns NULL.

The last auxiliary function, in Figure 33.2, “Function to add a process to a waiting list”, is called when
aprocess cannot find a match.

Figure 33.2. Function to add a processto a waiting list

static void waitonlist (lua_State *L, const char *channel,
Proc **list) {
Proc *p = getsel f(L);

/* link itself at the end of the list */
if (*list == NULL) { /* enpty list? */

*list = p;

p- >previous = p->next = p;
}
el se {

p- >previous = (*list)->previous;
p- >next = *|ist;
p- >previ ous- >next = p->next->previ ous = p;

}

p- >channel = channel; /* waiting channel */

do{ /* wait on its condition variable */
pt hread_cond_wai t (&p- >cond, &kernel access);
} while (p->channel);
}

In this case, the processlinksitself at the end of the appropriate waiting list and waits until another process
matcheswith it and wakesit up. (Theloop around pt hr ead_cond_wai t handlesthe spurious wakeups

291

Threads and States

allowed in POSIX threads.) When a process wakes up another, it sets the other processs field channel
to NULL. So, if p- >channel isnot NULL, it means that nobody matched process p, so it has to keep
waiting.

With these auxiliary functions in place, we can write send and r ecei ve (Figure 33.3, “Functions to
send and receive messages’).

Figure 33.3. Functionsto send and r eceive messages

static int |l _send (lua_State *L) {
Proc *p;
const char *channel = lualL_checkstring(L, 1);

pt hr ead_mut ex_| ock(&ernel _access);
p = searchnmatch(channel, &waitreceive);

if (p) { /* found a matching receiver? */
noveval ues(L, p->L); /* nove values to receiver */
p- >channel = NULL; /* mark receiver as not waiting */
pt hread_cond_si gnal (&p->cond); /* wake it up */
}
el se
wai tonlist(L, channel, &waitsend);

pt hr ead_nut ex_unl ock(&er nel _access);

return O;
}
static int |l _receive (lua_State *L) {
Proc *p;
const char *channel = lualL_checkstring(L, 1);
| ua_settop(L, 1);
pt hr ead_mut ex_| ock(&er nel _access);
p = searchmatch(channel, &waitsend);
if (p) { /* found a matching sender? */
noveval ues(p->L, L); /* get values from sender */
p- >channel = NULL; /* nmark sender as not waiting */
pt hread_cond_si gnal (&p->cond); /* wake it up */
}

el se
wai tonlist(L, channel, &waitreceive);

pt hr ead_nut ex_unl ock(&er nel _access);

/* return all stack val ues except the channel */
return lua_gettop(L) - 1;
}

The function | | _send starts getting the channel. Then it locks the mutex and searches for a matching
receiver. If it finds one, it moves its values to this receiver, marks the receiver as ready, and wakes it up.

292

Threads and States

Otherwise, it putsitself on wait. When it finishes the operation, it unlocks the mutex and returns with no
valuesto Lua. Thefunction| | _recei ve issimilar, but it has to return all received values.

Now let us see how to create new processes. A new process needs a new POSIX thread, and a new thread
needs a body to run. We will define this body later; here isits prototype, dictated by pt hr eads:

static void *I| _thread (void *arg);
To create and run a new process, the system must create a new Lua state, start a new thread, compile the
given chunk, call the chunk, and finally free its resources. The original thread does the first three tasks,
and the new thread does the rest. (To simplify error handling, the system only starts the new thread after
it has successfully compiled the given chunk.)

Thefunction| | _st art createsanew process (Figure 33.4, “ Function to create new processes’).

Figure 33.4. Function to create new processes

static int |l _start (lua_State *L) {
pt hread_t thread;
const char *chunk = lualL_checkstring(L, 1);
lua_State *L1 = lualL_newstate();

if (L1 == NULL)
lualL_error(L, "unable to create new state");

if (lualL_l oadstring(Ll, chunk) !'= 0)
lualL_error(L, "error in thread body: %",
lua_tostring(L1, -1));

if (pthread_create(& hread, NULL, Il _thread, L1) I= 0)
lualL_error(L, "unable to create new thread");

pt hr ead_det ach(t hr ead);
return O;

}

Thisfunction creates anew Luastate L1 and compiles the given chunk in this new state. In case of error,
it signals the error to the original state L. Then it creates a new thread (using pt hr ead_cr eat e) with
body | | _t hr ead, passing the new state L1 asthe argument to the body. Thecall to pt hr ead_det ach
tells the system that we will not want any final answer from this thread.

The body of each new thread isthe function| | _t hr ead (Figure 33.5, “Body for new threads”), which
receives its corresponding Lua state (created by | | _st ar t) with only the precompiled main chunk on
the stack.

293

Threads and States

Figure 33.5. Body for new threads
int luaopen_|l proc (lua_State *L);

static void *Il _thread (void *arg) {
lua_State *L = (lua_State *)arg;
Proc *self; [/* own control block */

openlibs(L); /* open standard libraries */
lualL_requiref (L, "lproc", luaopen_I|proc, 1);
lua_pop(L, 1); /* renpve result fromprevious call */

self = (Proc *)lua_newuserdata(L, sizeof(Proc));
lua_setfield(L, LUA REGQ STRYI NDEX, "_SELF");

self->L = L;
self->thread = pthread_self();
sel f->channel = NULL;

pt hread_cond_i nit (&sel f->cond, NULL);

if (lua_pcall(L, 0, O, 0) '=0) /[/* call main chunk */
fprintf(stderr, "thread error: %", lua_tostring(L, -1));

pt hr ead_cond_dest roy(&get sel f (L) - >cond) ;
| ua_cl ose(L);
return NULL,;

}

First, it opens the standard Lua libraries and the | pr oc library. Second, it creates and initializes its own
control block. Then, it callsits main chunk. Finally, it destroys its condition variable and closes its Lua
state.

Notetheuseof | uaL_r equi r ef toopenthel proc Iibrary.2 Thisfunction is somewhat equivalent to
requi r e but, instead of searching for a loader, it uses the given function (I uaopen_| pr oc, in our
case) to open the library. After calling the open function, | uaL_r equi r ef registers the result in the
package. | oaded table, so that future callsto require the library will not try to open it again. With true
asitslast parameter, it also registersthe library in the corresponding global variable (I pr oc, in our case).

Figure 33.6, “Extrafunctionsfor the | pr oc module” presents the last functions for the module.

2This function was introduced in Lua5.2.

294

Threads and States

Figure 33.6. Extrafunctionsfor thel pr oc module

static int |l _exit (lua_State *L) {
pt hr ead_exi t (NULL) ;
return O;

}

static const struct luaL_Reg Il _funcs[] = {
{"start", Il _start},
{"send", |l _send},
{"receive", |l _receive},
{"exit", II_exit},
{ NULL, NULL}

b

i nt luaopen_|l proc (lua_State *L) {
luaL_newl i b(L, Il _funcs); /* open library */
return 1,

}

Both are quitesimple. Thefunction| | _exi t should be called only by the main process, when it finishes,
to avoid the immediate end of the whole program. Thefunction| uaopen_| pr oc isastandard function
for opening the module.

As| said earlier, thisimplementation of processesin Luaisavery simple one. There are endlessimprove-
ments we can make. Here | will briefly discuss some of them.

A first obviousimprovement isto change the linear search for amatching channel. A nice alternativeisto
use a hash table to find a channel and to use independent waiting lists for each channel.

Another improvement relates to the efficiency of process creation. The creation of new Lua states is a
lightweight operation. However, the opening of al standard libraries is not that lightweight, and most
processes probably will not need all standard libraries. We can avoid the cost of opening alibrary by using
the pre-registration of libraries, as we discussed in the section called “The Functionr equi r e”. With this
approach, instead of calling | uaL_r equi r ef for each standard library, we just put the library opening
function into the package. pr el oad table. If the process callsrequire "lib", then—and only
then—r equi r e will call the associated function to open the library. The function r egi sterli b, in
Figure 33.7, “Registering libraries to be opened on demand”, does this registration.

295

Threads and States

Figure 33.7. Registering librariesto be opened on demand

static void registerlib (lua_State *L, const char *nane,
| ua_CFunction f) {
| ua_get gl obal (L, "package");
lua_getfield(L, -1, "preload"); /* get 'package.preload */
| ua_pushcfunction(L, f);
lua_setfield(L, -2, nanme); /* package.preload[nane] = f */
| ua_pop(L, 2); [/* pop 'package' and 'preload tables */

}

static void openlibs (lua_State *L) {
lualL_requiref(L, "_G', l|uaopen_base, 1);
luaL_requiref (L, "package", |uaopen_package, 1);
lua_pop(L, 2); [/* renove results fromprevious calls */
registerlib(L, "coroutine", |uaopen_coroutine);
registerlib(L, "table", |uaopen_table);
registerlib(L, "io", l|uaopen_io);
registerlib(L, "os", |uaopen_os);
registerlib(L, "string", luaopen_string);
registerlib(L, "math", |uaopen_nath);

registerlib(L, "utf8", |uaopen_utf8);
registerlib(L, "debug", |uaopen_debug);
}

It is always a good idea to open the basic library. We also need the package library; otherwise, we will
not haver equi r e availableto open the other libraries. All other libraries can be optional. Therefore, in-
stead of calling| ual_openl i bs, wecan call our ownfunctionopenl i bs (shown asoin Figure 33.7,
“Registering libraries to be opened on demand”) when opening new states. Whenever a process needs one
of theselibraries, it requiresthelibrary explicitly, and r equi r e will call the corresponding|l uaopen_*
function.

Other improvements involve the communication primitives. For instance, it would be useful to pro-
vide limits on how long | proc. send and | proc. recei ve should wait for a match. In par-
ticular, a zero limit would make these functions non-blocking. With POSIX threads, we could use
pt hread_cond_ti nedwai t toimplement thisfeature.

Exercises

Exercise 33.1: As we saw, if afunction calls| ua_yi el d (the version with no continuation), control
returnsto the function that called it when the thread resumes. What val ues doesthe calling function receive
as results from that call?

Exercise 33.2: Modify the | pr oc library so that it can send and receive other primitive types such as
Booleans and numbers without converting them to strings. (Hint: you only have to modify the function
noveval ues.)

Exercise 33.3: Modify the | pr oc library so that it can send and receive tables. (Hint: you can traverse
the original table building a copy in the receiving state.)

Exercise 33.4: Implement inthel pr oc library anon-blocking send operation.

296

	Contents
	About the Book
	--- Basics
	Chapter 1. Getting Started
	Chunks
	Some Lexical Conventions
	Global Variables
	Types and Values
	The Stand-Alone Interpreter
	Exercises

	Chapter 2. Interlude: The Eight-Queen Puzzle
	Exercises

	Chapter 3. Numbers
	Numerals
	Arithmetic Operators
	Relational Operators
	The Mathematical Library
	Representation Limits
	Conversions
	Precedence
	Lua Before Integers
	Exercises

	Chapter 4. Strings
	Literal strings
	Long strings
	Coercions
	The String Library
	Unicode
	Exercises

	Chapter 5. Tables
	Table Indices
	Table Constructors
	Arrays, Lists, and Sequences
	Table Traversal
	Safe Navigation
	The Table Library
	Exercises

	Chapter 6. Functions
	Multiple Results
	Variadic Functions
	The function table.unpack
	Proper Tail Calls
	Exercises

	Chapter 7. The External World
	The Simple I/O Model
	The Complete I/O Model
	Other Operations on Files
	Other System Calls
	Exercises

	Chapter 8. Filling some Gaps
	Local Variables and Blocks
	Control Structures
	break, return, and goto
	Exercises

	--- Real Programming
	Chapter 9. Closures
	Functions as First-Class Values
	Non-Global Functions
	Lexical Scoping
	A Taste of Functional Programming
	Exercises

	Chapter 10. Pattern Matching
	The Pattern-Matching Functions
	Patterns
	Captures
	Replacements
	Tricks of the Trade
	Exercises

	Chapter 11. Interlude: Most Frequent Words
	Exercises

	Chapter 12. Date and Time
	The Function os.time
	The Function os.date
	Date–Time Manipulation
	Exercises

	Chapter 13. Bits and Bytes
	Bitwise Operators
	Unsigned Integers
	Packing and Unpacking Binary Data
	Binary files
	Exercises

	Chapter 14. Data Structures
	Arrays
	Matrices and Multi-Dimensional Arrays
	Linked Lists
	Queues and Double-Ended Queues
	Reverse Tables
	Sets and Bags
	String Buffers
	Graphs
	Exercises

	Chapter 15. Data Files and Serialization
	Data Files
	Serialization
	Exercises

	Chapter 16. Compilation, Execution, and Errors
	Compilation
	Precompiled Code
	Errors
	Error Handling and Exceptions
	Error Messages and Tracebacks
	Exercises

	Chapter 17. Modules and Packages
	The Function require
	The Basic Approach for Writing Modules in Lua
	Submodules and Packages
	Exercises

	--- Lua-isms
	Chapter 18. Iterators and the Generic for
	Iterators and Closures
	The Semantics of the Generic for
	Stateless Iterators
	Traversing Tables in Order
	True Iterators
	Exercises

	Chapter 19. Interlude: Markov Chain Algorithm
	Exercises

	Chapter 20. Metatables and Metamethods
	Arithmetic Metamethods
	Relational Metamethods
	Library-Defined Metamethods
	Table-Access Metamethods
	Exercises

	Chapter 21. Object-Oriented Programming
	Classes
	Inheritance
	Multiple Inheritance
	Privacy
	The Single-Method Approach
	Dual Representation
	Exercises

	Chapter 22. The Environment
	Global Variables with Dynamic Names
	Global-Variable Declarations
	Non-Global Environments
	Using _ENV
	Environments and Modules
	Exercises

	Chapter 23. Garbage
	Weak Tables
	Memorize Functions
	Object Attributes
	Revisiting Tables with Default Values
	Ephemeron Tables
	Finalizers
	The Garbage Collector
	Controlling the Pace of Collection
	Exercises

	Chapter 24. Coroutines
	Coroutine Basics
	Who Is the Boss?
	Coroutines as Iterators
	Event-Driven Programming
	Exercises

	Chapter 25. Reflection
	Introspective Facilities
	Hooks
	Profiles
	Sandboxing
	Exercises

	Chapter 26. Interlude: Multithreading with Coroutines
	Exercises

	--- C API
	Chapter 27. An Overview of the C API
	A First Example
	The Stack
	Error Handling with the C API
	Memory Allocation
	Exercises

	Chapter 28. Extending Your Application
	The Basics
	Table Manipulation
	Calling Lua Functions
	A Generic Call Function
	Exercises

	Chapter 29. Calling C from Lua
	C Functions
	Continuations
	C Modules
	Exercises

	Chapter 30. Techniques for Writing C Functions
	Array Manipulation
	String Manipulation
	Storing State in C Functions
	Exercises

	Chapter 31. User-Defined Types in C
	Userdata
	Metatables
	Object-Oriented Access
	Array Access
	Light Userdata
	Exercises

	Chapter 32. Managing Resources
	A Directory Iterator
	An XML Parser
	Exercises

	Chapter 33. Threads and States
	Multiple Threads
	Lua States
	Exercises

