JETTY

SERVER
(00KBOOK

Hot Recipes for the Jetty Server

jetty:/

IBRAHIM TASYURT \&fEtr

Jetty Server Cookbook

Jetty Server Cookbook

Jetty Server Cookbook ii

Contents

1 Jetty Tutorial for Beginners 1
1.1 Jetty asa Standalone SErVer e e e e e e 1
1.1.1 Downloading and Installing Jetty e 1

112 PrerequiSites o v v v i e e e e e e e 1

1.1.3 Running Jetty e e e 1

1.1.4 Changing the server port i e e e 2

1.1.5 Deploying Web Applicationson Jetty e e 3

1.1.6 Changing Webapps Directory o 3

1.2 Embedding Jetty in Your Application L e 4
1.2.1 Environment L e e e e e e 4

1.2.2 Creating the Maven Project. e 4

1.2.3 Adding dependencies for Embedded Jetty L oo oo 5

1.2.4 Creating Embedded Jetty Server Programmatically 6

1.2.5 Running Embedded Jetty L 7

1.3 Conclusion e 8
2 How to Install Jetty Application Server 9
2.1 Environment. e e e e e e e e e e e e e 9
2.2 Downloading JEtty L e e e e e e e e e e 9
23 RunningJetty L 9
2.4 Running Web Applications In Jetty e 10
2.5 Anatomy of the JETTY_HOME Directory it e et e e e 10
2.6 Basic Configuration L. e e e e 11
2.6.1 ChangingtheJetty Port 11

2.6.2 Changing the webapps Directory e 11

2.7 Modular Architecture of JEtty e e e e e e e e 11
2.7.1 AnatomyofaSingle Module 12

2.7.2 Activating Modules through Command Line 12

2.7.3 Activating Modules through start.ini e 12

2.74 Configuringthe Modules 12

2.8

Conclusion e e 12

Jetty Server Cookbook iii
3 Jetty web.xml Configuration Example 13
3.1 Deployment Descriptor file (a.k.aweb.xml) L 13
3.2 Structure of the Example e 14
3.3 Environmentinthe Example e 14
3.4 Creating the Maven Project e 14
3.5 Creating Embedded Jetty Server and Sample Web Applications 14
3.5.1 Web Application Configuration L e 14

3.5.2 Creating Embedded Jetty e e e 15

3.6 Configuring welcome-file-list L 17
3.7 Configuring ServIets e e e e e 18
3.8 Configuring Servlet Filters L e e 21
3.9 Configuring Servlet Context Listeners e 23
3.10 Configuration in Standalone Jetty Server L 25
311 Conclusion oL e e e e 25
4 Jetty Servlet Example 26
4.1 Environment e e e e e e 26
4.2 Jetty Servlet Example e e e e e 26
4.2.1 Structure of theexample 26

422 RunninglJetty L e e e e e 26

423 Creating Example Servlet 26
424 Modifying Example Servlet L 29

4.2.5 Deploying your servletonJettyo 30
4.2.6 Running the Servlet L e e e 31

427 Morewith Servlet e 32

4.3 Conclusion e 34
4.4 Download the eclipse Project o o o e e e e 35
5 Jetty Logging Configuration Example 36
5.1 LogginginJetty o L e e e e e e 36
52 Environment.o e e e e e e e e 36
5.3 Enabling LogginginJetty L 37
5.4 Configuring SLF4J with Logback inJetty e 37
5.5 Changing the Location and Name of the Jetty Log Files 38
5.6 Logging Configuration of Embedded Jetty 39
5.6.1 Environment e e e e e e e 39

5.6.2 Creatingthe Project. L e 39

5.6.3 Maven Dependencieso L 39

5.6.4 Default Logging Example 40

5.6.5 SLF4Jand Logback Example 41

5.7 Conclusion e e 42
5.8 Download the Source Code e e e e 42

Jetty Server Cookbook iv
6 Jetty Resource Handler Example 43
6.1 Environment. e e e e e 43

6.2 Creating the Maven Project for the Embedded Example 43

6.3 Creating Sample Static Content L. e e 44

6.4 Programmatically Creating Resource Handlers in Embedded Jetty 44
6.4.1 Creatingthe Resource Handler e 45

6.4.2 Setting Resource Base e 45

6.4.3 Enabling Directory Listing L 45

6.4.4 Setting Context SOUICE o« t v vt vt e ettt e e e e e e e 45

6.4.5 Attaching Handlers e e e 45

6.5 Runningthe Server L e 45

6.6 Other Configuration it e e e e e 46

6.7 Standalone Jetty Example L L e e e e e 46

6.8 ConcClusion e e 47

7 Jetty JMX Example 48
7.1 Environment e e e e e e e 48
7.2 JMXwith Embedded Jetty e 48
7.2.1 Structure of the Example L 48

7.2.2 Creating the Maven Project. e e 49

7.2.3 Enabling JMX Programmatically L 49

7.2.4 Monitoring with JConsole 52

7.2.5 Jetty Managed Objects e 54

7.3 JMX with Standalone Jetty L e e e e e e 56
74 Conclusion e e 56

8 Jetty OSGi Example 58
8.1 Environment and Prerequisites L 58

8.2 Adding Jetty dependencies to OSGi Target e 58
8.2.1 Jetty ibraries e e e e e e e e e 58

8.2.2 jetty-osgi-bootBundle 59

8.2.3 Reloading OSGiTarget L L o 59

8.3 Running the Jetty Server on the OSGicontainer i i it et e e 59

8.4 Deploying a Servletonthe OSGilJetty e e 60
8.4.1 Creating the Eclipse Project e 60

8.4.2 Adding Required Plugins L 61

8.4.3 Wiring our Servlet to OSGland Jetty e 62

8.5 Conclusion L e e e e e 64

Jetty Server Cookbook v

9 Jetty JSP Example 65
0.1 Environment. e e e e 65

9.2 JSPwith Embedded Jetty e e e e 65
9.2.1 Structure of the Example 65

9.2.2 Creating the Maven Projectin Eclipse 65

9.2.3 Configuring the Web Application e e e e 67

9.2.4 Enabling JSP programmatically 68

9.2.5 Running the Application L 69

9.3 JSPin Standalone Jetty e e 69

9.4 ConcluSion e e e e 70

Jetty Server Cookbook

vi

Copyright (c) Exelixis Media P.C., 2016

All rights reserved. Without limiting the rights under

copyright reserved above, no part of this publication

may be reproduced, stored or introduced into a retrieval system,
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

or

Jetty Server Cookbook vii

Preface

Jetty is a Java HTTP (Web) server and Java Servlet container. While Web Servers are usually associated with serving documents
to people, Jetty is now often used for machine to machine communications, usually within larger software frameworks. Jetty is
developed as a free and open source project as part of the Eclipse Foundation.

The web server is used in products such as Apache ActiveMQ, Alfresco, Apache Geronimo, Apache Maven, Apache Spark,
Google App Engine, Eclipse, FUSE, iDempiere, Twitter’s Streaming API and Zimbra. Jetty is also the server in open source
projects such as Lift, Eucalyptus, Red5, Hadoop and I2P. Jetty supports the latest Java Servlet API (with JSP support) as well as
protocols HTTP/2 and WebSocket. (Source: https://en.wikipedia.org/wiki/JavaFX)

In this ebook, we provide a compilation of Jetty examples that will help you kick-start your own projects. We cover a wide range
of topics, from installation and configuration, to JMX and OSGi. With our straightforward tutorials, you will be able to get your
own projects up and running in minimum time.

https://en.wikipedia.org/wiki/JavaFX

Jetty Server Cookbook viii

About the Author

Ibrahim is a Senior Software Engineer residing in Ankara,Turkey. He holds BSc and MS degrees in Computer Engineering from
Middle East Technical University(METU). Throughout his professional carrier, he has worked in Enterprise Web Application
projects for public sector and telecommunications domains. Java EE, Web Services and Enterprise Application Integration are
the areas he is primarily involved with.

Jetty Server Cookbook 1/70

Chapter 1

Jetty Tutorial for Beginners

In this article, we will give brief information about Jetty and provide examples of Java application deployment on Jetty. Our
examples will consist of both standalone and Embedded modes of Jetty.

Jetty is a Servlet container and Web Server which is known to be portable, lightweight, robust, flexible, extensible and easy to
integrate.

Jetty can be deployed as a standalone server and also can be embedded in an existing application. In addition to these, a Maven
Jetty plugin is available in order to run applications in your development environment.

SPDY, WebSocket, OSGi, IMX, JNDI, JAAS are some of the technologies that Jetty integrates nicely.

Today, Jetty is widely used in many platforms both for development and production. Small to large enterprise applications. SaaS
(such as Zimbra), Cloud Applications(such as Google AppEngine), Applications Servers(such as Apache Geronimo) and tools
(such as SoapUI) are powered by Jetty.

Jetty is open source, hosted by Eclipse Foundation. Current version (as of June 2015) is 9.2.x. You can more detailed information
on Jetty Home Page.

1.1 Jetty as a Standalone server

In the first part, we will configure Jetty as a Standalone Server.

1.1.1 Downloading and Installing Jetty

You can visit the downloads page and download the latest version (v9.2.11 currently) as an archive file in zip or tar.gz format.
Size is about 13 MBs.

There is no installation procedure for Jetty. Just drop it to a folder as you wish and uncompress the downloaded archive file.

1.1.2 Prerequisites

The only prerequisite for Jetty 9 is having installed Java 7 in your environment. You can downgrade to Jetty 8 if you have Java
6. A complete Jetty-Java compatibility information can be viewed here.

1.1.3 Running Jetty

Running Jetty on the default configuration is as simple as following two steps:

» Navigate to the directory where you unpacked the downloaded archive. I will call it JETTY_HOME"from now on.

https://www.eclipse.org/jetty/
https://download.eclipse.org/jetty/
https://wiki.eclipse.org/Jetty/Starting/Jetty_Version_Comparison_Table

Jetty Server Cookbook 2/70

* Run the following command:

java —-jar start.jar

When Jetty starts running successfully; it produces the a line in the log similar to the following:

2015-06-04 14:27:27.555:INFO:0ejs.Server:main: Started @11245ms

By default, Jetty runs on port 8080, but we will see how to configure it in the next sections of this tutorial.

You can also check via the browser typing https://localhost:8080 as the URL. You will see a 404 error, since no application is
deployed in the root context.

The response is as below:

® 06 | Error 404 - Not Found x L+

J—

"€) @ localhost:8080
&)

Error 404 - Not Found.

No context on this server matched or handled this request.
Contexts known to this server are:

B powered by Jetty:// Java Web Server

Figure 1.1: Server response when Jetty runs successfully

1.1.4 Changing the server port
As mentioned above, default port jetty is 8080. If you need to change it, you can apply following steps:

* Navigate to the JETTY_HOME.

* Open the start.ini file with a text editor.

* Navigate to the line where the parameter jetty.port is configured.
» Change the parameter to the desired port number.

* Start Jetty again.

In the following segment, we set the Jetty port to 7070 instead of 8080

HTTP port to listen on
jetty.port=7070

After we restart our server will run on port 7070.

https://localhost:8080

Jetty Server Cookbook 3/70

1.1.5 Deploying Web Applications on Jetty
The procedure to deploy web applications on Jetty is as follows:

* Navigate to your JETTY_HOME folder.
* There is a directory named as webapps under JETTY_HOME. Navigate there.
* Drop your WAR file in that folder.

The application is initialized immediately, you do not need to restart Jetty since the webapps directory is continuously monitored
by the server.

There are a sample web applications under JETTY_HOME /demo—base/webapps/. You can pick one of them (for example
async-rest.war) and copy to the webapps directory. As you copy the WAR file, the application will be initialized.

When you type https://localhost:7070/async-rest , you can see the application initialized.

800 W hoplocalh.. jasync-rest \+
——

| # | & localhost:7070/async-rest/ e | (@ search

B_locking vs Asynchronous REST

This demo calls the EBay WS APl both synchronously and asynchromously, to obiain items matching each of the keywords passed on the query string. The time the request threed is held by the serviet is di:

Blocking: kayak Hiocking: mense beer,
Tintal Time: 108% s Tiotad Tirme: 2905, 1ms
Thread Bald (rede 1083 G Thredd held Crad | 2905, 11

- cse>BEAN: R

Asynchrenons: kayak Asymchranous: mouse heergooms

Total Time: 1087 e Total Tirme: 1656.0ms

Thread keld (redx 17 5ms (17.2 initial + 03 generate) Theend held (red): 17.Tms {17.6 initizl + 0.2 generie)
Async wil 3 1059 S Async wall [J: 1638, 3ms

— Biiee~REE

By the use of Asynchronous Servlets and the Jetty Asychronous client, the server is able to release the thread (green) while waiting for the response from Ebay. This thread goes back into the thresd pool sn
reduces the number of threads needed, which in tum greatly reduces the memory requirements of the server.

Press reload to sec even betier resulis after JIT and TCP/IP warmup!

Figure 1.2: The application async-rest deployed on Jetty

1.1.6 Changing Webapps Directory

JETTY_HOME/webapps is the default directory to deploy your applications. But there are cases that you need to change the
deployment directory. In order to do that, you should proceed as follows:

e Openthe start.ini file under JETTY_HOME.
* Remove the comment before the parameter jetty.deploy.monitoredDirName.

* Change this parameter as you wish. Remember that the path should be relative to JETTY_HOME directory.
jetty.deploy.monitoredDirName=. ./jcgwebapps

Now we can put our WARS in the jegwebapps directory, which is at the same level as our JETTY_HOME.

https://localhost:7070/async-rest

Jetty Server Cookbook 4/70

1.2 Embedding Jetty in Your Application

Until now, we have skimmed through Jetty as a standalone server. However Jetty provides another great feature. Motto of
Jetty is : “Don’t deploy your application in Jetty, deploy Jetty in your application”. It means that, you can embed jetty in your
existing (most probably non-web) applications easily. On this purpose a very convenient API is provided to the developers. In
the following sections, we will see how we can accomplish this.

1.2.1 Environment

In this example, following programming environment is used:

e Java 8 (Java 7 will also do fine.)

* Apache Maven 3.x.y

Eclipse 4.4 (Luna)

1.2.2 Creating the Maven Project

* Go to File = New —Other — Maven Project

* Tick Create a simple project and press “Next”.

* Enter groupld as : com.javacodegeeks.snippets.enterprise
* Enter artifactld as : embedded-jetty-example

¢ Press “Finish”.

Now our maven project is created.

Jetty Server Cookbook 5/70

® 06 New Maven Project | |
New Maven project S
Configure project m
Artifact
Group Id: com.javacodegeeks.snippets.enterprise v
Artifact Id: | embedded-jetty-exampld v |
Version: 0.0.1-SNAPSHOT v
Packaging: 'jar |v
Name: [w
Description:

Parent Project

Group Id: [+
Artifact Id: v
Version:]!v Browse... | Clear
b Advanced
"_-.r..'r n'\r\'—.hr—__
[111] Jv inn b
S , = o
2 | <Back | Next > ~ Cancel | | Finish |

Figure 1.3: Creating simple Maven project in Eclipse

1.2.3 Adding dependencies for Embedded Jetty
Following Maven dependencies have to be added in the project:

* jetty-server : Core Jetty Utilities

* jetty-servlet: Jetty Servlet Utilities

You have to add these dependencies to your pom.xml. After the dependencies are added, your pom.xml seems as follows:

<modelVersion>4.0.0</modelVersion>

<groupId>com. javacodegeeks.snippets.enterprise</groupId>
<artifactId>embedded-jetty-example</artifactId>
<version>0.0.1-SNAPSHOT</version>

<dependencies>

Jetty Server Cookbook 6/70

<!-—-Jetty dependencies start here-->
<dependency>
<groupld>org.eclipse. jetty</groupId>
<artifactId>jetty-server</artifactId>
<version>9.2.11.v20150529</version>
</dependency>

<dependency>
<groupld>org.eclipse. jetty</groupId>
<artifactId>jetty-servlet</artifactId>
<version>9.2.11.v20150529</version>

</dependency>
<!-—Jetty dependencies end here—-->
</dependencies>

</project>

Now our project configuration is complete and we are ready to go.

1.2.4 Creating Embedded Jetty Server Programmatically

Now we are going to create an Embedded Jetty Server programmatically. In order to keep things simple, we will create the Server
in the main() method of our application.

In order to this, you can proceed as follows:

 Create package com.javacodegeeks.snippets.enterprise.embeddedjetty.
* Create a class named EmbeddedJettyMain.

¢ Add a main method to this class.

The code that creates and starts and Embedded Jetty is as follows:
EmbeddedJettyMain.java

package com. javacodegeeks.snippets.enterprise.embeddedjetty;

import org.eclipse.jetty.server.Server;
import org.eclipse.jetty.servlet.ServletContextHandler;

import com.javacodegeeks.snippets.enterprise.embeddedjetty.servlet.ExampleServlet;
public class EmbeddedJettyMain {
public static void main(String[] args) throws Exception {
Server server = new Server (7070);
ServletContextHandler handler = new ServletContextHandler (server, "/example <
")

handler.addServlet (ExampleServlet.class, "/");
server.start () ;

* In the first line(Line 12), we create a Server on port 7070.

Jetty Server Cookbook 7/70

* In the next line(Line 13), we create a ServletContextHandler with the context path* /example*

 In Line 14, we bind the servlet class ExampleServlet (which is described below) to this servlet context handler created in the
previous line.

¢ On the last line, we start the server.

ServletContextHandler is a powerful facility enabling creation and configuration of Servlets and Servlet Filters programatically.
ExampleServlet is a simple HttpServlet, does nothing but returning a constant output EmbeddedJetty as the response.
ExampleServlet.java
package com. javacodegeeks.snippets.enterprise.embeddedjetty.servlet;
import Jjava.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.eclipse.jetty.http.HttpStatus;
public class ExampleServlet extends HttpServlet ({
@Override
protected void doGet (HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {

resp.setStatus (HttpStatus.OK_200) ;
resp.getWriter () .println ("EmbeddedJetty") ;

1.2.5 Running Embedded Jetty

Run the EmbeddedJettyMain class through the Eclipse Run, Embedded Jetty starts to run on the defined port(7070).
You can access the application through your browser on the following URL: https://localhost:7070/example

Here you can see the response below:

https://localhost:7070/example

Jetty Server Cookbook 8/70

© OO /W nupriocal. 070/examples x \.|.

@' e localhost: 7070 /example/

EmbeddedJetty

Figure 1.4: ExampleServlet response

1.3 Conclusion

In this article, we have provided brief information on Jetty and discussed the steps to create standalone and Embedded Jetty

Servers.
Download

You can download the source code for Embedded Jetty example here: EmbeddedJettyExample

https://examples.javacodegeeks.com/wp-content/uploads/2015/06/embedded-jetty-example.zip

Jetty Server Cookbook 9/70

Chapter 2

How to Install Jetty Application Server

Jetty is an open-source Servlet container and Application Server which is known to be lightweight, portable, robust, flexible,
extensible and providing support for various technologies like SPDY, WebSocket, OSGi, JMX, JNDI, and JAAS. Jetty is very
convenient for development and also widely used in production environments.

In this post, we are going to detail how to install and configure a Jetty Server. We are first going to describe how to setup and run
a standalone Jetty. Thereafter we will mention some configuration options and skim through the modular architecture of Jetty.

Jetty presents Standalone, Embedded and Jetty Maven Plugin modes of operation. In this post we are going to use standalone
Jetty.

2.1 Environment

In this post, we are going to use following environment:

e Java 8

* Jetty 9.3.2.v20150730

However, it should be noted that; the material presented in this post is applicable for any Java versions later than Java 5, and any
Jetty installations of version 9.x.y. Jetty does not require any 3rd party libraries except having Java installed in your PATH.

2.2 Downloading Jetty

Jetty binaries can be downloaded from the Jetty Homepage. Binaries are available in zip and #gz formats. Jetty is fully cross-
platform so same binaries are valid for both Java and Unix environments.

2.3 Running Jetty

After downloading the binaries, having your Jetty server up and running is really easy. First you have to extract the zip (or
tgz) archive to a convenient directory. After extracting the binaries, you have to navigate to the directory (_jetty-distribution-
9.3.2.v20150730 _in this example). We will call it _JETTY_HOME _from now on in this post.

In JETTY_HOME you have to run the following shell command in order to start Server:

java —-jar start.jar

This command yields to following output:

https://download.eclipse.org/jetty/

Jetty Server Cookbook 10/70

2015-08-30 20:57:07.486:INFO::main: Logging initialized @361lms

2015-08-30 20:57:07.541:WARN:o0ejs.HomeBaseWarning:main: This instance of Jetty is not <
running from a separate {jetty.base} directory, this is not recommended. See <
documentation at http:www.eclipse.orgjettydocumentationcurrentstartup.html

2015-08-30 20:57:07.688:INFO:0ejs.Server:main: jetty-9.3.2.v20150730

2015-08-30 20:57:07.705:INFO:0ejdp.ScanningAppProvider:main: Deployment monitor [file: <>
Usersibrahimjcgexamplesjettyjetty-distribution-9.3.2.v20150730webapps] at interval 1

2015-08-30 20:57:07.729:INFO:0ejs.ServerConnector:main: Started ServerConnector@7ald7el8{ <
HTTP1.1, [httpl.1]1}{0.0.0.0:8080}

2015-08-30 20:57:07.730:INFO:0ejs.Server:main: Started @606ms

Seeing the last line like 2015-08-30 20:57:07.730:INFO:0ejs.Server:main:Started @606ms means that:
you have successfully started Jetty. In order to verify successful start you can navigate to https://localhost:8080/ and see the
following response:

® ® Error 404 - Mot Faund x4 +
€ | @ localhost:8080

Error 404 - Not Found.

No context on this server matched or handled this request.
Contexts known to this server are:

BB Powered by Jetty:// 9.3.2.v20150730

Figure 2.1: Jetty Server Response

2.4 Running Web Applications In Jetty

It is very to install your web applications (WARs) in Jetty. All you have to do is dropping the WAR file under JETTY_HOME /
webapps. You do not even need to restart Jetty. webapps directory is monitored periodically and new applications are
deployed automatically.

2.5 Anatomy of the JETTY_HOME Directory

When you examine the content of the JETTY_HOME you will see following directories:
* bin

* demo-base

* etc

* lib

* logs

* modules

* resources

e start.d

https://localhost:8080/

Jetty Server Cookbook 11/70

* webapps
Some of these directories are worth mentioning:

* etc: The XML configuration of Jetty modules defined in this directory.

e lib: As in most Java applications, JAR files are stored in /ib directory.

* logs: When logging is enabled, log files are created under this directory.

* modules: Jetty modules are defined under modules directory

* resources: The external configuration resources (like logging configuration resources) are usually placed under this directory.
* start.d: The modules activated through command line are configured through this directory.

» webapps: The web applications (WAR files) running in our Jetty Server are dropped in this directory.

In JETTY_HOME directory, start.ini and start. jar files exist start.ini is the configuration file where most Jetty
configuration is performed. start . jar is the initial executable file that initiates startup of the server.

2.6 Basic Configuration

2.6.1 Changing the Jetty Port
By default, Jetty runs on 8080. In order to change it to 7070 or some other port, you have to do the following:

e Open start.ini under JETTY_HOME.
¢ Add this line jetty.port=7070

¢ Save and close the file.

When you start the Jetty again it will run on port 7070.

2.6.2 Changing the webapps Directory

JETTY_HOME/webapps is the default directory to deploy your applications. If you need to change it for some reason, the
steps to be followed are as follows:

* Openthe start.ini.
* Remove the comment before the parameter jetty.deploy.monitoredDirName
* Change this parameter as you wish(E.g: jetty.deploy.monitoredDirName=. ./webapps2)

¢ Save and close the file.

Now we can put our WARs in the webapps?2 directory, which is at the same level as our JETTY_HOME

2.7 Modular Architecture of Jetty

Jetty runs on a modular architecture which means that many facilities and integrations are presented as modules. HTTP, HTTPS,
SSL, logging, IMX, JNDI, WebSockets and many other features are implemented as separate modules. Some common modules
such as HTTP, JSP and WebSocket are activated by default. The others (such as HTTPS, JMX etc.) have to be activated manually.

Jetty Server Cookbook 12/70

2.7.1 Anatomy of a Single Module

The modules are listed under JETTY_HOME /modules directory as mod files. mod files state the required JAR files to be
activated (which are under JETTY_HOME/1ib directory) and XML configuration files (which are under JETTY_HOME/etc
directory) and other resources to be activated as the module is activated.

For example, when you view JETTY_HOME /modules/logging.mod content of, you will see something like the following:
xml etc/jetty-logging.xml

files logs/

lib lib/logging/** jar resources/

The configuration states that logging is configured through et c/jetty-logging.xml; and required JARs are under 1ib/
logging. In addition to these, 1 ogs directory is required for this module.

2.7.2 Activating Modules through Command Line

There are two ways to activate Jetty modules. The first way is activating through command line:
java —jar start.jar —--add-to-startd=logging

The command above creates the file logging.ini under JETTY_HOME. Related configuration can be found in this file. After
configuring logging, you can start Jetty again and observe that logging is active.

2.7.3 Activating Modules through start.ini

The second way to activate a module is adding the module to the start.ini:

—--module=logging

This is equivalent to the command line presented in the first alternative with a subtle difference. This time, nothing is created
under start . d ; so all further configuration should be done in this same start.ini file.

Personally, I would prefer the second alternative since all active modules are listed in a single file (start . ini) however there
is no problem with the first approach either.

2.7.4 Configuring the Modules

As mentioned above, mod files tell us about the relevant XML configuration files, which are under JETTY_HOME /et c, for the
module. Jetty modules are configured through these XML files.

For example logging module states jetty—-logging.xml is relevant for logging configuration. One can alter this file to
modify logging configuration.

2.8 Conclusion

In this post, we have defined the related steps to install and configure a standalone Jetty server. Further information can be
obtained through the official documentation of Jetty.

https://www.eclipse.org/jetty/documentation/current/index.html

Jetty Server Cookbook 13/70

Chapter 3

Jetty web.xml Configuration Example

In this example, we will configure Jetty web applications through deployment descriptor files. Typically in a Java web application,
the deployment descriptor file is named as web.xml, which includes application-wide configuration. In addition to this, a common
deployment descriptor can be defined for a Jetty. This common descriptor is container-wide and includes configuration which is
applicable to all of the web applications deployed in Jetty. Typically, this common file is named as webdefault.xml, however it is
possible to rename and relocate this file.

In this post, we are going to discuss some fundamental elements (but not all of them) of the deployment descriptors and apply
these elements to our Jetty web applications both for container-wide and application specific configurations. Unlike our previous
Jetty examples, this time we will mainly utilize Embedded Jetty; however at the end of the example we will show how relevant
configuration can be applied in Standalone Jetty container.

3.1 Deployment Descriptor file (a.k.a web.xml)

Deployment Descriptor is an XML file that contains the configuration of a Java Web Application. In Java web applications, it
should be in the WEB-INF directory of the web application(or WAR file) and it should be named as “web.xml”. Root element of
this XML is named as web-app. Below you can see a simple web.xml file.

<web-app xmlns="https://java.sun.com/xml/ns/javaee" xmlns:xsi="https://www.w3.0rg/2001/ ¢
XMLSchema—-instance"
xsi:schemalocation="https://java.sun.com/xml/ns/javaee
https://java.sun.com/xml/ns/javaee/web—app_3_0.xsd"
version="3.0">
<display-name>Webapp2</display—-name>
</web-app>

The element display-name is optional too and serves as an informative field for some GUI tools.

There are a number of elements available in a deployment descriptor file. Full list of available elements can be viewed here. In
this example we will skim through the following:

¢ welcome-file-list

* servlet/ servlet-mapping

filter/ filter-mapping

e listener

As we have mentioned above, web.xml file stores configurations per application. However, it is possible to specify a common
deployment descriptor that holds configuration for multiple web applications. In Jetty, this file is named as webdefault.xml,
however this file can be renamed and its location can be configured. Structure of webdefault.xml is no different from a web.xml
file.

https://docs.oracle.com/cd/E24329_01/web.1211/e21049/web_xml.htm#WBAPP502

Jetty Server Cookbook 14 /70

Another remark is necessary at this point. After Java Servlet Spec 3.0, web.xml is not necessary for a web application and the
same configuration can be performed through Java classes and annotations. However, in this example, we will configure our
applications with XML files.

3.2 Structure of the Example

In this example we will create two simple web applications (named as webappl and webapp2) with their web.xml files, in an
embedded Jetty container and provide a common deployment descriptor(webdefault.xml) for them. Thereafter we will configure
these applications through webdefault.xml and web.xml files. For common configurations, we are going to modify webde-
fault.xml and we will observe that both webappl and webapp2 are affected from this modifications. In order to demonstrate
application specific configurations, we are going to modify the web.xml of webappl and we will keep webapp2 configuration as
it is. We will see that our application specific configuration only applies to webappl.

3.3 Environment in the Example

In this example, following programming environment will be used:

e Java7
* Maven 3.x.y
* Eclipse Luna(as the IDE)

* Jetty v9.2.11 (In Embedded Jetty examples, we will add Jetty libraries through Maven)

3.4 Creating the Maven Project

We will create the Maven project in Eclipse, applying the steps below:

* Go to File —+ New —Other — Maven Project

* Tick Create a simple project and press “Next”.

* Enter groupld as : com.javacodegeeks.snippets.enterprise
 Enter artifactld as : jetty-webxml-example

¢ Press “Finish”.

3.5 Creating Embedded Jetty Server and Sample Web Applications

3.5.1 Web Application Configuration

We will configure two simple applications in this example namely webappl and webapp2 which are identical initially.

In order to create webappl, following steps should be followed:

* Create folder webapp1 under the directory /src/main. (src/main/webappl).
* Create a folder named WEB-INF under src/main/webappl.
* Create an initial web.xml file under src/main/webappl/WEB-XML. Content of this web.xml is given below.

* Create a simple html file named jcgindex.html under src/main/webappl.

Jetty Server Cookbook 15/70

The initial web.xml is as follows:

<web-app xmlns="https://Jjava.sun.com/xml/ns/javaee" xmlns:xsi="https://www.w3.0rg/2001/ <
XMLSchema-instance"
xsi:schemalLocation="https://java.sun.com/xml/ns/javaee
https://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
version="3.0">
<display-name>Webappl</display—-name>
</web-app>

jegindex.html is a simple html file with following content:

<html>
Jetty Webapp 1 Index Page
</html>

Now webappl is ready to deploy. Our second application, webapp2, can be prepared repeating the same steps described
above.(Replacing webapp1 expressions with webapp2 of course).

We will also place a webdefault.xml in our project. In order to do this, following steps should be followed:

¢ Create webdefault folder under src/main.

¢ Place a webdefault.xml file under src/main/webdefault.

The file webdefault.xml can be obtained from a standalone Jetty installation. The location is JETTY_HOME/etc/webdefault.xml.

3.5.2 Creating Embedded Jetty

As mentioned above, we are going to run our web applications on Embedded Jetty. For the sake of simplicity, our Embedded
Jetty will run through the main class.

EmbeddedJetty WebXmlConfigurationMain code, with descriptive comments is as follows:
EmbeddedJettyWebXmlConfigurationMain.java

package com.javacodegeeks.snippets.enterprise.embeddedjetty;

import org.eclipse.jetty.server.Server;
import org.eclipse.jetty.server.handler.HandlerCollection;
import org.eclipse. jetty.webapp.WebAppContext;

public class EmbeddedJettyWebXmlConfigurationMain {
public static void main(String[] args) throws Exception {
Server server = new Server (8080);

// Handler for multiple web apps
HandlerCollection handlers = new HandlerCollection();

// Creating the first web application context

WebAppContext webappl = new WebAppContext ();

webappl.setResourceBase ("src/main/webappl") ;
webappl.setContextPath (" /webappl") ;

webappl.setDefaultsDescriptor ("src/main/webdefault/webdefault.xml") ;
handlers.addHandler (webappl) ;

// Creating the second web application context
WebAppContext webapp2 = new WebAppContext () ;
webapp?2.setResourceBase ("src/main/webapp2") ;
webapp2.setContextPath ("/webapp2") ;

Jetty Server Cookbook 16/70

webapp2.setDefaultsDescriptor ("src/main/webdefault/webdefault.xml") ;
handlers.addHandler (webapp?2) ;

// Adding the handlers to the server
server.setHandler (handlers) ;

// Starting the Server
server.start ();
System.out.println ("Started!");
server.join () ;

First we create a Server on port 8080. Then we initialize a HandlerCollection, which allows to create multiple web application
contexts on a single Server. Thereafter we set the context path and resource base(src/main/webappX) for both web applications.
In addition to these, we set default deployment descriptor path (src/main/webdefault/webdefault.xml). After we configure web
application contexts we attach these to the HandlerCollections. Lastly we start our embedded server.

When we run our main class, our server starts on port 8080. We can access the two web applications via https://localhost:8080/-
webapp! and https://localhost:8080/webapp2.

800 / Directory: /webappl/ ?’i\+

@ @ localhost:8080/webapp1/

Directory: /webappl/

WEB-INF/ 102 bytes Jul 6, 2015 2:40:10 PM
Jjegindex.html 40 bytes Jul 6, 2015 3:07:26 PM

Figure 3.1: WebAppl

https://localhost:8080/webapp1
https://localhost:8080/webapp1
https://localhost:8080/webapp2

Jetty Server Cookbook 17/70

® OO0 / Directory: /webapp2/ x | =+

@ @ localhost:8080/webapp2/

Directory: /webapp2/

WEB-INF/ 102 bytes Jul 6, 2015 2:53:37 PM
Jjegindex.html 40 bytes Jul 6, 2015 3:07:33 PM

Figure 3.2: WebApp2

3.6 Configuring welcome-file-list

welcome-file-list is an element in deployment descriptor which defines a set of lookup files that are automatically looked up
upon a request on context root(for example https://localhost:8080/webapp1). Typically in a web application, a welcome file is
index.html(or index.htm, index.jsp etc.). When an HTTP request hits the context root, one of the files defined in this list is
retrieved to the user. The initial welcome file list in the webdefault.xml is initially as follows:

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
</welcome-file—-list>

None of our sample applications have one of the files listed above. As a result, we obtain a directory listing, when we try to
access the context root. (Directory listing can also be disabled by setting dirAllowed parameter of Default Servlet to false in the
webdefault.xml). When we add jcgindex.html to the welcome file list, our welcome file list looks as follows:

<welcome-file-list>
<welcome-file>index.html</welcome—file>
<welcome-file>jcgindex.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
</welcome-file—-list>

Now when we try to access context roots(https://localhost:8080/webapp1 or https://localhost:8080/webapp2), the outcome is the
content of jcgindex.html. A sample response page can be viewed below:

https://localhost:8080/webapp1
https://localhost:8080/webapp1
https://localhost:8080/webapp2

Jetty Server Cookbook 18/70

8 060 | http://localho...8080/webappl/ * -\ =+
@ Iocalﬁos.t-:SOBO/webap.plf

Jetty Webapp 1 Index Page

Figure 3.3: WebAppl1 index file

Here we have configured welcome-file-list through webdefault.xml. It is possible to do it through the web.xml also.

3.7 Configuring Servlets

Servlet is a Java class extending server capabilities through HTTP request-response model. Servlets form the backbone of Java
Web applications. Deployment descriptors are utilized to configure Servlets in a web application.

A servlet configuration has two main parts:

¢ Servlet Definition

* Servlet Mapping

Servlet definition defines the class of the Servlet along with a unique name defined by the developer. A Servlet class is a Java
class implementing javax.servlet.Servlet interface. Typically, extending javax.servlet.http.HttpServlet is a common practice in
servlet implementation.

A servlet definition in deployment descriptor looks like as follows:

<servlet>
<servlet-name>myServlet</servlet—-name>
<servlet-class>org.example.MyServlet</servlet-class>
</servlet>

Servlet mapping, defines the URL pattern that is going to be handled by the specified servlet. Multiple URL patterns can be
assigned to a single servlet by defining multiple mappings. Here we reference the Servlet by the unique name we decided in
the Servlet definition part. The example below defines a servlet mapping that assigns the URLS (/somepath) to our servlet
(myServlet):

<servlet-mapping>
<servlet-name>myServlet</servlet—name>
<url-pattern>/somePath/*«</url-pattern>
</servlet-mapping>

Jetty Server Cookbook 19/70

Having this definition in webdefault.xml, the servlet definition and mapping will be effective for all applications deployed in our
Jetty container.

To sum up, following steps have to be applied in order to create and map a servlet.

* Create a servlet definition in deployment descriptor (webdefault.xml for container-wide or web.xml of the desired webapp for
the application specific configuration).

* Create a servlet mappings for this servlet.

* Implement the Servlet class.

An XML configuration in webdefault.xml that defines a CommonServlet and maps it to /common pattern both of the web
applications is as follows:

<servlet>
<servlet-name>commonServlet</servlet-name>
<servlet-class> com. javacodegeeks.snippets.enterprise.embeddedjetty.servlet.
CommonServlet </servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>commonServlet</servlet-name>
<url-pattern>/common/x</url-pattern>
</servlet-mapping>

The implementation of the Common Servlet is as follows:
CommonServlet.java

package com. javacodegeeks.snippets.enterprise.embeddedjetty.servlet;
import Jjava.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServlet;
public class CommonServlet extends HttpServlet {
@QOverride
public void service (ServletRequest req, ServletResponse res) throws ¢

ServletException, IOException {

res.getOutputStream() .print ("Common Servlet Response");

The CommonServlet simply returns a String as the response. When we run the example, we will get the response below from
both applications through https://localhost:8080/webapp1/common and https://localhost:8080/webapp2/common.

https://localhost:8080/webapp1/common
https://localhost:8080/webapp1/common

Jetty Server Cookbook 20/70

® 00O /http://localh...ebappl/common x \ =+
@ @ localhost:8080/webappl/common

Common Servlet Response

Figure 3.4: Common Server Response

The configuration above is valid for both applications since it is defined in webdefault.xml. In order to be specific for a single
application, we should define the servlet and its mappings in web.xml of the relevant application.

We can add the following servlet configuration to the web.xml of webappl.

<servlet>
<servlet-name>specificServlet</servlet—name>
<servlet-class>com. javacodegeeks.snippets.enterprise.embeddedjetty.servliet. ¢
SpecificServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>specificServlet</servlet—name>
<url-pattern>/specific/*</url-pattern>
</servlet-mapping>

The SpecificServlet implementation is as follows:
SpecificServlet.java

package com. javacodegeeks.snippets.enterprise.embeddedjetty.servlet;
import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServlet;
public class SpecificServlet extends HttpServlet {
@Override
public void service (ServletRequest req, ServletResponse res) throws <>

ServletException, IOException {

res.getOutputStream() .print ("Application Specific Servlet Response");

Jetty Server Cookbook

21/70

When we run our example and try to access the URL https://localhost:8080/webapp1/specific/ we will get the following response:
6 00 / http://localhos...appl/specific/ * | =4

P localhost:8080/webapp1l/specific/

Application Specific Servlet Response

Figure 3.5: Response

This configuration is webappl specific. When we try to access webapp2 with the same URL pattern (https://localhost:8080/-
webapp2/specific/); we will get a 404 Error immediately.

There are a lot to mention on the Servlet subject and configuration; however they are beyond the scope of this example.

3.8 Configuring Servlet Filters

Servlet Filter is one of the key building blocks in a Java Web Application. Servlet filters intercept HTTP requests/response before
and after Servlet invocation. They have many uses: Decorating requests and responses, logging or blocking them for security
reasons are among those. Servlet Filter mechanism follows the Chain of Responsibility design pattern. A simple Servlet Filter is
as follows:

CommonFilter.java

package com.javacodegeeks.snippets.enterprise.embeddedjetty.filter;

import

import
import
import
import
import
import

public

java.io.IOException;

javax.
javax.
javax.

javax

class

servlet.
servlet.
servlet.
.servlet.
javax.
javax.

servlet.
servlet.

Filter;
FilterChain;
FilterConfig;
ServletException;
ServletRequest;
ServletResponse;

CommonFilter implements Filter {

FilterConfig filterConfig = null;

public void init (FilterConfig filterConfig)

}

this.

filterConfig = filterConfig;

public void destroy () {

}

throws ServletException {

https://localhost:8080/webapp1/specific/
https://localhost:8080/webapp2/specific/
https://localhost:8080/webapp2/specific/

Jetty Server Cookbook 22/70

public void doFilter (ServletRequest servletRequest, ServletResponse servletResponse
, FilterChain filterChain)
throws IOException, ServletException {

System.out.println ("Common first!");
filterChain.doFilter (servletRequest, servletResponse);
System.out.println ("Common last!");

The first print line is invoked when the request is intercepted. The control is delegated to the next filter in the responsibility chain.
The last print line is invoked after the rest of the chain completes its work.

Definition of the Servlet filters is very similar to the Servlet: We have to define the filter and map URLs to this filter. We can
configure the CommonFilter in webdefault.xml as follows:

<filter>
<filter-name>CommonFilter</filter—-name>
<filter-class>com. javacodegeeks.snippets.enterprise.embeddedjetty.filter. ¢
CommonFilter</filter-class>

</filter>

<filter-mapping>
<filter—-name>CommonFilter</filter—-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Here we have mapped this filter to the all URLs under our both web applications. When we run the example and try to access
any URL of these applications, We observe the following lines in the server output:

Common first!
Common last!

As in the servlets, the configuration in webdefault.xml is valid for both applications. In order to be application specific, you can
define another filter in the web.xml of webappl and implement is as follows:

<filter>
<filter-name>SpecificFilter</filter—-name>
<filter-class>com. javacodegeeks.snippets.enterprise.embeddedjetty.filter. ¢
SpecificFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>SpecificFilter</filter—-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

SpecificFilter.java

package com. javacodegeeks.snippets.enterprise.embeddedjetty.filter;
import java.io.IOException;

import javax.servlet.Filter;

import javax.servlet.FilterChain;
import javax.servlet.FilterConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

Jetty Server Cookbook 23/70

public class SpecificFilter implements Filter {
FilterConfig filterConfig = null;

public void init (FilterConfig filterConfig) throws ServletException {
this.filterConfig = filterConfig;

public void destroy () {
}

public void doFilter (ServletRequest servletRequest, ServletResponse servletResponse
, FilterChain filterChain)
throws IOException, ServletException {

System.out.println ("Specific Filter first!");
filterChain.doFilter (servletRequest, servletResponse);
System.out.println("Specific Filter last!");

When we run the server and try to access a URL in webapp1, we will observe the following server output:

Common first!

Specific Filter first!
Specific Filter last!
Common last!

Here you can see, first line is the first print line of the CommonFilter; that is followed by the first and last print lines of the
SpecificFilter. The output is finalized with the last print line of the CommonFilter. This output sequence summarizes the
mechanism of filter chain of Java web apps.

Since the SpecificFilter is configured only for webappl; when we try to access webapp2; we will only observe the outputs of the
CommonFilter.

3.9 Configuring Servlet Context Listeners

ServletContextListener is another core block in Java Web applications. It is an interface whose implementations are invoked
upon web application context creation and and destruction events.

A concrete ServletContextListener has to implement two methods:

¢ contextInitialized

* contextDestroyed

A sample implementation, printing the context path of the implementation is as follows:
CommonListener.java

package com.javacodegeeks.snippets.enterprise.embeddedjetty.listener;

import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

public class CommonListener implements ServletContextListener {

Jetty Server Cookbook 24/70

public void contextInitialized(ServletContextEvent sce) {
System.out.println ("Context initialized:"+sce.getServletContext ().
getContextPath());

public void contextDestroyed(ServletContextEvent sce) {

In webdefault.xml, listener configuration is below:

<listener>
<listener-class>com. javacodegeeks.snippets.enterprise.embeddedjetty.listener. <>
CommonListener</listener—-class>
</listener>

When we start the server, the listener will be invoked for both webapp! and webapp2. We will obtain the following server output:

2015-07-07 16:01:18.648:INFO::main: Logging initialized @295ms

2015-07-07 16:01:18.736:INFO:0ejs.Server:main: jetty-9.2.11.v20150529

2015-07-07 16:01:18.857:INFO:0ejw.StandardDescriptorProcessor:main: NO JSP Support for /
webappl, did not find org.eclipse.jetty.jsp.JettyJspServliet

Context initialized:/webappl

2015-07-07 16:01:18.884:INFO:0ejsh.ContextHandler:main: Started o.e.j.w.
WebAppContext@58134517{/webappl, file:/Users/ibrahim/Documents/workspace_jcg/jetty-webxml <
—example/src/main/webappl/, AVAILABLE }

2015-07-07 16:01:18.900:INFO:0ejw.StandardDescriptorProcessor:main: NO JSP Support for /
webapp2, did not find org.eclipse.jetty.jsp.JettyJspServliet

Context initialized:/webapp2

2015-07-07 16:01:18.902:INFO:0ejsh.ContextHandler:main: Started o.e.j.w. <
WebAppContext@226a82c4{/webapp2, file:/Users/ibrahim/Documents/workspace_jcg/jetty-webxml <
-example/src/main/webapp2/, AVAILABLE}

2015-07-07 16:01:18.919:INFO:0ejs.ServerConnector:main: Started ServerConnector@691la7f8f{ <
HTTP/1.1}{0.0.0.0:8080}

2015-07-07 16:01:18.920:INFO:0ejs.Server:main: Started @569ms

Started!

Again, we may wish to configure a listener for a single web application. Then we should define our listener configuration in the
related web.xml with the required implementation.

<listener>
<listener-class>com. javacodegeeks.snippets.enterprise.embeddedjetty. ¢
listener.SpecificListener</listener-class>
</listener>
SpecificListener.java

package com. javacodegeeks.snippets.enterprise.embeddedjetty.listener;

import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

public class SpecificListener implements ServletContextListener {
public void contextInitialized(ServletContextEvent sce) {

System.out.println ("Specific Context initialized:"+sce.getServletContext (). ¢
getContextPath());

Jetty Server Cookbook 25/70

public void contextDestroyed(ServletContextEvent sce) {
// TODO Auto—-generated method stub

When we start the server, we will see that SpecificListener is invoked upon creation of webapp1 context. The output is as follows:

2015-07-07 16:20:33.634:INFO::main: Logging initialized @210ms

2015-07-07 16:20:33.740:INFO:0ejs.Server:main: Jjetty-9.2.11.v20150529

2015-07-07 16:20:33.864:INFO:0ejw.StandardDescriptorProcessor:main: NO JSP Support for /
webappl, did not find org.eclipse.jetty.jsp.JettyJspServliet

Context initialized:/webappl

Specific Context initialized:/webappl

2015-07-07 16:20:33.895:INFO:o0ejsh.ContextHandler:main: Started o.e.j.w.
WebAppContext@4450d156{/webappl, file:/Users/ibrahim/Documents/workspace_jcg/jetty-webxml <
-example/src/main/webappl/, AVAILABLE}

2015-07-07 16:20:33.907:INFO:o0ejw.StandardDescriptorProcessor:main: NO JSP Support for / <
webapp2, did not find org.eclipse.jetty.]jsp.JettyJdspServlet

Context initialized:/webapp?2

2015-07-07 16:20:33.908:INFO:0ejsh.ContextHandler:main: Started o.e.Jj.w.
WebAppContext@731£8236{/webapp2, file:/Users/ibrahim/Documents/workspace_jcg/jetty-webxml <
-example/src/main/webapp2/, AVAILABLE}

2015-07-07 16:20:33.926:INFO:0ejs.ServerConnector:main: Started ServerConnector@50a7bcbe{ <+
HTTP/1.1}{0.0.0.0:8080}

2015-07-07 16:20:33.926:INFO:0ejs.Server:main: Started @506ms

Started!

Note that, the common configuration elements are invoked before application specific ones.

3.10 Configuration in Standalone Jetty Server

In this example, we have performed deployment descriptor configuration in an Embedded Jetty container. For the standalone
Jetty(v9.2.11), the the path of default configuration (webdefault.xml) is under JETTY_HOME/etc. If you want to change location
of the default configuration path, then you have to alter the defaultsDescriptor element of JETTY_HOME/etc/jetty-deploy.xml.

3.11 Conclusion

In this post, we have provided information on Web application configuration in Jetty through the deployment descriptor files.
We have skimmed through configuration of main building blocks of a web application configuration(Servlets, Servlet Filters
and Listeners). While providing examples, we have emphasized that Jetty allows both container-wide and application specific
configuration.

Download

You can download the full source code of this example here: JettyWebXmlExample

https://examples.javacodegeeks.com/wp-content/uploads/2015/07/jetty-webxml-example.zip

Jetty Server Cookbook 26/70

Chapter 4

Jetty Servlet Example

In this example, we will show you how to make use of Jetty - Java HTTP Web Server and servlet container and run a sample
servlet on this server. Jetty is an open source web server developed by Eclipse Foundation. As a part of this example we will
create an eclipse project which will have our servlet code and to deploy on jetty, we will configure that project in a war file.

4.1 Environment

In this example, following environment will be used:

* Eclipse Kepler 4.3 (as IDE)
e Jetty - version 9.2.15 v20160210
* Java - version 7

* Java Servlet Library - servlet-api-3.0

4.2 Jetty Servlet Example

4.2.1 Structure of the example

In this example, we are going to write a simple servlet and run that servlet on Jetty web server. We will package our servlet
project in a WAR file. We can then deploy this war file on running jetty server and it will dynamically detect our servlet.

4.2.2 Running Jetty

Make sure you download the correct version of Jetty from Download Jetty. Certain versions of jetty only run with certain versions
of Java. You might run into an error java:unsupported major:minor version 52.0. Once you extract downloaded
jetty zip file on your machine, you can open a command prompt and navigate to directory /demo-base and run java -jar

../start. jar, this will start our jetty web server. To verify everything is alright with our jetty installation, launch a web
browser and go to url https://localhost:8080, it should show a Jetty welcome page.

4.2.3 Creating Example Servlet

We will create a Dynamic Web Project in eclipse. Follow the steps below:

* Go to File — New Project — Web — Dynamic Web Project

https://download.eclipse.org/jetty/
https://localhost:8080

Jetty Server Cookbook 27/70

* Provide a name for your project "FirstServletJetty" and choose Target runtime as None

va - Eclipse
0
Eh&ew[}ynarﬂkwmirg{ect_ —_—— — s o = -
Dynamic Web Project e, Quick

Create a standalone Dynamic Web project or add it to a new or existing | 0

Enterprise Application, - [4] Fi
coll

Project name: Firs.tSer'.rIEtUettyi
avi
aw Project location
28 Use default location
avi =
avilel Location: | CGhnewworkspace\FirstSenviettletty Browse...
avil

Target runtime
et ’<N0n2> v] ’ Mew F‘.untime.,,]
1g Cynarnic web module version
lay
ati ’31] v]

Configuration

ef]

| Default Configuration || Modify.. |

ic The default configuration provides a good starting point. Additional facets can later be
i1 installed to add new functionality to the project.

EAR membership
[] Add project to an EAR

EAR project name; | EAR * | | Mew Project..,
Working sets

|
[] Add project to working sets

|

Dd Mifarking sets: - Select:.

1ath

1atl e L

lerl ! !r*"n

(8 % U

@ <Back | MNea» || Finish || Cancel

Figure 4.1: Create Dynamic Web Project in Eclipse

* Click Next. On Web Module screen, select the checkbox for "Generate web.xml deployment descriptor”

After creating our project, we will need to sort out dependencies to write our first servlet. Download servlet-api-3.0.jar file and
import that in our project’s build path.

Jetty Server Cookbook 28/70

fwebidf 1) properties for Frstsenvetletty T . o 50

FProj
|t}'pefi1tertex‘t Java Build Path St Aty uick Access

»» Resource E— —— B :

B Builders I@ Source]—i&!’ Projects | = Libraries | &0 Order and E:port| N o

| staende... it
Deployment Assembly JARs and class folders on the build path:

. jm :é”'.':' :“lh [[serviet-api-30.ar - C:\Users\Yogesh Mali\DesktophhyZ Add JARs e" xsi:schemaloca
B R e I =, EAR Libraries
I+ Java Compiler . = JRE System Library [JavaSE-1.7] Add Exdternal JARs...

Java Editor

» = Web App Libraries

Javadoc Location

i

1

_ I
JavaSeript !
[

i

I

i

Add Library...

JSP Fragment

Project Facets

Project References

Run/Debug Settings

Server

Senvice Policies

Targeted Runtimes

Task Repositony

il Task Tags

Validation 1 Migrate JAR File...]

Web Content Settings

Web Page Editor

1 Web Project Settings
WikiTed

» XDoclet IHE _n

Add Class Folder...

J
|
Add Varizble.. |
|
]
Add External Class Folder... |

Edit...]
|

Remaove

-

Enrin Panie
|] UUEHU

Figure 4.2: Add servlet-api jar file to build path

* Go to Src folder in project directory and right click to select New Servlet
* Enter package name: com.javacodegeeksexample
* Enter servlet name: FirstServlet

* Keep default options and click Finish

Jetty Server Cookbook 29/70

s O QTG (S @R e e G e
Quick Access

-
SIS, ol 8] Create Servlet FFI [4] FirstServle... 22 iz
ckage com.java Create Serviet -

=

1
port java.io.I Specify class file destination, @

port javax.ser
port javax.ser
port javax.sery| prgject: FirstServietletty v]
port javax.ser

port javax.serf Source folder f"F-irst;‘-ervl-éﬂ-.E&y_:"-src

H

Browse...
Servlet implef) lava package: comjavacodegesksexample !

/
zbServlet(™/Fi
blic class Fir|

private stat]

Class name: Firs-tSer\.rIEI

o

Superclass: javax.serviet.http. HttpServlet | Browse...

e [7] Use an existing Servlet class or JSP

* pefault ¢
E 3 l.;
public First!
// TODD

Class narme: FirstServle Browse...

3

}
j*t

5 2 Propert

6,497 wamnings, 83| () <Back [Nea> |[Finish][Cancel\
on

asspath Dependen

Figure 4.3: Create First Servlet

4.2.4 Modifying Example Servlet

Now we can write our code in the servlet we just created. We can write our code in doGet or doPost. We will write very
simple print statement to see how our servlet behave once deployed on webserver.

This is how the final code of FirstServlet looks:
FirstServlet.java

package com. javacodegeeksexample;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

[**
* Servlet implementation class FirstServlet
*/
@WebServlet ("/FirstServlet")
public class FirstServlet extends HttpServlet ({
private static final long serialVersionUID = 1L;

Jetty Server Cookbook 30/70

/ x %
* Default constructor.
*/
public FirstServlet () {
// TODO Auto—-generated constructor stub

/ % *
*+ (@see HttpServlet#doGet (HttpServletRequest request, HttpServletResponse response)

*/
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

<+

response.setContentType ("text/html") ;
response.getWriter () .println("First Servlet on Jetty - Java Code Geeks");

/ x %
* @see HttpServlet#doPost (HttpServletRequest request, HttpServletResponse response <
)

*/
protected void doPost (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

P

Save your source code file and build the project in eclipse.

4.2.5 Deploying your serviet on Jetty

* Save project — Export — Web — WAR file

Jetty Server Cookbook

31/70

SO ELITIVIT LA T LUl e

t Run ﬂindow_!

Enrollments..

1 package conf
2
3= import javi
4 dimport javi
5 import javi
& import javi
7 import javi
8 dimport javi

108 /**
11 " ssrvlet
12 >t
13 ([@webServled
14 public claf

15 privaty
16
17 i
18 * Defq
19)
20z public
21 1
22 }
23
240z f**

4
Markers 3

[ﬂ Export

S

Select
Export 2 Web Module into an external WAR file

/ﬂ QuickAccess

B |

prinectToFFM... [4] FirstServ!

Select an export destination:

E-'c}fpe filter text

= General
I+ (= EIB
[= Install
[+ [Java
= Java EE
i [= Plug-in Development
I [z Remote Systems
[» = Run/Debug
[[Tasks
[+ = Team
4 [= Web

fg WAR file
= Web Services
b= XML

1 errors, 6,497 warr|

‘escription

@ <Back | Nest»

Figure 4.4: Export the project as WAR file

» Save this WAR file in /demo-base/webapps directory

o If jetty is already running, it should detect your new servlet deployed OR you can restart the jetty server

4.2.6 Running the Servlet

To verify everything is correct, you can access this servlet in webbrowser at https://localhost:8080/FirstServletJetty/FirstServlet

https://localhost:8080/FirstServletJetty/FirstServlet

Jetty Server Cookbook 32/70

& C' | [} localhost:8080/FirstServletletty/FirstServlet

First Servlet on Jetty - JTava Code Geeks

Figure 4.5: Running the servlet in browser

Text on this webpage is coming from whatever we printed in doGet method.

4.2.7 More with Servlet

This was a very simple servlet to run on jetty. We can do more complicated jsp or html pages to call servlets to handle requests.
Let’s add a simple form on an html page and do get action and post action subsequently.

<!DOCTYPE html>

<html>

<head>

<meta charset="IS0-8859-1">

<title> First HTML PAGE </title>
</head>

<body>

<p>Let’s Test doPost.

<form method="POST" action="FirstServlet"/>
<input name="field" type="text" />
<input type="submit" value="Submit" />
</form>

</body>

</html>

Now if you see this html page has a form with method POST which will get called through action FirstServlet. Once the
form is submitted, FirstServlet will call doPost to handle the request posted through form submission.

We can modify doPost method to read parameters posted through form.

Jetty Server Cookbook 33/70

[**
* (@see HttpServlet#doPost (HttpServletRequest request, HttpServletResponse response)
*/
protected void doPost (HttpServletRequest request, HttpServletResponse response) throws <+
ServletException, IOException {
response.getWriter () .println("In POST - First Servlet content - Java code geeks");
response.getWriter () .println (request.getParameter ("field"));

Most companies build their login pages through form like this and then in doPost handles the submission of those forms for
authentication. Once we build our project and export it as a war file to deploy on server, we can access our html page like this
https://localhost:8080/FirstServletJetty/FirstPage.html. Output will look like below

€ | @ | localhost:8080/FirstServletletty/FirstPage. htrml c L, Search

Let's Test doPost.

Submit

Figure 4.6: First Page Sample Form Submission - doPost

You can type something in the textbox and press Submit. Result will be as shown below

https://localhost:8080/FirstServletJetty/FirstPage.html

Jetty Server Cookbook 34/70

é % | localhost:8080,FirstServietletty/FirstServiet L L, Search

In POST - First Servlet content - Java code geeks
doPost Test in First Servlet

Figure 4.7: doPost result

4.3 Conclusion

In this example, we saw how to deploy a simple servlet on a jetty web server. Another way of mapping your servlet is by
adding a servlet-mapping in web.xml of your Dyanmic Web Project, but in that case you will need to remove the annotations @
WebServlet in your java source code.

Jetty Server Cookbook 35/70

8 Jova tE - hstervietietty/WebContenl/ WEE-INk/web.xmi - tclipse. 5 N T W . 1
File Edit Source Mavigate Segrch Project Bun Window Help

HrBewlm 25wz o= s B -Q GG ®™E YRR oY
[Package Explorer 52 =7 1] Enroliments... |1} Enrollments... [4] Envollment java 1] SampleSer... ¥ webxml 1] Connec)
= x’gb - 1 <?xml version="1.8" encoding="UTF-8"2>

2% <web-app xmlns:xsis"http:/fww. w3, org/ 2081/ XML 5chema=-instance™ xmlns="http://java. sun. com/

=y :
A i::' Elnrolfmmn"l"ehSENI(e 3 «display-name>FirstServietdetty</display-name>
4 32> FirstServietietty 4= <welcome-file-lists
a B s 5 <welcome-filerindex. heml</welcome-filer
o B3 comjavacodegesksexample [<welcome-filerindex.him</welcome-file>
b B8k JRE System Library [Javase-17] 7 cwelccme-f:} le»index.]SF{fh'ElCche-fllE?
s g <welcome-filerdefault.html</welcome-file:>
b B Rgf.u:nced Lirrasies 9 <welcome-filerdefault.htm</welcome-files
(= build 1a <welcome-filerdefault.jsp</welcome-files
4 = WebContent 11 £fwelcome-file-1lists
5 [META-INF 13= <servlet>
4 [WEB-INF 13 <serviet-name>FirstServlet</serviet-name>
S 14 <servlet-classrcom.javacodegeeksexample.FirstServlet</servlet-class»
{::” lib 15 Lfserviets
LE webaaml 167 <servlet-mapping>
4 E JettyServletBamplel 17 <servliet-namerFirstServlet</servliet-name>
o [sre s <url -pattern).‘Firstﬁewle‘t(}url‘ pattern»
o M comjavacodegesksexample e </servlet-mapping:

-
| m JRE System Library [JavaSE-1.7] 28, < Jweb-app:

4 B Referenced Libraries
- Ei serviet-api-3.0 jar - C\Users\Yogesh

(= build 7 T
4 = WebContent Y n]
> B> META-INF | Design Source
4 (= WEB-INF == —
= lib [E! Markers 53 Properties &fb Servers [Data Source Explorer B Cignzo Jm”n] nnrnlm
(% webaml 211 errors, 6,497 wamnings, 83 others (Filter matched 185 of 6791 items) W) Ui bUdo dobilg
[E MewlBenefit Description = Resource Path Locaticn Type
b 1= Servers a & Classpath Dependency Validator Message (2 iterr
b %f SQAPEnroliment s, Classpath entry C/Users/Yogesh Mali/Deskte FirstServietietty P/FirstServletl... Classpath Dy
b i Ubenefit L Classpeth entry C:/Users/Yogesh Mali/Deskte JettyServletEx.. P/lettyServlet.. Classpath De

Figure 4.8: Mapping the servlet

4.4 Download the eclipse project

This was an example of Servlet on Jetty.
Download

You can download the full source code of this example here: JettyServletExample

https://examples.javacodegeeks.com/wp-content/uploads/2016/03/JettyServletExample.zip

Jetty Server Cookbook 36/70

Chapter 5

Jetty Logging Configuration Example

In this example, we will discuss logging capabilities of Jetty. We will first enable the logging module in Jetty and configure
it afterwards. As in the previous Jetty examples, we will start with standalone Jetty; thereafter we will configure logging for
Embedded Jetty server too.

We are going to use Jetty v9.2.11 in this example, along with Java 8 (7 is also fine) and Apache Maven 3 as the environment. In
addition to these, logging frameworks SLF4J and Logback will be utilized to configure logging in Jetty.

5.1 Logging in Jetty

Jetty has its own logging Logging layer which had emerged before any popular Java logging frameworks (around 1995). But
Jetty does not mandate its logging layer. Other modern logging frameworks (SLF4J with Logback or Log4j or any other) can be
used in Jetty logging; moreover one can wire his own logging implementation to extend Jetty’s logging capabilities.

Jetty determines its logging behavior according to the following rules:

* First, the value of the property org.eclipse. jetty.util.log.class is checked. If defined, the logger implementa-
tion is that class.

e Iforg.slf4j.Logger exists in the classpath, logging is decided as SLF4J.

e Otherwise, org.eclipse. jetty.util.log.StdErrLog is the default logging behavior.

In this example we are going to first configure Jetty with with default behavior, thereafter we will enhance it with Logback and
SLf4].

5.2 Environment

In this example, following programming environment is used:

 Java 8 (Java 7 is also OK for this example)

Jetty v9.x (We have used v9.2.11)
* Apache Maven 3.x.y (for Embedded Jetty Example)

* Eclipse Luna(for Embedded Jetty Example)

Jetty Server Cookbook 37/70

5.3 Enabling Logging in Jetty

Jetty 9 has a modular architecture, which means that different features (logging, SSL, SPDY, websockets etc.) are implemented
as modules. These modules have to be turned on or off based on the needs.

The modules of Jetty are enabled or disabled through the start .ini file under your JETTY_HOME.

In order to activate logging module, the steps needed are below:

* Navigate to the JETTY_HOME
* Open start.ini.

* Add following line to start.ini as save the file:
—--module=logging
By enabling the logging module, we have activated these files:

e JETTY_HOME/modules/logging.mod

e JETTY_HOME/etc/Jjetty-logging.xml

Further configuration will be performed via modifying these files.

Since we have not performed any logging configuration yet, Jetty will use by default org.eclipse.jetty.util.log.
StdErrLoglogger (the 3rd option among the ones listed above).

Before you start Jetty, check the JETTY_HOME/1ogs directory and see that it is empty. Now you can start jetty running the
following command in your JETTY_HOME.

java - jar start.jar

Now you can see the output similar to the following:

2015-06-27 16:59:09.091:INFO::main: Redirecting stderr/stdout to /Users/ibrahim/jcgexamples <
/jetty/jetty-distribution-9.2.11.v20150529/10gs/2015_06_27.stderrout.log

The output line means that the Jetty now logs to the file yyyy_mm_dd.stderrout (yyyy_mm_dd is based on the current
date) under JETTY_HOME/ logs directory. You can see the log files in this directory. If you can see the log file under the logs
directory, it means that we have successfully enabled logging module of Jetty.

5.4 Configuring SLF4J with Logback in Jetty

As we have mentioned earlier; it is possible to use any popular Java logging framework with Jetty. In this part, we will configure
our Jetty with SLF4J and Logback.

In order to configure SLF4J with Logback, first we need to have following JAR files:

* SLF4J] API
* logback-core

* logback classic
After you get these JAR files, we have to copy these under your Jetty installation with these steps:

* Create the directory logging under JETTY_HOME.

https://central.maven.org/maven2/org/slf4j/slf4j-api/1.6.6/slf4j-api-1.6.6.jar
https://central.maven.org/maven2/ch/qos/logback/logback-core/1.0.7/logback-core-1.0.7.jar
https://central.maven.org/maven2/ch/qos/logback/logback-classic/1.0.7/logback-classic-1.0.7.jar

Jetty Server Cookbook 38/70

* Copy these 3 JAR files to this directory (JETTY_HOME/logging).

After adding the files to our classpath, we should (although not mandatory) add a 1ogback . xml file to the directory JETTY_
HOME/resources. In case you did not have one, an example file is provided below.

logback.xml

<?xml version="1.0" encoding="UTEF-8"?>

<configuration scan="true">
<appender name="CONSOLE" class="ch.gos.logback.core.ConsoleAppender">

<encoder>
<charset>utf-8</charset>
<Pattern>[%p] %c - %m%n</Pattern>
</encoder>
</appender>

<logger name="org.eclipse" level="INFO"/>

<contextListener class="ch.gos.logback.classic.jul.LevelChangePropagator">
<resetJUL>true</resetJuL>
</contextListener>

<root level="DEBUG">
<appender-ref ref="CONSOLE"/>
</root>

</configuration>

When you start Jetty with the Logback configuration, you will observe a different log output in your JETTY_HOME/logs
directory. You can increase verbosity of your logging output changing logging level of “org.eclipse” logger from “INFO” to
“DEBUG”. When you restart your Jetty, you will see a more verbose log.

5.5 Changing the Location and Name of the Jetty Log Files

By default, Jetty logs to is yyyy_mm_dd. stderrout.log file under JETTY_HOME/logs. You can modify the location of
the log files and the log file names. These configurations are performed via 1ogging.mod and jetty-logging.xml files.

In order to define a new location for the log files, The needed steps are below:

* Navigate to JETTY_HOME /modules directory.
* Open logging.mod file.
e Uncomment the line with the parameter with jetty.logs

* In order to set the new location (newlogs for example), set the parameter as jetty.logs=newlogs. Please note that the
location can be either relative to your JETTY_HOME or absolute.

e Save the file and close.

* Create a directory named newlogs under your JETTY_HOME.

When you start your Jetty again, you will observe that your logs are created under JETTY_HOME /newlogs directory.

In order to change the filename of the outputs, you have to alter jetty-logging.xml file:

* Navigate to JETTY_HOME /et c directory.

Jetty Server Cookbook 39/70

* Open jetty-logging.xml file.

* Replace yyyy_mm_dd.stderrout.log with your preferred file name (for instance yyyy_mm_dd. javacodegeeks.
log) .

e Save and close the file.

When you restart your Jetty, you will see log files are named yyyy_mm_dd. javacodegeeks. log based on the current date.

5.6 Logging Configuration of Embedded Jetty

In the previous sections, we have explained how we can enable and configure logging in standalone Jetty. From now on, we
are going to discuss logging configuration on Embedded Jetty. As in the standalone example, we will first start with the default
logging facility of Jetty thereafter we will configure SLF4J and Logback.

5.6.1 Environment

As mentioned above, the programming environment is as follows:

* Java 8 (or Java 7)
* Jetty v9.x (v9.2.11 in this example)
e Apache Maven 3.x.y

* Eclipse Luna (or any convenient IDE)

5.6.2 Creating the Project

We will first create the Maven project in Eclipse, applying the steps below:

* Go to File —+ New —Other — Maven Project

* Tick Create a simple project and press “Next”.

* Enter groupld as : com.javacodegeeks.snippets.enterprise
 Enter artifactld as : jetty-logging-example

¢ Press “Finish”.

5.6.3 Maven Dependencies

We need to add only jetty-server dependency to our pom. xml. Default logging does not require any additional dependency. The
dependency entry looks as follows in the pom:

<dependency>
<groupId>org.eclipse. jetty</groupId>
<artifactId>jetty-server</artifactId>
<version>9.2.11.v20150529</version>
</dependency>

For the SLF4J, Logback example we are going to need additional dependencies (logback-classic). We will address this in the
related section. In the source code of this example, you can simply comment out additional dependencies.

Jetty Server Cookbook 40/70

5.6.4 Default Logging Example
After adding configuring our pom, we are now ready to code. In order to keep things simple in this example, we are going to
create our Embedded Jetty server in our main class.

Our main class is JettyLoggingMain under the package com. javacodegeeks.snippets.enterprise.enterp
rise.jettylogging.

The source code of JettyLoggingMain decorated with the descriptive comment lines is as follows:
JettyLoggingMain.java

package com. javacodegeeks.snippets.enterprise.enterprise.jettylogging;
import Jjava.io.PrintStream;

import org.eclipse.jetty.server.Server;
import org.eclipse.jetty.util.RolloverFileOutputStream;
import org.eclipse.jetty.util.log.Log;

public class JettyLoggingMain {
public static void main(String[] args) throws Exception {

//We are configuring a RolloverFileOutputStream with file name pattern and ¢
appending property
RolloverFileOutputStream os = new RolloverFileOutputStream(" <>
yyyy_mm_dd_Jjcglogging.log", true);

//We are creating a print stream based on our RolloverFileOutputStream
PrintStream logStream = new PrintStream(os);

//We are redirecting system out and system error to our print stream.
System.setOut (logStream) ;
System.setErr (logStream) ;

//We are creating and starting out server on port 8080
Server server = new Server (8080);
server.start ();

//Now we are appending a line to our log
Log.getRootLogger () .info ("JCG Embedded Jetty logging started.", new Object <«
[1{hH;

server.join () ;

In the code, we have first created a RolloverFileOutputStream object . We created this object with two parameters.

First one is the filename pattern. In order to specify date in the log file, this filename has to include a pattern like yyyy_mm_dd.
Otherwise, Jetty will simply create a file with the name specified (without any date information). In this example we have named
this pattern as yyyy_mm_dd_jcglogging.log.

The second parameter is append. When set to true, the logger will append to an existing file for each restart. Otherwise, it will
create a new file (with a timestamp information) at each restart. In this example, we set the parameter as “true”.

Then we have created a Print St ream and provided our RolloverFileOutputStream as the argument. We have directed
sysout and syserr to this PrintStream.

Now our logging configuration is complete. In the following lines of code, we start our Embedded Server and append a simple
log line.

Jetty Server Cookbook 41/70

When we run our main class, our server starts at port 8080. Our logging file (2015_06_28_jcglogging.log) is created at
our project directory. The content looks like as follows:

2015-06-28 00:46:36.181:INFO::main: Logging initialized @134ms

2015-06-28 00:46:36.212:INFO:0ejs.Server:main: Jjetty-9.2.11.v20150529

2015-06-28 00:46:36.241:INFO:0ejs.ServerConnector:main: Started ServerConnector@2077d4de{ <
HTTP/1.1}{0.0.0.0:8080}

2015-06-28 00:46:36.242:INFO:0ejs.Server:main: Started @198ms

2015-06-28 00:46:36.242:INFO: :main: JCG Embedded Jetty logging started.

5.6.5 SLF4J and Logback Example

In the first part, we have created an Embedded Jetty with default configuration. In order to configure SLF4J and Logback, you
have to apply two steps:

* Add SLF4J and Logback dependencies to your pom.xml (in addition to Jetty server dependencies).

* Add a logback.xml file to your classpath.(This step is optional but needed for detailed configuration). You can copy the
logback.xml you have used in the standalone example under src/main/resources.

The dependency to be added is:
* ch.qos.logback:logback-classic (v1.0.7)

This single dependency also fetches logback-core and SLF4J form the Maven repository. After adding this dependency, your
dependencies section in the pom. xm1 looks as follows:

<dependencies>

<dependency>
<groupId>org.eclipse. jetty</groupId>
<artifactId>jetty-server</artifactId>
<version>9.2.11.v20150529</version>
</dependency>

<dependency>
<groupId>ch.qgos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.0.7</version>
</dependency>
</dependencies>

For the Logback example, you don’t have to modify any single line of code. As we have mentioned above, when Jetty finds
SLF4] in the classpath, it will automatically switches to SLF4J(case 2). When you run the same main class of the previous
example, you will see the SLF4J log in yyyy_mm_dd_jcglogging. log.

[INFO] org.eclipse.jetty.util.log - Logging initialized @367ms

[INFO] org.eclipse.jetty.server.Server - Jjetty-9.2.11.v20150529

[INFO] org.eclipse.jetty.server.ServerConnector - Started ServerConnector@25b26eee{HTTP <
/1.1}{0.0.0.0:8080}

[INFO] org.eclipse. jetty.server.Server — Started @435ms

[INFO] org.eclipse.jetty.util.log - JCG Embedded Jetty logging started.

Now our example with Embedded Jetty is complete.

Jetty Server Cookbook 42 /70

5.7 Conclusion

In this post we have first configured a standalone Jetty server for logging. We have started with enabling logging in Jetty. Then we
have configured Jetty both for default Jetty logging and SLF4-Logback logging. Thereafter we have repeated same configuration
programmatically for an embedded Jetty Server.

For further configuration with other parameters and logging frameworks, you can refer to the official Jetty documentation on
logging.

5.8 Download the Source Code

Download

You can download the full source code of this example here: JettyLoggingExample

https://www.eclipse.org/jetty/documentation/current/configuring-logging.html
https://examples.javacodegeeks.com/wp-content/uploads/2015/06/jetty-logging-example.zip

Jetty Server Cookbook 43/70

Chapter 6

Jetty Resource Handler Example

In this example, we will elaborate Resource Handlers in Jetty. Jetty Handlers are classes that are used for handling the incoming
requests. They implement the interface org.eclipse.jetty.server.Handler on their specific purpose. Resource Handler is a specific
Handler implementation whose purpose is serving static content (images, html pages or other) through a Jetty Server.

In this example, we are going to start with an Embedded Jetty example and configure it programmatically to serve static content
via a Resource Handler. Later on, we are going to configure a Resource Handler through XML configuration files in a standalone
Jetty server.

6.1 Environment

In the example, following environment will be used:

e Java7
e Maven 3.x.y
* Eclipse Luna(as the IDE)

Jetty v9.2.11 (In Embedded Jetty example, we will retrieve Jetty libraries through Maven)

6.2 Creating the Maven Project for the Embedded Example

We will create the Maven project in Eclipse, applying the steps below:

* Go to File —+ New —Other — Maven Project

* Tick Create a simple project and press “Next”.

* Enter groupld as : com.javacodegeeks.snippets.enterprise
* Enter artifactld as : jetty-resourcehandler-example

* Press “Finish”.

After creating the project, we have to add following dependency to our pom.xml:

<dependency>
<groupId>org.eclipse. jetty</groupId>
<artifactId>jetty-server</artifactId>
<version>9.2.11.v20150529</version>
</dependency>

Jetty Server Cookbook 44 /70

6.3 Creating Sample Static Content

In this part, we are going to create trivial static content that is going to be served through our Embedded Jetty Server. First we
have to going to create a directory in order to store the content (it is named as “Resource Base” in Jetty terminology), then we
are going to put a simple text file in the in it (the content that is going to be served). The steps can be summed up as follows:

* Create a directory named jcgresources under the Eclipse project folder. That is going to be our resource base in this example.

* Create a text file jegl.txt with some trivial content under the directory PROJECT_BASE/ jcgresources.

Now we are good to continue with the programming part.

6.4 Programmatically Creating Resource Handlers in Embedded Jetty

After creating the static content, now we are going to create an embedded Jetty server programmatically. As in our previous
examples, we are going to run the Embedded Jetty within our main class in order to keep things simple.

First we are going to provide the Java source of our main class, which is decorated with comment lines. Afterwards, we are going
to discuss the comment lines in order to detail our example. Below you can find the source code of the main class:

EmbeddedJettyResourceHandlerMain.java

package com.javacodegeeks.snippets.enterprise.embeddedjetty;
import org.eclipse. jetty.server.Server;
import org.eclipse.jetty.server.handler.ContextHandler;
import org.eclipse.jetty.server.handler.ResourceHandler;
public class EmbeddedJettyResourceHandlerMain ({
public static void main(String[] args) throws Exception {

Server server = new Server (8080);

//1.Creating the resource handler
ResourceHandler resourceHandler= new ResourceHandler () ;

//2.Setting Resource Base
resourceHandler.setResourceBase (" jcgresources") ;

//3.Enabling Directory Listing
resourceHandler.setDirectoriesListed (true);

//4.Setting Context Source
ContextHandler contextHandler= new ContextHandler ("/jcg");

//5.Attaching Handlers
contextHandler.setHandler (resourceHandler) ;
server.setHandler (contextHandler) ;

// Starting the Server

server.start ();

System.out.println("Started!");
server.join () ;

Now we are going to expand the commented lines:

Jetty Server Cookbook 45/70

6.4.1 Creating the Resource Handler

ResourceHandler is the class that handles the requests to the static resources. It provides a number of properties to configure.

6.4.2 Setting Resource Base

Resource Base is the root directory of the for the static content. It is relative to the Java application. In the previous section, we
had created the resource base under the Eclipse project; thus we are setting Resource Base relative to this project base. It is also
possible to set an absolute path, or a path relative to the Java classpath for the Resource Base.

6.4.3 Enabling Directory Listing

Directory Listing enables listing of the contents in the resource directories. It is disabled by default. When enabled, Jetty will
provide a simple HTML page listing the directory content; otherwise, it will give an HTTP 403 error.

6.4.4 Setting Context Source

This part is optional, When we create and set a context handler, we are able to set a context root / jcg, so we are going to able
to access our resources through https://localhost:8080/jcg. If not set, we https://localhost:8080 would point to our resource base.

6.4.5 Attaching Handlers

This part is a boiler plate code that attaches the handler to the server.

6.5 Running the Server

When we run the application, our server will start on port 8080. As mentioned above, we can access the resources through
https://localhost:8080/jcg. When we open this URL, the output will be as follows:

https://localhost:8080/jcg
https://localhost:8080
https://localhost:8080/jcg

Jetty Server Cookbook 46/70

® OO0 / Directory: /jcg/ ?’i\+

@ 2 | @ localhost:8080/jcg/

Directory: /jcg/

jegliaxt 11 bytes Jul 13,2015 10:56:33 PM

Figure 6.1: Directory listing for /jcg

Through this listing page, we can access the available resources.

6.6 Other Configuration

In the previous sections, we have provided sample configuration for resource handling. Jetty provides a variety of configuration
options for resource handling that are not going to be detailed in this example. Some of them are:

» Customizing the style of the directory listing with a CSS file.
 Setting a welcome page.
* Configuring multiple resources pages

» Customizing the available content types

6.7 Standalone Jetty Example

Now we are going to configure Resource Handler for Standalone Jetty. The configuration is similar to the Embedded one, just in
XML format. The steps required can be summarized as follows:

* Open jetty.xml file which is under JETTY_HOME/etc.
* Add the Resource Handler XML configuration to the handler element(which is given below)

* Save the file and run Jetty.

Jetty Server Cookbook 47 /70

The handler element in jetty.xml seems as follows:

<Set name="handler">
<New id="Handlers" class="org.eclipse.jetty.server.handler.HandlerCollection">
<Set name="handlers">
<Array type="org.eclipse.jetty.server.Handler">
<Item>
<New class="org.eclipse.jetty.server.handler.ContextHandler">
<Set name="contextPath">/Jjcg</Set>
<Set name="handler">
<New class="org.eclipse.jetty.server.handler. <«
ResourceHandler">
<Set name="directoriesListed">true</Set>
<Set name="resourceBase">/Users/ibrahim/ <«
jcgexamples/jcgresources</Set>
</New>
</Set>
</New>
</Item>
<Item>
<New id="Contexts" class="org.eclipse.jetty.server.handler.
ContextHandlerCollection"/>
</Item>
<Item>
<New id="DefaultHandler" class="org.eclipse.jetty.server.handler. <+
DefaultHandler"/>

</Item>
</Array>
</Set>
</New>
</Set>

Here, we have set the context root as / jcg; enabled directory listing and set the resource base (but this time with an absolute
path).

6.8 Conclusion

In this example we have configured Resource Handler for Jetty in order to serve static content. We have provided configuration
both Embedded and Standalone modes of Jetty.

Download

You can download the full source code of this example here: jetty-resourcehandler-example

https://examples.javacodegeeks.com/wp-content/uploads/2015/07/jetty-resourcehandler-example.zip

Jetty Server Cookbook 48 /70

Chapter 7

Jetty JMX Example

JMX technology provides a simple, standard way of managing resources such as applications, devices, and services. Jetty itself
does not provide a GUI based console for management/monitoring, however ii presents a solid integration with JMX, which
enables us to monitor/manage Servers through JIMX.

In this post we are going to discuss JMX integration of Jetty. We will start with an Embedded Jetty example. We will first
configure our embedded server to be accessible through JMX; thereafter we are going to incorporate Managed Objects in Jetty
style. After the embedded example, we are going to show how we can enable JMX in a standalone Jetty Server. During the
example, we are going to monitor and administer our Jetty through JConsole.

In Jetty, the main constructs such as handlers and holders are also JMX beans. This makes almost every single piece of
Jetty observable or controllable through JMX. In addition this, Jetty enables creation of JMX objects(MBeans) through an-
notations(which is an extension to standard MBean capabilities).

7.1 Environment

In the example, following environment will be used:

e Java 8 (Java 7 is also OK.)
* Maven 3.x.y

* Eclipse Luna(as the IDE)

Jetty v9.2.11 (In Embedded Jetty example, we will add Jetty libraries through Maven.)

* JConsole(which is already bundled with your Java)

7.2 JMX with Embedded Jetty

7.2.1 Structure of the Example

In this example, we are going to enable Jetty for an Embedded Jetty Server programmatically. Our embedded server will have a
deployed simple application with a simple servlet. Thereafter we are going to implement Managed Object with Jetty annotations.
The Maven project will be packaged as a WAR; so that it can be deployed also on a standalone server.

Jetty Server Cookbook 49/70

7.2.2 Creating the Maven Project

We will create the Maven project in Eclipse, applying the steps below:

* Go to File —+ New —Other — Maven Project

* Tick Create a simple project and press “Next”.

* Enter groupld as : com.javacodegeeks.snippets.enterprise
* Enter artifactld as : jetty-jmx-example

* Select packaging as “war”.

* Press “Finish”.
After creating our project, we are going to add following dependencies to our pom. xm1.

* org.eclipse.jetty:jetty-server
* org.eclipse.jetty:jetty-webapp

* org.eclipse.jetty:jetty-jmx

The first two dependencies are common for almost all embedded Jetty applications. The third one(jetty—jmx) enables us to
integrate Jetty with JMX. After adding the dependencies, the dependency section of our pom. xm1 seems as follows:

<dependencies>
<!-—-Jetty dependencies start here —-->
<dependency>
<groupId>org.eclipse. jetty</groupId>
<artifactId>jetty-server</artifactId>
<version>9.2.11.v20150529</version>
</dependency>

<dependency>
<groupId>org.eclipse. jetty</groupId>
<artifactId>jetty-webapp</artifactId>
<version>9.2.11.v20150529</version>
</dependency>

<dependency>
<groupId>org.eclipse. jetty</groupIld>
<artifactId>jetty-jmx</artifactId>
<version>9.2.11.v20150529</version>
</dependency>

<!-—Jetty dependencies end here —-—>

</dependencies>

7.2.3 Enabling JMX Programmatically

In order to keep things simple, we are going to implement our Jetty Server through our Main class of the project. You can see
the JettyJmxExampleMain class below, decorated with source code comments.

JettyJmxExampleMain.java

Jetty Server Cookbook

50/70

package com.javacodegeeks.snippets.enterprise. jettyjmx;

import

import
import
import
import

public

java.lang.management .ManagementFactory;

org.eclipse.
org.eclipse.

org.eclipse

jetty.
jetty.

. jetty.
org.eclipse.

jetty.

Jjmx .MBeanContainer;
server.Server;
util.log.Log;

webapp .WebAppContext;

class JettyJmxExampleMain {

public static void main (String[] args) throws Exception {

// 1. Creating the server on port 8080
Server server = new Server (8080);

// 2. Creating the WebAppContext for the created content
WebAppContext ctx = new WebAppContext () ;
ctx.setResourceBase ("src/main/webapp") ;
server.setHandler (ctx) ;

// 3. CreatingManaged Managed Bean container
MBeanContainer mbContainer = new MBeanContainer (ManagementFactory. <=
getPlatformMBeanServer());

// 4. Adding Managed Bean container to the server as an Event Listener and <
Bean

server.addEventListener (mbContainer) ;

server.addBean (mbContainer) ;

// 5. Adding Log
server.addBean (Log.getLog ()) ;
// 6. Starting the Server
server.start ();

server. join () ;

In the first steps (1 and 2), we initialize a Jetty Server with a Web Application context under src/main/resources/webapp.
In this part, nothing is special in terms of JMX integration. The web application in this example consists of a trivial Servlet, details
of which will be provided later.

In Step 3, we create our Managed Bean container. This container holds reference to the JMX Managed objects. In step 4, we
attach this container to our Server. In the later steps (5 and 6), we add logging capability and start our server.

As mentioned above, the web application we deployed on our embedded Server is simple. It consists of a single servlet (JCGSe
rvlet) that increments a counter on each request. The counter is encapsulated in a singleton object. The content of the web.
xml, JCGServlet and CounterSingleton are presented below:

web.xml

<web-app xmlns="https://Jjava.sun.com/xml/ns/javaee" xmlns:xsi="https://www.w3.0rg/2001/ <«
XMLSchema-instance"

xsi:schemalocation="https://java.sun.com/xml/ns/javaee

https://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"

version="3.0">

<display-name>Jetty JMX Configuration Example</display-name>

<servlet>

Jetty Server Cookbook

51/70

<servlet-name>JCGServlet</servlet—-name>
<servlet-class>com. javacodegeeks.snippets.enterprise. jettyjmx.JCGServlet</ <

</servlet>

servlet-class>

<servlet-mapping>
<servlet-name>JCGServlet</servlet-name>
<url-pattern>/jcg/*</url-pattern>
</servlet-mapping>

</web-app>

JCGServlet.java

package com. javacodegeeks.snippets.enterprise. jettyjmx;

import java.io.IOException;

import
import
import
import

public

javax.
javax.

javax

javax.

class

servlet.
servlet.
.servlet

servlet

ServletException;
ServletRequest;

.ServletResponse;
.http.HttpServlet;

JCGServlet extends HttpServlet {

@Override

public void service (ServletRequest req, ServletResponse res) throws ¢
ServletException, IOException {

CounterSingleton.getInstance () .increment () ;

res.getOutputStream() .print ("Application Specific Servlet Response");

CounterSingleton.java

package com.javacodegeeks.snippets.enterprise. jettyjmx;

public class CounterSingleton {

private static CounterSingleton instance = new CounterSingleton();

private Integer counter = 0;

private CounterSingleton () {
counter = 0;

public static CounterSingleton getInstance() {
return instance;

public synchronized void increment () {
counter++;

Jetty Server Cookbook 52/70

public Integer getCounter () {
return counter;

}

public synchronized void reset () {
counter=0;

}

When we start our application, our application is ready to be monitored and managed through JMX. We can verify that our web
application and server are running by navigating to https://localhost:8080/jcg with our browser and seeing the response below:

® L http:iflocalhost:8080/cg/ ® +

€ | @ localhost:8080/ca/

Application Specific Servlet Response

Figure 7.1: Sample Servlet Response

7.2.4 Monitoring with JConsole

We can monitor our JMX enabled embedded server using JConsole, which is available under JAVA_HOME of our system. When
we launch JConsole, it shows as a list of available local processes as in the figure below:

https://localhost:8080/jcg

Jetty Server Cookbook

53/70

® 00 JConsole: New Connection

New Connection

() Local Process:

Name PID

com.javacodegeeks.snippets.enterprise. jettyjmx.Je...

sun.tools.jconsole.JConsole 4915

2295
org.apache.catalina.startup.Bootstrap start 455

Note: The management agent will be enabled on this process.
_ Remote Process:

Usage: <hostname>:<port> OR service:;jmx: <protocol>:<sap>

Username: Password:

| Connect Cancel |

Figure 7.2: JConsole Initial Screen

Here our embedded server is listed with name of the main class. When we select this process and proceed, we can see various

parameters (memory,CPU, thread utilization etc) related to our Jetty. The screen presents 6 tabs for JMX administration. When
we select MBean tab, the available Managed Beans are listed in a tree, which can be viewed below:

Jetty Server Cookbook 54 /70

|06 pid: 4913 com.javacodegeeks.snippets.enterprise.jettyjmx.JettylmxExampleMain
| Overview | Memory | Threads & Classes = VM Summary NM ==
> IMImplementation Operation invocation
> com.sun.management void
> java.lang setContextAttribute { name
> java.nio
> Java.util.concurrent void .
. Jjava.util.logging setContextAttribute { name
> org.eclipse.jetty.io
> org.eclipse.jetty.jmx void
> org.eclipse.jetty.security removeContextAttribute { name
> org.eclipse.jetty.server
> org.eclipse.jetty.server.session java.lang.String dump 0
> org.eclipse.jetty.serviet = =
> org.eclipse.jetty.util.log
> org.eclipse.jetty.util.thread void dumpStdErr 0
¥ 0 org.eclipse.jetty.webapp =
¥ o webappcontext
¥ W ROOT void start | ()
v@o =
> Attributes
> void stop 0
> sun.nio.ch =
void _ destroy | ()

Figure 7.3: Managed Bean Tree

We can expand the tree org.eclipse. jetty.webapp->webappcontext->RO0OT->0. This node shows a list parame-
ters to be monitored under At t ributes and a set of operations that can be invoked under Operations sections. Among these
operations, we can stop the application invoking stop () method. When we call this operation, the webapp will immediately
stop and will return 404 error when we try to access. We can restart our web application invoking the start () method.

In addition to these, JConsole enables us various monitoring and administration options. Forcing a Garbage Collection or setting
web application initialization parameters are among those options.

7.2.5 Jetty Managed Objects

As mentioned in the previous sections, Jetty enables us to create our Managed Beans using Jetty annotations. It is worth to
mention three annotations here:

* @ManagedObject: This annotation is used for annotating managed object classes.
* @ManagedAttribute: This annotation denotes the getter fields that are listed under Attributes section,

* @ManagedOperation: This annotation denotes the methods to be listed under Operations section.

Here you can see an example Managed object named JCGManagedOb ject. This class simply returns our previously men-
tioned counter and provides an operation to reset the counter.

JCGManagedObject.java

package com. javacodegeeks.snippets.enterprise. jettyjmx;

import org.eclipse.jetty.util.annotation.ManagedAttribute;
import org.eclipse.jetty.util.annotation.ManagedObject;
import org.eclipse.jetty.util.annotation.ManagedOperation;

Jetty Server Cookbook 55/70

@ManagedObject (" jcgManagedObject")
public class JCGManagedObject {

@ManagedAttribute
public Integer getCount () {
return CounterSingleton.getInstance () .getCounter () ;
}
@ManagedOperation
public void reset () {
CounterSingleton.getInstance () .reset () ;

Our managed bean can be wired to Jetty through adding the highlighted code below(Line 4) in the main:

// 4. Adding Managed Bean container to the server as an Event Listener and Bean
server.addEventListener (mbContainer) ;

server.addBean (mbContainer) ;

server.addBean (new JCGManagedObject ());

Here we have created an instance of our managed object and added as a bean. When we restart our application and open JConsole,
we can see our managed bean in the MBeans tab under com. javacodegeeks.snippets.enterprise. jettyjmx—
>jcgmanagedobject—->0. Here we can see our counter, which is incremented at each request, as an attribute, and we can
reset this counter invoking the reset () under the Operations section:

Jetty Server Cookbook 56 /70

806 pid: 5360 com.javacodegeeks.snippets.enterprise.jettyjmx.Jetty/mxExampleMain
| Overview | Memory | Threads & Classes = VM Summary iz
> IMImplementation Attribute values
¥ 0 com.javacodegeeks.snippets.enterprise. jettyjmx Name Value
¥ 9 jegmanagedobject count 0
v @0
:

» Operations
com.sun.management
java.lang
Jjava.nio
Jjava.util.concurrent
Jjava.util.logging
org.eclipse.jetty.io
org.eclipse.jetty.jmx
org.eclipse. jetty.security
org.eclipse. jetty.server
org.eclipse.jetty.server.session
org.eclipse.jetty.serviet
org.eclipse.jetty.util.log
org.eclipse.jetty.util.thread
org.eclipse.jetty. webapp
sun.nio.ch

Yy ¥ Y Y Y Y Y Y Y YYYYYY

Refresh

Figure 7.4: JCG Managed Object

7.3 JMX with Standalone Jetty

To this point, we have discussed how we can integrate JMX to embedded Jetty, now we are going to enable JMX for standalone
mode. Jetty presents a modular architecture which also includes JMX integration a a module. Related configuration is stored
under JETTY_HOME/etc/jetty-jmx.xml. This configuration is almost equal to our programmatic configuration in the
embedded mode. All we have to do is enabling jmx module. The related steps are as simple as below:

* Open start.ini under JETTY_HOME
¢ Add this line: ——module=jmx-remote

e Save and close the file.

When we run our standalone Jetty, Jetty will start with JMX enabled. We can access our server through JConsole and manage it
as in the embedded mode.

7.4 Conclusion

Jetty provides powerful administration and monitoring capabilities through JMX. In this example, we have skimmed through
Jetty JIMX integration for embedded and standalone modes. In addition to this, we have created a Managed Object which is
implemented in Jetty style.

Jetty Server Cookbook 57 /70

Download

You can download the full source code of this example here: Jetty JMX Example

https://examples.javacodegeeks.com/wp-content/uploads/2015/08/jetty-jmx-example.zip

Jetty Server Cookbook 58/70

Chapter 8

Jetty OSGi Example

The OSGi specification defines a modularization and component model for Java applications. Jetty leverages OSGi support
providing an infrastructure that enables developers to deploy Jetty and web applications inside an OSGi container. One can
deploy traditional Java Web Applications or Context Handlers on Jetty within the OSGi container; in addition to this, OSGi
bundles can be deployed as web applications.

In this example, we are going to show how we can deploy Web Applications on Jetty within an OSGi container. We are going to
enable a Jetty Server on an OSGi container first, thereafter we are going to deploy a Servlet on our OSGi powered Jetty.

8.1 Environment and Prerequisites

In this example, we are going to use the following programming environment:

 Java 8 (Java 7 is also OK for this example)
* Eclipse for RCP and RAP Developers v4.5 (Mars)

* Equinox 3.10 OSGi implementation (v 3.9 is also fine) configured in Eclipse

Jetty v9.2.11(We do not necessarily need Jetty installation, however having one will be handy)

At this point, we are not going to detail Equinox configuration in Eclipse, which would be beyond scope of this example. We
assume that it is already configured.

8.2 Adding Jetty dependencies to OSGi Target

8.2.1 Jetty libraries

Jetty JAR files, which happen to exist under the 11ib folder of the Jetty installation contain appropriate manifest entries (MANIF
EST.MF) for OSGi deployment. All we have to do is, to copy the necessary JARs under our OSGi target.

The necessary libraries are as follows:

* jetty-util
* jetty-http
* jetty-io

* jetty-security

Jetty Server Cookbook 59/70

* jetty-server

* jetty-servlet

* jetty-webapp

* jetty-deploy

* jetty-xml

* jetty-osgi-servlet-api

We have to place these libraries in a location that our OSGi container is aware of. We can wither copy to an existing location, or
create a new location. In this example, we have copied to an existing OSGi target location.

8.2.2 jetty-osgi-boot Bundle

After copying Jetty dependencies, we have to add the jetty-osgi-boot bundle to the OSGi target. jetty-osgi-boot is the bundle that
performs the initialization of the Jetty server. This bundle is not included in the Jetty installation, but can be easily obtained from
Maven Central Repository.

Once we have downloaded the bundle, we should copy it to the OSGi target location.

8.2.3 Reloading OSGi Target

After we have copied the Jetty libs and boot bundle, we have to refresh our container in Eclipse. This can be performed following
the steps below:

* Open Eclipse Preferences from the Menu
* Search for Target from the search box on the top left.
 Select your OSGi target

¢ Press Reload.

8.3 Running the Jetty Server on the OSGi container

jetty-osgi-boot bundle provides two options for the server initialization one of which must be configured:

e Setting jetty.home.bundle

 Setting jetty home

The first option stipulates that Jetty runs with the predefined XML files coming with the bundle JAR. The second option requires
setting a Jetty home with the necessary configuration files. In this example, we will take the second option.

This can be accomplished as follows:

* Create a folder named osgi-jetty-home (You can name is as you wish.)
¢ Create the folder osgi-jetty-home/etc

¢ Include jetty.xml, jetty-selector.xml and jetty-deploy.xml filesunder osgi—-jetty-home/etc. (Al-
ternatively, you can copy from jetty—-osgi-boot JAR or jetty installation)

* Add the following JVM parameter to run configuration of your OSGi container: -Djetty.home=/path/to/your/
osgi-jetty-home

https://central.maven.org/maven2/org/eclipse/jetty/osgi/jetty-osgi-boot/

Jetty Server Cookbook 60/70

When you run the OSGi container, you will see that Jetty has started on port 8080. You can check via your browser navigating
to https://localhost:8080.
® ® /-] Error 404 - Not Found X\ -k
€ | @ localhost:3080

Error 404 - Not Found.

No context on this server matched or handled this request.
Contexts known to this server are:

B powered by Jetty:// Java Web Server

Figure 8.1: OSGi powered Jetty

8.4 Deploying a Servlet on the OSGi Jetty

In this part, we will show how to deploy a simple servlet on the Jetty which runs in our OSGi container. The example can be
extended to include web apps, resource handlers or other configuration.

In this example we are going to create a simple OSGi bundle, in the activator of which, we will configure a Servlet and register
its handler as an OSGi component.

8.4.1 Creating the Eclipse Project

We start with creating the Eclipse project. The steps needed are as follows:

e Clickon File-—>New->Plug—in Project.

* Type project name as jetty-osgi-example.

e Selectan 0SGi framework as the target platform.
e Press Next.

* Check the option: "Generate an Activator...".

* Press Finish.

https://localhost:8080

Jetty Server Cookbook

61/70

®] New Plug-in Project

Plug-in Project

Create a new plug-in project

Project name: | jetty-osgi-serviet]

Use default location
Location:
Project Settings

Create a Java project
Source folder: src

Output folder: bin

Target Platform

This plug-in is targeted to run with:

Eclipse version: 3.5 or greater >

© an 0SGi framework: ~ Equinox E

Working sets

Add project to working sets

Working sets:

@ EEE cence
2

Figure 8.2: Creating the Eclipse project

8.4.2 Adding Required Plugins

<>

After we have created our project, we have to add Jetty dependencies as Required Plugins in the MANIFEST . MF file. We can do
it through Eclipse as follows:

* Open META-INF/MANIFEST .MF file with Eclipse Editor

¢ On the Dependencies, click on “Add” button on the Required Plug-ins" section.

* Type Jetty in the search box and add all the Jetty plugins that are available in the OSGi container.

¢ Press OK.

Now, the Jetty dependencies are ready. Our MANIFEST . MF file looks like:

MANIFEST.MF

Manifest-Version:

1.0

Bundle-ManifestVersion: 2
Bundle-Name: Jetty-osgi-example

Jetty Server Cookbook 62/70

Bundle-SymbolicName: jetty-osgi-example
Bundle-Version: 1.0.0.qualifier
Bundle-Activator: jetty_osgi_example.Activator
Bundle-RequiredExecutionEnvironment: JavaSE-1.8
Import-Package: org.osgi.framework;version="1.3.0"
Bundle-ActivationPolicy: lazy
Require-Bundle: org.eclipse.jetty.server;bundle-version="9.2.11",
org.eclipse. jetty.osgi-servlet-api;bundle-version="3.1.0",
org.eclipse. jetty.servlet;bundle-version="9.2.11",
org.eclipse. jetty.deploy;bundle-version="9.2.11",
org.eclipse. jetty.http;bundle-version="9.2.11",
org.eclipse. jetty.io;bundle-version="9.2.11",
org.eclipse. jetty.osgi.boot;bundle-version="9.2.11",
org.eclipse. jetty.security;bundle-version="9.2.11",
org.eclipse. jetty.util;bundle-version="9.2.11",
org.eclipse. jetty.webapp;bundle-version="9.2.11",
org.eclipse. jetty.xml;bundle-version="9.2.11"

8.4.3 Wiring our Serviet to OSGI and Jetty

After setting the dependencies, we are going deploy a simple Servlet on our OSGi powered Jetty. Our Servlet is named as
JcgServlet and very simple as follows:

JegServlet.java

package Jjetty_osgi_example;
import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class JcgServlet extends HttpServlet(

@Override
protected void service (HttpServletRequest req, HttpServletResponse resp) throws <
ServletException, IOException {
resp.getWriter () .println("Hello JCG, Hello OSGi");

public JcgServlet () {
super () ;

Now we are going to wire this Servlet to our Jetty. As you remember, while creating the Eclipse Project, we had checked
the option Generate an Activator.... This selection creates a class jetty_osgi_example.Activator. In this
class, we can register our components to OSGi once the bundle is activated. Now we are going to register our Servlet Handler,
so that it will be available to the Jetty.

We are going to implement the activate () method of the Activator. Below you can see the Activator class decorated
with source code comments.

Activator.java

package Jjetty_osgi_example;

import java.util.Hashtable;

Jetty Server Cookbook 63/70

import org.eclipse.jetty.server.handler.ContextHandler;
import org.eclipse.jetty.servlet.ServletContextHandler;
import org.eclipse.jetty.servlet.ServletHandler;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator ({
private static BundleContext context;

static BundleContext getContext () {
return context;

public void start (BundleContext bundleContext) throws Exception {
Activator.context = bundleContext;

//1. We create a Servlet Handler
ServletHandler handler = new ServletHandler ();

//2. We register our Servlet and its URL mapping
handler.addServletWithMapping (JcgServlet.class, "/+");

//3. We are creating a Servlet Context handler
ServletContextHandler ch= new ServletContextHandler();

//4. We are defining the context path
ch.setContextPath ("/jcgservletpath") ;

//5. We are attaching our servlet handler
ch.setServletHandler (handler) ;

//6. We are creating an empty Hashtable as the properties
Hashtable props = new Hashtable();

// 7. Here we register the ServletContextHandler as the 0SGi service
bundleContext.registerService (ContextHandler.class.getName (), ch, props);

System.out.println ("Registration Complete");

public void stop (BundleContext bundleContext) throws Exception {
Activator.context = null;

In the activator, we have first created a ServletHandler and registered our Servlet along with a mapping. Thereafter we
appended it to a ServletContextHandler with a context path. Lastly we have registered our ServletContextHand
ler as an OSGi component. Now our Jetty Server will find our ServletContextHandler as its context handler.

Please note that, the the components are resolved by name, therefore the component name ContextHandler.class.getN
ame () shouldn’t be replaced with an arbitrary name.

After we implemented our bundle, we can run our OSGi container. when we try to access https://localhost:8080/jcgservletpath/,
we will see that our request is handled by our Servlet with the following response:

https://localhost:8080/jcgservletpath/

Jetty Server Cookbook 64 /70

@ o) . http://localho...cgservietpath/ +

é @ localhost:8080/jcgservietpath/

Hello JCG, Hello OSGi

Figure 8.3: Servlet Response

Now we have a Servlet running on the Jetty within an OSGI container. This example can be tried with different Handler and web
application configurations. Jetty promises full support for OSGi.

8.5 Conclusion

Jetty provides full support for OSGi containers in order to leverage modularity. In this example, we have deployed Jetty in an
OSGi container thereafter we have deployed a Servlet on this Jetty, in which we have defined our ServletContextHandler
as an OSGi service.

Download

You can download the full source code of this example here : Jetty OSGi Example

https://examples.javacodegeeks.com/wp-content/uploads/2015/07/jetty-osgi-example.zip

Jetty Server Cookbook 65/70

Chapter 9

Jetty JSP Example

JSP (JavaServer Pages) which is core part of Java EE, enables developers to create dynamic web content based on the Java Servlet
technology. In this example, we are going to enable Jetty for JSP. We will start with Embedded mode of Jetty. We are going to
initialize our embedded Jetty to run JSP pages. Thereafter we will continue with standalone mode and shortly mention the JSP
configuration in standalone mode.

Jetty supports two JSP Engine implementations: Apache Jasper and Glassfish Jasper. Starting from Jetty version 9.2, the default
and favored implementation is Apache Jasper. In this example we are going to use this one; however we will show how we can
switch to Glassfish implementation in the standalone mode.

At this point, we have to mention that, this example should not be considered as a JSP tutorial but a demonstration of JSP on
Jetty container.

9.1 Environment

In the example, following environment will be used:

¢ Java 8 (Java 7 is also OK)
* Maven 3.x.y

* Eclipse Luna(as the IDE)

Jetty v9.2.11 (In Embedded Jetty example, we will add Jetty libraries through Maven)

9.2 JSP with Embedded Jetty

9.2.1 Structure of the Example

In this example, we are going enable JSP in an Embedded Jetty. We are going to implement a very simple JSP page which will
demonstrate JSP and JSTL capabilities. We are going to package this application as a WAR file; so we will be able to drop and
run it in a standalone Jetty.

9.2.2 Creating the Maven Project in Eclipse

We will create the Maven project in Eclipse, applying the steps below:

* Go to File —+ New —Other — Maven Project

Jetty Server Cookbook 66/70

* Tick Create a simple project and press “Next”.

* Enter groupld as : com.javacodegeeks.snippets.enterprise

* Enter artifactld as : jetty-jsp-example

 Select packaging as “war”.

* Press “Finish”.

After creating our project, we are going to add following dependencies to our pom. xm1:
* org.eclipse.jetty:jetty-server

* org.eclipse.jetty:jetty-webapp

* org.eclipse.jetty:jetty-annotations

* org.eclipse.jetty:apache-jsp

e jstl:jstl

The first dependency (jetty-server) is the core Jetty dependency. jetty-webapp is needed for creating Jetty web

application context. jetty-annotations dependency can be viewed as a utility, which makes JSP initialization easier.
apache-Jjsp dependency is the Apache implementation of JSP and finally jst1 is the JSP standard tag library(version 1.2).

After adding the necessary dependencies, our pom.xml looks like:

<dependencies>
<!--Jetty dependencies start here -->
<dependency>
<groupId>org.eclipse. jetty</groupIld>
<artifactId>jetty-server</artifactId>
<version>9.2.11.v20150529</version>
</dependency>
<dependency>
<groupId>org.eclipse. jetty</groupId>
<artifactId>jetty-webapp</artifactId>
<version>9.2.11.v20150529</version>
</dependency>
<dependency>
<groupld>org.eclipse. jetty</groupId>
<artifactId>jetty-annotations</artifactId>
<version>9.2.11.v20150529</version>
</dependency>
<!-— Jetty Dependencies end here ——>
<!--Jetty Apache JSP dependency -—->
<dependency>
<groupId>org.eclipse. jetty</groupId>
<artifactId>apache-jsp</artifactId>
<version>9.2.11.v20150529</version>
</dependency>
<!-- JSTL Dependency -——>
<dependency>

<groupId>jstl</groupId>
<artifactId>jstl</artifactId>
<version>1.2</version>
</dependency>
</dependencies>

Jetty Server Cookbook 67/70

9.2.3 Configuring the Web Application

As mentioned above, we are going to configure a very simple JSP application which will demonstrate both JSP and JSTL
capabilities. The steps needed are described below:

* Create the folder src/main/webapp under your project directory(if not exists).
* Create WEB—INF directory under src/main/webapp (if not exists).
* Create web.xml under src/main/webapp/WEB-INF.

¢ Create example. jsp under src/main/webapp.

The content of the web.xml to enable JSP can be viewed below:

<web-app xmlns="https://java.sun.com/xml/ns/javaee" xmlns:xsi="https://www.w3.0rg/2001/ ¢+
XMLSchema—-instance"
xsi:schemalocation="https://java.sun.com/xml/ns/javaee https://Jjava.sun.com/xml/ns/ ¢
Javaee/web—-app_2_5.xsd"
version="2.5">
<display-name>JSP Example Application</display-name>

<servlet id="jsp">
<servlet-name>uu</servlet—-name>
<servlet-class>org.apache. jasper.servlet.JspServlet</servlet-class>
<init-param>
<param-name>logVerbosityLevel</param—-name>
<param-value>DEBUG</param-value>
</init-param>
<init-param>
<param-name>fork</param-name>
<param-value>>false</param-value>
</init-param>
<init-param>
<param—name>keepgenerated</param—name>
<param-value>>true</param-value>
</init-param>
<load-on-startup>0</load-on-startup>
</servlet>

<servlet-mapping>
<servlet-name>jsp</servlet-name>
<url-pattern>*.jsp</url-pattern>
<url-pattern>*.Jjspf</url-pattern>
<url-pattern>=x.jspx</url-pattern>
<url-pattern>x.xsp</url-pattern>
<url-pattern>*.JSP</url-pattern>
<url-pattern>x.JSPF</url-pattern>
<url-pattern>*.JSPX</url-pattern>
<url-pattern>*.XSP</url-pattern>

</servlet-mapping>

</web-app>

example. jsp is a simple JSP file which shows current date and outputs a literal text which is a JSTL expression. The content
of the JSP file is as follows:

example.jsp

<%@page import="java.util.ArrayList"%>

<html>
<head>

Jetty Server Cookbook 68/70

<title>Java Code Geeks Snippets - Sample JSP Page</title>

<meta>
<%Q@ taglib uri="https://Jjava.sun.com/jsp/jstl/core" prefix="c"$%>
</meta>
</head>
<body>
<c:out value="Jetty JSP Example"></c:out>

Current date is: <%=new java.util.Date () %>
</body>
</html>

9.2.4 Enabling JSP programmatically

In this part, we are going to start an embedded Jetty server with the simple web application that we have configured in the
previous section and thereafter we will enable JSP for our server. In order to keep things simple, we are going to implement
our Jetty Server through our Main class of the project. You can see the JettyJspExampleMain class below, decorated with
source code comments.

JettyJspExampleMain.java

package com. javacodegeeks.snippets.enterprise.jettyjsp;

import org.eclipse.jetty.server.Server;
import org.eclipse. jetty.webapp.WebAppContext;

public class JettyJspExampleMain {
public static void main(String[] args) throws Exception {

// 1. Creating the server on port 8080
Server server = new Server (8080);

// 2. Creating the WebAppContext for the created content
WebAppContext ctx = new WebAppContext ();
ctx.setResourceBase ("src/main/webapp") ;
ctx.setContextPath ("/jetty—-jsp-example") ;

//3. Including the JSTL jars for the webapp.
ctx.setAttribute ("org.eclipse.jetty.server.webapp.
ContainerIncludeJarPattern",".x/["/]*]jstl.*\\.jars$");

//4. Enabling the Annotation based configuration
org.eclipse. jetty.webapp.Configuration.ClassList classlist = org.eclipse. ¢«
jetty.webapp.Configuration.ClassList.setServerDefault (server);
classlist.addAfter ("org.eclipse. jetty.webapp.FragmentConfiguration", "org.eclipse. ¢
jetty.plus.webapp.EnvConfiguration”, "org.eclipse.jetty.plus.webapp. <
PlusConfiguration");
classlist.addBefore ("org.eclipse. jetty.webapp.JettyWebXmlConfiguration", "org. ¢
eclipse.jetty.annotations.AnnotationConfiguration") ;

//5. Setting the handler and starting the Server
server.setHandler (ctx) ;
server.start () ;
server.join () ;

Jetty Server Cookbook 69/70

* First we initialize an embedded Server on port 8080.
* Then we initialize the web application context.
¢ In Step 3, we include jstl jar for our web application. If we skip this step, we will not be able to use JSTL tags in our JSP pages.

* In step 4, we enable annotation based configuration for our server. This part of the code looks a bit like magical snippet,
which seems irrelevant with JSP configuration; however these three lines is the most crucial part for JSP configuration. When
annotation configuration is enabled, JSP implementation is automatically discovered and injected to the server. Otherwise we
would have to implement it manually.

 Step 5 includes the snippets for setting the context handler and starting the server.

9.2.5 Running the Application

When we run the application, our embedded server will start on port 8080. If we try to access https://localhost:
8080/ jetty—jsp—example/example. jsp we can see our simple JSP page:

oo e

Java Code Geeks Snippets - Sa..,
é & localhost:8080/etty-jsp-example/example.jsp

Jetty JSP Example
Current date is: Sun Aug 16 23:01:13 EEST 2015

Figure 9.1: Output of example.jsp

In our webpage JSP, “Jetty JSP Example” text comes from a JSTL expression whereas current date is an outcome of a core JSP
expression.

9.3 JSP in Standalone Jetty

In the previous sections, we have discussed how to enable JSP on an Embedded Jetty. In the standalone mode, it is very easy
to run JSP. In standalone mode, JSP is enabled by default. All we have to do is, dropping the JSP web application WAR in the
webapps directory of Jetty.

Jetty has a jsp module which is enabled by default. You can disable it via the start .ini file under JETTY_HOME removing
the following line:

——-module=jsp

start.ini file has a line that sets Apache as the default JSP implementation:

Jjsp-impl=apache

If we want to use Glassfish implementation for some reason, then we have to alter this line to:

Jjsp-impl=glassfish

https://localhost:8080/jetty-jsp-example/example.jsp
https://localhost:8080/jetty-jsp-example/example.jsp

Jetty Server Cookbook 70/70

9.4 Conclusion

In this example, we have discussed how we can configure Jetty for JSP. We have first demonstrated configuration for Embedded
Jetty with a simple JSP application, thereafter we have briefly mentioned how JSP is configured for the standalone mode.

Download

You can download the full source code of this example here: jetty-jsp-example

https://examples.javacodegeeks.com/wp-content/uploads/2015/08/jetty-jsp-example.zip

	Jetty Tutorial for Beginners
	Jetty as a Standalone server
	Downloading and Installing Jetty
	Prerequisites
	Running Jetty
	Changing the server port
	Deploying Web Applications on Jetty
	Changing Webapps Directory

	Embedding Jetty in Your Application
	Environment
	Creating the Maven Project
	Adding dependencies for Embedded Jetty
	Creating Embedded Jetty Server Programmatically
	Running Embedded Jetty

	Conclusion

	How to Install Jetty Application Server
	Environment
	Downloading Jetty
	Running Jetty
	Running Web Applications In Jetty
	Anatomy of the JETTY_HOME Directory
	Basic Configuration
	Changing the Jetty Port
	Changing the webapps Directory

	Modular Architecture of Jetty
	Anatomy of a Single Module
	Activating Modules through Command Line
	Activating Modules through start.ini
	Configuring the Modules

	Conclusion

	Jetty web.xml Configuration Example
	Deployment Descriptor file (a.k.a web.xml)
	Structure of the Example
	Environment in the Example
	Creating the Maven Project
	Creating Embedded Jetty Server and Sample Web Applications
	Web Application Configuration
	Creating Embedded Jetty

	Configuring welcome-file-list
	Configuring Servlets
	Configuring Servlet Filters
	Configuring Servlet Context Listeners
	Configuration in Standalone Jetty Server
	Conclusion

	Jetty Servlet Example
	Environment
	Jetty Servlet Example
	Structure of the example
	Running Jetty
	Creating Example Servlet
	Modifying Example Servlet
	Deploying your servlet on Jetty
	Running the Servlet
	More with Servlet

	Conclusion
	Download the eclipse project

	Jetty Logging Configuration Example
	Logging in Jetty
	Environment
	Enabling Logging in Jetty
	Configuring SLF4J with Logback in Jetty
	Changing the Location and Name of the Jetty Log Files
	Logging Configuration of Embedded Jetty
	Environment
	Creating the Project
	Maven Dependencies
	Default Logging Example
	SLF4J and Logback Example

	Conclusion
	Download the Source Code

	Jetty Resource Handler Example
	Environment
	Creating the Maven Project for the Embedded Example
	Creating Sample Static Content
	Programmatically Creating Resource Handlers in Embedded Jetty
	Creating the Resource Handler
	Setting Resource Base
	Enabling Directory Listing
	Setting Context Source
	Attaching Handlers

	Running the Server
	Other Configuration
	Standalone Jetty Example
	Conclusion

	Jetty JMX Example
	Environment
	JMX with Embedded Jetty
	Structure of the Example
	Creating the Maven Project
	Enabling JMX Programmatically
	Monitoring with JConsole
	Jetty Managed Objects

	JMX with Standalone Jetty
	Conclusion

	Jetty OSGi Example
	Environment and Prerequisites
	Adding Jetty dependencies to OSGi Target
	Jetty libraries
	jetty-osgi-boot Bundle
	Reloading OSGi Target

	Running the Jetty Server on the OSGi container
	Deploying a Servlet on the OSGi Jetty
	Creating the Eclipse Project
	Adding Required Plugins
	Wiring our Servlet to OSGI and Jetty

	Conclusion

	Jetty JSP Example
	Environment
	JSP with Embedded Jetty
	Structure of the Example
	Creating the Maven Project in Eclipse
	Configuring the Web Application
	Enabling JSP programmatically
	Running the Application

	JSP in Standalone Jetty
	Conclusion

