

DZone, Inc. | www.dzone.com

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#128
W

h
at

’s
 N

e
w

 in
 J

PA
 2

.0

CONTENTS INCLUDE:
n	 Introduction
n	 JDBC Properties
n	 Access Mode
n	 Mappings
n	 Shared Cache
n	 Additional API and more...

By Mike Keith

What’s New in

JPA 2.0
INTRODUCTION

The Java Persistence API is the standard for persisting Java
objects to a relational database. It includes standardized
metadata for defining mappings and configuration, as well
as a set of Java APIs that applications can use to persist and
query entities. It also includes a standard Service Provider
Interface (SPI) that allows applications to easily plug in
different JPA providers. If you are new to JPA, read the
Refcard Getting Started with JPA first to get an understanding
of some basic concepts. This Refcard assumes you are
familiar with JPA 1.0 and that you now want to upgrade your
knowledge to include JPA 2.0. This Refcard covers the primary
new features introduced in the JPA 2.0 release and explains
how they can be used.

@Entity @Access(FIELD)
public class Person {
 @Id
 int id;
 …
 @Access(PROPERTY)
 public String getName() { … }
 public void setName(String pName) { … }
 …
}

Hot
Tip

When overriding the access type for a field to its
accompanying property make sure to annotate the field
with @Transient to prevent the field from being mapped in
addition to the property.

MAPPINGS

The mapping arsenal grew dramatically in JPA 2.0 to include
mappings that are less common, but were not defined in the
first release. A number of mappings were added to provide
better support for reading from pre-existing (so-called
“legacy”) database schemas. While these mappings are not
hugely useful to the average application, they come in handy
to those who must work with a schema that is outside the
control of the Java developer.

Element Collections
Arguably, the most useful of the new mapping types is the
element collection, which allows an entity to reference a
collection of objects that are of a basic type (such as String
or Integer). The @ElementCollection annotation is used to
indicate the mapping. The objects are stored in a separate
table called a collection table, which defaults to be named
<entityName>_<attributeName>, but can be overridden
with the @CollectionTable annotation. The name of the
column in the collection table that stores the values defaults

JDBC PROPERTIES

A set of four new properties were added to provide more
portability when specifying the JDBC connection parameters
in Java SE mode. The driver class, URL, user, and password
were previously different for every provider, but now the four
standard ones can be used in a persistence.xml file.

Using the standard JDBC properties:
<persistence-unit name=”Account”>
 …
 <properties>
 <property name=”javax.persistence.jdbc.driver”
 value=”org.apache.derby.jdbc.ClientDriver”/>
 <property name=”javax.persistence.jdbc.url”
 value=”jdbc:derby://dbmachine:1527/accountDB”/>
 <property name=”javax.persistence.jdbc.user” value=”app”/>
 <property name=”javax.persistence.jdbc.password”
 value=”app”/>
 </properties>
</persistence-unit>

ACCESS MODE

When the provider accesses the state of an entity, it must
typically decide whether the state is in fields or in properties.
Until JPA 2.0, all of the state in an entity hierarchy had to
be accessed either in one mode or the other. Now, through
the use of some judiciously placed metadata, some state in
an object can be accessed in fields while other state can be
accessed through bean property methods.

The entity must first be annotated with an @Access annotation
to indicate the default access mode for the class. Then, to
deviate from the default and specify accessing in a different
mode for a given field or property, the @Access annotation
can be placed on the field or property to be accessed.

http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com

2 What’s New in JPA 2.0

DZone, Inc. | www.dzone.com

to the name of the attribute but is overridable with the
@Column annotation.

Element collection of String:
@Entity
public class Person {
 …
 @ElementCollection
 @CollectionTable(name=”NICKNAMES”)
 @Column(name=”NNAME”)
 Collection<String> nicknames;
 …
}

Element collection mappings can be used in embeddables and
mapped superclasses as well as entities. They can also contain
embeddable objects instead of basic types.

Adding a Join Table
Normally, a bidirectional one-to-many relationship is mapped
through a foreign key on the “many” side. However, in some data
schemas, the join is done using a separate join table. Similarly a
unidirectional or bidirectional one-to-one relationship can use a
join table instead of the typical simple foreign key. As one might
expect, using a join table for these mappings is as easy as putting
an additional @JoinTable annotation on the owning side of the
mapped relationship.

Unidirectional One-to-Many With No Join Table
In JPA 1.0, a unidirectional one-to-many relationships required a
join table. However, you were stuck if the schema was fixed and
had a foreign key in the target table and the target entity was not
able to be modified to have a reference back to the source entity.

The ability to do this was added in JPA 2.0 by permitting a
@JoinColumn annotation to accompany a @OneToMany
annotation that was unidirectional (did not contain a mappedBy
element). The join column refers to a foreign key column in the
target table, which points to the primary key of the source table.

Unidirectional one-to-many relationship with target foreign key:
@Entity
public class Customer {
 …
 @OneToMany
 @JoinColumn(name=”CUST_ID”)
 List<Purchase> purchases;
 …
}

Hot
Tip

A unidirectional one-to-many target foreign key mapping
may seem to make life easier in Java but performs worse
than using a join table.

Orphan Removal
A parent-child relationship is a one-to-many or one-to-one
relationship in which the target entity (the child) is owned by the
source entity (the parent) or relies upon it for its existence. If
either the parent gets deleted or the relationship from the parent
to the child gets severed, then the child should be deleted.
Previous support for cascading delete offered a solution for the
first case; but to solve the second case when the child is left an
orphan, the new orphanRemoval element of the @OneToMany
or @OneToOne annotations can be set to true to cause the child
object to get removed automatically by the provider.

Configuring and using orphan removal:
@Entity public class Library {
 …
 @OneToMany(mappedBy=”library”, orphanRemoval=true)
 List<Magazine> magazines;
 …
}

In the application code, when a magazine is torn and is to be
discarded from the library, the act of removing the magazine from
the library causes the magazine to automatically be deleted:

library.getMagazines().remove(magazine);

Persistently Ordered Lists
When a many-valued relationship causes fetching of the related
entities in a List and the order of the entities must be determined
by sorting one or more attributes of the target entity type, the
relationship mapping needs to be annotated with @OrderBy.
However, if the order is determined solely by the position of the
entity in the in-memory list at the time the list was last persisted,
then an additional column is required to store the position.
This column is called an order column and is specified on
the mapping by the presence of @OrderColumn. The entity’s
position in the list is read from and written to this column.

Ordering without using an object attribute:

@Entity public class WaitList {
 …
 @OneToMany
 @OrderColumn(name=”POSITION”)
 List<Customer> customer;
 …
}

Every time a transaction causes a customer to be added to or
removed from the waiting list, the updated list ordering will be
written to the order column. Because the example is using a
unidirectional one-to-many relationship that defaults to using a
join table the order column will be in the join table.

Maps
Using a Map for a many-valued relationship traditionally
meant that entities were the values and some attribute of
the entities was the key. The new Map features allow Map
types to be used with keys or values that can be basic types,
entities, or embeddables. When the value is an entity type,
then the mapping is a relationship. When the value is a basic
or embeddable type, the mapping is an element collection.
Two examples of using a Map are shown. The deliverySchedule
attribute is an element collection of dates on which deliveries are
made to given address strings. The @MapKeyColumn annotation
indicates the column in the collection table where the keys
(address strings) are stored, and @Column references the column
in which the date values are stored. The @Temporal annotation is
used because the values are Date objects.

The suppliers attribute illustrates a unidirectional one-to-many
relationship that has a Map of Supplier entities keyed by Part
entities. The @MapKeyJoinColumn annotation indicates the join
column in the join table referring to the Part entity table.

Element collection Map and one-to-many Map:
@Entity public class Assembly {
 …
 @ElementCollection
 @CollectionTable(name=”ASSY_DLRVY”)
 @MapKeyColumn(name=“ADDR”)
 @Column(name=“DLRVY_DATE”)
 @Temporal(TemporalType.DATE)
 Map<String, Date> deliverySchedule;
 …
 @OneToMany
 @JoinTable(name=”PART_SUPP”)
 @MapKeyJoinColumn(name=”PART_NO”)
 Map<Part, Supplier> suppliers;
 …
}

The main lesson is that different annotations are useful and
applicable depending upon the key and value types in the Map.

http://www.refcardz.com
http://www.dzone.com

3 What’s New in JPA 2.0

DZone, Inc. | www.dzone.com

Derived Identifiers
New allowances were made in JPA 2.0 for the case when an entity
has a compound primary key that includes a foreign key. Multiple
@Id annotations can be specified, and they can be on an owned
one-to-one or many-to-one mapping. The foreign key of that
mapping will be included in the id class, as shown in the example.
The id class must still have a field for each of the primary key
components and be named the same as the entity attributes,
but the types of the foreign key-based id class fields must match
the identifier types of the target entity of the relationship. For
example, the dept field in the ProjectId class is not of type
Department as it is in Project, but is of type int, which is the
identifier type of the Department entity.

Derived Identifier:
@IdClass(ProjectId.class)
@Entity public class Project {
 …
 @Id
 String projectName;

 @Id @ManyToOne
 Department dept;
 …
}
@Entity public class Department {
 …
 @Id
 int id;
 …
}
public class ProjectId {
 String projectName;
 int dept;
 …
}

Compound primary keys may also be composed of multiple
foreign keys or relationships by adding @Id annotations to
additional relationships in the entity and adjusting the id
class accordingly.

Hot
Tip

Derived identifiers also support a multitude of additional
identifier combinations involving embedded identifiers,
multiple levels of compounding, and shared relationship
primary keys.

Java Persistence Query Language
A number of additional JP QL features were added to support
the new mappings, while other features were added simply as
improvements to the query language. The table summarizes
the changes.

New features of JP QL:

Feature Name Description Example

Date, time, and
timestamp literals

JDBC syntax was adopted:
{d ‘yyyy-mm-dd’}
{t ‘hh-mm-ss’}
{ts ‘yyyy-mm-dd hh-mm-ss’}

SELECT c FROM Customer c
WHERE c.birthdate <
 {d ‘1946-01-01’}

Non-polymorphic
queries – TYPE

Can query across specific
subclasses of a superclass

SELECT p FROM Project p
WHERE TYPE(p) = DesignProject
OR TYPE(p) = QualityProject

Map support - KEY,
VALUE, ENTRY

Allow comparison and
selection of keys and values
and selection of entries

SELECT e.name, KEY(p), VALUE(p)
FROM Employee e JOIN e.phones
p WHERE KEY(p) IN (‘Work’, ‘Cell’)

Collection input
parameters

Allow parameter arguments
to be collections

SELECT e FROM Employee e
WHERE e.lastName IN :names

CASE statement Can be in either of two forms:
1) CASE {WHEN conditional
THEN scalarExpr}+
ELSE scalarExpr
END

2) CASE pathExpr
{WHEN scalarExpr THEN
scalarExpr}+ ELSE scalarExpr
END

UPDATE Employee e SET e.salary
=
CASE
 WHEN e.rating = 1 THEN e.salary
* 1.1
 WHEN e.rating = 2 THEN e.salary
* 1.05
 ELSE e.salary * 1.01
END

NULLIF, COALESCE Additional CASE variants:
COALESCE(scalarExpr {,
scalarExpr}+)

NULLIF(scalarExpr, scalarExpr)

SELECT COALESCE(d.name, d.id)
FROM Department d

Scalar expressions in
the SELECT clause

Return the result of
performing a scalar operation
on a selected term

SELECT LENGTH(e.name) FROM
Employee e

INDEX in a List Refer to an item’s position
index in a list

SELECT p FROM Flight f JOIN
f.upgradeList p
WHERE f.num = 861 AND
INDEX(p) = 0

Variables in SELECT
constructors

Constructors in SELECT
clause can contain
identification vars

SELECT new CustInfo(c.name,
a) FROM Customer c JOIN
c.address a

TYPED QUERY

One of the simplest but most useful query features added in JPA
2.0 is the TypedQuery interface. When you create a query you can
pass in the type for the query result and get back a typed query
object that, when executed, will return the correctly typed objects
without having to cast. It works for both dynamic queries and
named queries.

TypedQuery<Employee> q = em.createNamedQuery(“Employee.findByName”,
 Employee.class);
q.setParameter(“empName”, “Smith”);
List<Employee> emps = q.getResultList();

SHARED CACHE

Entities regularly get cached in a persistence context, but they
will also typically get cached by the persistence provider in a
longer-lived cache in the entity manager factory. This cache is
called a shared cache because the entity data is shared across
multiple persistence contexts. Although there are multiple
different strategies and approaches to caching, a standard API
can be used to operate on it. The standard Cache interface can
be obtained from the EntityManagerFactory.getCache() method.

public interface Cache {
 public boolean contains(Class cls, Object primaryKey);
 public void evict(Class cls, Object primaryKey);
 public void evict(Class cls);
 public void evictAll();
}

Hot
Tip

It is not a good idea to manipulate the cache as part of the
regular application execution. The API is most valuable for
testing to clear the cache between test cases/runs.

A shared-cache-mode element can be configured in the
persistence.xml file for a given persistence unit. It is used in
conjunction with the @Cacheable annotation on entity classes
to designate whether instances of entity classes are allowed
(or intended) to be cached in the shared cache.

Option Description

ALL All entities in the persistence unit are cached

NONE Caching is disabled for all entities in the persistence unit

ENABLE_SELECTIVE Caching is disabled, except for entities annotated with
@Cacheable or @Cacheable(true)

DISABLE_SELECTIVE Caching is enabled, except for entities annotated with
@Cacheable(false)

UNSPECIFIED Caching reverts to the default caching option for the
current provider

http://www.refcardz.com
http://www.dzone.com

4 What’s New in JPA 2.0

DZone, Inc. | www.dzone.com

Hot
Tip

Providers aren’t strictly required to implement shared
caches. If a provider has no cache the cache API is not
going to have an effect.

Two additional properties can influence what gets cached at the
operational level. The javax.persistence.cache.retrieveMode
and javax.persistence.cache.storeMode properties can be
set at the level of the entity manager using a setProperty()
method, an entity manager find() or refresh() operation, or
on an individual query setHint() call. The enumerated
javax.persistence.CacheRetrieveMode type contains the valid
values for the retrieve mode, and the enumerated
javax.persistence.CacheStoreMode type defines the valid
store mode values.

CacheRetrieveMode Value Description

USE Read entity data from the cache

BYPASS Don’t use the cache; read entity data from the database

CacheStoreMode Value Description

USE Insert entity data into cache when reading from/
writing to the database

BYPASS Don’t insert entity data into the cache

REFRESH Same as USE, but refresh cached version of entity
data when reading from database

ADDITIONAL API

Some of the primary API classes have had additional methods
added to them to provide more functionality and offer more
flexibility, and most of the pertinent ones are listed in the Tables.
Some new API classes have also been added.

Additional EntityManager methods:

Method Description

find(Class entityClass, Object
pk [,LockModeType lockMode]
[,Map<String,Object> properties])

Overloaded find methods allowing optional
lockmode and properties parameters.

lock(Object entity,
Map<String,Object> properties)

Overloaded lock method allowing properties
parameter

refresh(Object entity
[,LockModeType lockMode]
[,Map<String,Object> properties])

Overloaded refresh methods allowing optional
lockmode and properties parameters

detach(Object entity) Remove the entity from the persistence context

createQuery(String qlString,
Class<T> resultClass)

Create a dynamic query and return a TypedQuery<T>

createQuery(CriteriaQuery<T>
criteriaQuery)

Create a query using the Criteria API and return a
TypedQuery<T>

createNamedQuery(String
queryName, Class<T> resultClass)

Create a named query and return a TypedQuery<T>

unwrap(Class<T> cls) Return an instance of the (often proprietary) specified
class associated with the entity manager

getEntityManagerFactory() Return the entity manager factory associated with the
entity manager

getCriteriaBuilder() Return a criteria builder for building criteria queries

getMetamodel() Return the metamodel for introspecting the entity
structure

Additional Classes:

Class Description

TypedQuery<T> Subclass of Query that is typed according to the result
type of the query.

Tuple Representation of a row of typed data elements

TupleElement<T> Representation of a single typed data element in a tuple

Parameter<T> Typed query parameter

PersistenceUnitUtil Class containing a group of utility methods
implemented and returned by the provider of a given
persistence unit

PersistenceUtil Class containing a group of utility methods that will
work across any and all providers

PersistenceProviderResolver Pluggable class used to resolve providers in
different environments.

PersistenceProviderResolverHolder Static methods to set/look up the resolver

PESSIMISTIC LOCKING

One of the benefits of the overloaded entity manager find() and
refresh() methods taking a lock mode is to enable locking at
the operational level. This is most valuable when using the new
LockModeType.PESSIMISTIC_WRITE option to pessimistically
lock an entity. There is even a javax.persistence.lock.timeout
property that can be used to put an upper bound on the wait
time to acquire the lock. A PessimisticLockException will be
thrown if the lock could not be acquired and the transaction has
been rolled back.

Map<String,Object> props = new HashMap<String,Object>();
props.put(“javax.persistence.lock.timeout”, 5000);
try {
 Account acct = em.find(Account.class, accountId, PESSIMISTIC_WRITE,
props);
} catch (PessimisticLockException pessEx) {
 // lock not acquired, bail out and do something reasonable
}

The available lock modes are listed in the following table.

Lock Modes:

OPTIMISTIC New name for JPA 1.0 “READ” mode

OPTIMISTIC_FORCE_INCREMENT New name for JPA 1.0 “WRITE” mode

PESSIMISTIC_READ Pessimistic repeatable read isolation

PESSIMISTIC_WRITE Pessimistically lock to cause write serialization

PESSIMISTIC_FORCE_INCREMENT Pessimistically lock but also ensure update occurs to
version field

VALIDATION

Validation is a new specification in its own right and can be used
with virtually any Java object, not just persistent entities. However,
when used with JPA, some integration was beneficial to provide
the additional automatic lifecycle validation support. Validation
can be configured to be automatically triggered during any of
the PrePersist, PreUpdate, and PreRemove entity lifecycle events.
A validation-mode element in the persistence.xml file, or the
equivalent javax.persistence.validation.mode property passed in
at entity manager factory creation time, will determine whether
validation happens. A value of auto means that validation will
occur if a validator is available, while a value of callback means
that validation is expected to occur and will fail if no validator is
available. Setting the mode to none disables validation. Because
the default validation-mode is auto, validation of a validation
provider that exists on the classpath can be disabled by explicitly
setting the mode to none.

Specific validation groups can be used for validation at a given
lifecycle event through the corresponding properties:
javax.persistence.validation.group.pre-persist, javax.persistence
validation.group.pre-update, and javax.persistence.validation
group.pre-remove. These properties may be applied either
as property elements in the persistence.xml file or as dynamic

http://www.refcardz.com
http://www.dzone.com

5 What’s New in JPA 2.0

DZone, Inc. | www.dzone.com

properties passed in at entity manager creation. For example,
to cause validation of the com.acme.validation.EntityCreation
validation group to the entities of a persistence unit at the
PrePersist lifecycle event, the javax.persistence.validation.group
pre-persist property value should be set to that fully qualified
EntityCreation class name. Then, assuming the existence of
MyEntity defined in the persistence unit with EntityCreation
constraints on it, a call to persist an instance of MyEntity would
cause those constraints to be validated before the instance data
would be inserted to the database.

For more details about validation, consult the “Bean Validation”
specification available at http://jcp.org/en/jsr/detail?id=303.

ENTITY METAMODEL

Although it may be more useful for tools than for regular
developers, one interesting feature that was introduced in
JPA 2.0 was the ability to access a metamodel of the objects
mapped in a persistence unit. The metamodel is available at
runtime to query the structure of the objects and is obtained by
calling getMetamodel() on an entity manager or entity manager
factory. The example shows how the metamodel can be used to
introspect the attributes of the Account entity.

Metamodel model = em.getMetamodel();
EntityType<Account> account_ = model.entity(Account.class);
for (Attribute<? super Account, ?> attr : account_.getAttributes()) {
 System.out.println(“Account attribute: “ + attr.getName() +
 “ java type = “ + attr.getJavaType.getName() +
 “ mapping type = “ +
 attr.getPersistentAttributeType());
}

CRITERIA API

Perhaps the biggest new feature (certainly in terms of page
count!) is the Criteria API for dynamic query creation. It comprises
a Java API to incrementally add nodes to a criteria tree that can
be subsequently passed to a query wrapper for evaluation. The
criteria nodes are typed according to their semantics and the
type of object they are being applied to.

Hot
Tip

The Criteria API is not a replacement for JP QL queries
but an alternative query mechanism for developers who
want to use a more dynamic or more strongly typed API.
Developers happy with JP QL may not ever have the need
to use the Criteria API.

There are two flavors of criteria usage. The one you will use
depends on the reason you are using the API, the development
practices of your company, and personal preference.

STRING-BASED CRITERIA

String-based criteria implies specifying attribute names as strings,
much like many of the existing criteria APIs and expression
frameworks present in Hibernate and TopLink/EclipseLink. The
resulting expressions are more typed than what simple JP QL will
offer but less typed than the second strongly typed flavor of the
Criteria API. They may also result in “raw type” compiler warnings
indicative of not declaring the type of a collection that was
defined as a parameterized type.

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery c = cb.createQuery(Account.class);
Root acct = c.from(Account.class);
c.select(acct)
 .where(cb.equal(acct.get(“name”), “Jim Morrison”));
List result = em.createQuery(c).getResultList();

We start by obtaining a CriteriaBuilder, the primary factory both
for the criteria query object and for most of the criteria nodes,
from the entity manager. We then create the criteria object, get
a root, declare our selection clause, and start adding constraint
nodes. Of course, declaring the selection clause and building
the constraint tree are not really order-dependent and could
be done in either order. Once complete, though, the query can
be executed through the traditional means of query execution
just by passing the criteria object as an argument to the
EntityManager.createQuery() method and calling getResultList()
on the returned query.

A better typed version of the query can be achieved by adding
the types but still using string-based attributes. The types make
the code slightly harder to read and use but provide a measure of
typing to improve the quality.

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Account> c = cb.createQuery(Account.class);
Root<Account> acct = c.from(Account.class);
c.select(acct)
 .where(cb.equal(acct.get(“name”), “Jim Morrison”));
List<Account> result = em.createQuery(c).getResultList();

STRONGLY TYPED CRITERIA

The problem with the string-based versions above is that the
“name” attribute can be mistyped, or the wrong attribute can
be specified. The compiler will not be able to catch the error
because its argument type is String. As far as the compiler is
concerned, any string will do. To protect against these kinds of
attribute errors at compile time, the argument must be typed very
specifically to match the attribute type. The metamodel types
provide the tools to do this.

CriteriaBuilder cb = em.getCriteriaBuilder();
CriteriaQuery<Account> c = cb.createQuery(Account.class);
Root<Account> acct = c.from(Account.class);
c.select(acct)
 .where(cb.equal(acct.get(Account_.name), “Jim Morrison”));
List<Account> result = em.createQuery(c).getResultList();

To use the strongly typed criteria, the “name” string is substituted
by Account_.name. The Account_ class is called the canonical
metamodel class corresponding to the Account entity. It is
generated by the provider for the purposes of the strongly typed
Criteria API and contains a static field for each of its mapped
attributes. While the details are not that important, the Account_
class can be used for these kinds of strongly typed queries. The
compiler will not let you mistype the name of the attribute or
supply the wrong attribute because all of the objects along the
way are typed strongly enough to catch these kinds of errors.

CRITERIABUILDER

You may have noticed from the examples that if we wanted to
start adding operators to the where clause, we needed to obtain
them from the CriteriaBuilder instance. The CriteriaBuilder class
acts as a node factory for operations, (both string-based and
strongly typed), and contains most of the useful operators. The
following reference table shows at a glance the operators
(by category) that are available in the CriteriaBuilder class.

http://www.refcardz.com
http://www.dzone.com

6 What’s New in JPA 2.0

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise,
without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, blogs, feature articles, source code and more.
“DZone is a developer’s dream,” says PC Magazine.

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-936502-03-5
ISBN-10: 1-936502-03-8

9 781936 502035

50795

Mike Keith has been a distributed systems
and persistence expert for over 20 years. He
co-led the expert group that produced the first
release of JPA and co-authored the premier
JPA reference book, Pro EJB: Java Persistence
API, followed up with Pro JPA 2: Mastering
the Java Persistence API. He works at Oracle

as an architect for enterprise Java and represents Oracle on
numerous expert groups and specifications, including the
Java EE platform specification, JPA, and others. He leads
the Gemini Enterprise Modules project at Eclipse, and is a
member of the Eclipse Runtime project PMC.

Pro JPA 2 introduces, explains, and
demonstrates how to use the new Java
Persistence API (JPA). JPA provides Java
developers with both the knowledge and
insight needed to write Java applications that
access relational databases through JPA.

BUY NOW
http://apress.com/book/view/9781430219569

The arguments for many of these methods are overloaded
for convenience.
CriteriaBuilder methods by category:

Category Method Names

Query Construction createQuery(), createTupleQuery()

Selection Construction construct(), tuple(), array()

Ordering asc(), desc()

Aggregate Functions avg(), sum(), sumAsLong(), sumAsDouble(), min(),
max(), greatest(), least(), count(), countDistinct()

Subqueries exists(), all(), some(), any()

Boolean Functions and(), or(), not(), conjunction(), disjunction()

Value Testing isTrue(), isFalse(), isNull(), isNotNull()

Equality equal(), notEqual()

Numeric Comparison gt(), ge(), lt(), le()

Comparison greaterThan(), greaterThanOrEqualTo(), lessThan(),
lessThanOrEqualTo(), between()

Numeric Operations neg(), abs(), sum(), prod(), diff(), quot(), mod(), sqrt()

Typecasts toLong(), toInteger(), toFloat(), toDouble(),
toBigDecimal(), toBigInteger(), toString()

Literals literal(), nullLiteral()

Parameters parameter()

Collection Operations isEmpty(), isNotEmpty(), size(), isMember(),
isNotMember()

Map Operations keys(), values()

String Operations like(), notLike(), concat(), substring(), trim(), lower(),
upper(), length(), locate()

Temporal Functions currentDate(), currentTime, currentTimestamp()

Expression Construction in(), selectCase()

Misc Operations coalesce(), nullif(), function()

SUMMARY

While we have not been completely exhaustive in our coverage
of the new JPA 2.0 features, we have covered the vast majority
and most interesting features among them. Clearly, JPA 2.0 has
propelled JPA into an even more mature position in the world of
persistence, causing it to be more easily applied to old and new
data schemas alike.

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML fi les should not be cr

processor

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar
The latest web standar

Browse our collection of over 100 Free Cheat Sheets
Upcoming Refcardz
RichFaces
CSS3
Windows Azure Platform
REST

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are
assigned an operating system in the same way as on all hosting

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

