This DZone Refcard is brought to you by:

Progress | DataDirect BUSINESS MAKING PROGRESS™
SOFTWARE

Unbreakable Data Access for Any Application

Performance, Functionality, and Reliability for Enterprise Applications

JDBC drivers, ODBC drivers, and ADO.NET data providers

¢ Oracle ¢ 32-hit
e SOL Server e 64-bit
e DB2 ¢ Windows
e Sybase e UNIX
e MySQL ¢ Linux
e Others ¢ More

www.datadirect.com/products/data-connectivity

Visit refcardz.com to browse and download the entire DZone Refcardz collection

45 DZone

http://www.datadirect.com/products/data-connectivity

£
©)
N
N
O
el
©
O
G
(O}
el
=
-
>
-Fi
O
e
©
[S)
(el
Q
o
()
1 S
(e)
=
-
()
O

www.dzone.com

JDBC Best Practices

.~ !DZone Refcardz

e PROGRESS

SOFTWARE

= A Brief History

= JDBC Basics

= Driver Types and Architechture
= Performance Considerations

= Data Types

= Advanced JDBC and more...

JDBC

Best Practices

By Jesse Davis

A BRIEF HISTORY

Sun Microsystems created JDBC in the 90s to be the standard
for data access on the Java Platform. JDBC has evolved since
that time from a thin APl on top of an ODBC driver to a fully
featured data access standard whose capabilities have now
surpassed its aging brother, ODBC. In recent applications,
JDBC connects persistence layers (such as Hibernate or

JPA) to relational data sources; but the JDBC API with its
accompanying drivers are always the final piece connecting
Java apps to their data! For more in depth (and entertaining)
history, watch this movie on the history of Java and JDBC:

http://www.youtube.com/watch?v=WAy9mgEYbbo

JDBC BASICS

Connecting to a Server

Getting a basic Connection object from the database is the
first operation to get a handle on. The code snippet below
gets a connection to a SQL Server database. Note that the
Class.forName line is unnecessary if you are using a JDBC 4.0
driver with Java SE 6 or above.

String url = “jdbc:datadirect:sqlserver://nc-cqserver:1433;databaseNa
me=testDB;user=test;password=test”;
try {
Class.forName(“com.ddtek.jdbc.sqlserver.SQLServerDriver”);
Connection con = DriverManager.getConnection(url);
}
catch (Exception except) {
SQLException ex = new SQLException(
“Error Establishing Connection: “ +
except.getMessage());
throw ex;

It is good to get metaData from the Connection object to
see what driver and server version you are using. This comes
in handy when its time to debug. Printing to system out or
logging to a file is preferable:

DatabaseMetaData dbmd = con.getMetaData();
System.out.println(“\nConnected with “ +

dbmd.getDriverName() + “ “ + dbmd.getDriverVersion()
+ “{ “ + dbmd.getDriverMajorVersion() + “,” +
dbmd.getDriverMinorVersion() +” }” + “ to “ +
dbmd.getDatabaseProductName() + “ “ +

dbmd.getDatabaseProductVersion() + “\n”);

Retrieving Data

A straightforward approach to retrieving data from a database
is to simply select the data using a Statement object and
iterate through the ResultSet object:

Statement stmt = con.createStatement();
ResultSet results = stmt.executeQuery(“Select * from foo”);
String product;
int days = 0;
while (results.next()){
product = results.getString(1);
days = results.getInt(2);
System.out.println(product + “\t” + days);

The JDBC specification allows for fetching all data types
using getString or getObject; however, it is a best practice

to use the correct getXXX method as demonstrated
in the code sample above to avoid unnecessary data
conversions.

Executing a PreparedStatement

Use a PreparedStatement any time you have optional
parameters to specify to the SQL Statement, or values that do
not convert easily to strings, for example BLOBs. It also helps
prevent SQL injection attacks when working with string values.

PreparedStatement pstmt = con.prepareStatement(“INSERT into table2
(ID, lastName, firstName) VALUES (?7,7,?)");

pstmt.setInt(1l, 87);

pstmt.setString(2, “Picard”);

pstmt.setString(3, “Jean-Luc”);

rowsInserted += pstmt.executeUpdate();

Calling a Stored Procedure via CallableStatement
Use a CallableStatement any time you wish to execute a stored
procedure on the server:

CallableStatement cstmt = con.prepareCall(“{CALL STPROC1 (?)}");
cstmt.setString(1l, “foo”);

ResultSet rs = cstmt.executeQuery();

rs.next();

int value = rs.getInt(1);

CallableStatements can return resultSets, even when
inserting data on the server. If the application doesn’t know

if results should be returned, check for results by issuing a
call to getMoreResults() after execution.

Progress | DataDirect BUSINESS MAKING PROGRESS™

SOFTWARE

Stop Wasting Time with Type 4 Driver Limitations

Today's Java applications need a modern solution: Type 5 JDBC

Try a Type 5 driver today for:

¢ Oracle e Sybase
¢ SQL Server « MySOL
* DB2 * Informix

Details at datadirect.com/products/jdbc

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp
http://www.datadirect.com/products/jdbc/index.ssp

@1 DZone Refcardz AOGRESS 2 JDBC Best Practices

DRIVER TYPES AND ARCHITECTURE

The JDBC-ODBC Bridge was the Type 3 drivers sought to be a 100%
architecture that the first JDBC Java solution but never really gained
drivers adopted. This architecture = much traction. Type 3 drivers had a

requires an implementation of Java client component and a Java

Application Code

the JDBC API that then translates - server component, where the latter NY
the incoming JDBC calls to the - actually talked to the database.
appropriate ODBC calls using the JNI v Although this was technically a full

. Type 3 Server Piece
(Java Native Interface). The requests bk R Java solution, the database vendors)

are then sent to the underlying ODBC
driver (which at the time was just a
shell over the database native client
libraries). The bridge implementation
shipped with the JDK so you only
needed the ODBC drivers and native
DB client libraries to get started.
Although this was a klunky and
\headache prone approach, it worked.

did not like this approach as it was
costly — they would have to rewrite
their native client libraries which
were all C/C++. In addition, this
didn't increase the architectural
efficiency as we are really still a 3 tier
architecture so it is easy to see why
this was never a popular choice.

AN J

TYPE 2: Client Based TYPE 4: Wire Protocol Drivers

The next generation of JDBC Drivers v The most popular JDBC driver
was jche ever popular Type 2 driver arc{hltectgre to date is Type 4. RpplicalioniCode
architecture. This architecture — This architecture encapsulates .

eliminated the need for the ODBC the entirety of the JDBC API -
driver and instead directly called the NV implementation along with all Halie e Brotocol Diiver

native client libraries shipped by the the logic for communicating
database vendors. This was quickly directly with the database in a
adopted by the DB vendors as it was NV single driver. This allows for easy

quick and inexpensive to implement
since they could reuse the existing C/
C++ based native libraries. This choice
still left Java developers worrying about
version and platform compatibility
issues (i.e. client version 6 is not
supported on HP-Itanium processors).

deployment and streamlines the
development process by having
a single tier and a small driver all
in a 100% java package.

Some vendors still do their new development in
their native clients first. So, don’t assume that if Type 4 drivers have been the traditional favorite

of Java application developers since its inception

their website states that the JDBC driver supports . i
Kerberos that they mean their Type 4 driver — they due to the clean design and ease of use; drop in the
may mean Type 2! driver jar and you're up and running!

- /. J

TYPE 5: NEW!

While not yet officially sanctioned by the JDBC Expert Performance Drivers specifically designed for multi-core, 64 bit,
Group, there is quite a bit of discussion surrounding the Architecture and virtualized environments.
new Type 5 driver proposal in the JDBC community. Getting Clean Spec Strict adherence to the JDBC standard, solving
down to the real functional differences, we see this list as the Implementation problems within the specification instead of using
requirements for Type 5 Drivers as follows: proprietary methods that promote vendor lock-in.
Advanced Type 5 drivers unlock code that has been trapped in
Codeless The ability to modify options, check statistics and Functionality the vendor native client libraries and bring that into
Configuration interact with the driver while it is running. Typically the Java community. Features include but are not
through a standard JMX MBean. limited to: Bulk Load, Client side High Availability,
Kerberos, and others.

- J

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp

Z>1DZone Refcardz Fo&REss

JDBC Best Practices

PERFORMANCE CONSIDERATIONS

Pooling (Object Re-use)

Pooling objects results in significant performance savings.
In JDBC, pooling Connection and Statement objects is the

difference between a streamlined app and one that will
consume all your memory. Make use of these pooling
suggestions for all your JDBC applications!

Connection Pooling - Enabling Connection pooling allows the
pool manager to keep connections in a ‘pool” after they are
closed. The next time a connection is needed, if the connection
options requested match one in the pool then that connection
is returned instead of incurring the overhead of establishing
another actual socket connection to the server

Statement Pooling — Setting the MaxPooledStatements
connection option enables statement pooling.

Enabling statement pooling allows the driver to re-use
PreparedStatement objects. When PreparedStatements are
closed they are returned to the pool instead of being freed
and the next PreparedStatement with the same SQL statement
is retrieved from the pool rather than being instantiated and
prepared against the server.

Don't use PreparedStatements by default! If your SOL
statement doesn’t contain parameters use the Statement

object instead — this avoids a call to internal and wire level
prepare() methods and increases performance!

MetaData Performance
e Specify as many arguments to DatabaseMetaData
methods as possible. This avoids unnecessary scans on
the database. For example, don't call getTables like this:

| ResultSet rs = dbmd.getTables(null,null,null,null);

Specifying at least the schema will avoid returning
information on all tables for every schema when the
request is sent to the server:

ResultSet rs = dbmd.getTables(null,”test”,null,null);

e Most JDBC drivers populate the ResultSetMetaData
object at fetch time because the needed data is
returned in the server responses to the fetch request.
Some underutilized pieces of ResultSetMetaData include:

ResultSetMetaData.getColumnCount ()
ResultSetMetaData.getColumnName()
ResultSetMetaData.getColumnType()
ResultSetMetaData.getColumnTypeName ()
ResultSetMetaData.getColumnDisplaySize()
ResultSetMetaData.getPrecision()
ResultSetMetaData.getScale()

Instead of using getColumns to get data about a table,
consider issuing a dummy query and using the returned

ResultSetMetaData which avoids querying the system
tables!

Commit Mode
When writing a JDBC application, make sure you consider

how often you are committing transactions. Every commit
causes the driver to send packet requests over the socket.
Additionally, the database performs the actual commit which
usually entails disk I/O on the server. Consider removing auto-
commit mode for your application and using manual commit
instead to better control commit logic:

Connection.setAutoCommit(false);

Virtualization and Scalability are key factors to consider
when choosing a JDBC driver. During the Performance
Testing phase of your development cycle, ensure that your
JDBC driver is using the least amount of CPU and Memory

possible. You can get memory and CPU performance
numbers from your driver vendor to see how the drivers
will scale when deployed in a Cloud or other virtualized
environment.

Network Traffic Reduction
Reduce network traffic by following these guidelines.

Technique Benefit

Use addBatch() instead of using
PreparedStatements to insert.

Sends multiple insert requests in a single
network packet

Eliminate unused column data
from your SQL statements

Removing long data and LOBs from your
queries can save megabytes of wire transfer!

Ensure that your database is

set to the maximum packet size
and that the driver matches that
packet size

JDBC DATA TYPES

Below is a list of common JDBC types and their default
mapping to Java types. For a complete list of data types,
conversion rules, and mapping tables, see the JDBC
conversion tables in the JDBC Specification or the Java SE API
documentation.

For fetching larger result sets, this reduces
the number of total packets sent/received
between the driver and server

JDBC Types Java Type
CHAR, VARCHAR, java.lang.String
LONGVARCHAR

CLOB java.sql.Clob

NUMERIC, DECIMAL java.math.BigDecimal

BIT, BOOLEAN Boolean
BINARY, VARBINARY, bytel[]
LONGVARBINARY

BLOB java.sql.Blob
DATE java.sql.Date
TIME java.sgl.Time
TIMESTAMP java.sqgl.Timestamp
TINYINT byte
SMALLINT short
INTEGER int

BIGINT long

REAL float

FLOAT, DOUBLE double

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp

Z>1DZone Refcardz AOFESS s

JDBC Best Practices

WHAT'S IN A DRIVER?

To illustrate what a JDBC driver does under the covers, take a look at this ‘anatomy of a JDBC driver’ diagram.

Developer Interface
Support

Security

Conversion and
Mapping Support

Database and Network
Communication

JDBC, ADO.NET

C

o

[

. o

APPLICATION |

CODE &

<<

o

ad

v

b

Robust 5‘

Language/ o
Platform &

Architecture
Support

RDBMS

DB Vendor
& Version
Interoperability

DATA ENCRYPTION ACROSS THE NETWORK

ADVANCED JDBC

These advanced features are complex and meant as an
overview. For all the bells and whistles for these advanced

options, check your JDBC driver documentation!

Debugging and Logging

Well-written JDBC drivers offer ways to log the JDBC calls
going through the driver for debugging purposes. As an
example, to enable logging with some JDBC drivers, you
simply set a connection option to turn on this spying capability:

Class.forName(“com.ddtek.jdbc.sqlserver.SQLServerDriver”);

Connection conn = DriverManager.getConnection
(“jdbc:datadirect:sqlserver://Serverl:1433;User=TEST;Password=secret;
SpyAttributes=(log=(file)C:\\temp\\spy.log;linelimit=80; logTName=yes;t
imestamp=yes)”);

Codeless Configuration (Hibernate and JPA)

Codeless Configuration is the ability to change driver behavior
without having to change application code. Using a driver
under something like Hibernate or JPA means that the user
cannot use proprietary extensions to the JDBC objects and
should instead control and change driver behavior through
connection options.

Additionally, codeless configuration is the ability to monitor
and change JDBC driver behavior while the driver is in use.
For example, using a tool like JConsole to connect to a driver
exported MBean and check the PreparedStatement pool stats

as well as importing/exporting new statements on the fly to
fine tune application performance.

Encrypt Your Data using SSL
Ensure that your data is secure by encrypting the wire traffic
between the server and client using SSL encryption:

(1) Set the EncryptionMethod connect option to SSL.

(2) Specify the location and password of the trustStore file
used for SSL server authentication. Set connect options
or system properties (javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword).

(3) If your database server is configured for SSL client
authentication, configure your keyStore information:

(a) Specify the location and password of the keyStore
file. Either set connect options or Java system
properties (javax.net.ssl.keyStore and javax.net.ssl.
keyStorePassword).

(b) If any key entry in the keyStore file is password-
protected, set the KeyPassword property to the
key password.

Single Sign-on with Kerberos

Kerberos is an authentication protocol, which enables secure
proof of identity over a non-secure network. It is also used for
enabling single sign-on across multiple sites by delegating
credentials. To enable Kerberos:

(1) Set the authenticationMethod connect option to
Kerberos.

(2) Modify the krb5.conf file to contain your Kerberos realm

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp

DZone Refcardz HOGESS 5 JDBC Best Practices

A

and the KDC name for that realm. Alternatively, you WHERE dlause SELECT (coll, col2, col3)
can set the java.security.krb5.realm and java.security.krb5. FROM tablel WHERE coll = ‘foo’
kdc system properties.
y prop ORDER BY clause SELECT (coll,col2,..)
(3) If using Kerberos authentication with a Security Manager, FROM table_name

. ORDER BY column_name [ASC|DESC
grant security permissions to the appllcatlon and driver. - : l !

GROUP BY clause SELECT column_name, aggregate
These security features are not supported by all databases function(column_name)
and database versions. Check to ensure your database is FROM table_name

WHERE column_name operator value
GROUP BY column_name

setup appropriately before attempting Kerberos and SSL
connections.

INSERT statement INSERT INTO tablel
(all columns implicit) VALUES (vall, val2, value3,..)
Application Failover ol colarmne) ISERT THTO. £ables
.- . explicit columns able.
Application failover is the ability for a driver to detect a ° (coll, col2,..)
connection failure and seamlessly reconnect you to an alternate VALUES (vall, val2, value3,..)
server. Various types of failover exist for JOBC drivers so check UPDATE statement UPDATE tablel
. : SET coll=vall, col2=val2,..
){our driver documentation for support - the most common are WHERE col3osome val
listed below:
DELETE statement DELETE FROM tablel
Connection In the case of the primary connection being unavailable, the {1IE EE TGS
Failover connection will be established with the alternate server.

. A o L Escape Clauses
Extended Failover ~ While the application is running, if a connection failover

occurs, the driver will reconnect to an alternate server and Escape Type Example

ost a transaction failure to the application.
P E Call (a.k.a. stored procedure) {call statement}

Select Failover Same as extended, except instead of posting a transaction {call getBookValues (7,7)}

failure, this level will reposition any ResultSets, so the

application will not know there was a failure at all. Function i RSEIGHEIL

SELECT {fn UCASE(Name)} FROM Employee

Bulk Loading Outer Join {oj outer-join}
. . . . where outer-join is
Loadmg large amounts of data into a database quickly requires table-reference {LEFT | RIGHT | FULL}
something more powerful than standard addBatch(). Database OUTER JOIN
vendors offer a way to bulk load data, bypassing the normal {table-reference | outer-join} ON

. i search-condition
wire protocol and normal insert procedure. There are 2 ways to

use Bulk Loading with a JDBC driver that supports it: SELECT Customers.CustID, Customers.
Name, Orders.OrderID, Orders.Status

FROM {oj Customers LEFT OUTER JOIN

(1) Set enableBulkLoad connect option to true. This will i (1 COSieens, R IEars.

make addBatch() calls use the bulk load protocol over CustID} WHERE Orders.Status='0PEN’
the wire.
Date Escape {d yyy-mm-dd}
(2) Use a Bulk Load object: UPDATE Orders SET OpenDate={d ‘2005-

01-31"} WHERE OrderID=1025

// Get Database Connection

Time E: t hh:mm:ss
Connection con = DriverManager.getConnection(“jdbc:datadirect:orac Ime Escape l{JPDATE Ordeis SET OrderTime={t
le://server3:1521;ServiceName=0RCL ;User=test;Password=secret”); 12:30:45’'} WHERE OrderID=1025
// Get a DDBulkLoad object

TimeStamp Escape {ts yyyy-mm-dd hh:mm:ss[.f...]}
DDBulkLoad bulkLoad = DDBulkLoadFactory.getInstance(con); UPDATE Orders SET shipTS={ts ‘2005-02-

bulkLoad.setTableName (“GBMAXTABLE”) ; 05 12:30:45"} WHERE OrderID=1025

bulkLoad.load(“tmp.csv”);

// Alternatively, you can load from any ResultSet object into the

target table: To get a listing of the functions supported by a given JDBC

driver, use the getter methods on the DatabaseMetaData
bulkLoad.load(results);

object: getStringFunctions(), getNumericFunctions(),
getTimeDateFunctions(], etc.

For additional Bulk Load options, check the JDBC driver WildCard
documentation.

Description and Example

% (percent) Subsititute for zero or more characters.
SELECT * from emp where name like ‘Da%’

_ (underscore) Substitute for exactly one character.
sQ ICK REFERENCE SELECT * from books where title like ‘_at in the Hat’
[charlist] Any single character in the charlist.
Basic Syntax Examp|es Select * from animals where name like ‘[cb]at’
SQL Construct Example
P [!charlist] Any single character not in the charlist.
SELECT statement SELECT * from tablel -or- Select * from animals where name like ‘[!cblat’
SELECT (coll,col2,..) from tablel [Acharlist] Select * from animals where name like ‘[“cb]at’

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp

41 DZone Refcardz 73S

JDBC Best Practices

JDBC WITH HIBERNATE

Hibernate is one of the most popular Object Relational
Mapping (ORM) frameworks used with JDBC. It is important

to note that even if you choose to use Hibernate instead of
writing pure JDBC, Hibernate must use a JDBC driver to get to
data! Therefore, Hibernate does not replace JDBC as the data
connectivity layer, it merely sits on top of it to interface with the
application:

Java Application

Hibernate

& \
-/

[JDBC Driver J

Database

When choosing a driver to use with Hibernate, ensure your
driver supports Codeless Configuration so that you can

tune performance and change driver behavior without
having to modify the Hibernate code!

When writing Hibernate applicationsitisimportant to understand
the main files used to setup a Hibernate environment:

Hibernate File Purpose

Describes the SQL behavior of the JDBC
driver and database to which the application
is connecting.

Dialects (org.hibernate.dialect.*)

Configuration File (hibernate.
properties or hibernate.cfg.xml)

Contains the hibernate configuration
settings, such as: JDBC driver and connection
information, dialect information, mapping
information, etc.

Mapping File The mapping file contains the mapping
between the application defined objects and

the relational data stored in the database.

Not all JDBC drivers are created equal! Look for a set of
JDBC drivers that can use a single dialect to connect to
multiple versions of a database. There’s nothing worse than

deploying your application with an Oracle 8 dialect and
discover that you need to redeploy with an
Oracle 10 dialect!

ABOUT THE AUTHOR

Jesse Davis watched his Dad code on his Apple IIC Plus,

and his addiction to technology began. He used his first PC (a
Packard Bell) in high school to run Slackware Linux and began
writing shell scripts and simple C applications. Honing his skills
as a Computer Engineer at North Carolina State University,
Jesse loved the challenge of combining hardware and software
and concentrated on microprocessor architecture and design -
graduating with honors in Y2K. Today, he enjoys teaching others

robots and woodworking projects with his kids. During the day,

Connect product line, and has more than 12 years of experience
developing database middleware, including JDBC and ODBC drivers, ADO.NET
providers, and data services. Jesse is responsible for product development initiatives
and forward looking research, and is an active member of the JDBC Expert Group,
working on the next version of JDBC.

Blog: http://blogs.datadirect.com/
Twitter: @jldavis007

M 47 DZone Refcardz

Getting Started with

Cloud Computing

) Daniel Fubio

about the latest technological breakthroughs and enjoys building

he is the Senior Engineering Manager for the Progress|DataDirect

RECOMMENDED BOOK

Performance and scalability are more critical than

ever in today's enterprise database applications, and
traditional database tuning isn't nearly enough to solve
the performance problems you are likely to see in those
applications. Nowadays, 75-95% of the time it takes to
process a data request is typically spent in the database
middleware. Today’s worst performance and scalability
problems are generally caused by issues with networking,
database drivers, the broader software/hardware
environment, and inefficient coding of data requests. In
The Data Access Handbook, two of the world's leading
experts on database access systematically address these
issues, showing how to achieve remarkable improvements in performance of real-
world database applications.

BUY NOW

books.dzone.com/books/data-access-handbook

Browse our collection of 100 Free Cheat Sheets
Upcoming Refcardz

Apache Ant
Hadoop
Free PDF Spring Security
Subversion
DZone, Inc.
140 Preston Executive Dr. ISBN-13: 978-1-334238-71-4
ISBN-10: 1-934238-71-kb

DZone communities deliver over 6 million pages each month to
more than 3.3 million software developers, architects and decision
makers. DZone offers something for everyone, including news,
tutorials, cheatsheets, blogs, feature articles, source code and more.
"DZone is a developer’s dream,” says PC Magazine.

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,

photocopying, or otherwise, without prior written permission of the publisher.

Suite 100

Cary, NC 27513
888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

|| |||| ||| || I
9781934238714 |“ “MH

Sponsorship Opportunities
sales@dzone.com

Version 1.0

$7.95

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.refcardz.com
http://www.datadirect.com/products/jdbc/index.ssp
http://books.dzone.com/books/data-access-handbook

