

Native queries with Hibernate
Thoughts on Java Library

Thorben Janssen

© 2016 Thorben Janssen

CONTENTS

Contents

Foreword . 1

Create Native Queries . 2
Create dynamic native queries . 2
Parameter binding . 2
Create named native queries . 3
Summary . 4

Use Native Queries to Perform Bulk Updates . 5
Native UPDATE statements . 5
Problem 1: Outdated 1st level cache . 6
Problem 2: Not part of the entity life cycle . 7
Summary . 7

SQL Result Set Mappings . 8
The example . 8
Basic mappings . 9
Complex Mappings . 11
Constructor Result Mappings . 15
Hibernate Specific Mappings . 18
How to use Hibernate Specific Features . 18
Summary . 20

www.thoughts-on-java.org

Foreword
Hi,

I’m Thorben, the author and founder of thoughts-on-java.org¹. Thank you
for downloading this ebook.

The Java Persistence Query Language (JPQL) is the most common way to
query data from a database with JPA. But it supports only a small subset
of the SQL standard, and it also provides no support for database specific
features.

So what shall you do, if you need to use a database-specific query feature, or
your DBA gives you a highly optimized query that can not be transformed
into JPQL?

Just ignore it and do all the work in the Java code?

Of course not!

JPA has its own query language, but it also supports native SQL. You can create these queries in
a very similar way as JPQL queries, and they can even return managed entities if you want. I will
explain all the details in this ebook.

Take care,

Thorben

¹http://www.thoughts-on-java.org

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/

Create Native Queries
Similar to JPQL, you can create dynamic and named native queries. Dynamic native queries are
instantiated at runtime, and you can dynamically adapt them. Named native queries are created at
deploy time, and you can not change them afterward. That allows Hibernate to prepare and optimize
the execution of named native queries.

Create dynamic native queries

It is quite easy to create a dynamic native query. The EntityManager interface provides a method
called createNativeQuery for it. Thismethod returns an implementation of theQuery interfacewhich
is the same as if you call the createQuery method to create a JPQL query.

The following code snippet shows a simple example in which I used a native query to select the first
and last names from the author table. I know, there is no need to do this with a native SQL query.
I could use a standard JPQL query for this, but I want to focus on the JPA part and not bother you
with some crazy SQL stuff.

The persistence provider does not parse the SQL statement, so you can use any SQL statement that is
supported by your database. In one of my recent projects, for example, I used it to query PostgreSQL
specific jsonb columns with Hibernate and mapped the query results to POJOs and entities.

Query q = em.createNativeQuery("SELECT a.firstname, a.lastname FROM Author a");

List<Object[]> authors = q.getResultList();

for (Object[] a : authors) {

System.out.println("Author " + a[0] + " " + a[1]);

}

As you can see, you can use the created Query in the same way as any JPQL query. I didn’t provide
any mapping information for the result and so the * EntityManager* returns a List of Object[] which
need to be handled afterward. Instead of mapping the result yourself, you can also provide additional
mapping information and let the EntityManager do the mapping for you. I get into more details
about that in the result mapping chapter at the end of this ebook.

Parameter binding

Similar to JPQL queries, you can and should use parameter bindings for your query parameters
instead of putting the values directly into the query String. This provides several advantages:

Create Native Queries 3

• you do not need to worry about SQL injection,
• Hibernate maps your query parameters to the correct types and
• Hibernate provider can do internal optimizations to provide better performance.

JPQL and native SQL queries use the same Query interface which provides a setParameter method
for positional and named parameter bindings. But the use of named parameter bindings for native
queries is not defined by the JPA specification, and you should use positional parameters to keep
your implementation vendor independent.

Positional parameters are referenced as “?” in your native Query, and their numbering starts at 1.

Query q = em.createNativeQuery("SELECT a.firstname, a.lastname FROM Author a WHE\

RE a.id = ?");

q.setParameter(1, 1);

Object[] author = (Object[]) q.getSingleResult();

System.out.println("Author "

+ author[0]

+ " "

+ author[1]);

Hibernate also supports named parameter bindings for native queries. When you use named
parameter bindings, you define a name for each parameter and provide it to the setParametermethod
to bind a value to it. The name is case-sensitive and needs to be prefixed with a “:” symbol.

Query q = em.createNativeQuery("SELECT a.firstname, a.lastname FROM Author a WHE\

RE a.id = :id");

q.setParameter("id", 1);

Object[] author = (Object[]) q.getSingleResult();

System.out.println("Author "

+ author[0]

+ " "

+ author[1]);

As you have seen in the previous code snippets, your native Query returns an Object[] or a List of
Object[]. I will show you how to change that in the SQL Result Set Mapping chapter of this ebook.

Create named native queries

You will not be surprised if I tell you that the definition and usage of a named native query is again
very similar to a named JPQL query.

In the previous code snippets, I created a dynamic native query to select the names of all authors. I
use the same query in the following code snippet and create a named query for it.

www.thoughts-on-java.org

Create Native Queries 4

@NamedNativeQueries({

@NamedNativeQuery(name = "selectAuthorNames", query = "SELECT a.firstname, a\

.lastname FROM Author a")

})

As you can see, the definition looks very similar to the definition of a named JPQL query. The named
native query is used in the same way as a named JPQL query. You only need to provide the name
of the named native query as a parameter to the createNamedQuery method of the EntityManager.

Query q = em.createNamedQuery("selectAuthorValue");

List<AuthorValue> authors = q.getResultList();

for (AuthorValue a : authors) {

System.out.println("Author "

+ a.getFirstName()

+ " "

+ a.getLastName()

+ " wrote "

+ a.getNumBooks()

+ " books.");

}

Summary

JPQL provides an easy way to query data from the database but it supports only a small
subset of the SQL standard, and it also does not support database specific features. But this is
not a real issue. You can use all these features by creating native SQL queries via EntityMan-
ager.createNativeQuery(String sql). Hibernate sends native queries directly to the database and you
can use all SQL and proprietary features that are supported by your database.

www.thoughts-on-java.org

Use Native Queries to Perform Bulk
Updates
If you just want to change 1 or 2 entities, you can simply fetch them from the database and perform
the update operation on them. But what about updating hundreds of entities?

You can, of course, use the same approach and load and update each of these entities. But that is
often too slow because Hibernate performs one or more queries to load the entity and an additional
one to update it. This quickly results in a few hundred SQL statements which are obviously slower
than just 1 statement which lets the database do the work.

As I explain in great detail in the Hibernate Performance Tuning Online Training², the number of
performed SQL statements is crucial for the performance of your application. So you better have an
eye on your statistics and keep the number of statements as low as possible. You can do that with
JPQL or native SQL queries which define the update in one statement.

Using a native UPDATE statement is quite easy as I will show you in the next section. But it also
creates issues with the always activated 1st level cache and doesn’t trigger any entity lifecycle events.
I’ll show you how to handle these problems at the end of this chapter.

Native UPDATE statements

As I explained in the previous chapter, creating a native query is pretty simple. You just have to call
the createNativeQuery method on the EntityManager and provide a native SQL statement to it.

em.createNativeQuery("UPDATE person p SET firstname = firstname || '-changed'").\

executeUpdate();

In this example, I update the firstName of all 200 persons in my test database with one query. That
takes about 30ms on my local test setup.

The typical JPA approach would require 200 SELECT statements to fetch each Person entity from
the database and additional 200 UPDATE statements to update each of them. The execution of these
400 statements and all the Hibernate-internal processing takes about 370ms on my local test setup.

I just used System.currentTimeMillis() to measure the execution time on my laptop which is
also running a lot of other applications. The setup is far from optimal and not suited for a real
performance test. So don’t rely on the measured milliseconds. But it becomes evident which
approach is the faster one, and that’s what it’s all about.

But it also creates some problems.

²http://www.thoughts-on-java.org/course-hibernate-performance-tuning

http://www.thoughts-on-java.org/course-hibernate-performance-tuning
http://www.thoughts-on-java.org/course-hibernate-performance-tuning

Use Native Queries to Perform Bulk Updates 6

Problem 1: Outdated 1st level cache

Hibernate puts all entities you use within a session into the first level cache. This is pretty useful for
write-behind optimizations and to avoid duplicate selects of the same entity. But it also creates an
issue, if you use a native query to update a bunch of database records.

Hibernate doesn’t know which records the native query updates and can’t update or remove the
corresponding entities from the first level cache. That means that Hibernate uses an outdated version
of the entity if you fetched it from the database before you executed the native SQL UPDATE
statement. You can see an example of it in the following code snippet. Both log statements print
out the old firstName.

PersonEntity p = em.find(PersonEntity.class, 1L);

em.createNativeQuery("UPDATE person p SET firstname = firstname || '-changed'").\

executeUpdate();

log.info("FirstName: "+p.getFirstName());

p = em.find(PersonEntity.class, 1L);

log.info("FirstName: "+p.getFirstName());

There are two options to avoid this issue:

The most obvious one is to not fetch any entities from the database which will be affected by the
UPDATE statement. But we both know that this is not that easy in a complex, modular application.

If you can’t avoid fetching some of the affected entities, you need to update the 1st level cache
yourself. The only way to do that is to detach them from the active persistence context and let
Hibernate fetch them again as soon as you need them. But be careful, Hibernate doesn’t perform
any dirty check before detaching the entity. So you also have to make sure that all updates are
written to the database before you detach any entity.

PersonEntity p = em.find(PersonEntity.class, 1L);

log.info("Detach PersonEntity");

em.flush();

em.detach(p);

em.createNativeQuery("UPDATE person p SET firstname = firstname || '-changed'").\

executeUpdate();

p = em.find(PersonEntity.class, 1L);

www.thoughts-on-java.org

Use Native Queries to Perform Bulk Updates 7

As you can see, I call the flush() and detach() method on the EntityManager before I perform the
native query. The call of the flush() method tells Hibernate to write the changed entities from the
1st level cache to the database. That makes sure that you don’t lose any update. You can then detach
the entity from the current persistence context and due to this remove it from the 1st level cache.
Afterward, you can modify the corresponding database record with a native query.

Problem 2: Not part of the entity life cycle

In most applications, this is not a huge problem. But I want to mention it anyways.

The native UPDATE statement is executed in the database and doesn’t use any entities. That provides
performance benefits, but it also avoids the execution of any entity lifecycle methods or entity
listeners.

If you use a framework like Hibernate Envers or implement any code yourself that relies on lifecycle
events, you have to either avoid native UPDATE statements or implement the operations of your
listeners within your use case.

Summary

With the standard JPA approach, you fetch an entity from the database and call some setter methods
to update it. This feels very natural to Java developers, but the number of required SQL statements
can create performance issues for huge sets of entities. It’s often a lot faster to update all entities
with one native or JPQL UPDATE statement.

But you then have to take care of your 1st level cache. Hibernate doesn’t know which records were
updated in the database and didn’t refresh the corresponding entities. You either have to make sure
that you haven’t fetched any entities which are affected by the update, or you have to detach them
from the Hibernate session before you execute the update.

You also have to check if you use any entity lifecyclemethods or entity listeners. The native UPDATE
statement doesn’t use any entities and therefore doesn’t trigger any lifecycle event. If you rely on
lifecycle events, you either have to avoid native UPDATE statements, or you have to handle the
missing lifecycle events within your use case.

www.thoughts-on-java.org

SQL Result Set Mappings
One downside of native queries is that they return a List of Object[] instead of the mapped entities
and value objects you normally use. Each of the Object[] represents one record returned by the
database.

You then need to iterate through the array, cast each Object to its particular type and map them to
our domain model. This creates lots of repetitive code and type casts as you can see in the following
example.

List<Object[]> results = this.em.createNativeQuery("SELECT a.id, a.firstName, a.\

lastName, a.version FROM Author a").getResultList();

results.stream().forEach((record) -> {

Long id = ((BigInteger) record[0]).longValue();

String firstName = (String) record[1];

String lastName = (String) record[2];

Integer version = (Integer) record[3];

});

It would be more comfortable if we could tell the EntityManager to map the result of the query into
entities or value objects as it is the case for JPQL statements. The good news is, JPA provides this
functionality. It is called SQL result set mapping, and I will explain it in this chapter.

The example

Before we dive into the details of SQL result set mappings, let’s have a look at the entity model that
we will use during this chapter.

It consists of an Author entity with an id, a version, a first name and a last name. For the more
complex mapping examples, I also need the Book entity which has an id, a version, a title and a
reference to the Author. To keep it simple, each book is written by only one author.

SQL Result Set Mappings 9

Class diagram entites

Basic mappings

Let’s begin with some basic mappings that tell Hibernate to map each record of the result set to an
entity. The easiest way to do that is to use the default mapping, but you can also provide your own
mapping definition.

How to use the default mapping

You just need to provide the entity class as a parameter to the createNativeQuery(String sqlString,
Class resultClass) method of the EntityManager to use the default mapping. The following snippet
shows how this is done with a very simple query. In a real project, you would use this with a stored
procedure or a very complex SQL query.

List<Author> results = this.em.createNativeQuery("SELECT a.id, a.firstName, a.la\

stName, a.version FROM Author a", Author.class).getResultList();

The query needs to return all attributes of the entity, and the JPA implementation (e.g. Hibernate)
will try to map the returned columns to the entity attributes based on their name and type. The

www.thoughts-on-java.org

SQL Result Set Mappings 10

EntityManager will then return a list of fully initialized Author entities that are managed by the
current persistence context. So the result is the same as if you had used a JPQL query, but you are
not limited to the small feature set of JPQL.

How to define a custommapping

While this automatic mapping is useful and easy to use, it is often not sufficient. If you perform a
more complex query or call a stored procedure, the names of the returned columns might not match
the entity definition. In these cases, you need to define a custom result mapping which specifies the
mapping for all entity attributes, even if the default mapping could be applied to some of them.

Let’s have a look at the example and rename the id column returned by the query to authorId:

SELECT a.id as authorId, a.firstName, a.lastName, a.version FROM Author a

The default mapping to the Author entity will not work with this query result because the names of
the selected columns and the entity attributes do not match. You need to define a custom mapping
for it. You can do this with annotations or in a mapping file (e.g. orm.xml).

The following code snippet shows how to define the result mapping with the@SqlResultSetMapping
annotation. The mapping consists of a name and an @EntityResult definition. The name of the
mapping, AuthorMapping in this example, will later be used to tell the EntityManager which
mapping definition it shall apply. The@EntityResult annotation defines the entity class to which the
result has to bemapped and an array of@FieldResult annotationswhich define themapping between
the column names and the entity attributes. Each @FieldResult gets the name of the attribute and
the column name as a parameter.

@SqlResultSetMapping(

name = "AuthorMapping",

entities = @EntityResult(

entityClass = Author.class,

fields = {

@FieldResult(name = "id", column = "authorId"),

@FieldResult(name = "firstName", column = "firstName"),

@FieldResult(name = "lastName", column = "lastName"),

@FieldResult(name = "version", column = "version")

}

)

)

As JPA 2.1 is based on Java 7, there is no support for repeatable annotations. Therefore you need
to place your @SqlResultSetMapping annotations within a @SqlResultMappings annotation if you
want to define more than one mapping at an entity.

www.thoughts-on-java.org

SQL Result Set Mappings 11

If you don’t like to add huge blocks of annotations to your entities, you can define the mapping in an
XMLmapping file. Hibernate’s default mapping file is called orm.xml andwill be used automatically,
if it is added to the META-INF directory of the jar file. As you can see below, the mapping is very
similar to the annotation based mapping I showed you before. I use the name AuthorMappingXml
to avoid name clashes with the annotation based mapping. In a real project, you don’t need to worry
about this, because you would use only one of the two described mappings.

<sql-result-set-mapping name="AuthorMappingXml">

<entity-result entity-class="org.thoughts.on.java.jpa.model.Author">

<field-result name="id" column="authorId"/>

<field-result name="firstName" column="firstName"/>

<field-result name="lastName" column="lastName"/>

<field-result name="version" column="version"/>

</entity-result>

</sql-result-set-mapping>

OK, so now you have defined your own mapping between the query result and the Author entity.
You can now provide the name of the mapping instead of the entity class as a parameter to the
createNativeQuery(String sqlString, String resultSetMapping) method. In the code snippet below, I
used the annotation defined mapping.

List<Author> results = this.em.createNativeQuery("SELECT a.id as authorId, a.fir\

stName, a.lastName, a.version FROM Author a", "AuthorMapping").getResultList();

Complex Mappings

The mappings described so far were quite simple. In real applications, you often need more complex
mappings that can handle multiple entities and additional columns or that can map to value objects
instead of entities.

How to map multiple entities

Let’s begin with a mapping that maps a query result to an Author entity and initializes the
relationship to a list of Book entities. You can define a query that fetches all columns of the Author
entity and all columns of the all related Book entities.

SELECT b.id, b.title, b.author_id, b.version, a.id as authorId, a.firstName, a.l\

astName, a.version as authorVersion FROM Book b JOIN Author a ON b.author_id = a\

.id

www.thoughts-on-java.org

SQL Result Set Mappings 12

As the Author and the Book table both have an id and a version column, we need to rename them
in the SQL statement. I decided to rename the id and version column of the Author to authorId and
authorVersion. The columns of the Book stay unchanged.

OK, so how do you define an SQL result set mapping that transforms the returned List of Object[]
to a List of fully initialized Book and Author entities?

The mapping definition looks similar to the custom mapping that we discussed earlier. The
@SqlResultMapping annotation defines the name of the mapping that you will need to reference
it later on. The main difference here is, that it uses two@EntityResult annotations, one for the Book
and one for the Author entity. Each@EntityResult looks again similar to the previous mapping and
defines the entity class and a list of @FieldResult mappings.

@SqlResultSetMapping(

name = "BookAuthorMapping",

entities = {

@EntityResult(

entityClass = Book.class,

fields = {

@FieldResult(name = "id", column = "id"),

@FieldResult(name = "title", column = "title"),

@FieldResult(name = "author", column = "author_id"),

@FieldResult(name = "version", column = "version")}),

@EntityResult(

entityClass = Author.class,

fields = {

@FieldResult(name = "id", column = "authorId"),

@FieldResult(name = "firstName", column = "firstName"),

@FieldResult(name = "lastName", column = "lastName"),

@FieldResult(name = "version", column = "authorVersion")

}

)

}

)

You can, of course, also define the mapping in an XML file. As described before, the default mapping
file is called orm.xml and will be automatically used, if it is added to the META-INF directory of
the jar file. The mapping definition itself looks similar to the already described annotation based
mapping definition.

www.thoughts-on-java.org

SQL Result Set Mappings 13

<sql-result-set-mapping name="BookAuthorMappingXml">

<entity-result entity-class="org.thoughts.on.java.jpa.model.Author">

<field-result name="id" column="authorId"/>

<field-result name="firstName" column="firstName"/>

<field-result name="lastName" column="lastName"/>

<field-result name="version" column="authorVersion"/>

</entity-result>

<entity-result entity-class="org.thoughts.on.java.jpa.model.Book">

<field-result name="id" column="id"/>

<field-result name="title" column="title"/>

<field-result name="author" column="author_id"/>

<field-result name="version" column="version"/>

</entity-result>

</sql-result-set-mapping>

Now you have a custom result set mapping definition, which defines the mapping between your
query result and the Book and Author entity. If you provide this to the createNativeQuery(String
sqlString, String resultSetMapping) method of the EntityManager, you get a List<Object[]>.

OK, that might not look like what we wanted to achieve in the first place. We wanted to get rid
of these Object[]. If you have a more detailed look at the Objects in the array, you see that these
are no longer the different columns of the query but the Book and Author entities. And as the
EntityManager knows that these two entities are related to each other, the relation to the Book
entity is already initialized.

List<Object[]> results = this.em.createNativeQuery("SELECT b.id, b.title, b.auth\

or_id, b.version, a.id as authorId, a.firstName, a.lastName, a.version as author\

Version FROM Book b JOIN Author a ON b.author_id = a.id", "BookAuthorMapping").g\

etResultList();

results.stream().forEach((record) -> {

Book book = (Book)record[0];

Author author = (Author)record[1];

// do something useful

});

How to map additional columns

Another very handy feature is the mapping of additional columns in the query result. If you want to
select all Authors and their number of Books, you can get this information with the following query.

www.thoughts-on-java.org

SQL Result Set Mappings 14

SELECT a.id, a.firstName, a.lastName, a.version, count(b.id) as bookCount FROM B\

ook b JOIN Author a ON b.author_id = a.id GROUP BY a.id, a.firstName, a.lastName\

, a.version

So how do you map this query result to an Author entity and an additional Long value?

That is quite simple; you just need to combine a mapping for the Author entity with a @Column-
Result definition. The mapping of the Author entity has to define the mapping of all columns, even
if you do not change anything as in the example below. The @ColumnResult specifies the name
of the column that shall be mapped and can optionally provide the Java type to which it shall be
converted. I used it to convert the BigInteger, that the query returns by default, to a Long.

@SqlResultSetMapping(

name = "AuthorBookCountMapping",

entities = @EntityResult(

entityClass = Author.class,

fields = {

@FieldResult(name = "id", column = "id"),

@FieldResult(name = "firstName", column = "firstName"),

@FieldResult(name = "lastName", column = "lastName"),

@FieldResult(name = "version", column = "version")

}

),

columns = @ColumnResult(name = "bookCount", type = Long.class)

)

As before, this mapping can also be defined with a similar looking XML configuration.

<sql-result-set-mapping name="AuthorBookCountMappingXml">

<entity-result entity-class="org.thoughts.on.java.jpa.model.Author">

<field-result name="id" column="id"/>

<field-result name="firstName" column="firstName"/>

<field-result name="lastName" column="lastName"/>

<field-result name="version" column="version"/>

</entity-result>

<column-result name="bookCount" class="java.lang.Long" />

</sql-result-set-mapping>

If you use this mapping in the createNativeQuery(String sqlString, String resultSetMapping) of the
EntityManager, you get a List that contains the initialized Author entity and the number of her/his
Books as a Long.

www.thoughts-on-java.org

SQL Result Set Mappings 15

List<Object[]> results = this.em.createNativeQuery("SELECT a.id, a.firstName, a.\

lastName, a.version, count(b.id) as bookCount FROM Book b JOIN Author a ON b.aut\

hor_id = a.id GROUP BY a.id, a.firstName, a.lastName, a.version", "AuthorBookCou\

ntMapping").getResultList();

results.stream().forEach((record) -> {

Author author = (Author)record[0];

Long bookCount = (Long)record[1];

System.out.println("Author: ID ["+author.getId()+"] firstName ["+author.getF\

irstName()+"] lastName ["+author.getLastName()+"] number of books ["+bookCount+"\

]");

});

This kind of mapping is pretty useful if your query result has no exact mapping to your entity
model. Reasons for this can be additional attributes calculated by the database, as you have seen in
the example above, or queries that select only some specific columns from related tables.

Constructor Result Mappings

Selecting entities and returning a tree of objects to the caller is not always the best approach. The
caller often needs only a subset of the provided information, and a particular value object would
be much more efficient. For these situations, JPQL supports constructor expressions that can be
specified in the select part of the JPQL query and define the constructor call for each selected record.
Since JPA 2.1, you can use a constructor result mapping to do the same with the result of a native
query.

I will use the same entities as in the previous examples. But as I want to map the query results to a
POJO, I will use the class BookValue with an id, a version, a title and the name of the author.

www.thoughts-on-java.org

SQL Result Set Mappings 16

Class Diagram BookValue

How to map to a value object

The query that returns the required columns to initialize a BookValue object is quite simple. It
joins the book and author table and selects the id, title and version columns of the book table and
concatenates the firtName and lastName columns of the author table.

SELECT b.id, b.title, b.version, a.firstName || a.lastName as authorName FROM Bo\

ok b JOIN Author a ON b.author_id = a.id

You now just have to define a mapping that uses the query result to call the constructor of the
BookValue. As in the previous examples, you can do that with a@SqlResultSetMapping annotation.
The following code snippet shows an example of such a mapping.

www.thoughts-on-java.org

SQL Result Set Mappings 17

@SqlResultSetMapping(

name = "BookValueMapping",

classes = @ConstructorResult(

targetClass = BookValue.class,

columns = {

@ColumnResult(name = "id", type = Long.class),

@ColumnResult(name = "title"),

@ColumnResult(name = "version", type = Long.class),

@ColumnResult(name = "authorName")

}

)

)

The name of the mapping, BookValueMapping in this example, will later be used to tell the
EntityManager which mapping to use. The @ConstructorResult annotation defines the constructor
call for a given target class. In this example, it’s the BookValue class. The array of @ColumnResult
annotations specifies the columns of the query result that will be used as constructor parameters
with their type and order. The type attribute is optional. You only need to provide it, if the type of
the column is different to the type of the constructor parameter. In this case, the default types of the
id and version columns are BigInteger and need to be converted to Long.

Similar to the mapping of multiple entities, the classes attribute of the @SqlResultSetMapping
accepts an array of@ConstructorResult annotations. If the mapping maps to multiple value objects
or entities, each column can be used multiple times.

And like all the mapping definitions before, you can also define the constructor result mapping in a
mapping XML file. The easiest way to do this is to use the default mapping file called orm.xml.

<sql-result-set-mapping name="BookValueMappingXml">

<constructor-result target-class="org.thoughts.on.java.jpa.value.BookValue">

<column name="id" class="java.lang.Long"/>

<column name="title"/>

<column name="version" class="java.lang.Long"/>

<column name="authorName"/>

</constructor-result>

</sql-result-set-mapping>

The usage of the constructor mapping is identical to the other SQL result set mappings. You just need
to provide its name to the createNativeQuery(String sqlString, String resultSetMapping) method of
the EntityManager.

www.thoughts-on-java.org

SQL Result Set Mappings 18

List<BookValue> results = this.em.createNativeQuery("SELECT b.id, b.title, b.ver\

sion, a.firstName || a.lastName as authorName FROM Book b JOIN Author a ON b.aut\

hor_id = a.id", "BookValueMapping").getResultList();

Hibernate Specific Mappings

All previous examples used features defined by the JPA specification. Hibernate implements all of
them and also provides its own API for mapping query results. While this creates a vendor lock and
makes migration to another framework difficult, it also offers some interesting features. As always,
you need to decide which trade-off you want to make.

How to use Hibernate Specific Features

The previous examples used JPA standard features and therefore the EntityManager to perform
native queries. If you want to use Hibernate specific features, and you need to use the Hibernate
Session instead. You can get it in a Java EE environment via the EntityManager.unwarp(Class<T>
cls) method as shown in the following code snippet:

@PersistenceContext

private EntityManager em;

...

public void queryWithAuthorBookCountHibernateMapping() {

Session session = this.em.unwrap(Session.class);

...

}

Aliases make the mapping easier

Hibernate provides its own API that supports a similar set of features as the JPA standard. But
using the Hibernate API is sometimes more convenient as the result mappings you have seen in the
previous examples.

One example for this is the following code snippet in which all Books and Authors are selected from
the database and mapped to the corresponding entities. In a real world project, you would probably
not use a native query for such a simple select. But it is good enough to explain the result mapping.

www.thoughts-on-java.org

SQL Result Set Mappings 19

List<Object[]> results = session.createSQLQuery("SELECT {b.*}, {a.*} FROM Book b\

JOIN Author a ON b.author_id = a.id").addEntity("b", Book.class).addEntity("a",\

Author.class).list();

results.stream().forEach((record) -> {

Book book = (Book) record[0];

Author author = (Author) record[1];

System.out.println("Author: ID [" + author.getId() + "] firstName [" + autho\

r.getFirstName() + "] lastName [" + author.getLastName() + "]");

System.out.println("Book: ID [" + book.getId() + "] title[" + book.getTitle(\

) + "]");

});

The syntax of the query might look strange at the beginning, but it provides a very easy way to
select all attributes of an entity. Instead of selecting all attributes in the select part of the query and
map them one by one to the entity attributes, as you have seen in the previous example, you now
use {a.} and {b.} to select them. The mapping from the aliases a and b to the entity classes is done by
calling addEntity(String tableAlias, Class entityType).

The following snippet shows a similar result mapping. This time, it selects an Author entity and the
number of her/his books as a scalar value. You already know this query from a previous example
that used an @SqlResultSetMapping annotation of the JPA standard to map the result.

List<Object[]> results = session.createSQLQuery("SELECT {a.*}, count(b.id) as bo\

okCount FROM Book b JOIN Author a ON b.author_id = a.id GROUP BY a.id, a.firstNa\

me, a.lastName, a.version").addEntity(Author.class).addScalar("bookCount", Stand\

ardBasicTypes.LONG).list();

results.stream().forEach((record) -> {

Author author = (Author) record[0];

Long bookCount = (Long) record[1];

System.out.println("Author: ID [" + author.getId() + "] firstName [" + autho\

r.getFirstName() + "] lastName [" + author.getLastName() + "] number of books ["\

+ bookCount + "]");

});

You could create similar mappings with JPA. But from my point of view, the Hibernate API is a
little bit easier to use, if the result mapping is specific to one query. But if there are no other reasons
to create a dependency to Hibernate instead of JPA, I would still use JPA. Additionally, the result
mapping annotations (or XML configuration) of the JPA standard can be used to map the results of
multiple queries.

ResultTransformer for more flexibility

Another and more powerful way to transform the query result is ResultTransformer. It provides the
option to define the result mapping in Java code.

www.thoughts-on-java.org

SQL Result Set Mappings 20

OK, you might say that this is what you tried to avoid in the beginning, and you are right about
that. But as you can see in the JavaDoc, Hibernate provides quite a list of different implementations
of this interface. So in most cases, there is no need to implement the mapping yourself. Otherwise,
the ResultTransformer provides only minimal benefits compared to a programmatic mapping using
the Stream API.

One of the provided ResultTransformer is theAliasToBeanResultTransformer, whichmaps the query
result to a Java Bean. But instead of using a constructor call, as I showed earlier, the transformer
uses the setter methods or fields to populate the object. This can be beneficial, if the class has lots of
fields and you would need to create a constructor with a parameter for each of them or if you would
need multiple constructors because multiple query results need to be mapped to the same class. The
following code snippet shows an example of the AliasToBeanResultTransformer:

List<BookValue> results = session.createSQLQuery("SELECT b.id, b.title, b.versio\

n, a.firstName || ' ' || a.lastName as authorName FROM Book b JOIN Author a ON b\

.author_id = a.id")

.addScalar("id", StandardBasicTypes.LONG).addScalar("title").addScalar("vers\

ion", StandardBasicTypes.LONG).addScalar("authorName")

.setResultTransformer(new AliasToBeanResultTransformer(BookValue.class)).lis\

t();

results.stream().forEach((book) -> {

System.out.println("Book: ID [" + book.getId() + "] title [" + book.getTitle\

() + "] authorName [" + book.getAuthorName() + "]");

});

The AliasToBeanResultTransformer uses the default constructor of the BookValue to instantiate an
object and searches the getter methods based on the alias and type of the returned column. You,
therefore, need to use the addScalar() method to rename the columns and change the types of the
id and version column.

Summary

The JPA standard provides different options to define result mappings. If you select all columns
mapped by an entity and provide the right column aliases, you just need to provide the class of
the entity to use the default mapping. Hibernate will then use the mapping definition to map the
columns of the result set to the entity attributes.

You can also provide your own mapping definition with a@SqlResultSetMapping annotation or an
XML configuration. This allows you to map a query result to multiple entities or POJOs or to map
additional scalar values.

Hibernate implements the JPA result set mappings and provides its own API. It supports aliases to
define the mapping between the query result and the Java entities or value objects. Besides being

www.thoughts-on-java.org

SQL Result Set Mappings 21

easier to use, this also provides the advantage, that all information is in the same place. There is
no need to search for the mapping definition in some annotations or XML files. On the other hand,
it requires more work to define the mapping, and it is not as easy to reuse as the JPA standard
approach.

The ResultTransformer, on the other hand, can provide some real benefits compared to the standard
mapping. These can be used to do more complex mappings, and Hibernate already provides a list of
ResultTransformer implementations. If none of the existing transformation implementation provides
the required functionality, there is also the option to implement your own one. But in this case, I
would prefer to use the Streams API to map the query results inside my business code.

www.thoughts-on-java.org

	Table of Contents
	Foreword
	Create Native Queries
	Create dynamic native queries
	Parameter binding
	Create named native queries
	Summary

	Use Native Queries to Perform Bulk Updates
	Native UPDATE statements
	Problem 1: Outdated 1st level cache
	Problem 2: Not part of the entity life cycle
	Summary

	SQL Result Set Mappings
	The example
	Basic mappings
	Complex Mappings
	Constructor Result Mappings
	Hibernate Specific Mappings
	How to use Hibernate Specific Features
	Summary

