@JournalDev

Java Design Patterns

A Programmer’s Approach

Pankaj Kumar

Table of Content

Creational Desi@n PatternS.......ooueruieriiriiriiiieiiesieeeeeeee ettt s 5
L. SINGLEton PatterN........oiiiiiieiieeiie et ee e e e e e e 6
A. Eager INTtaliZatioNcocovieiiiiiiieiiecie ettt 7
B. Static block initialiZation.........coc.eeviiiiiiiiiieieee e 7
C. Lazy INTtAlIZAtIONoouiieiiieiieeiieiie ettt ettt ettt esaeeesbeeneneensaens 8
D. Thread Safe SINGIetoncccuiieiiieeiiieeeeee e 9
E. Bill Pugh Singleton Implementationcccceeevieriieiienieeiienieeieesee e 10
F. Using Reflection to destroy Singleton Pattern............ccccoveeeviierciieinieecciee e 11
G. ENUM SINGLELON........eiiiiiiiieiiecii ettt 12
H. Serialization and SINGIELONceccuiiiiiiiiiiiii e 12

R 11 (o) o A o 111<) o R PRSRTSPRPR 15
AL SUPET ClaSS ..ttt ettt ettt e et e bt e bt e saeeeateeeaeeenee 15
B. SUD ClaSS@S....eeuieiiiiiieiieie ettt ettt et sttt ettt st 15
C. FaCLOTY ClaSS ...ttt ettt ettt 17
D. Benefits of Factory Patternoccoevciieriieiiiiiiicieccceee e 19
E. Factory Pattern Examples in JDKccccoiiiiiiiiiiiieee e 19

3. Abstract Factory Patterncccueeeiiiiiiiieiiieeeeeeeeeese e 20
A. Super Class and SUD-CIaSSeSccuerruirruireiiiriieeieeite e 20
B. Factory Classes for Each sub-Classcccccveviiiiiieniiiiieniececceeeeee e 22
B. Benefits of Abstract Factory Patterncccooeieiieiiiiienieeeeeee 25
C. Abstract Factory Pattern Examples in JDK.........ccccccevviiiiiiniiiiiieniicieeee e, 25

4. BUILAEr PAttern ..cc..eeiiieiiiiii ettt 26
A. Builder Pattern Implementationccceeecueeeriiieeniie e e 26
B. Builder Design Pattern Example in JDK........cccoooiiiniiiiniiiececeee 29

5. Prototype Pattern.......ccooiiiiiieciee et e e e e 30
Structural Design PatternsS.........occuiiiiiiiiiiie e 33
1. Adapter Design Pattern.........coveviiiiiiiiniiieiiceeecteee e 33
A. Two Way Adapter Pattern.........cccoevuiiiiiiiiniieeeiieeeee et 34
B. Class Adapter Implementationcccceceriereriiniineiienieecetee e 34
C. Object Adapter Implementationc.eeecveeeiieeriieeeeiie e 35
D. Adapter Pattern Class DIagrami...........cccceceriereriiiniiniinicnieneeeeeceeee e 37
E. Adapter Pattern Example in JDKcccoooiiiiiiiiiieeececee e 38

2. ComPOSIEE PAtteIMeiuiiiiiiiiiiiiieicetet ettt 39
A. Base COMPONENL ...cc.uvieiiiieeiiieeiieeeiieeeiteeeieeesieeesreeesbeeessbee e saeessnseessseeesseesnnes 39
B Leaf ODJECLS ...uviiiiieiiieiie ettt sttt ettt e e snaeenteesneeenne 40
C. COMPOSILL....vveeirieeeeiieesiiieeiteeesteeestteeestreeesreesseeeasaeeaseeessseeensseesasseeensseesnsseesnsseas 40
D. Important Points about Composite Patternccoeceeeveierieniiiiniieiienie e, 43

I o (0D 4 0 22 1115 v o PO TSP PPPRRRUPURRR 44
AL MAAIN CLASS. ettt ettt sttt et 44

3 2 o)4 A O -]SSR 45
C. Proxy Pattern Client Test Program............ccoocieriieiieniiinienieeiee e 46

4. FlyWeight Pattern.......veeiiiieeiiieciee ettt snaeesnaeeen 47
A. Flyweight Interface and Concrete Classesoovveeiierieeiiierieniiienieeieesiie e 48
B. FIyweight FACIOTY ...vvieeiiiecieeeeeee et e 49

© JOURNALDEV.COM PAGE 1 OF 132

http://www.journaldev.com/

C. Flyweight Pattern Client EXamplecccoeviiiiieiieniiiieieeeece e 50

D. Flyweight Pattern Example in JDKcoociiiiiiiiiiee e 54
E. IMportant POINESc.cooiiiiiiiiiiiiieie ettt ettt sbe e 54

5. Facade Pattern..........ooiuiiiiiiie e e 55
AL Set Of INEITACES ..uveivieiiiiieiecee e 55
B. Facade INterfaceooueiiiiiiiiiee e 56
C. CHENt PrOZIAIMcocuvieiieeiiieiee ettt ettt ettt ae et saaeesbeessaeeseesnaeenseennnas 58
D. ImpPOTtant POINESeeciuiiiiiieeciieece ettt e e e e e e enee 59

6. Brid@e Pattern ...c..eoeiiiiiiiiieii ettt et st 60
7. Decorator PAtLEITcooviiiiiiiiiiee et 64
A. Component INTETTACE........ccueeiiieiieeiieiie ettt ens 65
B. Component Implementation............cceeeuieieiieeriiieeeiee et 65
G DIBCOTALOT ...ttt ettt ettt e s st e st e enneenaees 66
D: CONCIete DECOTALOTS. .. .eeiiiiiiieeeiiiieeeeiiiee e et e e ee st eeeeerreeeesaaeeeeenraeeeesnnsaeeeennnees 66
D. Decorator Pattern Class Diagram............c.ccecueevierciieniiieniienieeieeneeeie e evee e 67
E. Decorator Pattern Client Programccoccviiviiniiniininiiniicecneeicneeeeees 68
F. IMPOTtant POINES.......c.coiiiiiiiiiiieieecie ettt e sabe e e 68
Behavioral Design Patterns..........ooovieiiiiiiiiiiieiecie ettt et eneaens 69
1. Template Method Pattern............cooouiiiiiiiieiiieccie e 69
A. Template Method ADStract Class.......c..cccveevierieeiiienieeieesie e 69
B. Template Method Concrete Classescoocueerieriiienieeiiienie e 70
C. Template Method Pattern CHentccoocveeviieeiieniienieeeecieeeeeee e 71
D. Template Method Class DIagramccccceceeveriiiniineenienieneeieeene e 72
E. Template Method Pattern in JDKc.cocoveviiiiiiiiiieiieiiecieeeeeee e 73
F. IMPOTtant POINES.......c..eeiiuiiiiiiieciieece ettt e 73

2. Mediator Pattern.........coouiiiiiiiiiiieeeee e 74
A. Mediator INtETTACEcc.eiiiiiiieeiiee e 75
B. Colleague INteTfaceccoviiieiiiiiiiieeieeee e s e 75
C. Conerete MEdIator.........covieiieiieeiieeie ettt ettt ettt et et eenseeseees 76
C. ConcCrete COllEAZUEveeeiieeeiie ettt e e e e e e e e 76
D. Mediator Pattern CHENt........ccceeiuieiiiiiieieeieee e 77
E. Mediator Pattern Class Diagramccceeeeuveeriiieeniieeniie e 78
G. ImPOrtant POINScocueiiiiiiiiiiiiierteeeee et 78

3. Chain of Responsibility Patternccceeeiiiieiiiiiiieeeceeeeeeee e 79
A. Base Classes and INterface..........coccueeviieniiiiieniiiieeeeee e 80
B. Concrete Chain Implementationscccoecveeriieeeiieeniie e e 81
C. Creating the CRaIN.........coouiiiiiiiieee et 83
D. Class DIQ@Iamcccueeeiiiieiiieeieeeiieeeieeeeieeeeree et eeereeessbeesssaeeessaeesnseeenseeennes 85
E. Chain of Responsibility Pattern Examples in JDK........c..cocoviiiiiiinininiiee 85
F. IMPOTtant POINES.......c.uiiiiiiieiiieeieece et et 85

4. ODSEIVET PAETN.....eeutiiiiiiiiiiiieiteec ettt sttt 87
A. Observer Pattern EXamplecccooeiiiiiiiiiiieeecee e 88
B. Observer Pattern Class DIiagramccceecueerieiiiienieeiiesie e 93

TIN5 o 15T A 2 1) 4 F TSR 94
A. Strategy Pattern Class DIiagramcccoecueeviieriienieniieieceesee e 98
B. IMportant POINESoeeiiiiiiieciieceeee ettt e 98

© JOURNALDEV.COM PAGE 2 OF 132

http://www.journaldev.com/

6. Command Patlern.........ooooiiiiiiiiiii 99

AL RECEIVET CLASSES ..ttt ettt et st 99
B. Command Interface and Implementationsc.ccceeeeieerienieeniienieeniienre e 101
C. INVOKET ClaSS ...ttt ettt sttt ettt st e sbe e e eseeeeeens 102
C. ClIaS8 DIAZIAIMeeeiiieiiieiieciie ettt ettt ettt ste et e ebeessaesnsaessaesnseenssesnsaens 104
D. Command Pattern JDK EXampleccccceeeiiiiiiiiiiiiiccie e 105
E. IMportant POINEScooiiiiiieriiieiieiecie ettt ensee s 105
N ¥ 11 11 1<) o SRS 107
AL State INEITACE ..ot 108
B. Concrete State Implementations...........ccuveeeuieeriiieeriieeereeeeiee e eveeeeveeeiaeeens 108
C. Context Implementation.............cceccueerieriienieeieeriie ettt ereeseeeebeeseeeeseens 109
D. TSt PrOZIAMvviiieeiiiiiee ettt ettt e e e see e e et e e e e naa e e e e snnaeaeeennsaaeeeanns 110
8. VISTEOT PAIIETIL ...eueeitiiiieeiieiecee ettt st s 111
A. Visitor Pattern Class Diagram..........cccooceeveriiiniinennienieneecneeneeeeeeseeee e 114
0. Interpreter PAtterncccuiiiiiieeiiie et et 116
AL Class DIQGIamMcoouiiiiiiiiiiiieee ettt ettt 119
B. Important POINScciiiiiiiiiiiiiieiecieeiteee ettt 119
10. Tterator PAtternveiiiiiiieee ettt et e e et e e e e ar e e e eensaaeeeenns 120
A. Tterator Pattern in JDKccoooiiiiiiiieeee e 125
B. IMPOrtant POINESc..oeeiiiiiiiieciiecciie ettt eree et e e e eaaeeeanee e 125
11. Memento Pattern......c..coiuiiiiiiiiiiiieieeee et 126
AL Ori@INAtOT ClaSS ...veiuviiiiiiiieiiceitete ettt ettt et 126
B. Caretaker Class.......cc.eiiiiierieeieriierieee ettt et 127
C. Memento TeSt ClaSS......uuiiciiieiiieeiiee ettt eree et e e eeereeeaneeeans 128
COPYIIZNE NOLICE. ..uvieiiieiieeiieeciee ettt et erte ettt e e bt esteeeebeessaeesseensaeensaessseesseensseensaens 130
RETRIEIICES ...ttt ettt et et e e seeas 131

© JOURNALDEV.COM PAGE 3 OF 132

http://www.journaldev.com/

Design Patterns Overview

Design Patterns are very popular among software developers. A design
pattern is a well-described solution to a common software problem.

Some of the benefits of using design patterns are:

1. Design Patterns are already defined and provides industry standard
approach to solve a recurring problem, so it saves time if we sensibly
use the design pattern.

2. Using design patterns promotes reusability that leads to
more robust and highly maintainable code. It helps in reducing total
cost of ownership (TCO) of the software product.

3. Since design patterns are already defined, it makes our code easy to
understand and debug. It leads to faster development and new
members of team understand it easily.

Java Design Patterns are divided into three categories —
creational, structural, and behavioral design patterns.

© JOURNALDEV.COM PAGE 4 OF 132

http://www.journaldev.com/

Creational Design Patterns

Creational design patterns provide solution to instantiate an object in the best
possible way for specific situations.

The basic form of object creation could result in design problems or add
unwanted complexity to the design. Creational design patterns solve this
problem by controlling the object creation by different ways.

There are five creational design patterns that we will discuss in this eBook.

Singleton Pattern
Factory Pattern
Abstract Factory Pattern
Builder Pattern
Prototype Pattern

SN =

All these patterns solve specific problems with object creation, so you
should understand and use them when needed.

© JOURNALDEV.COM PAGE 5 OF 132

http://www.journaldev.com/

1. Singleton Paitern

Singleton is one of the Gangs of Four Design patterns and comes in
the Creational Design Pattern category. From the definition, it seems to be
a very simple design pattern but when it comes to implementation, it comes
with a lot of implementation concerns. The implementation of Singleton
pattern has always been a controversial topic among developers. Here we
will learn about Singleton design pattern principles, different ways to
implement Singleton and some of the best practices for its usage.

Singleton pattern restricts the instantiation of a class and ensures that only
one instance of the class exists in the java virtual machine. The singleton
class must provide a global access point to get the instance of the class.
Singleton pattern is used for logging, driver objects, caching and thread
pool.

Singleton design pattern is also used in other design patterns like Abstract
Factory, Builder, Prototype, Facade etc. Singleton design pattern is used in
core java classes also, for example java.lang.Runtime, java.awt.Desktop.

To implement Singleton pattern, we have different approaches but all of
them have following common concepts.

e Private constructor to restrict instantiation of the class from other
classes.

« Private static variable of the same class that is the only instance of the
class.

« Public static method that returns the instance of the class, this i1s the
global access point for outer world to get the instance of the singleton
class.

In further sections, we will learn different approaches of Singleton pattern

implementation and design concerns with the implementation.

© JOURNALDEV.COM PAGE 6 OF 132

http://www.journaldev.com/
http://www.journaldev.com/977/java-logging-api-tutorial-examples-logger-levels-handlers-formatters-filters
http://www.journaldev.com/1069/java-thread-pool-example-using-executors-and-threadpoolexecutor
http://www.journaldev.com/1069/java-thread-pool-example-using-executors-and-threadpoolexecutor
http://www.journaldev.com/1418/abstract-factory-design-pattern-in-java
http://www.journaldev.com/1418/abstract-factory-design-pattern-in-java
http://www.journaldev.com/1425/builder-design-pattern-in-java
http://www.journaldev.com/1440/prototype-pattern-in-java
http://www.journaldev.com/1557/facade-pattern-in-java-example-tutorial

A. Eager Initialization

In eager initialization, the instance of Singleton Class is created at the time
of class loading, this is the easiest method to create a singleton class but it
has a drawback that instance is created even though client application might
not be using it.

Here is the implementation of static initialization singleton class.

package com.journaldev.singleton;

public class EagerInitializedSingleton {

private static final EagerInitializedSingleton instance = new

EagerInitializedSingleton() ;

//private constructor to avoid client applications to use
constructor

private EagerInitializedSingleton () {}

public static EagerInitializedSingleton getInstance () {

return instance;

}

If your singleton class is not using a lot of resources, this is the approach to
use. But in most of the scenarios, Singleton classes are created for resources
such as File System, Database connections etc and we should avoid the
instantiation until unless client calls the getInstance method. Also this
method doesn’t provide any options for exception handling.

B. Static block initialization

Static block initialization implementation is similar to eager initialization,
except that instance of class is created in the static block that provides option
for exception handling.

© JOURNALDEV.COM PAGE 7 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1365/static-in-java-methods-variables-block-class
http://www.journaldev.com/1696/java-exception-handling-tutorial-with-examples-and-best-practices

package com.journaldev.singleton;
public class StaticBlockSingleton ({
private static StaticBlockSingleton instance;
private StaticBlockSingleton () {}
//static block initialization for exception handling
static{
try{
instance = new StaticBlockSingleton();

}catch (Exception e) {
throw new RuntimeException ("Exception occured in creating

singleton instance");

}

public static StaticBlockSingleton getInstance () {

return instance;

Both eager initialization and static block initialization creates the instance
even before it’s being used and that is not the best practice to use. So in
further sections, we will learn how to create Singleton class that supports
lazy initialization.

C. Lazy Initialization

Lazy initialization method to implement Singleton pattern creates the
instance in the global access method. Here is the sample code for creating
Singleton class with this

package com.journaldev.singleton;
public class LazyInitializedSingleton {
private static LazyInitializedSingleton instance;

private LazyInitializedSingleton() {}

© JOURNALDEV.COM PAGE 8 OF 132

http://www.journaldev.com/

public static LazyInitializedSingleton getInstance () {
if (instance == null) {
instance = new LazylInitializedSingleton ()

}

return instance;

The above implementation works fine in case of single threaded
environment but when it comes to multithreaded systems, it can cause issues
if multiple threads are inside the if loop at the same time. It will destroy the
singleton pattern and both threads will get the different instances of
singleton class. In next section, we will see different ways to create a thread-

safe singleton class.

D. Thread Safe Singleton

The easier way to create a thread-safe singleton class is to make the global
access method synchronized, so that only one thread can execute this
method at a time. General implementation of this approach is like the below
class.

package com.journaldev.singleton;
public class ThreadSafeSingleton {
private static ThreadSafeSingleton instance;
private ThreadSafeSingleton() {}
public static synchronized ThreadSafeSingleton getInstance () {
if (instance == null) {

instance = new ThreadSafeSingleton();

}

return instance;

© JOURNALDEV.COM PAGE 9 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1061/java-synchronization-and-thread-safety-tutorial-with-examples
http://www.journaldev.com/1061/java-synchronization-and-thread-safety-tutorial-with-examples
http://www.journaldev.com/1061/java-synchronization-and-thread-safety-tutorial-with-examples

Above implementation works fine and provides thread-safety but it reduces
the performance because of cost associated with the synchronized method,
although we need it only for the first few threads who might create the
separate instances (Read: Java Synchronization). To avoid this extra
overhead every time, double checked locking principle is used. In this
approach, the synchronized block is used inside if condition with an
additional check to ensure that only one instance of singleton class is
created.

Below code snippet provides the double checked locking implementation.

public static ThreadSafeSingleton getInstanceUsingDoublelLocking () {
if (instance == null) {
synchronized (ThreadSafeSingleton.class) {
if (instance == null) {
instance = new ThreadSafeSingleton();

}

return instance;

E. Bill Pugh Singleton Implementation

Prior to Java 5, java memory model had a lot of issues and above approaches
used to fail in certain scenarios where too many threads try to get the
instance of the Singleton class simultaneously. So Bill Pugh came up with a
different approach to create the Singleton class using an inner static helper
class. The Bill Pugh Singleton implementation goes like this;

package com.journaldev.singleton;
public class BillPughSingleton ({
private BillPughSingleton () {}
private static class SingletonHelper({

private static final BillPughSingleton INSTANCE = new
BillPughSingleton() ;

© JOURNALDEV.COM PAGE 10 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1061/java-synchronization-and-thread-safety-tutorial-with-examples
http://www.journaldev.com/996/java-nested-classes-java-inner-class-static-nested-class-local-inner-class-and-anonymous-inner-class
http://www.journaldev.com/996/java-nested-classes-java-inner-class-static-nested-class-local-inner-class-and-anonymous-inner-class

public static BillPughSingleton getInstance () {
return SingletonHelper.INSTANCE;

Notice the private inner static class that contains the instance of the
singleton class. When the singleton class is loaded, SingletonHelper class is
not loaded into memory and only when someone calls the getlnstance
method, this class gets loaded and creates the Singleton class instance.

This is the most widely used approach for Singleton class as it doesn’t
require synchronization. I am using this approach in many of my projects
and 1t’s easy to understand and implement also.

F. Using Reflection to destroy Singleton
Pattern

Reflection can be used to destroy all the above singleton implementation
approaches. Let’s see this with an example class.

package com.journaldev.singleton;
import java.lang.reflect.Constructor;

public class ReflectionSingletonTest {

public static void main(String[] args) {
EagerInitializedSingleton instanceOne =
FEagerInitializedSingleton.getInstance() ;
EagerInitializedSingleton instanceTwo = null;
try {
Constructor[] constructors =
FEagerInitializedSingleton.class.getDeclaredConstructors();
for (Constructor constructor : constructors) {
//Below code will destroy the singleton pattern
constructor.setAccessible (true) ;
instanceTwo = (EagerInitializedSingleton)

constructor.newInstance () ;

© JOURNALDEV.COM PAGE 11 OF 132

http://www.journaldev.com/

break;

}

} catch (Exception e) {

e.printStackTrace () ;

}

System.out.println (instanceOne.hashCode()) ;
System.out.println (instanceTwo.hashCode ()) ;

When you run the above test class, you will notice that hashCode of both the
instances are not same that destroys the singleton pattern. Reflection is very
powerful and used in a lot of frameworks like Spring and Hibernate, do
check out Java Reflection Tutorial.

G. Enum Singleton

To overcome this situation with Reflection, Joshua Bloch suggests the use of
Enum to implement Singleton design pattern as Java ensures that any enum
value is instantiated only once in a Java program. Since Java Enum values
are globally accessible, so is the singleton. The drawback is that the enum
type is somewhat inflexible; for example, it does not allow lazy
initialization.

package com.journaldev.singleton;

public enum EnumSingleton {

INSTANCE;

public static void doSomething () {
//do something

}

H. Serialization and Singleton

Sometimes in distributed systems, we need to implement Serializable
interface in Singleton class so that we can store its state in file system and

© JOURNALDEV.COM PAGE 12 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1789/java-reflection-tutorial-for-classes-methods-fields-constructors-annotations-and-much-more
http://www.journaldev.com/716/java-enum-examples-with-benefits-and-class-usage

retrieve it at later point of time. Here is a small singleton class that
implements Serializable interface also.

package com.journaldev.singleton;

import java.io.Serializable;

public class SerializedSingleton implements Serializable({
private static final long serialVersionUID = -7604766932017737115L;
private SerializedSingleton () {}

private static class SingletonHelper({
private static final SerializedSingleton instance = new
SerializedSingleton () ;

}

public static SerializedSingleton getInstance () {
return SingletonHelper.instance;

The problem with above serialized singleton class is that whenever we
deserialize it, it will create a new instance of the class. Let’s see it with a
simple program.

package com.journaldev.singleton;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;

import java.io.ObjectInput;

import java.io.ObjectInputStream;
import java.io.ObjectOutput;

import java.io.ObjectOutputStream;

public class SingletonSerializedTest {
public static void main (String[] args) throws
FileNotFoundException, IOException, ClassNotFoundException {

SerializedSingleton instanceOne =
SerializedSingleton.getInstance()

© JOURNALDEV.COM PAGE 13 OF 132

http://www.journaldev.com/

ObjectOutput out = new ObjectOutputStream(new FileOutputStream (
"filename.ser"));
out.writeObject (instanceOne) ;

out.close () ;

//deserailize from file to object
ObjectInput in = new ObjectInputStream(new FileInputStream (
"filename.ser"));
SerializedSingleton instanceTwo = (SerializedSingleton)
in.readObject () ;
in.close () ;

System.out.println ("instanceOne
hashCode="+instanceOne.hashCode()) ;
System.out.println ("instanceTwo

hashCode="+instanceTwo.hashCode()) ;

Output of the above program is;

instanceOne hashCode=2011117821
instanceTwo hashCode=109647522

So it destroys the singleton pattern, to overcome this scenario all we need to
do it provide the implementation of readResolve() method.

protected Object readResolve () {
return getlInstance();

After this you will notice that hashCode of both the instances are same in
test program.

© JOURNALDEV.COM PAGE 14 OF 132

http://www.journaldev.com/

2. Factory Pattern

Factory Pattern is one of the Creational Design pattern and it’s widely
used in JDK as well as frameworks like Spring and Struts.

Factory design pattern is used when we have a super class with multiple sub-
classes and based on input, we need to return one of the sub-class. This
pattern take out the responsibility of instantiation of a class from client
program to the factory class. Let’s first learn how to implement factory

pattern in java and then we will learn its benefits and we will see its usage in
JDK.

A. Super Class

Super class in factory pattern can be an interface, abstract class or a normal
java class. For our example, we have super class as abstract class with
overridden toString() method for testing purpose.

package com.journaldev.design.model;
public abstract class Computer ({

public abstract String getRAM() ;
public abstract String getHDD() ;
public abstract String getCPU() ;

@Override
public String toString() {
return "RAM= "+this.getRAM()+", HDD="+this.getHDD()+",
CPU="+this.getCPU () ;
}
}

B. Sub Classes

Let’s say we have two sub-classes PC and Server with below
implementation.

© JOURNALDEV.COM PAGE 15 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1582/abstract-class-in-java-with-example
http://www.journaldev.com/817/overriding-methods-in-java-always-use-override-annotation

package com.journaldev.design.model;

public class PC extends Computer ({

private String ram;
private String hdd;

private String cpu;

public PC(String ram, String hdd, String cpu) {
this.ram=ram;
this.hdd=hdd;
this.cpu=cpu;
}
@Override
public String getRAM() ({
return this.ram;

@Override
public String getHDD () {
return this.hdd;

@Override
public String getCPU() {
return this.cpu;

Notice that both the classes are extending Computer class.

package com.journaldev.design.model;

public class Server extends Computer {

private String ram;
private String hdd;
private String cpu;

public Server (String ram, String hdd, String cpu) {

this.ram=ram;
this.hdd=hdd;

© JOURNALDEV.COM PAGE 16 OF 132

http://www.journaldev.com/

this.cpu=cpu;

}

@Override

public String getRAM() ({
return this.ram;

@Override
public String getHDD () {
return this.hdd;

@Override
public String getCPU() {
return this.cpu;

C. Factory Class

Now that we have super classes and sub-classes ready, we can write our
factory class. Here is the basic implementation.

package com.journaldev.design.factory;

import com.journaldev.design.model.Computer;
import com.journaldev.design.model.PC;
import com.journaldev.design.model.Server;

public class ComputerFactory {
public static Computer getComputer (String type, String ram, String
hdd, String cpu) {
if ("PC".equalsIgnoreCase (type)) return new PC(ram, hdd, cpu):;
else if ("Server".equalsIgnoreCase (type)) return new Server (ram,

hdd, cpu);

return null;

© JOURNALDEV.COM PAGE 17 OF 132

http://www.journaldev.com/

1. We can keep Factory class Singleton or we can keep the method that
returns the subclass as static.

2. Notice that based on the input parameter, different subclass is created
and returned.

<<lava (lasg=>
(3 ComputarFactory

cormjoumal dev_design faciony

<<|ava (lasg=>
& Computer

coim ol chevw dhess | g rmiosdied

/N

<<lava Clagg=> << |ava (lagg==
@ 5arver EPc
oo ol ey el g rmosdied SO ol dien Ses | gni e

Here is a simple test client program that uses above factory pattern
implementation.

package com.journaldev.design.test;

import com.journaldev.design.abstractfactory.PCFactory;
import com.journaldev.design.abstractfactory.ServerFactory;
import com.journaldev.design.factory.ComputerFactory;
import com.journaldev.design.model.Computer;

public class TestFactory ({

public static void main (String[] args) {
Computer pc = ComputerFactory.getComputer ("pc","2 GB","500
GB","2.4 GHz");
Computer server = ComputerFactory.getComputer ("server","16
GB","1 TB","2.9 GHz");
System.out.println ("Factory PC Config::"+pc);
System.out.println ("Factory Server Config::"+server);

© JOURNALDEV.COM PAGE 18 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-with-examples
http://www.journaldev.com/1365/static-in-java-methods-variables-block-class

}
Output of above program is:

Factory PC Config::RAM= 2 GB, HDD=500 GB, CPU=2.4 GHz
Factory Server Config::RAM= 16 GB, HDD=1 TB, CPU=2.9 GHz

D. Benefits of Factory Pattern

1. Factory pattern provides approach to code for interface rather than
implementation.

2. Factory pattern removes the instantiation of actual implementation
classes from client code, making it more robust, less coupled and easy
to extend. For example, we can easily change PC class
implementation because client program is unaware of this.

3. Factory pattern provides abstraction between implementation and
client classes through inheritance.

E. Factory Pattern Examples in JDK

1. java.util.Calendar, ResourceBundle and NumberFormat getInstance()

methods uses Factory pattern.
2. valueOf() method in wrapper classes like Boolean, Integer etc.

© JOURNALDEV.COM PAGE 19 OF 132

http://www.journaldev.com/

3. Abstract Factory Pattern

Abstract Factory is one of the Creational pattern and almost similar to
Factory Pattern except the fact that it’s more like factory of factories.

If you are familiar with factory design pattern in java, you will notice that
we have a single Factory class that returns the different sub-classes based on
the input provided and factory class uses if-else or switch statement to
achieve this.

In Abstract Factory pattern, we get rid of if-else block and have a factory
class for each sub-class and then an Abstract Factory class that will return
the sub-class based on the input factory class. At first it seems confusing but
once you see the implementation, it’s really easy to grasp and understand the
minor difference between Factory and Abstract Factory pattern.

Like our factory pattern post, we will use the same super class and sub-
classes.

A. Super Class and Sub-Classes

package com.journaldev.design.model;
public abstract class Computer {

public abstract String getRAM() ;
public abstract String getHDD() ;
public abstract String getCPU() ;

@Override
public String toString() {
return "RAM= "+this.getRAM()+", HDD="+this.getHDD()+",
CPU="+this.getCPU () ;
}
}

package com.journaldev.design.model;

public class PC extends Computer ({

© JOURNALDEV.COM PAGE 20 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1392/factory-design-pattern-in-java
http://www.journaldev.com/1392/factory-design-pattern-in-java

private String ram;
private String hdd;
private String cpu;
public PC(String ram, String hdd, String cpu) {
this.ram=ram;
this.hdd=hdd;
this.cpu=cpu;
}
@Override
public String getRAM() ({
return this.ram;

@Override
public String getHDD () {
return this.hdd;

@QOverride
public String getCPU() ({
return this.cpu;

package com.journaldev.design.model;

public class Server extends Computer {

private String ram;
private String hdd;
private String cpu;
public Server (String ram, String hdd, String cpu) {
this.ram=ram;
this.hdd=hdd;
this.cpu=cpu;
}
@Override
public String getRAM() {
return this.ram;

© JOURNALDEV.COM PAGE 21 OF 132

http://www.journaldev.com/

@Override
public String getHDD () {
return this.hdd;

@Override
public String getCPU() ({
return this.cpu;

B. Factory Classes for Each sub-class

First of all we need to create an Abstract Factory interface or abstract class.

package com.journaldev.design.abstractfactory;
import com.journaldev.design.model.Computer;
public interface ComputerAbstractFactory {

public Computer createComputer () ;

Notice that createComputer() method is returning an instance of super class
Computer. Now our factory classes will implement this interface and return
their respective sub-class.

package com.journaldev.design.abstractfactory;

import com.journaldev.design.model.Computer;
import com.journaldev.design.model.PC;

public class PCFactory implements ComputerAbstractFactory {
private String ram;

private String hdd;
private String cpu;

© JOURNALDEV.COM PAGE 22 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1582/abstract-class-in-java-with-example

public PCFactory (String ram, String hdd, String cpu) {
this.ram=ram;
this.hdd=hdd;
this.cpu=cpu;
}
@Override
public Computer createComputer () ({
return new PC (ram, hdd, cpu);

Similarly we will have a factory class for Server sub-class.

package com.journaldev.design.abstractfactory;

import com.journaldev.design.model.Computer;

import com.journaldev.design.model.Server;

public class ServerFactory implements ComputerAbstractFactory {

private String ram;
private String hdd;
private String cpu;

public ServerFactory (String ram, String hdd, String cpu) {

this.ram=ram;
this.hdd=hdd;
this.cpu=cpu;

@Override
public Computer createComputer () {
return new Server (ram, hdd, cpu) ;

Now we will create a consumer class that will provide the entry point for the
client classes to create sub-classes.

© JOURNALDEV.COM PAGE 23 OF 132

http://www.journaldev.com/

package com.journaldev.design.abstractfactory;
import com.journaldev.design.model.Computer;
public class ComputerFactory {

public static Computer getComputer (ComputerAbstractFactory factory) {
return factory.createComputer () ;

}

Notice that it’s a simple class and getComputer method is accepting
ComputerAbstractFactory argument and returning Computer object. At this
point the implementation must be getting clear.

Let’s write a simple test method and see how to use the abstract factory to
get the instance of sub-classes.

package com.journaldev.design.test;

import com.journaldev.design.abstractfactory.PCFactory;
import com.journaldev.design.abstractfactory.ServerFactory;
import com.journaldev.design.factory.ComputerFactory;
import com.journaldev.design.model.Computer;

public class TestDesignPatterns {

public static void main(String[] args) {
testAbstractFactory () ;

private static void testAbstractFactory () ({

Computer pc =
com.journaldev.design.abstractfactory.ComputerFactory.getComputer (new
PCFactory ("2 GB","500 GBR","2.4 GHz"));

Computer server =
com.journaldev.design.abstractfactory.ComputerFactory.getComputer (new
ServerFactory ("16 GB","1 TB","2.9 GHz"));

System.out.println ("AbstractFactory PC Config::"+pc);

System.out.println ("AbstractFactory Server Config::"+server);

© JOURNALDEV.COM PAGE 24 OF 132

http://www.journaldev.com/

Output of the above program will be:

AbstractFactory PC Config::RAM= 2 GB, HDD=500 GB, CPU=2.4 GHz
AbstractFactory Server Config::RAM= 16 GB, HDD=1 TB, CPU=2.9 GHz

Here is the class diagram of abstract factory implementation.

B. Benefits of Absiract Factory Pattern

e Abstract Factory pattern provides approach to code for interface rather
than implementation.

e Abstract Factory pattern is “factory of factories” and can be easily
extended to accommodate more products, for example we can add
another sub-class Laptop and a factory LaptopFactory.

e Abstract Factory pattern is robust and avoid conditional logic of
Factory pattern.

C. Absiract Factory Pattern Examples in JDK

« javax.xml.parsers.DocumentBuilderFactory#newlnstance()
« javax.xml.transform.TransformerFactory#newInstance()
« javax.xml.xpath.XPathFactory#newInstance()

© JOURNALDEV.COM PAGE 25 OF 132

http://www.journaldev.com/

4. Builder Pattern

Builder design pattern is a creational design pattern like Factory Pattern
and Abstract Factory Pattern. This pattern was introduced to solve some
of the problems with Factory and Abstract Factory design patterns when the
Object contains a lot of attributes.

There are three major issues with Factory and Abstract Factory design
patterns when the Object contains a lot of attributes.

1. Too Many arguments to pass from client program to the Factory class
that can be error prone because most of the time, the type of
arguments are same and from client side it’s hard to maintain the
order of the argument.

2. Some of the parameters might be optional but in Factory pattern, we
are forced to send all the parameters and optional parameters need to
send as NULL.

3. If the object is heavy and its creation is complex, then all that
complexity will be part of Factory classes that is confusing.

We can solve the issues with large number of parameters by providing a
constructor with required parameters and then different setter methods to set
the optional parameters but the problem with this is that the Object state will
be inconsistent until unless all the attributes are set explicitly.

Builder pattern solves the issue with large number of optional parameters
and inconsistent state by providing a way to build the object step-by-step
and provide a method that will actually return the final Object.

A. Builder Pattern Implementation

1. First of all you need to create a static nested class and then copy all
the arguments from the outer class to the Builder class. We should
follow the naming convention and if the class name is Computer then
builder class should be named as ComputerBuilder.

2. The Builder class should have a public constructor with all the
required attributes as parameters.

© JOURNALDEV.COM PAGE 26 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1392/factory-design-pattern-in-java
http://www.journaldev.com/1418/abstract-factory-design-pattern-in-java
http://www.journaldev.com/996/java-nested-classes-java-inner-class-static-nested-class-local-inner-class-and-anonymous-inner-class

3. Builder class should have methods to set the optional parameters and
it should return the same Builder object after setting the optional
attribute.

4. The final step is to provide a build() method in the builder class that
will return the Object needed by client program. For this we need to
have a private constructor in the Class with Builder class as argument.

Here is the sample code where we have a Computer class and
ComputerBuilder class to build it.

package com.journaldev.design.builder;

public class Computer ({

//required parameters
private String HDD;
private String RAM;

//optional parameters
private boolean isGraphicsCardEnabled;
private boolean isBluetoothEnabled;

public String getHDD () {
return HDD;

public String getRAM() {
return RAM;

public boolean isGraphicsCardEnabled () {
return isGraphicsCardEnabled;

public boolean isBluetoothEnabled() ({
return isBluetoothEnabled;

private Computer (ComputerBuilder builder) {
this.HDD=builder.HDD;
this.RAM=builder.RAM;
this.isGraphicsCardEnabled=builder.isGraphicsCardEnabled;
this.isBluetoothEnabled=builder.isBluetoothEnabled;

© JOURNALDEV.COM PAGE 27 OF 132

http://www.journaldev.com/

//Builder Class
public static class ComputerBuilder(

// required parameters
private String HDD;
private String RAM;

// optional parameters
private boolean isGraphicsCardEnabled;
private boolean isBluetoothEnabled;

public ComputerBuilder (String hdd, String ram) {
this.HDD=hdd;
this.RAM=ram;

public ComputerBuilder setGraphicsCardEnabled (boolean

isGraphicsCardEnabled) {
this.isGraphicsCardEnabled = isGraphicsCardEnabled;

return this;

public ComputerBuilder setBluetoothEnabled (boolean

isBluetoothEnabled) {
this.isBluetoothEnabled = isBluetoothEnabled;

return this;

public Computer build() {
return new Computer (this) ;

Notice that Computer class has only getter methods and no public
constructor, so the only way to get a Computer object is through the

ComputerBuilder class.
Here is a test program showing how to use Builder class to get the object.

package com.journaldev.design.test;

© JOURNALDEV.COM PAGE 28 OF 132

http://www.journaldev.com/

import com.journaldev.design.builder.Computer;
public class TestBuilderPattern ({

public static void main(String[] args) {
//Using builder to get the object in a single line of code and
//without any inconsistent state or arguments
management issues
Computer comp = new Computer.ComputerBuilder (
"500 GB", "2 GB").setBluetoothEnabled (true)
.setGraphicsCardEnabled (true) .build() ;

B. Builder Design Pattern Example in JDK

« java.lang.StringBuilder#append() (unsynchronized)
+ java.lang.StringBuffer#append() (synchronized)

© JOURNALDEV.COM PAGE 29 OF 132

http://www.journaldev.com/

5. Prototype Pattern

Prototype pattern is one of the Creational Design pattern, so it provides a
mechanism of object creation. Prototype pattern is used when the Object
creation is a costly affair and requires a lot of time and resources and you
have a similar object already existing. So this pattern provides a mechanism
to copy the original object to a new object and then modify it according to
our needs. This pattern uses java cloning to copy the object.

It would be easy to understand this pattern with an example, suppose we
have an Object that loads data from database. Now we need to modify this
data in our program multiple times, so it’s not a good idea to create the
Object using new keyword and load all the data again from database. So the
better approach is to clone the existing object into a new object and then do
the data manipulation.

Prototype design pattern mandates that the Object which you are copying
should provide the copying feature. It should not be done by any other class.
However whether to use shallow or deep copy of the Object properties
depends on the requirements and it’s a design decision.

Here is a sample program showing implementation of Prototype pattern.
package com.journaldev.design.prototype;

import java.util.ArrayList;
import java.util.List;

public class Employees implements Cloneable{
private List<String> emplList;

public Employees () {
emplList = new ArrayList<String>();

}

public Employees (List<String> list) {
this.empList=list;

}

public void loadData () {

//read all employees from database and put into the list

© JOURNALDEV.COM PAGE 30 OF 132

http://www.journaldev.com/

empList.add ("Pankaj");

(
empList.add ("Raj");
empList.add ("David") ;
empList.add ("Lisa");

public List<String> getEmpList () ({

return empList;

@Override

public Object clone () throws CloneNotSupportedException{
List<String> temp = new ArrayList<String>();

for (String s : this.getEmpList()) {
temp.add (s) ;
}

return new Employees (temp) ;

Notice that the clone method is overridden to provide a deep copy of the

employees list.

Here is the test program that will show the benefit of prototype pattern

usage.

package com.journaldev.design.test;
import java.util.List;
import com.journaldev.design.prototype.Employees;
public class PrototypePatternTest ({

public static void main(String[] args) throws
CloneNotSupportedException

Employees emps = new Employees();

emps.loadData () ;

//Use the clone method to get the Employee object
Employees empsNew = (Employees) emps.clone();
Employees empsNewl = (Employees) emps.clone();

List<String> list = empsNew.getEmpList ()
list.add ("John") ;

© JOURNALDEV.COM

PAGE 31 OF 132

http://www.journaldev.com/

List<String> listl = empsNewl.getEmpList () ;
listl.remove ("Pankaj");

System.out.println ("emps List: "+emps.getEmpList());

System.out.println ("empsNew List: "+1list);
System.out.println ("empsNewl List: "+1listl);

Output of the above program is:

emps HashMap: [Pankaj, Raj, David, Lisal
empsNew HashMap: [Pankaj, Raj, David, Lisa, John]
empsNewl HashMap: [Raj, David, Lisa]

If the object cloning was not provided, every time we need to make database
call to fetch the employee list and then do the manipulations that would have

been resource and time consuming.

© JOURNALDEV.COM

PAGE 32 OF 132

http://www.journaldev.com/

Structural Design Paiterns

Structural patterns provide different ways to create a class structure, for
example using inheritance and composition to create a large object from
small objects.

1. Adapter Design Pattern

Adapter design pattern is one of the structural design pattern and it’s
used so that two unrelated interfaces can work together. The object that joins
these unrelated interface is called an Adapter. As a real life example, we
can think of a mobile charger as an adapter because mobile battery needs 3
volts to charge but the normal socket produces either 120V (US) or 240V
(India). So the mobile charger works as an adapter between mobile charging
socket and the wall socket.

We will try to implement multi-adapter using adapter design pattern in this
tutorial.

So first of all we will have two classes — Volt (to measure volts) and Socket
(producing constant volts of 120V).

package com.journaldev.design.adapter;
public class Volt ({
private int volts;

public Volt (int v) {
this.volts=v;

}

public int getVolts () {
return volts;

}

public void setVolts (int volts) {
this.volts = volts;

}

© JOURNALDEV.COM PAGE 33 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1827/java-design-patterns-example-tutorial#structural-patterns

package com.journaldev.design.adapter;
public class Socket {

public Volt getVolt () {
return new Volt (120);

}

Now we want to build an adapter that can produce 3 volts, 12 volts and
default 120 volts. So first of all we will create an adapter interface with these

methods.

package com.journaldev.design.adapter;
public interface SocketAdapter ({
public Volt getl20Volt() ;
public Volt getl2Volt() ;

public Volt get3Volt();
}

A. Two Way Adapter Pattern

While implementing Adapter pattern, there are two approaches — class
adapter and object adapter, however both these approaches produce same
result.

1. Class Adapter — This form uses java inheritance and extends the

source interface, in our case Socket class.
2. Object Adapter — This form uses Java Composition and adapter
contains the source object.

B. Class Adapter Implementation

Here is the class adapter approach implementation of our adapter.

package com.journaldev.design.adapter;

© JOURNALDEV.COM PAGE 34 OF 132

http://www.journaldev.com/
http://www.journaldev.com/644/inheritance-in-java-example
http://www.journaldev.com/1325/what-is-composition-in-java-java-composition-example

//Using inheritance for adapter pattern
public class SocketClassAdapterImpl extends Socket implements
SocketAdapter{

@Override
public Volt getl20Volt() {
return getVolt();

@Override

public Volt getl2Volt() {
Volt v= getVolt();
return convertVolt(v,10);

@Override
public Volt get3Volt() {
Volt v= getVolt();
return convertVolt (v, 40);

private Volt convertVolt (Volt v, int i) {
return new Volt(v.getVolts()/1i);

C. Object Adapter Implementation

Here is the Object adapter implementation of our adapter.
package com.journaldev.design.adapter;
public class SocketObjectAdapterImpl implements SocketAdapter/{

//Using Composition for adapter pattern

private Socket sock = new Socket();
@Override

public Volt getl20Volt() {
return sock.getVolt ()

© JOURNALDEV.COM PAGE 35 OF 132

http://www.journaldev.com/

@Override

public Volt getl2Volt() {
Volt v= sock.getVolt ()
return convertVolt(v,10);

@Override

public Volt get3Volt() {
Volt v= sock.getVolt():;
return convertVolt (v, 40);

private Volt convertVolt (Volt v, int i) {
return new Volt (v.getVolts()/1i);

Notice that both the adapter implementations are almost same and they
implement the SocketAdapter interface. The adapter interface can also be an
abstract class.

Here is a test program to consume our adapter implementation.

package com.journaldev.design.test;

import com.journaldev.design.adapter.SocketAdapter;

import com.journaldev.design.adapter.SocketClassAdapterImpl;
import com.journaldev.design.adapter.SocketObjectAdapterImpl;
import com.journaldev.design.adapter.Volt;

public class AdapterPatternTest ({
public static void main(String[] args) {
testClassAdapter () ;

testObjectAdapter () ;

private static void testObjectAdapter () {
SocketAdapter sockAdapter = new SocketObjectAdapterImpl () ;
Volt v3 = getVolt (sockAdapter, 3);
Volt v12 = getVolt (sockAdapter,12);
Volt v120 = getVolt (sockAdapter,120);

© JOURNALDEV.COM PAGE 36 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1582/abstract-class-in-java-with-example

System.out.println ("v3 volts using Object
Adapter="+v3.getVolts());
System.out.println("v1l2 volts using Object
Adapter="+v1l2.getVolts());
System.out.println ("v120 volts using Object
Adapter="+v120.getVolts());
}

private static void testClassAdapter () {
SocketAdapter sockAdapter = new SocketClassAdapterImpl () ;
Volt v3 = getVolt (sockAdapter, 3);
Volt v12 = getVolt (sockAdapter,12);
Volt v120 = getVolt (sockAdapter,120);
System.out.println("v3 volts using Class
Adapter="+v3.getVolts());
System.out.println("vl2 volts using Class
Adapter="+v12.getVolts());
System.out.println("v120 volts using Class
Adapter="+v120.getVolts());
}

private static Volt getVolt (SocketAdapter sockAdapter, int i) {
switch (1) {
case 3: return sockAdapter.get3Volt();
case 12: return sockAdapter.getl2Volt();
case 120: return sockAdapter.getl20Volt();
default: return sockAdapter.getl20Volt();

}

When we run above test program, we get following output.

v3 volts using Class Adapter=3

v12 volts using Class Adapter=12
v120 volts using Class Adapter=120
v3 volts using Object Adapter=3

v12 volts using Object Adapter=12
v120 volts using Object Adapter=120

D. Adapter Pattern Class Diagram

© JOURNALDEV.COM PAGE 37 OF 132

http://www.journaldev.com/

<< lava Clasg=>
& Socket
Comjoumal dier Ces | gnadapher
& Socket()
@ getviolt{): Volt

-s0ck ..

=<lava Interface>>
) SocketAdapter

com joumalcey design acapter

@ gel120Volt{):Volt
@ get1 2Volt{):Voit
kv @ get3vViolt{):Violt

o8
<<Java Clagg>> << lava Dasse>
@ SocketClassAdapterimpl & SocketObjectAdapterimpl
(oL comial i Ciesign adanher o curmal Ger design acapher
& SocketCizssAdapterimpi() & SocketObjectAdapterimpl)
@ get 1 20Volt{): Volt @ geti20Volt():Violt
@ get 12Wolt{):\Violt @ get1 2Violt{):Voit
@ get3Violt{):\Volt @ get3Volt{): Vol
B convertViolt{\Volt,int): Vol # convert\olt{Violt, int): Vol

E. Adapter Pattern Example in JDK

« java.util. Arrays#asList()

« java.io.InputStreamReader(InputStream) (returns a Reader)
+ java.i0.OutputStreamWriter(OutputStream) (returns a Writer)

© JOURNALDEV.COM

PAGE 38 OF 132

http://www.journaldev.com/

2. Composite Pattern

Composite pattern is one of the Structural design pattern and is used
when we have to represent a part-whole hierarchy. When we need to create a
structure in a way that the objects in the structure has to be treated the same
way, we can apply composite design pattern.

Let’s understand it with a real life example — A diagram is a structure that
consists of Objects such as Circle, Lines, Triangle etc and when we fill the
drawing with color (say Red), the same color also gets applied to the Objects
in the drawing. Here drawing is made up of different parts and they all have
same operations.

Composite Pattern consists of following objects.

1. Base Component — Base component is the interface for all objects in
the composition, client program uses base component to work with
the objects in the composition. It can be an interface or an abstract
class with some methods common to all the objects.

2. Leaf — Defines the behaviour for the elements in the composition. It is
the building block for the composition and implements base
component. It doesn’t have references to other Components.

3. Composite — It consists of leaf elements and implements the
operations in base component.

Here I am applying composite design pattern for the drawing scenario.

A. Base Component

Base component defines the common methods for leaf and composites, we
can create a class Shape with a method draw(String fillColor) to draw the
shape with given color.

package com.journaldev.design.composite;
public interface Shape {

public void draw (String fillColor);

© JOURNALDEV.COM PAGE 39 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1582/abstract-class-in-java-with-example
http://www.journaldev.com/1582/abstract-class-in-java-with-example

B. Leaf Objects

Leaf implements base component and these are the building block for the
composite. We can create multiple leaf objects such as Triangle, Circle etc.

package com.journaldev.design.composite;
public class Triangle implements Shape {
@Override

public void draw (String fillColor) {
System.out.println ("Drawing Triangle with color "+fillColor) ;

package com.journaldev.design.composite;
public class Circle implements Shape {
@Override

public void draw (String fillColor) {
System.out.println ("Drawing Circle with color "+fillColor);

C. Composite

A composite object contains group of leaf objects and we should provide
some helper methods to add or delete leafs from the group. We can also
provide a method to remove all the elements from the group.

package com.journaldev.design.composite;

import java.util.Arraylist;
import java.util.List;

public class Drawing implements Shape({

© JOURNALDEV.COM PAGE 40 OF 132

http://www.journaldev.com/

//collection of Shapes

private List<Shape> shapes = new ArrayList<Shape>();

@Override
public void draw (String fillColor) {
for (Shape sh : shapes)

{
sh.draw (fillColor) ;

//adding shape to drawing
public void add (Shape s) {
this.shapes.add(s);

//removing shape from drawing
public void remove (Shape s) {

shapes.remove (s) ;

//removing all the shapes

public void clear () {

System.out.println ("Clearing all the shapes from drawing");

this.shapes.clear ()

Notice that composite also implements component and behaves similar to

leaf except that it can contain group of leaf elements.

© JOURNALDEV.COM

PAGE 41 OF 132

http://www.journaldev.com/

<<Java Class>>

(5 Drawing
com.jourmnaldev.design.composite
& Drawing()
@ draw(String}:void
@ add(Shape)void
@ remove(Shape):void
@ clear():void

ah%fs Q.”

<<Java Interface>>

@ Shape

com.joumnaldev.design.composite

@ draw(String):void

7 3
<<Java Clasg>> <<Java Class>>
(3 Triangle (3 Circle
com.jourmnaldev.design.composite com.joumaldev.design.composite
& Triangle() & Circle()
@ draw(String):void @ draw(String):void

Our composite pattern implementation is ready and we can test it with a
client program.

package com.journaldev.design.test;

import
import
import
import

public

com. journaldev.design.composite.Circle;
com. journaldev.design.composite.Drawing;
com. journaldev.design.composite. Shape;
com. journaldev.design.composite.Triangle;

class TestCompositePattern ({

public static void main(String[] args) {

Shape tri = new Triangle();
Shape tril = new Triangle();
Shape cir = new Circle();

Drawing drawing = new Drawing();
drawing.add (tril) ;
drawing.add (tril) ;

© JOURNALDEV.COM

PAGE 42 OF 132

http://www.journaldev.com/

drawing

drawing.

drawing.

drawing

drawing.

drawing.

.add (cir) ;

draw ("Red") ;

clear ()

.add (tri) ;

add (cir) ;
draw ("Green") ;

Output of the above program is:

Drawing Triangle with color Red

Drawing Triangle with color Red

Drawing Circle with color Red

Clearing all the shapes from drawing
Drawing Triangle with color Green

Drawing Circle with color Green

D. Important Points about Composite Pattern

« Composite pattern should be applied only when the group of objects

should behave as the single object.

« Composite pattern can be used to create a tree like structure.

java.awt.Container#tadd(Component) 1s a great example of Composite

pattern in java and used a lot in Swing.

© JOURNALDEV.COM

PAGE 43 OF 132

http://www.journaldev.com/

3. Proxy Pattern

Proxy Design pattern is one of the Structural design pattern and in my
opinion one of the simplest pattern to understand. Proxy pattern intent
according to GoF is:

“Provide a surrogate or placeholder for another
object to control access to it”

The definition itself is very clear and proxy pattern is used when we want to
provide controlled access of a functionality. Let’s say we have a class that
can run some command on the system. Now if we are using it, its fine but if
we want to give this program to a client application, it can have severe issues
because client program can issue command to delete some system files or
change some settings that you don’t want. Here a proxy class can be created
to provide controlled access of the program.

A. Main Class

Since we code Java in terms of interfaces, here is our interface and its
implementation class.

package com.journaldev.design.proxy;
public interface CommandExecutor ({

public void runCommand (String cmd) throws Exception;

package com.journaldev.design.proxy;
import java.io.IOException;
public class CommandExecutorImpl implements CommandExecutor {

@Override
public void runCommand (String cmd) throws IOException {

© JOURNALDEV.COM PAGE 44 OF 132

http://www.journaldev.com/

//some heavy implementation

Runtime.getRuntime () .exec (cmd) ;
System.out.println("'" + cmd + "' command executed.");

B. Proxy Class

Now we want to provide only admin users to have full access of above class,
if the user is not admin then only limited commands will be allowed. Here is

our very simple proxy class implementation.
package com.journaldev.design.proxy;

public class CommandExecutorProxy implements CommandExecutor {

private boolean isAdmin;
private CommandExecutor executor;

public CommandExecutorProxy (String user, String pwd) {
if ("Pankaj".equals (user) && "J@urnalD$v".equals (pwd))
isAdmin=true;
executor = new CommandExecutorImpl () ;

@Override
public void runCommand (String cmd) throws Exception {
if (isAdmin) {
executor.runCommand (cmd) ;
lelse{
if(cmd.trim() .startsWith ("rm")) {
throw new Exception ("rm command is not allowed for non-
admin users.");
lelse{
executor.runCommand (cmd) ;

© JOURNALDEV.COM PAGE 45 OF 132

http://www.journaldev.com/

C. Proxy Pattern Client Test Program

package com.journaldev.design.test;

import com.journaldev.design.proxy.CommandExecutor;
import com.journaldev.design.proxy.CommandExecutorProxy;

public class ProxyPatternTest ({

public static void main(String[] args) {
CommandExecutor executor = new CommandExecutorProxy ("Pankaj",

"wrong pwd") ;
try {
executor.runCommand ("1ls -1tr");
executor.runCommand (" rm -rf abc.pdf");
} catch (Exception e) {
System.out.println ("Exception Message::"+e.getMessage());

Output of above test program is:

'ls -1tr' command executed.
Exception Message::rm command is not allowed for non-admin users.

Proxy pattern common uses are to control access or to provide a wrapper

implementation for better performance.

Java RMI whole package uses proxy pattern.

© JOURNALDEV.COM PAGE 46 OF 132

http://www.journaldev.com/

4. Flyweight Pattern

According to GoF, flyweight design pattern intent is:

“Use sharing to support large numbers of fine-grained
objects efficiently”

Flyweight design pattern is a Structural design pattern like Facade pattern,
Adapter Pattern and Decorator pattern. Flyweight design pattern is used
when we need to create a lot of Objects of a class. Since every object
consumes memory space that can be crucial for low memory devices, such
as mobile devices or embedded systems, flyweight design pattern can be
applied to reduce the load on memory by sharing objects.

Before we apply flyweight design pattern, we need to consider following
factors:

« The number of Objects to be created by application should be huge.

« The object creation is heavy on memory and it can be time consuming
too.

o The object properties can be divided into intrinsic and extrinsic
properties, extrinsic properties of an Object should be defined by the
client program.

To apply flyweight pattern, we need to divide Object property into intrinsic
and extrinsic properties. Intrinsic properties make the Object unique
whereas extrinsic properties are set by client code and used to perform
different operations. For example, an Object Circle can have extrinsic
properties such as color and width.

For applying flyweight pattern, we need to create a Flyweight factory that
returns the shared objects. For our example, let’s say we need to create a
drawing with lines and Ovals. So we will have an interface Shape and its
concrete implementations as Line and Oval. Oval class will have intrinsic
property to determine whether to fill the Oval with given color or not
whereas Line will not have any intrinsic property.

© JOURNALDEV.COM PAGE 47 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1557/facade-pattern-in-java-example-tutorial
http://www.journaldev.com/1487/adapter-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1540/decorator-pattern-in-java-example-tutorial

A. Flyweight Interface and Concrete Classes

package com.journaldev.design.flyweight;

import java.awt.Color;
import java.awt.Graphics;

public interface Shape {

public void draw (Graphics g, int x, int y, int width, int height,
Color color);

}
package com.journaldev.design.flyweight;

import java.awt.Color;
import java.awt.Graphics;

public class Line implements Shape {

public Line() {
System.out.println ("Creating Line object");
//adding time delay
try {
Thread.sleep (2000) ;
} catch (InterruptedException e) {

e.printStackTrace () ;

}
@Override
public void draw (Graphics line, int x1, int yl, int x2, int y2,
Color color) {
line.setColor (color) ;
line.drawlLine (x1, y1l, x2, v2);

package com.journaldev.design.flyweight;

import java.awt.Color;
import java.awt.Graphics;

public class Oval implements Shape {

© JOURNALDEV.COM PAGE 48 OF 132

http://www.journaldev.com/

//intrinsic property

private boolean fill;

public Oval (boolean f) {
this.fill=f;
System.out.println ("Creating Oval object with fill="+f);
//adding time delay
try {
Thread.sleep (2000) ;
} catch (InterruptedException e) {

e.printStackTrace () ;

}
@Override
public void draw (Graphics circle, int x, int y, int width, int
height,
Color color) {
circle.setColor (color) ;
circle.drawOval (x, y, width, height);
if(£4111) {
circle.fillOval (x, y, width, height);

Notice that I have intentionally introduced delay in creating the Object of
concrete classes to make the point that flyweight pattern can be used for
Objects that takes a lot of time while instantiated.

B. Flyweight Factory

The flyweight factory will be used by client programs to instantiate the
Object, so we need to keep a map of Objects in the factory that should not be
accessible by client application. Whenever client program makes a call to
get an instance of Object, it should be returned from the HashMap, if not
found then create a new Object and put in the Map and then return it. We
need to make sure that all the intrinsic properties are considered while
creating the Object.

Our flyweight factory class looks like below code.

© JOURNALDEV.COM PAGE 49 OF 132

http://www.journaldev.com/

package com.journaldev.design.flyweight;
import java.util.HashMap;
public class ShapeFactory {

private static final HashMap<ShapeType, Shape> shapes = new
HashMap<ShapeType, Shape> () ;

public static Shape getShape (ShapeType type) {
Shape shapeImpl = shapes.get (type)

if (shapeImpl == null) ({
if (type.equals (ShapeType.OVAL FILL)) {
shapeImpl = new Oval (true) ;
} else if (type.equals(ShapeType.OVAL NOFILL)) {
shapeImpl = new Oval (false);
} else if (type.equals (ShapeType.LINE)) {
shapeImpl = new Line();
}
shapes.put (type, shapelmpl);
}

return shapeImpl;

public static enum ShapeType({
OVAL FILL,OVAL NOFILL,LINE;

Notice the use of Java Enum for type safety, Java Composition (shapes map)
and Factory pattern in getShape method.

C. Flyweight Pattern Client Example

Below is a sample program that consumes flyweight pattern implementation.
package com.journaldev.design.flyweight;

import java.awt.BorderLayout;

import java.awt.Color;

© JOURNALDEV.COM PAGE 50 OF 132

http://www.journaldev.com/
http://www.journaldev.com/716/java-enum-examples-with-benefits-and-class-usage
http://www.journaldev.com/1325/what-is-composition-in-java-java-composition-example
http://www.journaldev.com/1392/factory-design-pattern-in-java

import

java.awt.Container;

import java.awt.Graphics;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JPanel;
import com.journaldev.design.flyweight.ShapeFactory.ShapeType;
public class DrawingClient extends JFrame({
private static final long serialVersionUID = -1350200437285282550L;

private final int WIDTH;
private final int HEIGHT;

private static final ShapeType shapes[] = { ShapeType.LINE,
ShapeType.OVAL FILL, ShapeType.OVAL NOFILL };
private static final Color colors[] = { Color.RED, Color.GREEN,

Color.YELLOW };

public DrawingClient (int width, int height) {

this.WIDTH=width;
this.HEIGHT=height;
Container contentPane = getContentPane();

JButton startButton = new JButton ("Draw");

final JPanel panel = new JPanel () ;

contentPane.add (panel, BorderLayout.CENTER) ;
contentPane.add (startButton, BorderLayout.SOUTH) ;
setSize (WIDTH, HEIGHT) ;

setDefaultCloseOperation (JFrame.EXIT ON CLOSE);
setVisible (true) ;

startButton.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent event) ({
Graphics g = panel.getGraphics();
for (int i = 0; i < 20; ++1i) {

Shape shape =

ShapeFactory.getShape (getRandomShape ()) ;

shape.draw (g, getRandomX (), getRandomY (),

getRandomWidth (),

getRandomHeight (), getRandomColor());

© JOURNALDEV.COM PAGE 51 OF 132

http://www.journaldev.com/

private ShapeType getRandomShape () {
return shapes|[(int) (Math.random() * shapes.length)];

private int getRandomX () {
return (int) (Math.random() * WIDTH) ;

private int getRandomY () {
return (int) (Math.random() * HEIGHT) ;

private int getRandomWidth () {
return (int) (Math.random() * (WIDTH / 10));

private int getRandomHeight () ({
return (int) (Math.random() * (HEIGHT / 10));

private Color getRandomColor () {
return colors|[(int) (Math.random() * colors.length)];

public static void main(String[] args) {

DrawingClient drawing = new DrawingClient (500, 600) ;

I have used random number generation to generate different type of Shapes
in our frame.

If you run above client program, you will notice the delay in creating first
Line Object and Oval objects with fill as true and false. After that the
program executes quickly since its using the shared objects.

After clicking “Draw” button multiple times, the frame looks like below
image.

© JOURNALDEV.COM PAGE 52 OF 132

http://www.journaldev.com/
http://www.journaldev.com/515/generate-random-number-within-a-range-in-java

And you will see following output in command line confirming that Objects
are shared.

Creating Line object

Creating Oval object with fill=true
Creating Oval object with fill=false

© JOURNALDEV.COM PAGE 53 OF 132

http://www.journaldev.com/

That’s all for flyweight pattern, we will look into more design patterns in
future posts. If you liked it, please share your thoughts in comments section
and share it with others too.

D. Flyweight Pattern Example in JDK

All the wrapper classes valueOf() method uses cached objects showing use
of Flyweight design pattern. The best example is Java String class String
Pool implementation.

E. Important Points

« In our example, the client code is not forced to create object using
Flyweight factory but we can force that to make sure client code uses
flyweight pattern implementation but its a complete design decision
for particular application.

o Flyweight pattern introduces complexity and if number of shared
objects are huge then there is a trade of between memory and time, so
we need to use it judiciously based on our requirements.

« Flyweight pattern implementation is not useful when the number of
intrinsic properties of Object is huge, making implementation of
Factory class complex.

© JOURNALDEV.COM PAGE 54 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1002/java-wrapper-classes-tutorial-with-examples
http://www.journaldev.com/1321/java-string-interview-questions-and-answers
http://www.journaldev.com/797/what-is-java-string-pool
http://www.journaldev.com/797/what-is-java-string-pool

5. Facade Patitern

Facade Pattern is one of the Structural design patterns (such as Adapter
pattern and Decorator pattern) and used to help client applications to easily
interact with the system.

According to GoF Facade design pattern is:

“Provide a unified interface to a set of interfaces in a
subsystem. Facade Pattern defines a higher-level
 interface that makes the subsystem easier to use”

Provide a unified interface to a set of interfaces in a subsystem. Facade
Pattern defines a higher-level interface that makes the subsystem easier to
use.

Suppose we have an application with set of interfaces to use MySql/Oracle
database and to generate different types of reports, such as HTML report,
PDF report etc. So we will have different set of interfaces to work with
different types of database. Now a client application can use these interfaces
to get the required database connection and generate reports. But when the
complexity increases or the interface behavior names are confusing, client
application will find it difficult to manage it. So we can apply Facade pattern
here and provide a wrapper interface on top of the existing interface to help
client application.

A. Set of Interfaces

We can have two helper interfaces, namely MySqlHelper and OracleHelper.

package com.journaldev.design.facade;
import java.sqgl.Connection;

public class MySqlHelper ({

© JOURNALDEV.COM PAGE 55 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1487/adapter-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1487/adapter-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1540/decorator-pattern-in-java-example-tutorial
http://www.journaldev.com/1002/java-wrapper-classes-tutorial-with-examples

public static Connection getMySqglDBConnection () {
//get MySgl DB connection using connection parameters

return null;

public void generateMySqlPDFReport (String tableName, Connection
con) {
//get data from table and generate pdf report

public void generateMySqlHTMLReport (String tableName, Connection
con) {
//get data from table and generate pdf report

package com.journaldev.design.facade;
import java.sql.Connection;
public class OracleHelper {
public static Connection getOracleDBConnection () {

//get MySgl DB connection using connection parameters
return null;

public void generateOraclePDFReport (String tableName, Connection
con) {
//get data from table and generate pdf report

public void generateOracleHTMLReport (String tableName, Connection
con) {
//get data from table and generate pdf report

B. Facade Interface

We can create a Facade interface like below. Notice the use of Java Enum
for type safety.

© JOURNALDEV.COM PAGE 56 OF 132

http://www.journaldev.com/
http://www.journaldev.com/716/java-enum-examples-with-benefits-and-class-usage

package com.journaldev.design.facade;
import java.sql.Connection;
public class HelperFacade {

public static void generateReport (DBTypes dbType, ReportTypes
reportType, String tableName) {
Connection con = null;
switch (dbType) {
case MYSQL:
con = MySqglHelper.getMySqglDBConnection () ;
MySglHelper mySglHelper = new MySqglHelper () ;
switch (reportType) {
case HTML:
mySglHelper.generateMySqglHTMLReport (tableName, con);
break;
case PDF:
mySglHelper.generateMySqglPDFReport (tableName, con) ;
break;
}
break;
case ORACLE:
con = OracleHelper.getOracleDBConnection () ;
OracleHelper oracleHelper = new OracleHelper () ;
switch (reportType) {
case HTML:
oracleHelper.generateOracleHTMLReport (tableName, con);
break;
case PDF:
oracleHelper.generateOraclePDFReport (tableName, con);
break;
}

break;

}
public static enum DBTypes{

MYSQL, ORACLE;
}

public static enum ReportTypes({
HTML, PDF';

© JOURNALDEV.COM PAGE 57 OF 132

http://www.journaldev.com/

C. Client Program

Now let’s see client code without using Facade and using Facade interface.

package com.journaldev.design.test;
import java.sql.Connection;

import com.journaldev.design.facade.HelperFacade;
import com.journaldev.design.facade.MySqlHelper;
import com.journaldev.design.facade.OracleHelper;

public class FacadePatternTest ({

public static void main(String[] args) {
String tableName="Employee";

//generating MySqgl HTML report and Oracle PDF report without
using Facade

Connection con = MySqglHelper.getMySglDBConnection () ;

MySglHelper mySglHelper = new MySqglHelper () ;

mySglHelper.generateMySqglHTMLReport (tableName, con);

Connection conl = OracleHelper.getOracleDBConnection () ;
OracleHelper oracleHelper = new OracleHelper () ;

oracleHelper.generateOraclePDFReport (tableName, conl);

//generating MySqgl HTML report and Oracle PDF report using
Facade

HelperFacade.generateReport (HelperFacade.DBTypes.MYSQL,
HelperFacade.ReportTypes.HTML, tableName);

HelperFacade.generateReport (HelperFacade.DBTypes.ORACLE,
HelperFacade.ReportTypes.PDF, tableName) ;

}

As you can see that using Facade interface is a lot easier and cleaner way
and avoid having a lot of logic at client side. JDBC Driver Manager Class to
get the database connection is a wonderful example of facade pattern.

© JOURNALDEV.COM PAGE 58 OF 132

http://www.journaldev.com/

D. Important Points

« Facade pattern is more like a helper for client applications, it doesn’t
hide subsystem interfaces from the client. Whether to use Facade or
not is completely dependent on client code.

« Facade pattern can be applied at any point of development, usually
when the number of interfaces grow and system gets complex.

« Subsystem interfaces are not aware of Facade and they shouldn’t have
any reference of the Facade interface.

o Facade pattern should be applied for similar kind of interfaces, its
purpose is to provide a single interface rather than multiple interfaces
that does the similar kind of jobs.

« We can use Factory pattern with Facade to provide better interface to
client systems.

© JOURNALDEV.COM PAGE 59 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1392/factory-design-pattern-in-java

6. Bridge Pattern

When we have interface hierarchies in both interfaces as well as
implementations, then builder design pattern is used to decouple the
interfaces from implementation and hiding the implementation details from
the client programs. Like Adapter pattern, its one of the Structural design
pattern.

According to GoF bridge design pattern is:

“Decouple an abstraction from its implementation so
that the two can vary independently”

The implementation of bridge design pattern follows the notion to prefer
Composition over inheritance.

If we look into this design pattern with example, it will be easy to
understand. Let’s say we have an interface hierarchy in both interfaces and
implementations like below image.

Interface

Shape

Interface

RedColor GreenColor RedColor GreenColor

© JOURNALDEV.COM PAGE 60 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1487/adapter-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1325/what-is-composition-in-java-java-composition-example
http://www.journaldev.com/644/inheritance-in-java-example

Now we will use bridge design pattern to decouple the interfaces from
implementation and the UML diagram for the classes and interfaces after
applying bridge pattern will look like below image.

<<.Java Class>> <<Java Interface>>
@ Shape #color @Color
com.journalklev.design.bridge W com.joumaldev.design.bridge
& Shape(Color) @ applyColor():void
&' applyColor():void T >

<<Java C|a§5>; <<Java Class>>
(®RedColor (®GreenColor

com.journaldev.design.bridge com joumaldev.design bridge

& RedColor() & GreenColor()
@ applyColor():void

@ applyColor():void

<<.Java Clags>> <<Java Class=>
®Triangle (®Pentagon

com journaldev.design.bridge com.joumnalkdev.design.bridge
&Triangle[Color) OcPemagonfColor)
@ applyColor():void @ applyColor()void

Notice the bridge between Shape and Color interfaces and use of
composition in implementing the bridge pattern.

Here is the java code for Shape and Color interfaces.
package com.journaldev.design.bridge;
public interface Color {
public void applyColor();
}
package com.journaldev.design.bridge;
public abstract class Shape {
//Composition - implementor
protected Color color;
//constructor with implementor as input argument

public Shape (Color c) {
this.color=c;

abstract public void applyColor () ;

We have Triangle and Pentagon implementation classes as below.

© JOURNALDEV.COM PAGE 61 OF 132

http://www.journaldev.com/

package com.journaldev.design.bridge;

public class Triangle extends Shape{

public Triangle (Color c) {
super (c) ;

}

@Override

public void applyColor () {

System.out.print ("Triangle filled with color ");

color.applyColor () ;

}

package com.journaldev.design.bridge;
public class Pentagon extends Shape({
public Pentagon (Color c) {

super (c) ;

@Override
public void applyColor () {

System.out.print ("Pentagon filled with color ");

color.applyColor () ;

Here are the implementation classes for RedColor and GreenColor.

package com.journaldev.design.bridge;
public class RedColor implements Color({
public void applyColor () {

System.out.println("red.");

}
}

package com.journaldev.design.bridge;
public class GreenColor implements Color{

public void applyColor () {
System.out.println("green.");

© JOURNALDEV.COM

PAGE 62 OF 132

http://www.journaldev.com/

Let’s test our bridge pattern implementation with a test program.

package com.journaldev.design.test;

import
import
import
import
import

public

public static void main (Stringl[]

com. journaldev.design.bridge.
com. journaldev.design.bridge.
com. journaldev.design.bridge.
com. journaldev.design.bridge.
com. journaldev.design.bridge.

class BridgePatternTest {

Shape tri = new Triangle (new RedColor());

tri.applyColor();

Shape pent = new Pentagon (new GreenColor());

pent.applyColor () ;

Output of above class is:

Triangle filled with color red.

Pentagon filled with color green.

GreenColor;
Pentagon;
RedColor;
Shape;
Triangle;

args) |

Bridge design pattern can be used when both abstraction and implementation
can have different hierarchies independently and we want to hide the
implementation from the client application.

© JOURNALDEV.COM

PAGE 63 OF 132

http://www.journaldev.com/

7. Decorator Pattern

Decorator design pattern is used to modify the functionality of an object at
runtime. At the same time other instances of the same class will not be
affected by this, so individual object gets the modified behavior. Decorator
design pattern is one of the structural design pattern (such as Adapter
Pattern, Bridge Pattern, Composite Pattern) and uses abstract classes or
interface with composition to implement.

We use inheritance or composition to extend the behavior of an object but
this is done at compile time and its applicable to all the instances of the
class. We can’t add any new functionality of remove any existing behavior
at runtime — this is when Decorator pattern comes into picture.

Suppose we want to implement different kinds of cars — we can create
interface Car to define the assemble method and then we can have a Basic
car, further more we can extend it to Sports car and Luxury Car. The
implementation hierarchy will look like below image.

Basic Car

Sports Car

© JOURNALDEV.COM PAGE 64 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1487/adapter-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1487/adapter-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1491/bridge-pattern-in-java-example-tutorial
http://www.journaldev.com/1535/composite-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1325/what-is-composition-in-java-java-composition-example
http://www.journaldev.com/644/inheritance-in-java-example

But if we want to get a car at runtime that has both the features of sports car
and luxury car, then the implementation gets complex and if further more we
want to specify which features should be added first, it gets even more
complex. Now image if we have ten different kind of cars, the
implementation logic using inheritance and composition will be impossible
to manage. To solve this kind of programming situation, we apply decorator
pattern.

We need to have following types to implement decorator design pattern.

A. Component Interface

The interface or abstract class defining the methods that will be
implemented. In our case Car will be the component interface.

package com.journaldev.design.decorator;
public interface Car {

public void assemble();
}

B. Component Implementation

The basic implementation of the component interface. We can have
BasicCar class as our component implementation.

package com.journaldev.design.decorator;
public class BasicCar implements Car {
@Override
public void assemble () {

System.out.print ("Basic Car.");

}

© JOURNALDEV.COM PAGE 65 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1582/abstract-class-in-java-with-example

C. Decorator

Decorator class implements the component interface and it has a HAS-A
relationship with the component interface. The component variable should
be accessible to the child decorator classes, so we will make this variable
protected.

package com.journaldev.design.decorator;
public class CarDecorator implements Car {
protected Car car;
public CarDecorator (Car c) {

this.car=c;

@Override
public void assemble () {
this.car.assemble () ;

D: Concrete Decorators

Extending the base decorator functionality and modifying the component
behavior accordingly. We can have concrete decorator classes as LuxuryCar
and SportsCar.

package com.journaldev.design.decorator;
public class SportsCar extends CarDecorator {
public SportsCar (Car c) {

super (c) ;

@Override
public void assemble () {

car.assemble () ;

© JOURNALDEV.COM PAGE 66 OF 132

http://www.journaldev.com/

System.out.print (" Adding features of Sports Car.");

package com.journaldev.design.decorator;

public class LuxuryCar extends CarDecorator {

public LuxuryCar (Car c) {
super (c) ;

@Override
public void assemble () {

car.assemble () ;
System.out.print (" Adding features of Luxury Car.");

D. Decorator Pattern Class Diagram

=< Java Interface>>

@ Car

com.journalkdev.design.decaratar

@ assemble():void

#car dﬁ1

<<Java Class>> :
(®BasicCar i
com.jourmnaldev.design. decorator :
& BasicCar() :
@ assemble():void

=< Java Class>>
(®CarDecorator

com.joumnalkdev.design.decorator

G-CCarDeoorator(Car}
@ assemble():void

<<Java Class>>

<<Java Class>> (®SportsCar
G LUKUWCBF som.joumaldev.design decorator
& SportsCar(Car)

com.journaklev.design.decorator

éLuxuryCar(Car)
@ assemble()void

@ assemble():void

© JOURNALDEV.COM PAGE 67 OF 132

http://www.journaldev.com/

E.D

packag
import
import
import
import

public

pu

BasicC

}

ecorator Pattern Client Program

e com.journaldev.design.test;

com. journaldev.design.decorator.BasicCar;
com. journaldev.design.decorator.Car;
com. journaldev.design.decorator.LuxuryCar;

com. journaldev.design.decorator. SportsCar;
class DecoratorPatternTest {

blic static void main(String[] args) {
Car sportsCar = new SportsCar (new BasicCar());
sportsCar.assemble () ;
System.out.println ("\n****x*xm");

Car sportsLuxuryCar = new SportsCar (new LuxuryCar (new

ar()));
sportsLuxuryCar.assemble () ;

Notice that client program can create different kinds of Object at runtime

and they can specify the order of execution too.

Output of above test program is:

Basic

* kK k kK

Basic
Car.

Car. Adding features of Sports Car.

Car. Adding features of Luxury Car. Adding features of Sports

F. Important Points

Decorator pattern is helpful in providing runtime modification
abilities and hence more flexible. It’s easy to maintain and extend
when the number of choices are more.

The disadvantage of decorator pattern is that it uses a lot of similar
kind of objects (decorators).

Decorator pattern is used a lot in Java IO classes, such as FileReader
BufferedReader etc.

© JOURNALDEV.COM PAGE 68 OF 132

http://www.journaldev.com/
http://www.journaldev.com/942/java-io-tutorial
http://www.journaldev.com/867/how-to-read-file-in-java-using-bufferedreader-scanner-files-with-encoding-support-and-filereader
http://www.journaldev.com/867/how-to-read-file-in-java-using-bufferedreader-scanner-files-with-encoding-support-and-filereader

Behavioral Design Paiterns

Behavioral patterns provide solution for the better interaction between
objects and how to provide lose coupling and flexibility to extend easily.

1. Template Method Pattern

Template Method is a behavioral design pattern and it’s used to create a
method stub and deferring some of the steps of implementation to the
subclasses. Template method defines the steps to execute an algorithm and
it can provide default implementation that might be common for all or some
of the subclasses.

Let’s understand this pattern with an example, suppose we want to provide
an algorithm to build a house. The steps need to be performed to build a
house are — building foundation, building pillars, building walls and
windows. The important point is that we can’t change the order of execution
because we can’t build windows before building the foundation. So in this
case we can create a template method that will use different methods to build
the house.

Now building the foundation for a house is same for all type of houses,
whether it’s a wooden house or a glass house. So we can provide base
implementation for this, if subclasses want to override this method, they can
but mostly it’s common for all the types of houses.

To make sure that subclasses don’t override the template method, we should
make it final.

A. Template Method Absiract Class

Since we want some of the methods to be implemented by subclasses, we
have to make our base class as abstract class.

© JOURNALDEV.COM PAGE 69 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1582/abstract-class-in-java-with-example

package com.journaldev.design.template;
public abstract class HouseTemplate {

//template method, final so subclasses can't override
public final void buildHouse () {

buildFoundation () ;

buildPillars () ;

buildWalls () ;

buildWindows () ;

System.out.println ("House is built.");

//default implementation
private void buildWindows () {
System.out.println ("Building Glass Windows") ;

//methods to be implemented by subclasses
public abstract void buildWalls () ;
public abstract void buildPillars();
private void buildFoundation () ({
System.out.println ("Building foundation with cement,iron rods

and sand") ;

}

buildHouse() is the template method and defines the order of execution for
performing several steps.

B. Template Method Concrete Classes

We can have different type of houses, such as Wooden House and Glass
House.

package com.journaldev.design.template;
public class WoodenHouse extends HouseTemplate {

@Override

© JOURNALDEV.COM PAGE 70 OF 132

http://www.journaldev.com/

public void buildWalls () {
System.out.println ("Building Wooden Walls");

@Override
public void buildPillars() {
System.out.println ("Building Pillars with Wood coating");

We could have overridden other methods also, but for simplicity I am not
doing that.

package com.journaldev.design.template;
public class GlassHouse extends HouseTemplate {
@Override

public void buildWalls () {
System.out.println ("Building Glass Walls");

@QOverride
public void buildPillars () {
System.out.println ("Building Pillars with glass coating");

C. Template Method Pattern Client

Let’s test our template method pattern example with a test program.
package com.journaldev.design.template;
public class HousingClient {

public static void main(String[] args) {

HouseTemplate houseType = new WoodenHouse () ;

© JOURNALDEV.COM PAGE 71 OF 132

http://www.journaldev.com/

//using template method
houseType.buildHouse () ;
System.out.println ("**xxxxAdkkkxxm) o

houseType = new GlassHouse();

houseType.buildHouse () ;

Notice that client is invoking the template method of base class and
depending of implementation of different steps, it’s using some of the

methods

from base class and some of them from subclass.

Output of the above program is:

Building
Building
Building
Building
House 1is
* kkkkkkx
Building
Building
Building
Building
House is

D.Te

foundation with cement,iron rods and sand
Pillars with Wood coating

Wooden Walls

Glass Windows

built.

* k k%

foundation with cement,iron rods and sand
Pillars with glass coating

Glass Walls

Glass Windows

built.

mplate Method Class Diagram

© JOURNALDEV.COM PAGE 72 OF 132

http://www.journaldev.com/

<< Java Class>>
(& HouseTemplate

com.journaldev.design.template

{?HuuaeTemplatef}

& buildHouse():void

= buildWindows():void
&' buildWalls{):void

&' buildPillars():void

/ = buildFoundation(}:void \

=< Java Class>> =< ava Class=>>
@WDDHEHHDUEE @GIEEEHDUEE
com.joumnaldev.design.template com.journalkdev.design.template
{anndeanuse[} {fGIassHuuse(}
@ buildWalls():void @ buildWalls():void
@ buildPillars()void @ buildPillars():void

E. Template Method Pattern in JDK

« All non-abstract methods of java.io.InputStream,
java.i0.OutputStream, java.io.Reader and java.io.Writer.

« All non-abstract methods of java.util. AbstractList,
java.util.AbstractSet and java.util. AbstractMap.

F. Important Points

« Template method should consists of certain steps whose order is fixed
and for some of the methods, implementation differs from base class
to subclass. Template method should be final.

o Most of the times, subclasses calls methods from super class but in
template pattern, superclass template method calls methods from
subclasses, this i1s known as Hollywood Principle — “don’t call us,
we’ll call you”.

o Methods in base class with default implementation are referred as
Hooks and they are intended to be overridden by subclasses, if you
want some of the methods to be not overridden, you can make them
final, for example in our case we can make buildFoundation() method
final because if we don’t want subclasses to override it.

© JOURNALDEV.COM PAGE 73 OF 132

http://www.journaldev.com/
http://en.wikipedia.org/wiki/Hollywood_principle

2. Mediator Pattern

Mediator Pattern is one of the behavioral design pattern, so it deals with
the behaviors of objects. Mediator design pattern is used to provide a
centralized communication medium between different objects in a system.
According to GoF, mediator pattern intent is:

“Allows loose coupling by encapsulating the way
disparate sets of objects interact and communicate with
each other. Allows for the actions of each object set to
vary independently of one another”

Mediator design pattern is very helpful in an enterprise application where
multiple objects are interacting with each other. If the objects interact with
each other directly, the system components are tightly-coupled with each
other that makes maintainability cost higher and not flexible to extend
easily. Mediator pattern focuses on provide a mediator between objects for
communication and help in implementing lose-coupling between objects.

Air traffic controller is a great example of mediator pattern where the airport
control room works as a mediator for communication between different
flights. Mediator works as a router between objects and it can have it’s own
logic to provide way of communication.

The system objects that communicate each other are called Colleagues.
Usually we have an interface or abstract class that provides the contract for
communication and then we have concrete implementation of mediators.

For our example, we will try to implement a chat application where users
can do group chat. Every user will be identified by its name and they can
send and receive messages. The message sent by any user should be received
by all the other users in the group.

© JOURNALDEV.COM PAGE 74 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1607/difference-between-abstract-class-and-interface-in-java

A. Mediator Interface

First of all we will create Mediator interface that will define the contract for
concrete mediators.

package com.journaldev.design.mediator;
public interface ChatMediator {
public void sendMessage (String msg, User user);

void addUser (User user);

B. Colleague Interface

Users can send and receive messages, so we can have User interface or
abstract class. I am creating User as abstract class like below.

package com.journaldev.design.mediator;
public abstract class User {
protected ChatMediator mediator;
protected String name;
public User (ChatMediator med, String name) {
this.mediator=med;
this.name=name;

public abstract void send(String msqg);

public abstract void receive (String msg);

Notice that User has a reference to the mediator object, it’s required for the
communication between different users.

© JOURNALDEV.COM PAGE 75 OF 132

http://www.journaldev.com/

C. Concrete Mediator

Now we will create concrete mediator class, it will have a list of users in the
group and provide logic for the communication between the users.

package com.journaldev.design.mediator;

import java.util.Arraylist;
import java.util.List;
public class ChatMediatorImpl implements ChatMediator {
private List<User> users;
public ChatMediatorImpl () {
this.users=new ArrayList<>();
}
@Override
public void addUser (User user) {
this.users.add (user);
}
@Override
public void sendMessage (String msg, User user) {
for (User u : this.users) {
//message should not be received by the user sending it
if(u != user){

u.receive (msqg) ;

C. Concrete Colleague

Now we can create concrete User classes to be used by client system.

package com.journaldev.design.mediator;
public class UserImpl extends User {
public UserImpl (ChatMediator med, String name) {
super (med, name);
}
@Override
public void send (String msqg) {
System.out.println (this.name+": Sending Message="+msq) ;
mediator.sendMessage (msg, this);

© JOURNALDEV.COM PAGE 76 OF 132

http://www.journaldev.com/

@Override
public void receive (String msg) {

System.out.println (this.name+": Received Message:"+msqg) ;

}

Notice that send() method is using mediator to send the message to the users
and it has no idea how it will be handled by the mediator.

D. Mediator Pattern Client

Let’s test this our chat application with a simple program where we will
create mediator and add users to the group and one of the user will send a
message.

package com.journaldev.design.mediator;
public class ChatClient {

public static void main(String[] args) {
ChatMediator mediator = new ChatMediatorImpl () ;

User userl = new UserImpl (mediator, "Pankaj");
User user?2 = new UserImpl (mediator, "Lisa");
User user3 = new UserImpl (mediator, "Saurabh");
User user4 = new UserImpl(mediator, "David") ;
mediator.addUser (userl)

mediator.addUser(userZ),

mediator.addUser (user3) ;

mediator.addUser (userd) ;

userl.send ("Hi All");

}
Notice that client program is very simple and it has no idea how the message
is getting handled and if mediator is getting user or not.

Output of the above program is:

Pankaj: Sending Message=Hi All
Lisa: Received Message:Hi All
Saurabh: Received Message:Hi All
David: Received Message:Hi All

© JOURNALDEV.COM PAGE 77 OF 132

http://www.journaldev.com/

E. Mediator Pattern Class Diagram

<<Java Class>>
_ H@"-LSE'_" o <<Java Interface=>
oom. jpumakav.desgn. madiator) GChatMgdlatnr
< name: String -mediator com.joumaldev.design.mediator
: : 0.4
jUEE”C""“ME“"E“”-S“'”Q} o sendMessage(String,User)void
send(String):void @ addUser(User)void
o'receive(String):void -users (i
<<Java Class>> ,
© Userimpl <<Java Class>>
com.journaldev.design.mediator Gchatmadlatnﬂmpl
@ Userlimpl{ChatMediator,String) com joumaldev.design.mediator
© send(String):void o ChatMediatorimpl()
Ol 2l e o addUser(User)void
@ sendMessage(String, User)void

F. Mediator Pattern in JDK

java.util. Timer class scheduleXXX() methods
Java Concurrency Executor execute() method.
java.lang.reflect. Method invoke() method.

G. Important Points

o Mediator pattern is useful when the communication logic between
objects is complex, we can have a central point of communication that
takes care of communication logic.

o Java Message Service (JMS) uses Mediator pattern along with
Observer pattern to allow applications to subscribe and publish data
to other applications.

o We should not use mediator pattern just to achieve lose-coupling
because if the number of mediators will grow, then it will become
hard to maintain them.

© JOURNALDEV.COM PAGE 78 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1050/java-timer-and-timertask-example-tutorial
http://www.journaldev.com/1069/java-thread-pool-example-using-executors-and-threadpoolexecutor
http://www.journaldev.com/1739/observer-design-pattern-in-java-example-tutorial

3. Chain of Responsibility Pattern

Chain of responsibility design pattern is one of the behavioral design
pattern. Chain of responsibility pattern is used to achieve lose coupling in
software design where a request from client is passed to a chain of objects to
process them. Then the object in the chain will decide themselves who will
be processing the request and whether the request is required to be sent to
the next object in the chain or not.

Let’s see the example of chain of responsibility pattern in JDK and then we
will proceed to implement a real life example of this pattern. We know that
we can have multiple catch blocks in a try-catch block code. Here every
catch block is kind of a processor to process that particular exception. So
when any exception occurs in the try block, its send to the first catch block
to process. If the catch block is not able to process it, it forwards the request
to next object in chain i.e next catch block. If even the last catch block is not
able to process it, the exception is thrown outside of the chain to the calling
program.

One of the great example of Chain of Responsibility pattern is ATM
Dispense machine. The user enters the amount to be dispensed and the
machine dispense amount in terms of defined currency bills such as 508,
20$%, 10$ etc. If the user enters an amount that is not multiples of 10, it
throws error. We will use Chain of Responsibility pattern to implement this
solution. The chain will process the request in the same order as below
image.

© JOURNALDEV.COM PAGE 79 OF 132

http://www.journaldev.com/
http://www.journaldev.com/592/try-with-resource-example-java-7-feature-for-automatic-resource-management

Enter amount to dispense in multiples of 10

ATM Dispenser

Dollar 50 Dispenser

Dollar 20 Dispenser

Dollar 10 Dispenser

Note that we can implement this solution easily in a single program itself but
then the complexity will increase and the solution will be tightly coupled. So

we will create a chain of dispense systems to dispense bills of 508, 20$ and
10$.

A. Base Classes and Interface

We can create a class Currency that will store the amount to dispense and
used by the chain implementations.

package com.journaldev.design.chainofresponsibility;
public class Currency {
private int amount;

public Currency (int amt) {
this.amount=amt;

© JOURNALDEV.COM PAGE 80 OF 132

http://www.journaldev.com/

public int getAmount () {
return this.amount;

The base interface should have a method to define the next processor in the
chain and the method that will process the request. Our ATM Dispense

interface will look like below.
package com.journaldev.design.chainofresponsibility;
public interface DispenseChain {

void setNextChain (DispenseChain nextChain) ;

void dispense (Currency cur);

B. Concrete Chain Implementations

We need to create different processor classes that will implement the
DispenseChain interface and provide implementation of dispense methods.
Since we are developing our system to work with three types of currency
bills — 50%, 208 and 108, we will create three concrete implementations.

package com.journaldev.design.chainofresponsibility;
public class Dollar50Dispenser implements DispenseChain {
private DispenseChain chain;
@Override

public void setNextChain (DispenseChain nextChain) {

this.chain=nextChain;

@Override
public void dispense (Currency cur) f{
if (cur.getAmount () >= 50) {
int num = cur.getAmount () /50;

© JOURNALDEV.COM PAGE 81 OF 132

http://www.journaldev.com/

[

int remainder = cur.getAmount () % 50;
System.out.println ("Dispensing "+num+" 50$ note");
if (remainder !=0) this.chain.dispense (new
Currency (remainder)) ;
lelse(
this.chain.dispense (cur) ;

package com.journaldev.design.chainofresponsibility;

public class Dollar20Dispenser implements DispenseChain/{

private DispenseChain chain;

@Override
public void setNextChain (DispenseChain nextChain) {
this.chain=nextChain;

@Override
public void dispense (Currency cur) {
if (cur.getAmount () >= 20) {
int num = cur.getAmount () /20;
int remainder = cur.getAmount () % 20;
System.out.println ("Dispensing "+num+" 20$ note");
if (remainder !=0) this.chain.dispense (new
Currency (remainder)) ;
lelse{
this.chain.dispense (cur);

package com.journaldev.design.chainofresponsibility;

public class DollarlODispenser implements DispenseChain {

private DispenseChain chain;

@Override
public void setNextChain (DispenseChain nextChain) {

© JOURNALDEV.COM PAGE 82 OF 132

http://www.journaldev.com/

this.chain=nextChain;

@QOverride
public void dispense (Currency cur) {
if (cur.getAmount () >= 10) {
int num = cur.getAmount () /10;

[

int remainder = cur.getAmount () % 10;
System.out.println ("Dispensing "+num+" 10S$ note");
if (remainder !=0) this.chain.dispense (new
Currency (remainder)) ;
lelse(
this.chain.dispense (cur) ;

}

The important point to note here is the implementation of dispense method,
you will notice that every implementation is trying to process the request
and based on the amount, it might process some or full part of it. If it’s not
able to process it fully, it sends the request to the next processor in chain to
process the remaining request. If the processor is not able to process
anything, it just forwards the same request to the next chain.

C. Creating the Chain

This is a very important step and we should create the chain carefully,
otherwise a processor might not be getting any request at all. For example, in
our implementation if we keep the first processor chain as
Dollar10Dispenser and then Dollar20Dispenser, then the request will never
be forwarded to the second processor and the chain will become useless.

Here is our ATM Dispenser implementation to process the user requested
amount.

package com.journaldev.design.chainofresponsibility;
import java.util.Scanner;
public class ATMDispenseChain {

private DispenseChain cl;
public ATMDispenseChain () {

© JOURNALDEV.COM PAGE 83 OF 132

http://www.journaldev.com/

// initialize the chain

this.cl = new Dollar50Dispenser () ;
DispenseChain c2 = new Dollar20Dispenser();
DispenseChain ¢3 = new Dollarl0Dispenser();

// set the chain of responsibility
cl.setNextChain(c2) ;
c2.setNextChain (c3);

public static void main(String[] args) {
ATMDispenseChain atmDispenser = new ATMDispenseChain () ;
while (true) {
int amount = 0;
System.out.println ("Enter amount to dispense");
Scanner input = new Scanner (System.in);
amount = input.nextInt();
if (amount % 10 != 0) {
System.out.println ("Amount should be in multiple of

return;

}
// process the request

atmDispenser.cl.dispense (new Currency (amount)) ;

}
When we run above application, we get output like below.

Enter amount to dispense
530

Dispensing 10 50$ note
Dispensing 1 20$ note
Dispensing 1 10$ note
Enter amount to dispense
100

Dispensing 2 50$ note
Enter amount to dispense
120

Dispensing 2 50$ note
Dispensing 1 20$ note
Enter amount to dispense
15

Amount should be inmultiple of 10s.

© JOURNALDEV.COM PAGE 84 OF 132

http://www.journaldev.com/

D. Class Diagram

Our ATM dispense example of chain of responsibility implementation looks
like below image.

<< lava Interfaces>

4 DispenseChain
o oimal cer e | g clnal modness paoes I i 1 By

@ sethextChain{DispenseChain) void
@ dispenae{Curency | void

== |ava Clasas> . qﬁJa\'é Clagge» =<lava Jlasgs>
(& Dollar10Dispensar (& Dollar50Dispenser (& Dollar20Dispenser
com| cumal e ces i gnchal nodres pons by SOl i s | i el modiness e | Ry SO il S Cies | g chad nodres pons | i By
& Dollar{ ODispenser{) & DollarS0Dispenzer() & Dollar?0Dispenser()
@ setNextChain{Dispens eChain):void @ setNextChain{DispenseChain) void i@ sethextCnainDispenseCnain)void
@ dispense{Curmency J:void @ dispense{Curency) void i@ dispense|Curmency jvoid

E. Chain of Responsibility Pattern Examples
in JDK

« java.util.logging.Logger#log()
« javax.servlet.Filter##doFilter()

F. Important Points

o Client doesn’t know which part of the chain will be processing the
request and it will send the request to the first object in the chain. For
example, in our program ATMDispenseChain is unaware of who is
processing the request to dispense the entered amount.

« Each object in the chain will have its own implementation to process
the request, either full or partial or to send it to the next object in the
chain.

© JOURNALDEV.COM PAGE 85 OF 132

http://www.journaldev.com/

« Every object in the chain should have reference to the next object in
chain to forward the request to, it’s achieved by java composition.

o Creating the chain carefully is very important otherwise there might
be a case that the request will never be forwarded to a particular
processor or there are no objects in the chain who are able to handle
the request. In my implementation, I have added the check for the user
entered amount to make sure it gets processed fully by all the
processors but we might not check it and throw exception if the
request reaches the last object and there are no further objects in the
chain to forward the request to. This is a design decision.

« Chain of Responsibility pattern is good to achieve lose coupling but it
comes with the trade-off of having a lot of implementation classes and
maintenance problems if most of the code is common in all the
implementations.

© JOURNALDEV.COM PAGE 86 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1325/what-is-composition-in-java-java-composition-example

4. Observer Pattern

Observer pattern is one of the behavioral design pattern. Observer design
pattern is useful when you are interested in the state of an object and want to
get notified whenever there is any change. In observer pattern, the object
that watch on the state of another object are called Observer and the object
that is being watched is called Subject. According to GoF, observer pattern
intent 1s;

“Define a one-to-many dependency between objects so
that when one object changes state, all its dependents are
notified and updated automatically.”

Subject contains a list of observers to notify of any change in it’s state, so it
should provide methods using which observers can register and unregister
themselves. Subject also contain a method to notify all the observers of any
change and either it can send the update while notifying the observer or it
can provide another method to get the update.

Observer should have a method to set the object to watch and another
method that will be used by Subject to notify them of any updates.

Java provides inbuilt platform for implementing Observer pattern through
Jjava.util.Observable class and java.util.Observer interface. However it’s not
widely used because the implementation is really simple and most of the
times we don’t want to end up extending a class just for implementing
Observer pattern as java doesn’t provide multiple inheritance in classes.

Java Message Service (JMS) uses Observer pattern along with Mediator
pattern to allow applications to subscribe and publish data to other
applications.

Model-View-Controller (MVC) frameworks also use Observer pattern where
Model is the Subject and Views are observers that can register to get notified
of any change to the model.

© JOURNALDEV.COM PAGE 87 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1730/mediator-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1730/mediator-design-pattern-in-java-example-tutorial

A. Observer Pattern Example

For our example, we would implement a simple topic and observers can
register to this topic. Whenever any new message will be posted to the topic,
all the registers observers will be notified and they can consume the

message.

Based on the requirements of Subject, here is the base Subject interface that
defines the contract methods to be implemented by any concrete subject.

package com.journaldev.design.observer;

public interface Subject {
//methods to register and unregister observers
public void register (Observer obj);

public void unregister (Observer obj);

//method to notify observers of change
public void notifyObservers() ;

//method to get updates from subject
public Object getUpdate (Observer obj);

Next we will create contract for Observer, there will be a method to attach
the Subject to the observer and another method to be used by Subject to

notify of any change.

package com.journaldev.design.observer;
public interface Observer ({

//method to update the observer, used by subject
public void update () ;

//attach with subject to observe
public void setSubject (Subject sub);

© JOURNALDEV.COM PAGE 88 OF 132

http://www.journaldev.com/

Now our contract is ready, let’s proceed with the concrete implementation of
our topic.

package com.journaldev.design.observer;

import java.util.ArrayList;
import java.util.List;

public class MyTopic implements Subject {

private List<Observer> observers;
private String message;

private boolean changed;

private final Object MUTEX= new Object();

public MyTopic () {
this.observers=new ArrayList<>();
}
@Override
public void register (Observer obj) {
if (obj == null) throw new NullPointerException ("Null
Observer") ;
synchronized (MUTEX) {
if (!observers.contains (obj)) observers.add(obj);

}

@Override

public void unregister (Observer obj) {
synchronized (MUTEX) {
observers.remove (obj) ;

}

@Override
public void notifyObservers () {
List<Observer> observersLocal = null;
//synchronization is used to make sure any observer registered
after message is received is not notified
synchronized (MUTEX) {
if (!changed)
return;
observersLocal = new ArrayList<>(this.observers);
this.changed=false;

© JOURNALDEV.COM PAGE 89 OF 132

http://www.journaldev.com/

for (Observer obj : observersLocal) {

obj.update () ;

@QOverride
public Object getUpdate (Observer obj) {
return this.message;

//method to post message to the topic

public void postMessage (String msg) {
System.out.println ("Message Posted to Topic:"+msgqg) ;
this.message=msg;
this.changed=true;

notifyObservers () ;

The method implementation to register and unregister an observer is very
simple, the extra method is postMessage() that will be used by client
application to post String message to the topic. Notice the boolean variable
to keep track of the change in the state of topic and used in notifying
observers. This variable is required so that if there is no update and
somebody calls notifyObservers() method, it doesn’t send false notifications
to the observers.

Also notice the use of synchronization in notifyObservers() method to make
sure the notification is sent only to the observers registered before the
message is published to the topic.

Here is the implementation of Observers that will watch over the subject.

package com.journaldev.design.observer;
public class MyTopicSubscriber implements Observer {

private String name;
private Subject topic;

public MyTopicSubscriber (String nm) {

this.name=nm;

© JOURNALDEV.COM PAGE 90 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1061/java-synchronization-and-thread-safety-tutorial-with-examples

}

@Override
public void update () {

String msg = (String) topic.getUpdate (this);
if (msg == null) {
System.out.println (name+":: No new message");
lelse
System.out.println (name+":: Consuming message::"+msqg) ;
}
@Override

public void setSubject (Subject sub) {
this.topic=sub;

Notice the implementation of update() method where it’s calling Subject
getUpdate() method to get the message to consume. We could have avoided

this call by passing message as argument to update() method.
Here is a simple test program to consume our topic implementation.
package com.journaldev.design.observer;
public class ObserverPatternTest ({
public static void main(String[] args) {
//create subject
MyTopic topic = new MyTopic();
//create observers

Observer objl = new MyTopicSubscriber ("Objl") ;
new MyTopicSubscriber ("Obj2") ;

Observer obj2
Observer obj3 = new MyTopicSubscriber ("Obj3") ;

//register observers to the subject
topic.register (objl);
topic.register (obj2);
topic.register (obj3);

//attach observer to subject
objl.setSubject (topic);
obj2.setSubject (topic

)i
obj3.setSubject (topic);

© JOURNALDEV.COM PAGE 91 OF 132

http://www.journaldev.com/

//check if any update is available

objl.update () ;

//now send message to subject

topic.postMessage ("New Message") ;

When we run above program, we get following output.

Objl:: No new message
Message Posted to Topic:New Message
Objl:: Consuming message::New Message
Obj2:: Consuming message: :New Message
Obj3:: Consuming message: :New Message

© JOURNALDEV.COM

PAGE 92 OF 132

http://www.journaldev.com/

B. Observer Pattern Class Diagram

<< Java Interface==
<<Java Interface>> € Subject
Gﬂhsawar com.jourmnaldev.design.observer
com.jourmnaldev.design.observer o register(Observer)void
@ update():void @ unregister{Observer)void
@ setSubject{Subject)void @ notifyObservers()void
@ getUpdate(Observer).Object

4

-observers

<< Java 'Claas:v:v
®MyTopic

com.jourmnaldev.design.observer

<< Java Class>>
®MyTopicSubscriber

com.jourmnaldev.design.observer

o message: String

o changed: boolean
FMUTEX: Object

& MyTopic{)

@ register(Observer)void

@ unregister(Observer):void

@ notifyObservers():void

@ getUpdate(Observer).Object
@ postMessage(String):void

o name: String

& MyTopicSubscriber(String)
@ update():void

@ setSubject(Subject):void

Observer pattern is also called as publish-subscribe pattern. Some of it’s
implementations are;

« java.util.EventListener in Swing
« javax.servlet.http.HttpSessionBindingListener
« javax.servlet.http.HttpSessionAttributeListener

That’s all for Observer pattern in java, I hope you liked it. Share your love
with comments and by sharing it with others.

© JOURNALDEV.COM PAGE 93 OF 132

http://www.journaldev.com/

5. Strategy Pattern

Strategy pattern is one of the behavioral design pattern. Strategy pattern
is used when we have multiple algorithm for a specific task and client
decides the actual implementation to be used at runtime.

Strategy pattern is also known as Policy Pattern. We defines multiple
algorithms and let client application pass the algorithm to be used as a
parameter. One of the best example of this pattern is Collections.sort()
method that takes Comparator parameter. Based on the different
implementations of Comparator interfaces, the Objects are getting sorted in
different ways, check this post for sorting objects in java using Java
Comparable and Comparator.

For our example, we will try to implement a simple Shopping Cart where we
have two payment strategies — using Credit Card or using PayPal.

First of all we will create the interface for our strategy, in our case to pay the
amount passed as argument.

package com.journaldev.design.strategy;
public interface PaymentStrategy {

public void pay (int amount) ;

Now we will have to create concrete implementations of algorithms for
payment using credit/debit card or through paypal.

package com.journaldev.design.strategy;
public class CreditCardStrategy implements PaymentStrategy {
private String name;
private String cardNumber;
private String cvv;
private String dateOfExpiry;
public CreditCardStrategy (String nm, String ccNum, String cvv,

String expiryDate) {

this.name=nm;

© JOURNALDEV.COM PAGE 94 OF 132

http://www.journaldev.com/
http://www.journaldev.com/780/java-comparable-and-comparator-example-to-sort-objects
http://www.journaldev.com/780/java-comparable-and-comparator-example-to-sort-objects

this.cardNumber=ccNum;
this.cvv=cvv;
this.dateOfExpiry=expiryDate;
}
@Override

public void pay (int amount) {
System.out.println (amount +" paid with credit/debit card");

}

package com.journaldev.design.strategy;

public class PaypalStrategy implements PaymentStrategy {

private String emailld;
private String password;

public PaypalStrategy (String email, String pwd) {
this.emailld=email;

this.password=pwd;

@Override
public void pay (int amount) {
System.out.println (amount + " paid using Paypal.");

}
Now our algorithms are ready and we can implement Shopping Cart and

payment method will require input as Payment strategy.
package com.journaldev.design.strategy;
public class Item ({

private String upcCode;
private int price;

public Item(String upc, int cost) {
this.upcCode=upc;
this.price=cost;

public String getUpcCode () {
return upcCode;

© JOURNALDEV.COM PAGE 95 OF 132

http://www.journaldev.com/

public int getPrice() {
return price;

}

package com.journaldev.design.strategy;

import java.text.DecimalFormat;
import java.util.ArraylLlist;

import java.util.List;
public class ShoppingCart ({

//List of items
List<Item> items;

public ShoppingCart () {
this.items=new ArrayList<Item> () ;

public void addItem(Item item) {
this.items.add (item) ;

public void removeItem(Item item) {
this.items.remove (item) ;

public int calculateTotal () {
int sum = 0;
for(Item item : items) {
sum += item.getPrice();

}

return sum;

public void pay (PaymentStrategy paymentMethod) {
int amount = calculateTotal();

paymentMethod.pay (amount) ;

© JOURNALDEV.COM

PAGE 96 OF 132

http://www.journaldev.com/

Notice that payment method of shopping cart requires payment algorithm as
argument and doesn’t store it anywhere as instance variable.

Let’s test our setup with a simple program.
package com.journaldev.design.strategy;
public class ShoppingCartTest ({

public static void main(String[] args) {
ShoppingCart cart = new ShoppingCart();

Item iteml = new Item("1234",10);
new Item("5678",40);

Item item?2

cart.addItem(iteml) ;
cart.addItem(item?2) ;

//pay by paypal
cart.pay (new PaypalStrategy("myemail@example.com", "mypwd")):;

//pay by credit card
cart.pay (new CreditCardStrategy ("Pankaj Kumar",
"1234567890123456", "786", "12/15"));
}

Output of above program is:

50 paid using Paypal.
50 paid with credit/debit card

© JOURNALDEV.COM PAGE 97 OF 132

http://www.journaldev.com/

A. Strategy Pattern Class Diagram

<<Java Interface>>

@ PaymentStrategy
=< Java Class=>> com.journaldev.design.strategy
(3 ShoppingCart : -
com.journaldev.design.strategy © pay(int)void
{fShoppingCan(} 4 \}
o additem(ltem):void 3
@ removeltem(ltem):void
@ calculateTotal(}int
@ pay(PaymentStrategy):void ,- .
<< Java Class>> <<Java Class>=>
(® CreditCardStrategy (3 PaypalStrategy
com.joumnalkdev.design.strategy com.joumaldev.design.strategy
~items | 0..* o name: String o emailld: String
o cardNumber: String o password: String
<<Java Class>> - Sitri
®ltem “ EW Smng. i & PaypalStrategy(String,String)
o dateOfExpiry: String T
com.joumnaldev.design.strategy © pay(intj:void

GCCreditcardStrategy(String.SIring.String.String}

o upcCode: String o pay(int:void

o price: int
Ocltem(SIring.im}

@ getUpcCode():String
@ getPrice()int

B. Important Points

« We could have used composition to create instance variable for
strategies but we should avoid that as we want the specific strategy to
be applied for a particular task, same is followed in Collections.sort()
and Arrays.sort() method that take comparator as argument.

o Strategy Pattern is very similar to State Pattern. One of the
difference is that Context contains state as instance variable and there
can be multiple tasks whose implementation can be dependent on the
state whereas in strategy pattern strategy is passed as argument to the
method and context object doesn’t have any variable to store it.

o Strategy pattern is useful when we have multiple algorithms for
specific task and we want our application to be flexible to choose any
of the algorithm at runtime for specific task.

© JOURNALDEV.COM PAGE 98 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1751/state-design-pattern-in-java-example-tutorial

6. Command Pattern

Command Pattern is one of the Behavioral Design Pattern and it’s used
to implement lose coupling in a request-response model. In command
pattern, the request is send to the invoker and invoker pass it to the
encapsulated command object. Command object passes the request to the
appropriate method of Receiver to perform the specific action. The client
program create the receiver object and then attach it to the Command. Then
it creates the invoker object and attach the command object to perform an
action. Now when client program executes the action, it’s processed based
on the command and receiver object.

We will look at a real life scenario where we can implement Command
pattern. Let’s say we want to provide a File System utility with methods to
open, write and close file and it should support multiple operating systems
such as Windows and Unix.

To implement our File System utility, first of all we need to create the
receiver classes that will actually do all the work. Since we code in terms of
java interfaces, we can have FileSystemReceiver interface and it’s
implementation classes for different operating system flavors such as
Windows, Unix, Solaris etc.

A. Receiver Classes

package com.journaldev.design.command;
public interface FileSystemReceiver ({

void openFile () ;
void writeFile () ;
)

’

void closeFile (

FileSystemReceiver interface defines the contract for the implementation
classes. For simplicity, I am creating two flavors of receiver classes to work
with Unix and Windows systems.

© JOURNALDEV.COM PAGE 99 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1601/what-is-interface-in-java-example-tutorial

package com.journaldev.design.command;

public class UnixFileSystemReceiver implements FileSystemReceiver ({

@Override
public void openFile () {
System.out.println ("Opening file in unix 0OS");

@Override
public void writeFile() {
System.out.println ("Writing file in unix 0OS");

@Override
public void closeFile() {
System.out.println("Closing file in unix 0OS");

package com.journaldev.design.command;

public class WindowsFileSystemReceiver implements FileSystemReceiver {

@Override
public void openFile () {
System.out.println ("Opening file in Windows OS");

@Override
public void writeFile() {
System.out.println ("Writing file in Windows 0OS");
}
@Override
public void closeFile() {
System.out.println ("Closing file in Windows 0OS");

}
Did you noticed the Override annotation and if you wonder why it’s used,

please read java annotations and override annotation benefits.

Now that our receiver classes are ready, we can move to implement our

Command classes.

© JOURNALDEV.COM

PAGE 100 OF 132

http://www.journaldev.com/
http://www.journaldev.com/721/java-annotations-tutorial-with-custom-annotation-example-and-parsing-using-reflection
http://www.journaldev.com/817/overriding-methods-in-java-always-use-override-annotation

B. Command Interface and Implementations

We can use interface or abstract class to create our base Command, it’s a
design decision and depends on your requirement. We are going with
interface because we don’t have any default implementations.

package com.journaldev.design.command;
public interface Command ({

void execute () ;

Now we need to create implementations for all the different types of action
performed by the receiver, since we have three actions we will create three
Command implementations and each Command implementation will
forward the request to the appropriate method of receiver.

package com.journaldev.design.command;

public class OpenFileCommand implements Command {
private FileSystemReceiver fileSystem;
public OpenFileCommand (FileSystemReceiver fs) {

this.fileSystem=fs;
}

@Override

public void execute() {
//open command is forwarding request to openFile method
this.fileSystem.openFile () ;

package com.journaldev.design.command;
public class CloseFileCommand implements Command ({
private FileSystemReceiver fileSystem;

public CloseFileCommand (FileSystemReceiver fs) {
this.fileSystem=fs;

© JOURNALDEV.COM PAGE 101 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1607/difference-between-abstract-class-and-interface-in-java

}

@Override
public void execute () {
this.fileSystem.closeFile();
package com.journaldev.design.command;
public class WriteFileCommand implements Command {

private FileSystemReceiver fileSystem;

public WriteFileCommand (FileSystemReceiver fs) {
this.fileSystem=fs;
}

@Override
public void execute () {
this.fileSystem.writeFile();

Now we have receiver and command implementations ready, so we can
move to implement the invoker class.

C. Invoker Class

Invoker is a simple class that encapsulates the Command and passes the
request to the command object to process it.

package com.journaldev.design.command;
public class FileInvoker ({

public Command command;

public FileInvoker (Command c) {

this.command=c;

public void execute () {
this.command.execute () ;

© JOURNALDEV.COM PAGE 102 OF 132

http://www.journaldev.com/

Our file system utility implementation is ready and we can move to write a
simple client program but before that I will provide a utility method to create
the appropriate FileSystemReceiver object. Since we can use System class to
get the operating system information, we will use this or else we can use
Factory pattern to return appropriate type based on the input from client
program.

package com.journaldev.design.command;
public class FileSystemReceiverUtil {

public static FileSystemReceiver getUnderlyingFileSystem () {
String osName = System.getProperty("os.name") ;
System.out.println ("Underlying OS is:"+osName) ;
if (osName.contains ("Windows")) {
return new WindowsFileSystemReceiver () ;
lelse(
return new UnixFileSystemReceiver () ;

Let’s move now to create our client program that will consume our file
system utility.
package com.journaldev.design.command;
public class FileSystemClient {
public static void main(String[] args) {
//Creating the receiver object
FileSystemReceiver fs =

FileSystemReceiverUtil.getUnderlyingFileSystem() ;

//creating command and associating with receiver
OpenFileCommand openFileCommand = new OpenFileCommand (fs) ;

//Creating invoker and associating with Command

FileInvoker file = new FileInvoker (openFileCommand) ;

//perform action on invoker object

© JOURNALDEV.COM PAGE 103 OF 132

http://www.journaldev.com/
http://www.journaldev.com/904/java-system-getproperty-to-get-operating-system-information
http://www.journaldev.com/904/java-system-getproperty-to-get-operating-system-information
http://www.journaldev.com/1392/factory-design-pattern-in-java

file.execute();

WriteFileCommand writeFileCommand = new WriteFileCommand (fs) ;

file = new FileInvoker (writeFileCommand) ;
file.execute () ;

CloseFileCommand closeFileCommand = new CloseFileCommand (fs) ;

file = new FileInvoker (closeFileCommand) ;
file.execute () ;

Notice that client is responsible to create the appropriate type of command
object, for example if you want to write a file you are not supposed to create
CloseFileCommand object. Client program is also responsible to attach
receiver to the command and then command to the invoker class.

Output of the above program is:

Underlying OS is:Mac 0OS X
Opening file in unix OS
Writing file in unix OS

Closing file in unix OS

C. Class Diagram

Here is the class diagram for our file system utility implementation.

© JOURNALDEV.COM PAGE 104 OF 132

http://www.journaldev.com/

<<Java Interfaces>

& Command
[

@ execute{;void

7 7 %

+eommand

<<Java Class>>

=<Java (lagg>> <<Java (lagg>>

<<Java Clasg>>
& CloseFileCommand EWriteFileCommand & openFileCommand EMyFile
cam journaldew. design.comem and com journaldev dosign.command com journaldev design.command o journaidev dosign.command
OcﬂoaeﬁleCarmana{HleSyst o"\ﬂmeﬁlstummna{ﬁls&ysmj mﬁlma{ﬁlﬁysmj ot'hnIﬁle(Ca'rmanaJ
@ execute{)void

@ execute(jvoid @ execute|;void

@ execute;void

fileSyat O.-fleSystem | 0. fleSystem 1

=<Java Interfaces>

O FileSystem

cam jaumaidov.dasign cammand

@ openFile():void
@ writeFle(jvoid
@ closeFile{):void

kY <,
<Java O ’ <<)ava Class>>
<<Java Uass>>
@ UnixFileSystem <<Java Oass>> @\'_lﬂnd:ww:;llns_-,rs:dm
cam jounnal oM
= journaiedy Anzign.zommand @ FileSystemUtil L o
& LnixFieSystam) o ek e o] & Windows FleSystemy)
& openFile()void & FileSystemLiti) @ openFile(:void
- & getUndertyingFileSys :FileSystem @ witeFile):void
g:;:gm;::d = = ysteny L @ choseFile()void

D. Command Paitern JDK Example

Runnable interface (java.lang.Runnable) and Swing Action
(Javax.swing.Action) uses command pattern.

E. Important Points

o« Command is the core of this pattern that defines the contract for
implementation.

« Receiver implementation is separate from command implementation.

o Command implementation classes chose the method to invoke on
receiver object, for every method in receiver there will be a command

implementation. It works as a bridge between receiver and action
methods.

© JOURNALDEV.COM

PAGE 105 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1016/java-thread-example-extending-thread-class-and-implementing-runnable-interface

« Invoker class just forward the request from client to the command
object.

« Client is responsible to instantiate appropriate command and receiver
implementation and then associate them together.

o Client is also responsible for instantiating invoker object and
associating command object with it and execute the action method.

o« Command pattern i1s easily extendible, we can add new action
methods in receivers and create new Command implementations
without changing the client code.

o The drawback with Command pattern is that the code gets huge and
confusing with high number of action methods and because of so
many associations.

© JOURNALDEV.COM PAGE 106 OF 132

http://www.journaldev.com/

/7. State Pattern

State pattern is one of the behavioral design pattern. State design pattern
is used when an Object change its behavior based on its internal state.

If we have to change the behavior of an object based on its state, we can
have a state variable in the Object and use if-else condition block to perform
different actions based on the state. State pattern is used to provide a
systematic and lose-coupled way to achieve this through Context and State
implementations.

Context is the class that has a State reference to one of the concrete
implementations of the State and forwards the request to the state object for
processing. Let’s understand this with a simple example.

Suppose we want to implement a TV Remote with a simple button to
perform action, if the State is ON, it will turn on the TV and if state is OFF,
it will turn off the TV.

We can implement it using if-else condition like below;
package com.journaldev.design.state;
public class TVRemoteBasic {

private String state="";

public void setState(String state) {

this.state=state;

public void doAction () {
if (state.equalsIgnoreCase ("ON")) {
System.out.println ("TV is turned ON");
}else if (state.equalsIgnoreCase ("OFF")) {
System.out.println ("TV is turned OFF");

public static void main (String args|[]) {
TVRemoteBasic remote = new TVRemoteBasic();

© JOURNALDEV.COM PAGE 107 OF 132

http://www.journaldev.com/

remote.setState ("ON") ;

remote.doAction () ;

remote.setState ("OFF") ;

remote.doAction () ;

Notice that client code should know the specific values to use for setting the
state of remote, further more if number of states increase then the tight
coupling between implementation and the client code will be very hard to
maintain and extend.

Now we will use State pattern to implement above TV Remote example.

A. State Interface

First of all we will create State interface that will define the method that
should be implemented by different concrete states and context class.

package com.journaldev.design.state;
public interface State {

public void doAction () ;

B. Concrete State Implementations

In our example, we can have two states — one for turning TV on and another
to turn it off. So we will create two concrete state implementations for these
behaviors.

package com.journaldev.design.state;
public class TVStartState implements State {

@Override
public void doAction () {
System.out.println ("TV is turned ON");

© JOURNALDEV.COM PAGE 108 OF 132

http://www.journaldev.com/

package com.journaldev.design.state;
public class TVStopState implements State {
@Override

public void doAction() {
System.out.println("TV is turned OFF");

Now we are ready to implement our Context object that will change it’s
behavior based on its internal state.

C. Context Implementation

package com.journaldev.design.state;
public class TVContext implements State {
private State tvState;
public void setState (State state) {

this.tvState=state;

public State getState() {
return this.tvState;

@Override
public void doAction() {
this.tvState.doAction () ;

Notice that Context also implements State and keep a reference of its current
state and forwards the request to the state implementation.

© JOURNALDEV.COM PAGE 109 OF 132

http://www.journaldev.com/

D. Test Program

Now let’s write a simple program to test our implementation of TV Remote
using State pattern.

package com.journaldev.design.state;
public class TVRemote ({

public static void main(String[] args) {
TVContext context = new TVContext () ;
State tvStartState = new TVStartState():;
State tvStopState = new TVStopState():;

context.setState (tvStartState) ;

context.doAction () ;

context.setState (tvStopState) ;

context.doAction () ;

Output of above program is same as the basic implementation of TV Remote
without using any pattern.

The benefits of using State pattern to implement polymorphic behavior is
clearly visible, the chances of error are less and it’s very easy to add more
states for additional behavior making it more robust, easily maintainable and
flexible. Also State pattern helped in avoiding if-else or switch-case
conditional logic in this scenario.

© JOURNALDEV.COM PAGE 110 OF 132

http://www.journaldev.com/

8. Visitor Pattern

Visitor Pattern is one of the behavioral design pattern. Visitor pattern is
used when we have to perform an operation on a group of similar kind of
Objects. With the help of visitor pattern, we can move the operational logic
from the objects to another class.

For example, think of a Shopping cart where we can add different type of
items (Elements), when we click on checkout button, it calculates the total
amount to be paid. Now we can have the calculation logic in item classes or
we can move out this logic to another class using visitor pattern. Let’s
implement this in our example of visitor pattern.

To implement visitor pattern, first of all we will create different type of
items (Elements) to be used in shopping cart.

package com.journaldev.design.visitor;
public interface ItemElement {

public int accept (ShoppingCartVisitor visitor);

Notice that accept method takes Visitor argument, we can have some other
methods also specific for items but for simplicity I am not going into that
much detail and focusing on visitor pattern only.

Let’s create some concrete classes for different types of items.

package com.journaldev.design.visitor;
public class Book implements ItemElement ({

private int price;

private String isbnNumber;
public Book (int cost, String isbn) {

this.price=cost;
this.isbnNumber=isbn;

© JOURNALDEV.COM PAGE 111 OF 132

http://www.journaldev.com/

public int getPrice() ({
return price;

public String getIsbnNumber () {
return isbnNumber;

@Override
public int accept (ShoppingCartVisitor visitor) {
return visitor.visit (this);

package com.journaldev.design.visitor;

public class Fruit implements ItemElement ({

private int pricePerKg;
private int weight;
private String name;

public Fruit (int priceKg, int wt, String nm) {
this.pricePerKg=priceKg;
this.weight=wt;

this.name = nm;

public int getPricePerKg() {
return pricePerKg;

public int getWeight () {
return weight;

public String getName () {
return this.name;
}
@Override
public int accept (ShoppingCartVisitor visitor) {

return visitor.visit (this);

© JOURNALDEV.COM PAGE 112 OF 132

http://www.journaldev.com/

Notice the implementation of accept () method in concrete classes, its calling
visit () method of Visitor and passing itself as argument.

We have visit () method for different type of items in Visitor interface that
will be implemented by concrete visitor class.

package com.journaldev.design.visitor;
public interface ShoppingCartVisitor {

int visit (Book book) ;
int visit (Fruit fruit);

Now we will implement visitor interface and every item will have its own
logic to calculate the cost.

package com.journaldev.design.visitor;
public class ShoppingCartVisitorImpl implements ShoppingCartVisitor ({

@Override
public int wvisit (Book book) {
int cost=0;
//apply 5$ discount if book price is greater than 50
if (book.getPrice () > 50) {
cost = book.getPrice()-5;
}else cost = book.getPrice();
System.out.println ("Book ISBN::"+book.getIsbnNumber () + " cost
="+cost);
return cost;

@Override

public int visit(Fruit fruit) ({
int cost = fruit.getPricePerKg() *fruit.getWeight();
System.out.println (fruit.getName() + " cost = "+cost);
return cost;

© JOURNALDEV.COM PAGE 113 OF 132

http://www.journaldev.com/

Let’s see how we can use it in client applications.

package com.journaldev.design.visitor;
public class ShoppingCartClient ({

public static void main(String[] args) {

ItemElement[] items = new ItemElement[] {new Book (20,

"1234") ,new Book (100, "5678"),

new Fruit (10, 2, "Banana"), new Fruit (5, 5, "Apple")};
int total = calculatePrice(items) ;
System.out.println ("Total Cost = "+total);

private static int calculatePrice(ItemElement/[]

items) {

ShoppingCartVisitor visitor = new ShoppingCartVisitorImpl () ;

int sum=0;
for(ItemElement item : items) {
sum = sum + item.accept(visitor);

}

return sum;

When we run above program, we get following output.

Book ISBN::1234 cost =20
Book ISBN::5678 cost =95
Banana cost = 20
Apple cost = 25
Total Cost = 160

A. Visitor Pattern Class Diagram

Class diagram for our visitor pattern implementation is:

© JOURNALDEV.COM

PAGE 114 OF 132

http://www.journaldev.com/

<<Java Interface>>

com.joumnakiev.design visitor

@ ShoppingCartVisitor

@ visit(Book):int
@ visit(Fruit)int

B

<<Java Interface>>
@ ltemElement

com.joumakiev.design visitor

@ accept{ShoppingCartVisitor)int

<<Java Class>>

<<Java Class>>
®Book

com.joumakiev.daesign.visitor

(®ShoppingCartVisitorimpl

com.jourmnaldev.design.visitor

& ShoppingCartvisitorimpl()
@ visit(Book):int
@ visit(Fruit)int

o price: int
o isbnNumber: String

& Book(int,String)

@ getPrice()int

@ getlsbnNumber():String

@ accept(ShoppingCartVisitor)int

4 %

<<Java Class>>
OFruit

com.joumakiav.design.visitor

o pricePerKg: int
o weight: int
o name: String

& Fruit(int,int,String)

@ getPricePerKg()int

@ getWeight()int

@ getName():5tring

@ acceptiShoppingCartVisitoryint

The benefit of this pattern is that if the logic of operation changes, then we
need to make change only in the visitor implementation rather than doing it

in all the item classes.

Another benefit is that adding a new item to the system is easy, it will
require change only in visitor interface and implementation and existing
item classes will not be affected.

The drawback of visitor pattern is that we should know the return type of
visit () methods at the time of designing otherwise we will have to change
the interface and all of its implementations. Another drawback is that if there
are too many implementations of visitor interface, it makes it hard to extend.

© JOURNALDEV.COM

PAGE 115 OF 132

http://www.journaldev.com/

9. Interpreter Pattern

Interpreter pattern is one of the behavioral design pattern and is used to
define a grammatical representation for a language and provides an
interpreter to deal with this grammar. The best example of this pattern is
java compiler that interprets the java source code into byte code that is
understandable by JVM. Google Translator is also an example of interpreter
pattern where the input can be in any language and we can get the output
interpreted in another language.

To implement interpreter pattern, we need to create Interpreter context
engine that will do the interpretation work and then we need to create
different Expression implementations that will consume the functionalities
provided by the interpreter context. Finally we need to create the client that
will take the input from user and decide which Expression to use and then
generate output for the user.

Let’s understand this with an example where the user input will be of two
forms — “<Number> in Binary” or “<Number> in Hexadecimal” and our
interpreter client should return it in format “<Number> in Binary=
<Number Binary String>” and “<Number> in Hexadecimal=
<Number Binary String>" respectively.

Our first step will be to write the Interpreter context class that will do the
actual interpretation.

package com.journaldev.design.interpreter;
public class InterpreterContext ({

public String getBinaryFormat (int i) {
return Integer.toBinaryString (i) ;

}

public String getHexadecimalFormat (int i) {
return Integer.toHexString (i) ;

}

© JOURNALDEV.COM PAGE 116 OF 132

http://www.journaldev.com/
http://www.journaldev.com/546/difference-between-jdk-jre-and-jvm-in-java

Now we need to create different types of Expressions that will consume the
interpreter context class.

package com.journaldev.design.interpreter;
public interface Expression {

String interpret (InterpreterContext ic);

We will have two expression implementations, one to convert int to binary
and other to convert int to hexadecimal format.

package com.journaldev.design.interpreter;
public class IntToBinaryExpression implements Expression {
private int i;
public IntToBinaryExpression (int c) {
this.i=c;

}

@Override
public String interpret (InterpreterContext ic) {
return ic.getBinaryFormat (this.i);

package com.journaldev.design.interpreter;

public class IntToHexExpression implements Expression {
private int i;
public IntToHexExpression (int c) {

this.i=c;

@Override
public String interpret (InterpreterContext ic) {
return ic.getHexadecimalFormat (1) ;

© JOURNALDEV.COM PAGE 117 OF 132

http://www.journaldev.com/

Now we can create our client application that will have the logic to parse the
user input and pass it to correct expression and then use the output to
generate the user response.

package com.journaldev.design.interpreter;
public class InterpreterClient ({
public InterpreterContext ic;

public InterpreterClient (InterpreterContext 1) {

this.ic=1i;

public String interpret(String str) {
Expression exp=null;
//create rules for expressions
if (str.contains ("Hexadecimal"™)) {
exp=new
IntToHexExpression (Integer.parselnt (str.substring (0, str.indexOf ("
"))))i
}else if (str.contains ("Binary")) {
exp=new
IntToBinaryExpression (Integer.parselnt (str.substring (0, str.indexOf ("
"))))
}else return str;

return exp.interpret (ic);

public static void main(String args[]) {
String strl = "28 in Binary";
String str2 = "28 in Hexadecimal";

InterpreterClient ec = new InterpreterClient (new
InterpreterContext());

System.out.println(strl+"= "+ec.interpret (strl));

System.out.println(str2+"= "+ec.interpret (str2));

© JOURNALDEV.COM PAGE 118 OF 132

http://www.journaldev.com/

The client also has a main method for testing purpose, when we run above

we get following output:

28 in Binary= 11100
28 in Hexadecimal= 1lc

A. Class Diagram

<<Java Interface==
€ Expression

com.journaldev.design.interpreter

@ interpret(InterpreterContext):String

<<Java Class>>
@IntToBinaryExpression

com.joumnaldev.design.interpratar

aiint

& IntToBinaryExpression(int)
@ interpret(InterpreterContext).String

®

<<Java Class=>>
G InterpreterClient

com.joumnaldev.design.interpreter

& InterpreterClient{InterpreterContext)
@ Interpret(String):String

@ 'main(String[J;:void
+ic|0.1
<<Java Class>> << Java Class>>
GIntTnHexExpresslnn Glnterpretar(.‘.nntaxt
com.journaldev.design.interpreter com.journalkdev.design.interpreter
ajint

& IntToHexExpression(int)
@ interpret{InterpreterContext):String

& InterpreterContext()
@ getBinaryFormat{int):String
@ getHexadecimalFormat{int):5tring

B. Important Points

« Interpreter pattern can be used when we can create a syntax tree for

the grammar we have.

o Interpreter pattern requires a lot of error checking and a lot of
expressions and code to evaluate them, it gets complicated when the
grammar becomes more complicated and hence hard to maintain and

provide efficiency.

o java.util.Pattern and subclasses of java.text.Format are some of the
examples of interpreter pattern used in JDK.

© JOURNALDEV.COM

PAGE 119 OF 132

http://www.journaldev.com/

10. Iterator Pattern

Iterator pattern in one of the behavioral pattern and it’s used to provide a
standard way to traverse through a group of Objects. Iterator pattern is
widely used in Java Collection Framework where Iterator interface provides
methods for traversing through a collection. According to GoF, iterator
design pattern intent is:

“Provides a way to access the elements of an
aggregate object without exposing its underlying
representation”

[terator pattern is not only about traversing through a collection, we can
provide different kind of iterators based on our requirements. Iterator pattern
hides the actual implementation of traversal through the collection and client
programs just use iterator methods.

Let’s understand this pattern with a simple example. Suppose we have a list
of Radio channels and the client program want to traverse through them one
by one or based on the type of channel, for example some client programs
are only interested in English channels and want to process only them, they
don’t want to process other types of channels.

So we can provide a collection of channels to the client and let them write
the logic to traverse through the channels and decide whether to process
them. But this solution has lots of issues such as client has to come up with
the logic for traversal. We can’t make sure that client logic is correct and if
the number of client grows then it will become very hard to maintain.

Here we can use Iterator pattern and provide iteration based on type of
channel. We should make sure that client program can access the list of
channels only through the iterator.

The first part of implementation is to define the contract for our collection
and iterator interfaces.

package com.journaldev.design.iterator;

© JOURNALDEV.COM PAGE 120 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1260/java-collections-framework-tutorial

public enum ChannelTypeEnum {

ENGLISH, HINDI, FRENCH, ALL;

ChannelTypeEnum is java enum that defines all the different types of

channels.

package com.journaldev.design.iterator;
public class Channel {

private double frequency;
private ChannelTypeEnum TYPE;

public Channel (double freq, ChannelTypeEnum type) {

this. frequency=freqg;
this.TYPE=type;

public double getFrequency () {
return frequency;

public ChannelTypeEnum getTYPE () {
return TYPE;

@Override
public String toString() {
return "Frequency="+this.frequency+",

Type="+this.TYPE;

Channel is a simple POJO class that has attributes frequency and channel

type.

package com.journaldev.design.iterator;

public interface ChannelCollection {

public void addChannel (Channel c);

© JOURNALDEV.COM

PAGE 121 OF 132

http://www.journaldev.com/
http://www.journaldev.com/716/java-enum-examples-with-benefits-and-class-usage

public void removeChannel (Channel c);

public Channellterator iterator (ChannelTypeEnum type);

ChannelCollection interface defines the contract for our collection class
implementation. Notice that there are methods to add and remove a channel
but there 1s no method that returns the list of channels and it has a method
that returns the iterator for traversal. Channellterator interface defines
following methods;

package com.journaldev.design.iterator;
public interface ChannelIterator {
public boolean hasNext () ;

public Channel next();

Now our base interface and core classes are ready, let’s proceed with the
implementation of collection class and iterator.

package com.journaldev.design.iterator;

import java.util.ArrayList;
import java.util.List;

public class ChannelCollectionImpl implements ChannelCollection {
private List<Channel> channelsList;
public ChannelCollectionImpl () {

channelsList = new ArrayList<>();

public void addChannel (Channel c) {
this.channelsList.add(c);

public void removeChannel (Channel c) {
this.channelsList.remove (c) ;

© JOURNALDEV.COM PAGE 122 OF 132

http://www.journaldev.com/

@Override
public Channellterator iterator (ChannelTypeEnum type) {
return new ChannelIteratorImpl (type, this.channelslist);

private class ChannelIteratorImpl implements ChannelIterator {

private ChannelTypeEnum type;
private List<Channel> channels;

private int position;

public ChannelIteratorImpl (ChannelTypeEnum ty,
List<Channel> channelsList) {
this.type = ty;
this.channels = channelsList;

@Override
public boolean hasNext () ({
while (position < channels.size()) {
Channel c¢ = channels.get (position);
if (c.getTYPE() .equals (type) ||
type.equals (ChannelTypeEnum.ALL)) {
return true;
} else
position++;
}

return false;

@Override

public Channel next () {
Channel c¢ = channels.get (position);
position++;
return c;

}
Notice the inner class implementation of iterator interface so that the

implementation can’t be used by any other collection. Same approach is
followed by collection classes also and all of them have inner class

implementation of Iterator interface.

© JOURNALDEV.COM PAGE 123 OF 132

http://www.journaldev.com/
http://www.journaldev.com/996/java-nested-classes-java-inner-class-static-nested-class-local-inner-class-and-anonymous-inner-class

Let’s write a simple test class to use our collection and iterator to traverse

through the collection of channels based on type.

package com.journaldev.design.iterator;
public class IteratorPatternTest {

public static void main(String[] args) {
ChannelCollection channels = populateChannels();
ChannelIterator baselterator =
channels.iterator (ChannelTypeEnum.ALL) ;
while (baselterator.hasNext()) {
Channel ¢ = baselterator.next();
System.out.println(c.toString())
}
System.out.println ("****xxm)
// Channel Type Iterator
ChannelIterator englishIterator =
channels.iterator (ChannelTypeEnum.ENGLISH) ;
while (englishIterator.hasNext()) {
Channel ¢ = englishIterator.next();
System.out.println(c.toString());

}
private static ChannelCollection populateChannels () {
ChannelCollection channels = new ChannelCollectionImpl () ;
channels.addChannel (new Channel (98.5,
ChannelTypeEnum.ENGLISH)) ;

channels.addChannel (new Channel (99.5, ChannelTypeEnum.HINDI)) ;

channels.addChannel (new Channel (100.5,
ChannelTypeEnum. FRENCH)) ;

channels.addChannel (new Channel (101.5,
ChannelTypeEnum.ENGLISH)) ;

channels.addChannel (new Channel (102.5, ChannelTypeEnum.HINDI)) ;

channels.addChannel (new Channel (103.5,
ChannelTypeEnum.FRENCH)) ;

channels.addChannel (new Channel (104.5,
ChannelTypeEnum.ENGLISH)) ;

channels.addChannel (new Channel (105.5, ChannelTypeEnum.HINDI)) ;

channels.addChannel (new Channel (106.5,
ChannelTypeEnum.FRENCH)) ;

return channels;

© JOURNALDEV.COM PAGE 124 OF 132

http://www.journaldev.com/

When I run above program, it produces following output;

Frequency=98.5, Type=ENGLISH
Frequency=99.5, Type=HINDI
Frequency=100.5, Type=FRENCH
Frequency=101. Type=ENGLISH
Frequency=102. Type=HINDI
Frequency=103. Type=FRENCH
Frequency=104. Type=ENGLISH
Frequency=105. Type=HINDI
Frequency=106. Type=FRENCH
* k Kk k k)

Frequency=98.5, Type=ENGLISH
Frequency=101.5, Type=ENGLISH
Frequency=104.5, Type=ENGLISH

A. lterator Pattern in JDK

[G20NC) BNC B2 BNE I G,

N~ N N N N~ 0~

We all know that Collection framework Iterator is the best example of
iterator pattern implementation but do you know that java.util.Scanner class
also Implements Iterator interface. Read this post to learn about Java
Scanner Class.

B. Important Points

 Iterator pattern is useful when you want to provide a standard way to
iterate over a collection and hide the implementation logic from client
program.

o The logic for iteration is embedded in the collection itself and it helps
client program to iterate over them easily.

© JOURNALDEV.COM PAGE 125 OF 132

http://www.journaldev.com/
http://www.journaldev.com/872/java-scanner-class-example-read-file-parse-text-read-from-inputstream
http://www.journaldev.com/872/java-scanner-class-example-read-file-parse-text-read-from-inputstream

11. Memento Paitern

Memento pattern is one of the behavioral design pattern. Memento
design pattern is used when we want to save the state of an object so that we
can restore later on. Memento pattern is used to implement this in such a
way that the saved state data of the object is not accessible outside of the
object, this protects the integrity of saved state data.

Memento pattern is implemented with two objects — Originator and
Caretaker. Originator is the object whose state needs to be saved and
restored and it uses an inner class to save the state of Object. The inner class
is called Memento and its private, so that it can’t be accessed from other
objects.

Caretaker 1s the helper class that is responsible for storing and restoring the
Originator’s state through Memento object. Since Memento is private to
Originator, Caretaker can’t access it and it’s stored as a Object within the
caretaker.

One of the best real life example is the text editors where we can save it’s
data anytime and use undo to restore it to previous saved state. We will
implement the same feature and provide a utility where we can write and
save contents to a File anytime and we can restore it to last saved state. For
simplicity, I will not use any 1O operations to write data into file.

A. Originator Class

package com.journaldev.design.memento;
public class FileWriterUtil {

private String fileName;
private StringBuilder content;

public FileWriterUtil (String file) {

this.fileName=file;
this.content=new StringBuilder () ;

© JOURNALDEV.COM PAGE 126 OF 132

http://www.journaldev.com/
http://www.journaldev.com/996/java-nested-classes-java-inner-class-static-nested-class-local-inner-class-and-anonymous-inner-class

@Override
public String toString() {
return this.content.toString();

public void write (String str) {

content.append (str) ;

public Memento save () {
return new Memento (this.fileName, this.content) ;

public void undoToLastSave (Object ob7j) {
Memento memento = (Memento) ob7j;
this.fileName= memento.fileName;
this.content=memento.content;

private class Memento({
private String fileName;
private StringBuilder content;
public Memento (String file, StringBuilder content) {
this.fileName=file;
//notice the deep copy so that Memento and FileWriterUtil

content variables don't refer to same object

this.content=new StringBuilder (content) ;

Notice the Memento inner class and implementation of save and undo
methods. Now we can continue to implement Caretaker class.

B. Caretaker Class

package com.journaldev.design.memento;
public class FileWriterCaretaker {

private Object obj;

© JOURNALDEV.COM PAGE 127 OF 132

http://www.journaldev.com/

public void save (FileWriterUtil fileWriter) {

this.obj=fileWriter.save ()

public void undo (FileWriterUtil fileWriter) {

fileWriter.undoToLastSave (obj) ;

Notice that caretaker object contains the saved state in the form of Object, so
it can’t alter its data and also it has no knowledge of its structure.

C. Memento Test Class

Let’s write a simple test program that will use our memento implementation.

package com.journaldev.design.memento;
public class FileWriterClient {

public static void main(String[] args) {

FileWriterCaretaker caretaker = new FileWriterCaretaker();

FileWriterUtil fileWriter = new FileWriterUtil ("data.txt");
fileWriter.write ("First Set of Data\n");

System.out.println (fileWriter+"\n\n");

// lets save the file
caretaker.save (fileWriter) ;
//now write something else

fileWriter.write ("Second Set of Data\n");

//checking file contents
System.out.println (fileWriter+"\n\n") ;

//lets undo to last save

caretaker.undo (fileWriter);

//checking file content again

System.out.println (fileWriter+"\n\n") ;

© JOURNALDEV.COM PAGE 128 OF 132

http://www.journaldev.com/

Output of above program is:

First Set of Data

First Set of Data
Second Set of Data

First Set of Data

The pattern 1s simple and easy to implement, one of the thing needs to take
care i1s that Memento class should be accessible only to the Originator
object. Also in client application, we should use caretaker object for saving
and restoring the originator state.

Also if Originator object has properties that are not immutable, we should
use deep copy or cloning to avoid data integrity issue like I have used in
above example. We can use Serialization to achieve memento pattern
implementation that is more generic rather than Memento pattern where
every object needs to have its own Memento class implementation.

One of the drawback is that if Originator object is very huge then Memento
object size will also be huge and use a lot of memory.

© JOURNALDEV.COM PAGE 129 OF 132

http://www.journaldev.com/

Copyright Notice

Copyright © 2014 by Pankaj Kumar, www.journaldev.com

All rights reserved. No part of this publication may be reproduced,
distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods, without
the prior written permission of the publisher, except in the case of brief
quotations embodied in critical reviews and certain other noncommercial
uses permitted by copyright law. For permission requests, write to the
publisher, addressed “Attention: Permissions Coordinator,” at the email
address Pankaj.0323@gmail.com.

Although the author and publisher have made every effort to ensure that the
information in this book was correct at press time, the author and publisher
do not assume and hereby disclaim any liability to any party for any loss,
damage, or disruption caused by errors or omissions, whether such errors or
omissions result from negligence, accident, or any other cause. Please report
any errors by sending an email to Pankaj.0323@gmail.com

All trademarks and registered trademarks appearing in this eBook are the
property of their respective owners.

© JOURNALDEV.COM PAGE 130 OF 132

http://www.journaldev.com/
mailto:Pankaj.0323@gmail.com
mailto:Pankaj.0323@gmail.com

References

Nownbkwd

10.
11.
12.
13.
14.

15.

16.

17.
18.

19.
20.

21

22.
23.

24.

http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-
with-examples

http://www.journaldev.com/1392/factory-design-pattern-in-java
http://www.journaldev.com/1418/abstract-factory-design-pattern-in-java
http://www.journaldev.com/1425/builder-design-pattern-in-java
http://www.journaldev.com/1440/prototype-pattern-in-java
http://www.journaldev.com/1487/adapter-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1535/composite-design-pattern-in-java-example-
tutorial
http://www.journaldev.com/1572/proxy-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1562/flyweight-pattern-in-java-example-tutorial
http://www.journaldev.com/1557/facade-pattern-in-java-example-tutorial
http://www.journaldev.com/1491/bridge-pattern-in-java-example-tutorial
http://www.journaldev.com/1540/decorator-pattern-in-java-example-tutorial
http://www.journaldev.com/1763/template-method-design-pattern-in-java
http://www.journaldev.com/1730/mediator-design-pattern-in-java-example-
tutorial
http://www.journaldev.com/1617/chain-of-responsibility-design-pattern-in-java-
example-tutorial
http://www.journaldev.com/1739/observer-design-pattern-in-java-example-
tutorial
http://www.journaldev.com/1754/strategy-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1624/command-design-pattern-in-java-example-
tutorial
http://www.journaldev.com/1751/state-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1769/visitor-design-pattern-in-java-example-tutorial

. http://www.journaldev.com/1635/interpreter-design-pattern-in-java-example-

tutorial
http://www.journaldev.com/1716/iterator-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1734/memento-design-pattern-in-java-example-
tutorial

http://en.wikipedia.org/wiki/Design pattern

© JOURNALDEV.COM PAGE 131 OF 132

http://www.journaldev.com/
http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-with-examples
http://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-with-examples
http://www.journaldev.com/1392/factory-design-pattern-in-java
http://www.journaldev.com/1418/abstract-factory-design-pattern-in-java
http://www.journaldev.com/1425/builder-design-pattern-in-java
http://www.journaldev.com/1440/prototype-pattern-in-java
http://www.journaldev.com/1487/adapter-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1535/composite-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1535/composite-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1572/proxy-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1562/flyweight-pattern-in-java-example-tutorial
http://www.journaldev.com/1557/facade-pattern-in-java-example-tutorial
http://www.journaldev.com/1491/bridge-pattern-in-java-example-tutorial
http://www.journaldev.com/1540/decorator-pattern-in-java-example-tutorial
http://www.journaldev.com/1763/template-method-design-pattern-in-java
http://www.journaldev.com/1730/mediator-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1730/mediator-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1617/chain-of-responsibility-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1617/chain-of-responsibility-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1739/observer-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1739/observer-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1754/strategy-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1624/command-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1624/command-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1751/state-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1769/visitor-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1635/interpreter-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1635/interpreter-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1716/iterator-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1734/memento-design-pattern-in-java-example-tutorial
http://www.journaldev.com/1734/memento-design-pattern-in-java-example-tutorial
http://en.wikipedia.org/wiki/Design_pattern

