

Java 8 Support in Hibernate 5
Thoughts on Java Library

Thorben Janssen

© 2016 Thorben Janssen

Contents

Foreword . 1

How to persist the new Date and Time API . 2
Java 8 support in Hibernate 5 . 2
JDBC mappings . 3
Date and Time API classes as entity attributes 3
Summary . 5

How to use Java 8’s Optional with Hibernate . 6
Optional attributes . 6
Load optional entities . 8
Summary . 8

How to get query results as a Stream with Hibernate 5.2 9
Advantages of the stream()method . 9
How to use the stream()method . 10
How to NOT use the stream()method . 11
Summary . 11

Benefits of @Repeatable annotations in Hibernate 5.2 12
What is @Repeatable and why should you like it? 12
Which Hibernate annotations are repeatable? 13
How to use @Repeatable annotations . 13
Summary . 14

Foreword
Hi,

I’m Thorben, the author and founder of thoughts-on-java.org1.
Thank you for downloading this ebook.

Java 8 was a huge release and brought a lot of improvements
to the Java world which most developers don’t want to miss
anymore. Unfortunately, we have to wait for JPA 2.2 to get
standardized support for the new features and APIs. But that
doesn’t mean that you can’t use them.

The development team of Hibernate, the most popular JPA im-
plementation, started to support different Java 8 features in
version 5.0 and switched the code base of version 5.2 to Java 8. This allows them to not
only support new data types, like the new date and time classes, as entity attributes
but also to use Java 8 in their own APIs.

In the following chapters, I will show you:

• how to use classes of the Date and Time API as entity attributes and persist them
with the right JDBC data types,

• how to use Optional as an entity attribute and as the return type when fetching
entities from the database,

• how and why you should get large query results as a Stream and
• how to use Hibernate’s repeatable annotations to clean up your entities.

Take care,

Thorben
1http://www.thoughts-on-java.org

http://www.thoughts-on-java.org/
http://www.thoughts-on-java.org/

How to persist the new Date and
Time API
Do you use Java 8’s Date and Time API in your projects? Let’s be honest, working with
java.util.Date is a pain, and I would like to replace it with the new API in all of my
projects.

The only problem is that JPA 2.1 does not support it because it was earlier than Java 8.
You can, of course, use LocalDate or other classes of the Date and Time API as entity
attributes, but Hibernate stores them as blobs in the database.

You have two options to persist these classes correctly:

• You can implement a JPA AttributeConverter and convert the Java 8 class into
one that is supported by Hibernate. I described this in detail in the blog post
How to persist LocalDate and LocalDateTime with JPA2. This approach does not
use any Hibernate-specific APIs and is portable to other JPA implementations.
But it is also a little complicated.

• Or you can use theHibernate-specific Java 8 support whichwas introducedwith
Hibernate 5. This approach is not portable to other JPA implementations but
much easier to use. I will show you how to do that in this chapter.

Java 8 support in Hibernate 5

Java 8 is one of the big topics for Hibernate 5 and the support for the Date and Time
API was one of the first changes.

The Hibernate versions 5.0 and 5.1 are still Java 7 compatible and ship the Java 8
support in a separate jar file called hibernate-java8.jar. You just have to add it to the
classpath to use it in your application.

2http://www.thoughts-on-java.org/persist-localdate-localdatetime-jpa/

http://www.thoughts-on-java.org/persist-localdate-localdatetime-jpa/
http://www.thoughts-on-java.org/persist-localdate-localdatetime-jpa/

How to persist the new Date and Time API 3

<dependency>

<groupId>org.hibernate</groupId>

<artifactId>hibernate-java8</artifactId>

<version>5.1.0.Final</version>

</dependency>

Hibernate 5.2 is based on Java 8, and the hibernate-java8.jar file was removed.
Hibernate now ships these classes as part of the hibernate-core.jar.

JDBC mappings

Hibernatemaps the classes of the Date and Time API to the according JDBC types. The
following list gives an overview of the supported classes and their JDBC mapping.

• java.time.Duration - BIGINT
• java.time.Instant - TIMESTAMP
• java.time.LocalDateTime - TIMESTAMP
• java.time.LocalDate - DATE
• java.time.LocalTime - TIME
• java.time.OffsetDateTime - TIMESTAMP
• java.time.OffsetTime - TIME
• java.time.ZonedDateTime - TIMESTAMP

Date and Time API classes as entity attributes

Hibernate supports the classes of the Date and Time API as BasicTypes. That provides
the advantage that you don’t have to provide any additional annotations. Not even
the @Temporal annotation which you currently add to each java.util.Date attribute.
Hibernate gets all required information from the type of the attribute. You can see an
example of an entity with attributes of type LocalDate, LocalDateTime, and Duration
in the following code snippet.

How to persist the new Date and Time API 4

@Entity

public class MyEntity {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

@Column(name = "id", updatable = false, nullable = false)

private Long id;

@Column

private LocalDate date;

@Column

private LocalDateTime dateTime;

@Column

private Duration duration;

...

}

You can then use these attributes in the same way as any other attributes in your Java
code.

EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

MyEntity e = new MyEntity();

e.setDate(LocalDate.now());

e.setDateTime(LocalDateTime.now());

e.setDuration(Duration.ofDays(2));

em.persist(e);

And as you can see in the following screenshot, Hibernate persists themwith the right
JDBC data type instead of the blob it uses without Java 8 support.

How to persist the new Date and Time API 5

Summary

We need to wait for JPA 2.2 to get standardized support for the Date and Time API.
Until then you have to handle the type conversion yourself3, or you can use the
proprietary Java 8 support added in Hibernate 5.

Hibernate 5.0 and 5.1 ship the Java 8 support in an additional jar file (hibernate-
java8.jar) which you need to add to your classpath. Hibernate 5.2 integrated the Java
8 support into the core module and removed the hibernate-java8.jar file.

Hibernate handles the classes of the Date and Time API as BasicTypes. That makes
them even easier to use than the old java.util.Date because you don’t have to add any
additional annotations.

3http://www.thoughts-on-java.org/persist-localdate-localdatetime-jpa/

http://www.thoughts-on-java.org/persist-localdate-localdatetime-jpa/
http://www.thoughts-on-java.org/persist-localdate-localdatetime-jpa/

How to use Java 8’s Optional with
Hibernate
Java 8 introduced Optional<T> as a container object which may contain null values.
It’s often used to indicate to a caller that the object might be null and that it needs to
be handled to avoid NullPointerExceptions.

Sounds pretty useful, right?

So why not use them in your persistence layer for optional entity attributes or when
loading entities that may or may not exist?

Until the release of Hibernate 5.2, the reason was pretty simple: It wasn’t supported.
And you still have to wait for JPA 2.2 if you don’t want to rely on proprietary features.
But that’s a different topic.

The Hibernate team started to use Java 8Optional<T> in their query APIs in Hibernate
5.2. You can use it to indicate optional attributes and query results which might not
return a result.

Optional attributes

UsingOptional<T> for optional entity attributes is probably themost obvious use case.
But there is still no direct support for it in Hibernate 5.2. It requires a small trick which
also works with older Hibernate versions.

Let’s say, you’re storing books in a database. Some of them are already published,
and others are still in progress. In this case, you have a Book entity with an optional
publishingDate attribute that might be null.

With previous Java versions, the getPublishingDate() method would just return null.
The caller would need to know about it and handle it. With Java 8, you can return an
Optional to indicate the potential null value and to avoid NullPointerExceptions.

But if you just change the type of the publishingDate attribute from LocalDate to
Optional<LocalDate>, Hibernate isn’t able to determine the type of the attribute and
throws aMappingException.

How to use Java 8’s Optional with Hibernate 7

javax.persistence.PersistenceException: [PersistenceUnit: my-persistence-unit] U\

nable to build Hibernate SessionFactory

at org.hibernate.jpa.boot.internal.EntityManagerFactoryBuilderImpl.persistenceEx\

ception(EntityManagerFactoryBuilderImpl.java:951)

...

Caused by: org.hibernate.MappingException: Could not determine type for: java.ut\

il.Optional, at table: Book, for columns: [org.hibernate.mapping.Column(publishi\

ngDate)]

at org.hibernate.mapping.SimpleValue.getType(SimpleValue.java:454)

at org.hibernate.mapping.SimpleValue.isValid(SimpleValue.java:421)

at org.hibernate.mapping.Property.isValid(Property.java:226)

at org.hibernate.mapping.PersistentClass.validate(PersistentClass.java:595)

at org.hibernate.mapping.RootClass.validate(RootClass.java:265)

at org.hibernate.boot.internal.MetadataImpl.validate(MetadataImpl.java:329)

at org.hibernate.boot.internal.SessionFactoryBuilderImpl.build(SessionFactoryBui\

lderImpl.java:489)

at org.hibernate.jpa.boot.internal.EntityManagerFactoryBuilderImpl.build(EntityM\

anagerFactoryBuilderImpl.java:878)

... 28 more

To avoid this Exception, you have to use field-type access and keep LocalDate as the
type of the publishingDate attribute. Hibernate is then able to determine the data type
of the attribute but doesn’t return an Optional.

And here is the trick: When you use field-type access, you can implement the
getter and setter methods in your own way. You can, for example, implement a
getPublishingDate() method which wraps the publishingDate attribute in an Op-
tional<LocalDate>.

@Entity

public class Book {

...

@Column

private LocalDate publishingDate;

...

public Optional getPublishingDate() {

return Optional.ofNullable(publishingDate);

}

How to use Java 8’s Optional with Hibernate 8

public void setPublishingDate(LocalDate publishingDate) {

this.publishingDate = publishingDate;

}

}

Load optional entities

Hibernate 5.2 also introduced the loadOptional(Serializable id) method to the Identi-
fierLoadAccess interface which returns an Optional<T>. You should use this method
to indicate that the result might be empty when you can’t be sure that the database
contains a record with the provided id.

The loadOptional(Serializable id)method is similar to the load(Serializable id)method
which you already know from older Hibernate versions. It returns the loaded entity
or a null value if no entity with the given id exists. The new loadOptional(Serializable
id) method wraps the entity in an Optional<T> and therefore indicates the potential
null value.

As you can see in the following code snippet, you can use it in the same way as the
existing load(Serializable id)method.

Session session = em.unwrap(Session.class);

Optional<Book> book = session.byId(Book.class).loadOptional(1L);

if (book.isPresent()) {

log.info("Found book with id ["+book.get().getId()+"] and title ["+book.get().\

getTitle()+"].");

} else {

log.info("Book doesn't exist.");

}

Summary

In this chapter, I showed you how to useOptional in Hibernate 5. The new, Hibernate-
specific loadOptional(Serializable id) method fetches entities from the database and
wraps them into an Optional. It is just a minor improvement compared to the existing
load(Serializable id) method, but it helps to build cleaner APIs. Unfortunately, you
still can’t use it as an entity attribute type. But if you use field-type access, you can
implement your own getter method which wraps the attribute in an Optional.

How to get query results as a Stream
with Hibernate 5.2
Since version 5.2, Hibernate starts to use Java 8 classes in their proprietary APIs. This
brought several changes to the existing APIs, like the small addition to the Query
interface I want to show you in this chapter. The new stream() method allows you
to process the query results as a Java 8 Stream.

But before we dive into the details, let me quickly explain the benefits of the new
stream() method.

Advantages of the stream()method

In the beginning, it looks like a small improvement that makes your code a little less
clunky. You already can take a List of query results and call its stream()method to get
a Stream representation.

List<Book> books = session.createQuery("SELECT b FROM Book b", Book.class).list(\

);

books.stream()

.map(b -> b.getTitle() + " was published on " + b.getPublishingDate())

.forEach(m -> log.info(m));

Sure, this code also gives you a Stream with your query result, but it is not the most
efficient approach. In this example, Hibernate will get all the selected Book entities
from the database, store them in memory and put them into a List. You then call the
stream() method and process the results one by one. That approach is OK as long as
your result set isn’t too big. But if you’re working on a huge result set, you better scroll
through the records and fetch them in smaller chunks.

You’re already familiar with that approach if you’ve used JDBC result sets or Hiber-
nate’s ScrollableResult. Scrolling through the records of a result set and processing
them as a Stream are a great fit. Both approaches process one record after the other,
and there’s no need to fetch all of them upfront. The Hibernate team, therefore,
decided to reuse the existing scroll() method and the ScrollableResult to implement
the new stream()method.

How to get query results as a Stream with Hibernate 5.2 10

How to use the stream()method

As I wrote in the introduction, the change on the API level is quite small. It’s just the
stream() method on the Query interface. But sometimes that’s all it takes to adapt an
existing API so that you can use it in a modern way. The stream()method is part of the
Query interface and you can, therefore, use it with all kinds of queries and projections.

Let’s have a look at a few of them.

Entities

Entities are the most common projection with Hibernate, and you can use them in a
Stream in any way you like. In the following example, I call the stream()method to get
the result set as a Stream. I then use the map() method to create a log message for
each Book entity and call the forEach() method to write each message to the log file.
Your business logic will probably be a little more complex.

Stream<Book> books = session.createQuery("SELECT b FROM Book b", Book.class).str\

eam();

books.map(b -> b.getTitle() + " was published on " + b.getPublishingDate())

.forEach(m -> log.info(m));

Scalar Values

Until now, scalar values were not a very popular projection because it returns a List
of Object[]. You then have to implement a loop to go through all Object[]s and cast
its elements to their specific types. That gets a lot easier with Streams. The following
code snippet shows a simple native SQL query which returns two scalar values.

Stream<Object[]> books = session.createNativeQuery("SELECT b.title, b.publishing\

Date FROM book b").stream();

books.map(b -> new BookValue((String)b[0], (Date)b[1]))

.map(b -> b.getTitle() + " was published on " + b.getPublishingDate())

.forEach(m -> log.info(m));

If you still don’t want to write this kind of code, you can still use an @SqlResultMap-
ping4.

4http://www.thoughts-on-java.org/2015/04/result-set-mapping-basics.html

http://www.thoughts-on-java.org/2015/04/result-set-mapping-basics.html
http://www.thoughts-on-java.org/2015/04/result-set-mapping-basics.html
http://www.thoughts-on-java.org/2015/04/result-set-mapping-basics.html

How to get query results as a Stream with Hibernate 5.2 11

POJOs

POJOs or similar projections can be easily created with a constructor expression, as
you can see in the following code snippet. Unfortunately, there seems to be a bug
(HHH-110295) in Hibernate 5.2.2 so that these projections don’t work with Streams.
Instead of mapping the BookValues to Strings and writing them to the log file, the
following code snippet throws a ClassCastException.

Stream<BookValue> books = session.createQuery("SELECT new org.thoughts.on.java.m\

odel.BookValue(b.title, b.publishingDate) FROM Book b", BookValue.class).stream(\

);

books.map(b -> b.getTitle() + " was published on " + b.getPublishingDate())

.forEach(m -> log.info(m));

How to NOT use the stream()method

The stream() method provides a comfortable and efficient way to get a Stream
representation of your query result. I already talked about the advantages of this new
method and how you can use it. But one important thing I haven’t talked about is how
to NOT use it. It is not directly related to the stream() method. It’s related to a lot of
Stream API examples I’ve seen since the release of Java 8.

The Stream API provides a set ofmethods thatmake it easy to filter elements, to check
if theymatch certain criteria and to aggregate all items. In general, these methods are
great but please don’t use them to post-process your query results. As long as you can
express these operations with SQL (believe me, you can implement almost all of them
in SQL), the database can do them a lot better!

Summary

Hibernate 5.2 introduced the stream()method to theQuery interface. It seems like just
a small change, but it provides easy access to a Stream representation of the result
set and allows you to use the existing APIs in a modern way.

As you’ve seen in the examples, the stream() method can be used with all kinds of
queries and almost all projections. The only projection that’s causing some problems
in version 5.2.2 is the projection as a POJO. But I expect that it will be fixed soon.

5https://hibernate.atlassian.net/browse/HHH-11029

https://hibernate.atlassian.net/browse/HHH-11029
https://hibernate.atlassian.net/browse/HHH-11029

Benefits of @Repeatable annotations
in Hibernate 5.2
Hibernate 5.2 introduced several changes based on Java 8 features. In the previous
chapters, I showed you how to get query results as a Stream and the support of Date-
Time API classes andOptional. In this chapter, I will have a look at an improvement to
several Hibernate annotations. A lot of them are now @Repeatable which makes them
much more comfortable to use.

What is @Repeatable and why should you like it?

Before I get to the Hibernate annotations, let’s have a quick look at @Repeatable. The
idea of repeatable annotations is very simple, and I’ve no idea why we had to wait so
long for it.

Sometimes, you want to apply the same annotation multiple times. Before Java 8, the
only way to do that was to use an additional annotation and provide an array of the
annotations you want to apply as a value. The most common example with JPA and
Hibernate are the @NamedQueries and @NamedQuery annotation.

@Entity

@NamedQueries({

@NamedQuery(name = "Book.findByTitle", query = "SELECT b FROM Book b WHERE b\

.title = :title"),

@NamedQuery(name = "Book.findByPublishingDate", query = "SELECT b FROM Book \

b WHERE b.publishingDate = :publishingDate")

})

public class Book {

...

}

I never liked this approach. The @NamedQueries annotation doesn’t provide any
benefit. The only reason it exists and why you have to add it to your entity is that
you want to define multiple @NamedQuery. Java 8 finally provides a better solution.
You can now declare an annotation as repeatable and apply it multiple times without
any wrapper annotations.

Benefits of @Repeatable annotations in Hibernate 5.2 13

Which Hibernate annotations are repeatable?

It’s pretty easy to find all Hibernate annotations that should be repeatable. You just
need to have a look at the org.hibernate.annotations package and find all annotations
that wrap an array of other annotations as their value. The wrapped annotations are
obviously the ones that should be repeatable.

I had a look at that package, and it seems like all are now repeatable. You can find a list
of all of them and their JavaDoc description below. And don’t be surprised about some
annotation names. Hibernate provides its own version of a lot of JPA annotations, like
@NamedQuery, to extend them with Hibernate-specific features.

• AnyMetaDef - Used to provide metadata about an Any or ManyToAny mapping.
• ColumnTransformer - Custom SQL expression used to read the value from and
write a value to a column. Use for direct object loading/saving as well as queries.
The write expression must contain exactly one “?” placeholder for the value. For
example: read=”decrypt(credit_card_num)” write=”encrypt(?)”

• FetchProfile - Define the fetching strategy profile.
• Filter - Add filters to an entity or a target entity of a collection.
• FilterDef - Filter definition. Defines a name, default condition and parameter
types (if any).

• FilterJoinTable - Add filters to a join table collection.
• GenericGenerator - Generator annotation describing any kind of Hibernate
generator in a generic (de-typed) manner.

• JoinColumnOrFormula - Allows joins based on column or a formula. One of
formula() or column() should be specified, but not both.

• NamedNativeQuery - Extends NamedNativeQuery with Hibernate features.
• NamedQuery - Extends NamedQuery with Hibernate features.
• Table - Complementary information to a table either primary or secondary.
• Tuplizer - Define a tuplizer for an entity or a component.
• TypeDef - A type definition. Much like Type, but here we can centralize the
definition under a name and refer to that name elsewhere. The plural form is
TypeDefs.

How to use @Repeatable annotations

With JPA and Hibernate versions before 5.2, you were not able to annotate an entity
with multiple of the same annotations. If there was the need to do that, e.g. when
you wanted to define multiple @NamedQuery for an entity, you had to wrap them in
another annotation.

Benefits of @Repeatable annotations in Hibernate 5.2 14

@Entity

@NamedQueries({

@NamedQuery(name = "Book.findByTitle", query = "SELECT b FROM Book b WHERE b\

.title = :title"),

@NamedQuery(name = "Book.findByPublishingDate", query = "SELECT b FROM Book \

b WHERE b.publishingDate = :publishingDate")

})

public class Book implements Serializable {

...

}

That’s no longer required, if you use Hibernate’s version of the@NamedQuery annota-
tion or any other annotation listed in the previous section. As you can see below, you
can now add multiple org.hibernate.annotations.NamedQuery annotations directly to
the entity.

@Entity

@NamedQuery(name = "Hibernate5Book.findByTitle", query = "SELECT b FROM Hibernat\

e5Book b WHERE b.title = :title")

@NamedQuery(name = "Hibernate5Book.findByPublishingDate", query = "SELECT b FROM\

Hibernate5Book b WHERE b.publishingDate = :publishingDate")

public class Hibernate5Book implements Serializable {

...

}

Summary

Making all these annotations repeatable is just a small change in the Hibernate code
and in the beginning, it might not look like a big deal. But as a regular Hibernate or
JPA user, you know that you currently use wrapper annotations at almost all of your
entities.

This has become obsolete with Hibernate 5.2, and I like that a lot. The wrapper
annotations provide no additional value and reduce the readability of the code.

	Table of Contents
	Foreword
	How to persist the new Date and Time API
	Java 8 support in Hibernate 5
	JDBC mappings
	Date and Time API classes as entity attributes
	Summary

	How to use Java 8's Optional with Hibernate
	Optional attributes
	Load optional entities
	Summary

	How to get query results as a Stream with Hibernate 5.2
	Advantages of the stream() method
	How to use the stream() method
	How to NOT use the stream() method
	Summary

	Benefits of @Repeatable annotations in Hibernate 5.2
	What is @Repeatable and why should you like it?
	Which Hibernate annotations are repeatable?
	How to use @Repeatable annotations
	Summary

