Expert research and learning
communities for developers,

tech professionals and

smart people everywhere.

RESEARCH

DZONE RESEARCH PRESENTS

2014 GUIDE TO

| MOBILE
g WEERee=t DEVELOPMENT

This is How Many \aT DEﬂniﬁ

5 Are. i s crecRgel
SN W e
“ v i

COMMUNITIES RESEARCH GUIDES REFCARDZ
* Share links, write articles, and engage * Free, unbiased industry insight into key * Access a library of over 200
in dialogue with other tech experts technology topics, trends and vendors reference cards covering the
))) latest tech topics, programming
* Topics include Java, Mobile * In-depth articles written by industry experts languages, and platforms

Development, Web Development,
SQL, Big Data, Internet of Things,
and many more

* Key findings from our survey of over 1000+ * Written by industry experts
developers and experts

* Updated monthly
. * Profiles and key information on solution providers
* Ability to promote your own blog

and products through contribution * Development checklists and infographic

Join DZone today for free and gain access
to all of these exclusive benefits and more

JOIN NOW

http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_FullPage&utm_campaign=Netline

.~ !DZone Refcardz

» Security in Java EE Applications G ettl N g Sta I’te d Wlth

= Web Module Security
= EJB Module Security

[
Java EE Securit
= Securing Java EE Web Services

* Hot Tips and more... o
By Masoud Kalali

each one of them has its
SECURITY IN JAVA EE APPLICATIONS separate authorization

mechanism suitable for its
Java EE security supports a fine set of security functionalities in deployed components.

the specification level. These capabilities include authentication,
authorization, data integrity and transport security. Before going deep

Each Java EE application can

)) : consist of multiple modules ~ [[META-INF

into the Java EE security, everyone should know the following terms: -

d_li ejb-jar.xml -A JAR File
vendor-specific.xml

as shown in Figure 2. Each

Get More Refcardz! Visit refcardz.com

A User is an individual identity which is defined in the identity storage. one of these modules
The storage which can be an RDBMS, flat file or LDAP server contains can have zero or more
user attributes like username and password. deployment descriptors
: H B Application
A Group is a set of users classified with a set of common characteristics which can contain different Sient Module,
AJAR File

types of configuration for

which usually lead to a set of common permissions and access levels.
the application components

(JSPs, Servlets, EJBs, Etc.)
including but not limited to

A Security Realm is the access channel for the application server to
storage containing user’s authentication and grouping information.

A Role is a Java EE concept to define access levels. A Java EE their security descriptions.
application developer specifies which roles can access which set of the Figure 3 shows these files The Enterprise Application, An EAR
application functionalities. These roles are then mapped to users and and their locations. File. Can Contain All Other Modules
. h d i i ion fil Figure 3: Java EE application modules and their
groups using the vendor specific configuration files. Although all of the vendor deployment descriptors

specific deployment

A Principal is an identity with

known credentials which can /\
own credentials ch ca @) @ User
©
©

descriptors are in XML format that is not a requirement.

[gu—
Grow’»
User2 (2) User6 -

User3 (=) User7 S R In Java EE 6, more annotations are introduced which we can use to
plan the application deployment and we can override any standard

be authenticated using an
authentication protocol. Userd (2 Usera

A Credential contains or \/

Employees Managers

. L User 9 ser 8
authenticate a principal for Java 8 ser &

EE d) P d Users Manager_Role

EE product services. Passwor | WEB MODULE SECURITY

1S a Slmple Credentlal used for An Identity Storage(Security Realm) like a
JDBC Database or an Directory Service

www.dzone.com

J

Java EE annotation used in the source code using the corresponding

ser9 Java EE deployment descriptors elements.

references information used to

authentication.

In the Web module we can apply authentication, authorization

Mapping in the Application Server between
Groups and Users of the Realm to Roles

Different application servers use and transport level encryption using the provided annotations and

different methods to map users Figure 1: A further illustration of the roles, deployment descriptors.

! users and groups concept
groups and roles to each other. Authentication and Authorization in Web Module
Authentication and authorization in Java EE The following snippet instructs the application server to only let

A Java EE application server consists of multiple containers including
the Web/ Servlet container, an EJB container and finally an Application
Client Container (ACC).

[
-
The Web container as the door to EJB container performs e .‘/ e UZO n e

authentication and propagates
the authenticated subject to EJB WEbEErEsy

container. EJB container then Cmdonits o Expert research and learning communities
icati Au(henn‘cation_
B for developers, tech professionals and
l smart people everywhere.
Subject Propagation Between Trusted Containers

‘When an Invocation is Taking Place

on the credentials collected and Figure 2: Aci}ess Control and Identity
. Propagation between containers
provided by the ACC. Peg

Web and EJB containers host different sets of resources and therefore

performs the authorization prior

to letting the EJB invocation go
through.

When EJB container is accessed

C_ B
EJB Container

Application Server

by an application client, EJB

...and always for free.

container itself performs

authentication and authorization

>
=
L
=
v
%
(72)
Ll
L
M
>
)
ﬁ
-
=
=4
o)
O}
4+
—
)
+
w
()]
C
=
4+
o
)

DZone, Inc. | www.dzone.com

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Small&utm_campaign=Netline

DZone Refcardz

Getting Started with Java EE Security

manager role to access a resource with a URL matching /mgr/* in our
Web application.

Listing 1: Declaring security constraint in web.xml

<security-constraint>
<display-name>mgr resources</display-name>
<web-resource-collection>
<web-resource-name>managers</web-resource-name>
<description/>
<url-pattern>/mgr/*</url-pattern>
<http-method>GET</http-method>
<http-method>PUT</http-method>
<http-method>P0ST</http-method>
</web-resource-collection>
<auth-constraint>
<description/>
<role-name>manager</role-name>
</auth-constraint>
</security-constraint>
<security-role>
<description>All Manager </description>
<role-name>manager</role-name>
</security-role>

We defined a security constraint, defined a collection of resources
matching the /mgr/* URL and defined a constraint over the GET, PUT,
and POST methods. Then we permitted the manager role to access the
constrained resources. The URL pattern can specify anything from a
Servlet to a set of JSP files. We can include as many roles as we need in
the auth-constraint element.

Any security role referenced in the auth-constraint elements should
be defined using a security-role element as we did for the manager role.

So far we told which role has access to the secured resource but we still
need to let the application server know how to authenticate the users
and later on how to determine which roles the user has.

Java EE containers provide some standard authentication mechanisms
for using in the Web modules. These methods with their specification
names are as follow:

(1) HTTP Basic Authentication: BASIC

(2) Digest Authentication: DIGEST

(3) HTTPS Client Authentication: CLIENT - CERT
)

4) Form-Based Authentication: FORM

In the first two methods container initiates an HTTP basic authentication
and usually the Web client (Browser) shows the standard dialog to
collect the user name and the password. The only difference is that when
using DIGEST, client sends a digest of the password instead of sending
it in clear text. To use any of these methods we only need to include the
following snippet in the web.xml.

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>file-realm</realm-name>
</login-config>

In the CLIENT-CERT method, clients authenticate the server by asking
the server for its digital certificate and the server also asks the client to
provide its digital certificate to authenticate its identity. In this mode
nothing is required to be done except that the client and the server
must have a certificate issued by a certificate authority trusted by the
other side.

Finally the FORM method lets the developer have more control over
authentication by letting them provide their own credentials collecting
pages. So we basically create a login and login-err page and let the
application server know about our pages. Application server will use
these pages to collect the user credentials and verifying them. To use
this method we should include the following snippet into the web . xml.

<login-config>

<auth-method>FORM</auth-method>

<realm-name>file-realm</realm-name>

<form-login-config>
<form-login-page>auth/login.jsp</form-login-page>
<form-error-page>auth/login-error.jsp</form-error-page>

</form-login-config>

</login-config>

The simplest content for the login.jsp is as follow:

<form action="j_security check” method="POST">
<input type="hidden” name="A" value="1">
<input type="hidden” name="B"” value="2">
</form>

The login-error.jsp page can contain any sort of information
you feel necessary for the users to understand they provided wrong
credentials and they can probably recover the password and so on.

Now it is time to let the application server know where the users
credentials are stored so it can authenticate the received credentials
with them and decide whether the user is authentic or not. This is
where vendor specific deployment descriptor comes into play. Basically
we need to map the roles we used in the standard deployment
descriptor to users and groups (in some cases users and roles) defined
in security realm. Different vendors use different configuration elements
to map roles to individual users and groups of users in the security
realm. The following table shows how a role can be mapped to users
and groups in different application servers.

Application Server | Mapping Sample

GlassFish: <security-role-mapping>
sun-web.xml <role-name>manager</role-name>
<principal-name>JoneDoe</principal-name>
<group-name>managers</group-name>
</security-role-mapping>
Geronimo: <security-realm-name>file-realm</security-realm-name>

geronimo-web.xml .
<security>

<role-mapping>
<role role-name="manager”>
<principal class="org.apache.geronimo.security.realm.
providers.GeronimoUserPrincipal” name="JohnDoe” />
<principal class="org.apache.geronimo.security.realm.
providers.GeronimoGroupPrincipal” name="managers” />
</role>
</role-mapping>
</security>

The realm need to be created as a top level realm in the application
server management console or it can be added to the web application
as a deployment module. Using the second way, the security realm will
be deployed along with the application and will be underployed when
we undeploy the application.

JBoss:
jboss-web.xml

The JBoss case is different because JBoss uses the concept of Security
Domain which is defined in a separate descriptor file named jboss-web.
xml and is located in the conf directory of server instance. Following
element is used to specify the security domain.

<security-domain>java:/jaas/jboss-sec-domain</security-domain>

For JBoss application server some of the declaration we specified

in *-web.xml is moved to login-config.xml which includes both role
mappings and security realm definition. A security domain can be
deployed with the enterprise application itself or it can be defined in
the global login-conf.xml file. A sample security domain definition is
shown in the listing 2.

Table 1: Application server specific role mappings

Listing 2: Sample security domain for JBoss

<application-policy name="jboss-sec-domain”>
<authentication>
<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule”
flag="required”>
<module-option name="dsJndiName”>java:/user-data-source</module-option>
<module-option name="principalsQuery”>select passwd from users where
userid=?</module-option>
<module-option name="rolesQuery”>select roleid, ‘Roles’ from roles where
userid=?</module-option>
</login-module>
</authentication>
</application-policy>

This sample domain specifies that the user information is stored in a
database which is accessible through a data source named user-data-
source. Two other elements specify how a username can be searched in
the users table and how the associated roles can be extracted from the
roles table.

So far we specified how we can perform authentication using the
container provided features. Now we need to conduct access control or
authorization.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline

/1 DZone Refcardz

Getting Started with Java EE Security

Passwords and user names are not protected from eavesdropping
when we use FORM or BASIC authentication methods. To protect them

from being viewed and intercepted by third parties we should enforce
transport security.

Enforcing Transport Security

Transport security ensures that no one can tamper with the data being
sent to a client or data we receive from a client. Java EE specification
lets us enforce the transport security in two levels.

CONFIDENTIAL: By using SSL, this level guarantees that our data is
encrypted so that it cannot be deciphered by third parties and the data
remains confidential.

INTEGRAL: By using SSL, this level guarantees that the data will not be
modified in transit by third parties.

NONE: This level does not apply SSL, and lets the data transport
happen as usual.

We can enforce transport security in web.xml using the user-data-
constraint element which we should place inside the security-constraint
tag containing the resource which need transport protection. For
example we can add the following snippet inside the security-constraint
of Listing 1 to enforce use of SSL when user is accessing manager
resources.

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

We can define as many security-constraints as required and each one

of them can use a different user-data-constraint level.

When we specify CONFIDENTIAL or INTEGRAL as transport guarantee
level, the application server will use the HTTPS listener (HTTP listener
with SSL enabled) to communicate with client. Different application
servers use a variety of methods to define and configure the HTTPS
listeners. Each listener will have a dedicated port like 8080 for HTTP
and 8181 for HTTPs.

In production environment we usually front the application server
with a Web server or a dedicated hardware appliance to accelerate
the SSL access among other tasks like hosting static content, load
distribution, decorating HTP headers and so on.

For the security purpose the front end Web server or appliance (like a
Cisco PIX 535, F5 Big IP, etc) can be used to accelerate SSL certificate
processing, unify the access port to both HTTP and HTTPS, actas a
firewall and so on.

Other Security Elements of Web application
deployment descriptors

Other elements which we can use in web.xml for security purposes
which are listed in the Table 2.

Element Description

security-role Each role must be referenced in a security-role tag before it can be used

in the auth-constraint element of a security-constraint. For example:
<security-role>
<description>All Manager </description>
<role-name>manager</role-name>
</security-role>

session-config To specify for how long a session should remain valid. For example:
<session-config>
<session-timeout>120</session-timeout>

</session-config>

run-as To use an specific internal role for any out going call from the Servlet.
<run-as>
<role-name>internal_role</role-name>
</run-as>
This element resides inside the Servlet tag.

security-role-ref We can alias a role with a more meaningful title and then link the alias to
real realm using this element. For example:
<security-role-ref>
<role-name>mid_level managers</role-name>
<role-link>manager</role-link>
</security-role-ref>

Table 2: Complete list of Security related elements of web.xml

We use the run-as element or its counterpart annotation to assign a
specific role to all outgoing calls from a Servlet or an EJB. We use this

element to ensure that an internal role which is required to access
some secured internal EJBs is never assigned to a client and stays
fully in control of the developers.

Using Annotations to enforce security in Web modules
We can use annotations to enforce security in a Web module. For
example, we can specify which roles can access a Servlet by adding
some annotations in the Servlet or we can mark a method in a Servlet
stating that no one can access it.

List of all Java EE 6 annotations and their descriptions are available in
the Table 3.

Annotation Description

@DeclareRoles Prior to referencing any role, it should be defined. The @DeclareRoles
acts like security-role element in defining the roles used in application.

@RunAs Specifies the run-as role for the given Components.

@ServletSecurity | The @ServletSecurity can optionally get a @HttpMethodConstraint and
@HttpConstraint as its parameters. The @HttpMethodConstraint is an
array specifying the HTTP methods specific constraint while
@HttpConstraint specifies the protection for all HTTP methods which are
not specified in the @HttpMethodConstraint.

@PermitAll Permitting users with any role to access the given method, EJB or Servlet

@enyAll If placed on a method, no one can access that method. In case of class
level annotation, all methods of annotated EJB are inaccessible to all
roles unless a method is annotated with a @RolesAllowed annotation.

@RolesAllowed In case of method level annotation, it permits the included roles to

invoke the method. In case of class level annotation, all methods of
annotated EJB are accessible to included roles unless the method is
annotated with a different set of roles using @RolesAllowed annotation.

Table 3: Security Annotations in Java EE 6

Each of the annotations included in table 3 can be placed on different
targets like methods, classes or both and on different Java EE
components like Servlets and EJBs. Table 4 shows what kind of targets
are supported for each one of these annotations.

Annotation Targets Level Target Kind
@eclareRoles Class EJB, Servlet
@RunAs Class EJB, Servlet
@ServletSecurity | Class Servlet
@PermitAll Class, Method EJB
@enyAll Method EJB
@RolesAllowed Class, Method EJB

Table 4: Security Annotation targets in Java EE 6

Some of the security annotations can not target a method like
@DeclareRoles while some other can target both methods and classes
like @PermitAll. Annotation applied on a method will override the
class level annotations. For example if we apply

@RolesAllowed (“employee”) on an EJB class, and we apply
@RolesAllowed(“manager”) on one specific method of that EJB, only
admin role will be able to invoke the marked method while all other
methods will be available to the employee role.

Arole can be mapped to one or more specific principals, groups,
or to both of them. The principal or group names must be valid in
the specified security realm. The role name we use in the mapping

element must match the role-name in the security-role element of the
deployment descriptor [web.xml, ejb-jar.xml] or the role name defined
in the @DeclareRoles annotation.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline

Dzone Refcardz ’ Getting Started with Java EE Security

Programmatic Security in Web Module contains standard EJB module deployment elements and vendor
We can access some of the container security context programmatically specific information.

from our Java source code. Table 5 shows the seven methods of
During this section we assume we have an Entity Bean named

HTTPServletRequest class which we can use to extract security related .
Employee as follows:

attributes of the request and decide manually about how to process the

request. Listing 3: Sample Employee EJB
. @Entity
Method Descriptions public class Employee implements Serializable {
String getRemoteUser() If the user is authenticated returns the username otherwise public Strlng geEName() {
return “name”;
returns null.
o blic void promote(Position toPosition
boolean Returns whether the current user has the specified roles or not. pu }/ :O;ME the erfi T éel) §
isUserInRole(String role) p Py
Z;Ugé?‘g}‘incipal() Retumsfa java.security.Principal object containing the public List<EvaluationRecords> getEvaluationRecords() {
name of the current authenticated user. List<EvaluationRecords> evalRecord;
N //return a list containing all
String getAuthType() Returns a String containing authentication method used to // EvaluationRecords of
protect this application. //this employee
return evalRecord;
void login(String This method authenticates the provided username and
username, String password against the security realm which the application is public List<EvaluationRecords> getEvaluationRecords(Date from, Date to)
PERSEITE) configured to use. We can say this method does anything that { . .
the BASIC or FORM authentication does but gives the developer I/‘}'S_z:lEJ‘r{ilgaﬁngigg{giiﬁvg{?cord '
total control over how it is going to happen. ARy GEERED oF
A K . //this employee in the given time range
Void logout () Establish null as the value returned when getUserPrincipal, return evalRecord;
getRemoteUser, and getAuthType is called on the request. }
@Id
String getScheme() Returns the schema portion of the URL, for example HTTP or private Integer id;
HTTPS. public Employee() {
}
Table 5: Programmatic Security functionalities in Web modules }
The following snippet shows how we check the user role and decide
where to redirect him. Now in the standard deployment descriptor we have can have

something like the following snippet to restrict execution of the

protected void processRequest(HttpServlietRequest request, HttpServletResponse
response)
throws ServletException, IOException {

Employee Bean methods to certain roles:

if (request.isUserInRole(“manager”)) response.sendRedirect(“/mgr/index. Listing 4: Enforcing access restriction on EJB methods invocation
isp”);
else response.sendRedirect(“/guests/index.jsp”); <method-permission>
<role-name>manager</role-name>
<method>
. . . . <ejb-name>Employee</ejb-name>
This snippet demonstrates the use of login method to programmatically <method - name>getName</method-name>
login a user using the container security. </method>

</method-permission>
<method-permission>

String userName = request.getParameter(“user”); <role-name>manager</role-name>
String password = request.getParameter(“password”); <method>
<ejb-name>employee</ejb-name>

try { <method-name>getEvaluationRecords</method-name>
request.login(userName, password); <method-params>
Ycatch(ServletException ex) { <method-param>from</method-param>
//Handling Exception <method-param>to</method-param>

return; </method-params>
¥ </method>

</method-permission>

In the sample code, which can happen inside the doGet or doPost of a T

Servlet we are extracting the username and password from the request <r0tﬁ»game>hr7manager</role-name>
. . . <me: 0d>
and then we use the login method to ask the container to authenticate <ejb-name>Employee</ejb-name>
. . X <method-name>*</method-name>
the given username and password against the configured realm. e

</method-permission>

EJB MODULE SECURITY

This snippet should be placed inside the EJB declaration to invoke any

method of the EJB under the given role.
Like Web Container and Web module we can enforce security on EJB

modules as well. The snippet is instructing EJB container to allow any subject
with manager role to invoke getName method, and only the

I EJB modul f ity (Authentication & . .)
nan module we can enforce security (Authentication getEvaluationRecords overloads which takes a date range. Then it

Authorization) on Entity Beans and Session Beans. No Securit . . .
) Y y allows any subject with hr_manager role to invoke all methods of the

enforcement for the MDBs. Employee EJB.
In figure 1 you can see that we either access the EJBs through Web

container or the ACC. In the first method, the Web container conducts Like web.xml we will need to include role definitions in the deployment
descriptor. So we will need to add three security-role elements in

the ejb-jar.xml file to define the roles we are using. The syntax is the
same as web.xml element which is included in listing 1.

the authentication and propagate the subject to EJB container when
using EJBs. In the second method, the ACC performs authentication
and pass on the subject during context initialization to the EJB

container for authorization.) o .
We said that the EJB module performs authentication only when it

EJB module deployment descriptors is accessed from ACC and all configurations for the authentication is
Each EJB module has one or more deployment description which provided by the vendor specific deployment descriptors.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline

/-1 DZone Refcardz

Getting Started with Java EE Security

Vendor specific deployment descriptors for EJB module are below.

Application Description
Server
GlassFish: (1) Define the role mapping using the same syntax used in the sun-web.xml

S-Sl (2) Adding transport security on EJBs using the ior-security-config

subelement of the ejb element.

(3) Adding Web Services security declarations using webservice-endpoint
subelement of the ejb element.

(4) Specifying the authentication realm for EJBs when they are accessed by
the ACC using:

<ior-security-context>
<as-context>
<realm>myrealm</realm>
</as-context>
</ior-security-context>

Geronimo:
openejb-jar.xml

(1) Adding role mapping using the same syntax as geronimo-web.xml

(2) Adding web services security using web-service-security subelement of
the enterprise-beans element.

(3) Adding the security realm using the same syntax as
geronimo-web.xml

JBoss: jboss.xml | (1) Specifying the security domain similar to jboss-web.xml

(2) Adding EJB transport security using the ior-security-config subelement
of the message-driven, ejb, service, and session elements.

Table 6: Different application server's EJB deployment descriptors

Security Annotation of EJB modules in Java EE 6
Java EE provides a rich set of security related annotations for the EJB
modules. Each of these annotations can be applied on one or more
types, as explained previously in Table 3 and Table 4.

Following snippet shows how we can use these annotations to apply
the same security restrictions we declared in the deployment descriptor
showed in listing 4 on the entity source code shown in Listing 3.

Listing 5: Using annotations to enforce acces restriction on EJBs

@Entity
@eclareRoles({“manager”,”hr_manager”})
public class Employee implements Serializable {
@RolesAllowed ({“manager”,”hr_manager”})
public String getName() {
return “name”;

@RolesAllowed ("”hr_manager”)
public void promote(Position toPosition) {
//promote the emplyee

@RolesAllowed ({“manager”,”hr_manager”})
public List<EvaluationRecords> getEvaluationRecords() {
List<EvaluationRecords> evalRecord;
//return a list containing all
// EvaluationRecords of
//this employee
return evalRecord;

}
@RolesAllowed ("hr_manager”)

public List<EvaluationRecords> getEvaluationRecords(Date from, Date to) {
List<EvaluationRecords> evalRecord;
//return a list containin all
//productivity evaluation of
//this employee in the given time range
return evalRecord;

}

@Id

private Integer id;

public Employee() {

}

Using only two annotations, @RolesAllowed and @DeclareRoles,
frees us from adding all deployment descriptor elements.

Similar to Web module which had a run-as element in the standard
deployment descriptor, here in EJB module we have the same element.
This element will allow outgoing calls from the EJB to use a specific role
included in the role-name element.

<security-identity>
<run-as>
<description/>
<role-name>internal role</role-name>
</run-as>
</security-identity>

This snippet should be placed inside the EJB declaration element of
the deployment descriptor

Different vendors may have specific non-Java EE compliant
annotations for different Java EE components. Like JBoss
@SecurityDomain annotation. Using non-standard compliant

annotations will make it harder to port an application between
different application server.

Securing EJB Modules programmatically

We can use EJB context, javax.ejb.EJBContext, to check
whether the current user has a specific role using isCallerInRole
method or we can extract the principal name of the subject using
getCallerPrincipal method. For example:

@Stateless
public class EmployeeServiceBean

@Resource
SessionContext ctx;
public void raiseEmployeePaygrade(int amount, long empID){
Employee employee = null;
//find the employee
String raisedBy =ctx.getCallerPrincipal().getName();
employee.raisePayGrade (850000, raisedBy);
//persist the employee
}
}

In the above sample code we injected the context and then we used
it to get the principal name. Then we used it to keep record of who
changed the salary of employee.

We can use Around Invoke Interceptors to intercept an EJB business
methods call. Intercepting the call lets us access the method name,
its parameters, EJB context (and therefore isCallerInRole and
getCallerPrincipal methods). We can perform tasks like security
check, logging and auditing or ever changing the values of method
parameters using interceptors.

public class SampleInterceptor {
@Resource
private EJBContext context;
@AroundInvoke
protected Object audit(InvocationContext ctx) throws Exception {

Principal p = context.getCallerPrincipal();
if (userIsValid(p)) {
//do some logging...
Yelse{
//logging and raising exception..

return ctx.proceed();

To use this interceptor we need only to place an Annotation on
the designated EJB, for example to intercept any method call on
EmployeeServiceBean we can do the following:

@Interceptors(SampleInterceptor.class)
@Stateless

public class EmployeeServiceBean {

// Source code omitted.

The @Interceptors can target classes, methods or both. To exclude a
method from a class level interceptor we can use
@ExcludeClassInterceptors annotation for that method.

We can use interceptor element of ejb-jar.xml deployment descriptor
to specify interceptors if preferred.

APPLICATION CLIENT SECURITY

Application Client Container, which can host first tier client for
enterprise applications, conducts the authentication by itself and
when communicating with the EJBs, sends the authenticated subject
along with the call. In the standard deployment descriptor we can
configure the callback handler which collect the user credentials for
authentication and all other measures are configured in the vendor
specific deployment descriptor.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline

/1 DZone Refcardz

Getting Started with Java EE Security

For example, the following snippet specifies the callback handler to
collect user identity information.

<callback-handler>
security.refcard.SwingCallBackHandler
</callback-handler>

provided by the application for JAAS authentication. This class must
implement the javax.security.auth.callback.CallbackHandler interface.

@ The callback-handler element specifies the name of a callback class

<resource-ref>

<res-ref-name>TaskQueueFactory</res-ref-name>
<jndi-name>jms/TaskQueueFactory</jndi-name>

<default-resource-principal>
<name>user</name>
<password>password</password>

</default-resource-principal>

</resource-ref>

Application Client Container will use the authentication realm specified
in the application.xml file to authenticate the users when a request for a
constrained EJB is placed.

Security enforcement in Geronimo ACC
Similar to GlassFish, Geronimo provides some configuration elements
in the vendor specific file named geronimo-application-client.xml.

Notable configuration elements are default-subject, realm-name
and callback-handler. For example to configure the callback handler
we can use the following snippet.

<callback-handler>
security.refcard.SwingCallBackHandler
</callback-handler>

Security enforcement in JBoss ACC

Configuration for the JBoss ACC container is stored in the jboss-
client.xml file. This configuration file provides no further security
customization for the application client.

DEFINING SECURITY IN ENTERPRISE APPLICATION LEVEL

As we saw in the Figure 3, the enterprise application archive (EAR) file
can contain multiple modules intended to be deployed into different
containers like Web, EJB or ACC. This EAR module has the deployment
descriptor of its ow which we can use to include the share deployment
plan details in addition to EAR specific declarations.

We can use the application level deployment descriptors to define
roles, include the required role mappings and to specify the default
security realm of all included modules.

We can use the standard deployment descriptor to define security
roles. The syntax is the same as what we used in the web.xml and the
ejb-jar.xml.

Similar to other vendor specific deployment descriptors, we can use
the application level descriptor to define the application-wide role
mapping and also to define the default security realm for all included
modules.

The following table shows how we can use different vendor specific
deployment descriptors for role mapping and specifying the default
security realm and shows what security measures are accessible
through the vendor specific enterprise application deployment
descriptor.

Application Server Description

GlassFish:
sun-application.xml

Role mapping is similar to other Sun specific deployment
descriptors.
Defining the default security realm is as follow:
<realm>
jdbc_realm
</realm>

The element is an immediate child of the sun-application

Geronimo: Roles mapping syntax is similar to other Geronimo specific
geronimo-application.xml | deployment descriptor.

Specifying the default security realm is as follow:
<dependency>

<groupId>console. realm</groupId>
<artifactId>file realm</artifactId>
<version>1.0</version>

<type>car</type>

</dependency>

This element is immediate child element of the dependencies
element which is a subelement of the environment element

JBoss: Role mapping and specifying the security realm is the same as
jooss-app.xml with jboss-web.xml and jboss.xml using the security domain
element.

SECURING JAVA EE WEB SERVICES

In the Java EE specification, Web services can be deployed as a part of
a Web module or an Enterprise module.

Web Services Security in Web Modules

In the Web module we can protect the Web service endpoint the same
way we protect any other resource. We can define a resource collection
and enforce access management and authentication on it. The most
common form of protecting a Web service is using the HTTP Basic or
HTTP Digest authentication.

For example if we use the HTTP basic authentication and our Web
service client uses the Dispatch client APl to access the Web service we
we can use a snippet like the following one to include the username
and password with the right access role to invoke a Web service.

sourceDispatch.getRequestContext() .put(Dispatch.USERNAME_PROPERTY,”user”);
sourceDispatch.getRequestContext().put(Dispatch.PASSWORD PROPERTY,"”password”);

The user and the password should be valid in the configured realm of
Web application and should have access right to the endpoint URL.

Another way of authenticating the client to the server in HTTP level is
using the Authenticator class which provides more functionalities and

flexibilities. For more information about the authenticator class check
http://java.sun.com/javase/6/docs/technotes/guides/net/http-auth.html

Web Services Security in EJB Modules

We can expose a Stateless Session Bean as a Web Service and
therefore we can use all security annotations like @RolesAllowed,
@PermitAll and their corresponding deployment descriptor elements
to define its security plan.

But the authentication enforcement of the Web Services is vendor
specific and each vendor uses its own method to define the
authentication, security realms and so on.

Web Services Authentication in GlassFish

For GlassFish we should specify the authentication method and the
security realm in the sun-ejb-jar.xml. For example, to specify HTTP
Basic authentication method and a realm named file_realm as the
security realm for a Web service called Echo we will have something
similar to the following snippet.

DZone, Inc. | www.dzone.com

http://www.dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline

DZone Refcardz

Getting Started with Java EE Security

<ejb>
<ejb-name>Echo</ejb-name>
<webservice-endpoint>
<port-component -name>Echo</port-component - name>
<login-config>
<auth-method>BASIC</auth-method>
<realm>file_realm</realm>
</login-config>
</webservice-endpoint>
</ejb>

Web Services Authentication in Geronimo

In Geronimo we can use the annotations to define the security plan
and then the EJB deployment descriptor to specify the authentication
mechanism and the security realm. For if the following snippet is
placed inside the openejb-jar.xml we can expect an HTTP Basic
authentication to protect the Echo Web service.

<enterprise-beans>
<session>
<ejb-name>Echo</ejb-name>
<web-service-security>
<security-realm-name>file realm</security-realm-name>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
<auth-method>BASIC</auth-method>
</web-service-security>
</session>
</enterprise-beans>

We simply specified HTTP Basic authentication and the file_realm to be
used for this Web service.

Web Services Authentication in JBoss
To specify the authentication realm for a Web service deployed as a
Stateless Session Bean we can use both annotation and deployment

descriptor elements in JBoss. For example using annotation to secure a
Web service can be as follows:

@webService()

@webContext (contextRoot="/EchoService”,
urlPattern="/Echo”,
authMethod="BASIC”,
secureWSDLAccess = false)

@SecurityDomain(value = “jboss-sec-domain”)

@Stateless

The @WebContext annotation simply specifies the Web service
endpoint, the authentication method which can be CLIENT-CERT,
BASIC or DIGEST and finally it specifies whether clients need to provide
credentials to view the WSDL or not.

The @SecurityDomain specify which security domain should be used
for this Web service authentication.

We can access EJB Web services in the same way we access the Servlet

powered Web services using Dynamic Proxy or the Dispatch API.

Each one of the studied application servers provides plethora of
configuration and tweaking for Web services security to comply with

WS-Security profiles. You can check their Websites to see what are the
available options.

For a basic comparison and a quick start for these application servers
take a look at: http://weblogs.java.net/blog/kalali/archive/2009/11/17/
state-open-source-java-ee-application-servers.

ABOUT THE AUTHOR

Masoud Kalali has a software engineering degree and has been
working on software development projects since 1998. He has experience

RECOMMENDED BOOK

Security was, is, and will be one of the most important aspects of
Enterprise Applications and one of the most challenging areas for

architects, developers, and administrators. It is mandatory for Java EE
application developers to secure their enterprise applications using
Glassfish security features.

with a variety of technologies (.NET, J2EE, CORBA, and COM+) on
diverse platforms (Solaris, Linux, and Windows). His experience is in
software architecture, design, and server-side development. Masoud

has published several articles at Java.net and Dzone. He has authored
multiple refcards, published by Dzone, including Using XML in Java,
Berkeley DB Java Edition and GlassFish v3. Masoud is author of GlassFish
security book published by Packt and he is one of founder members of NetBeans Dream
Team and a GlassFish community spotlighted developer.

GlassFish Security

Learn to secure Java EE artifacts (like Servlets and EJB methods), configure
and use GlassFish JAAS modules, and establish environment and network
security using this practical guide filled with examples. One of the things you will love about
this book is that it covers the advantages of protecting application servers and web service
providers using OpenSSO.

Masoud blog on Java EE, Software Architecture and Security at http://weblogs.java.net/blog/
kalali/ and you can follow him at http://twitter.com/MasoudKalali/

BUY NOW

Masoud can be reached via Kalali@gmail.com in case you had some queries about the book books.dzone.com/books/g|assfish-security

or if you just felt like talking to him about software engineering.

Browse our collection of over 95 Free Cheat Sheets

Upcoming Refcardz
Free PDF

Java EE Security
DZone, Inc.

M 4% DZone Refcardz

Getting Started with

Cloud Comp

Adobe Flash Catalyst
Network Security
Subversion

ISBN-13: 978-1-934238-71-4
ISBN-10: 1.-934238-71-b

|| |||| ||| || I
9781934238714 |“ “MH

140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

. . . 0
makers. DZone offers something for everyone, including news, Refcardz Feedback Welcome o
. . refcardz@dzone.com N
tutorials, cheatsheets, blogs, feature articles, source code and more. @
. . Sponsorship Opportunities
"DZone is a developer’s dream,” says PC Magazine. P P PP
sales@dzone.com)
Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, Version 1.0

photocopying, or otherwise, without prior written permission of the publisher.

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline
http://www.dzone.com/books/glassfish-security
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_FreePDF&utm_campaign=Netline

