
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_FullPage&utm_campaign=Netline

DZone, Inc. | www.dzone.com

By Masoud Kalali

SECURITY IN JAVA EE APPLICATIONS

G
e

tt
in

g
 S

ta
rt

e
d

 w
it

h
 J

av
a

E
E

 S
e

cu
ri

ty
w

w
w

.d
zo

n
e.

co
m

G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#99

Getting Started with
Java EE Security

CONTENTS INCLUDE:
n	 Security in Java EE Applications
n	 Web Module Security
n	 EJB Module Security
n	 Application Client Security
n	 Securing Java EE Web Services
n	 Hot Tips and more...

Java EE security supports a fine set of security functionalities in
the specification level. These capabilities include authentication,
authorization, data integrity and transport security. Before going deep
into the Java EE security, everyone should know the following terms:

A User is an individual identity which is defined in the identity storage.
The storage which can be an RDBMS, flat file or LDAP server contains
user attributes like username and password.

A Group is a set of users classified with a set of common characteristics
which usually lead to a set of common permissions and access levels.

A Security Realm is the access channel for the application server to
storage containing user’s authentication and grouping information.

A Role is a Java EE concept to define access levels. A Java EE
application developer specifies which roles can access which set of the
application functionalities. These roles are then mapped to users and
groups using the vendor specific configuration files.

A Principal is an identity with
known credentials which can
be authenticated using an
authentication protocol.

A Credential contains or
references information used to
authenticate a principal for Java
EE product services. Password
is a simple credential used for
authentication.

Different application servers use
different methods to map users,
groups and roles to each other.

	
 Figure 1: A further illustration of the roles,
users and groups concept

Authentication and authorization in Java EE
A Java EE application server consists of multiple containers including
the Web/ Servlet container, an EJB container and finally an Application
Client Container (ACC).

The Web container as the door to EJB container performs
authentication and propagates
the authenticated subject to EJB
container. EJB container then
performs the authorization prior
to letting the EJB invocation go
through.

When EJB container is accessed
by an application client, EJB
container itself performs
authentication and authorization
on the credentials collected and
provided by the ACC.

Web and EJB containers host different sets of resources and therefore

each one of them has its
separate authorization
mechanism suitable for its
deployed components.

Each Java EE application can
consist of multiple modules
as shown in Figure 2. Each
one of these modules
can have zero or more
deployment descriptors
which can contain different
types of configuration for
the application components
(JSPs, Servlets, EJBs, Etc.)
including but not limited to
their security descriptions.
Figure 3 shows these files
and their locations.

Although all of the vendor
specific deployment
descriptors are in XML format that is not a requirement.

	
 Figure 2: Access Control and Identity
Propagation between containers

Figure 3: Java EE application modules and their
deployment descriptors

WEB MODULE SECURITY

In the Web module we can apply authentication, authorization
and transport level encryption using the provided annotations and
deployment descriptors.

Authentication and Authorization in Web Module
The following snippet instructs the application server to only let

In Java EE 6, more annotations are introduced which we can use to
plan the application deployment and we can override any standard
Java EE annotation used in the source code using the corresponding
Java EE deployment descriptors elements.

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Small&utm_campaign=Netline

DZone, Inc. | www.dzone.com

2
Getting Started with Java EE Security

manager role to access a resource with a URL matching /mgr/* in our
Web application.

Listing 1: Declaring security constraint in web.xml

<security-constraint>
<display-name>mgr resources</display-name>
<web-resource-collection>

<web-resource-name>managers</web-resource-name>
<description/>
<url-pattern>/mgr/*</url-pattern>
<http-method>GET</http-method>
<http-method>PUT</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<description/>
<role-name>manager</role-name>

</auth-constraint>
</security-constraint>
<security-role>
 <description>All Manager </description>
 <role-name>manager</role-name>
</security-role>

We defined a security constraint, defined a collection of resources
matching the /mgr/* URL and defined a constraint over the GET, PUT,
and POST methods. Then we permitted the manager role to access the
constrained resources. The URL pattern can specify anything from a
Servlet to a set of JSP files. We can include as many roles as we need in
the auth-constraint element.

Any security role referenced in the auth-constraint elements should
be defined using a security-role element as we did for the manager role.

So far we told which role has access to the secured resource but we still
need to let the application server know how to authenticate the users
and later on how to determine which roles the user has.

Java EE containers provide some standard authentication mechanisms
for using in the Web modules. These methods with their specification
names are as follow:

 (1) HTTP Basic Authentication: BASIC
 (2) Digest Authentication: DIGEST
 (3) HTTPS Client Authentication: CLIENT-CERT

 (4) Form-Based Authentication: FORM

In the first two methods container initiates an HTTP basic authentication
and usually the Web client (Browser) shows the standard dialog to
collect the user name and the password. The only difference is that when
using DIGEST, client sends a digest of the password instead of sending
it in clear text. To use any of these methods we only need to include the
following snippet in the web.xml.

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>file-realm</realm-name>

</login-config>

In the CLIENT-CERT method, clients authenticate the server by asking
the server for its digital certificate and the server also asks the client to
provide its digital certificate to authenticate its identity. In this mode
nothing is required to be done except that the client and the server
must have a certificate issued by a certificate authority trusted by the
other side.

Finally the FORM method lets the developer have more control over
authentication by letting them provide their own credentials collecting
pages. So we basically create a login and login-err page and let the
application server know about our pages. Application server will use
these pages to collect the user credentials and verifying them. To use
this method we should include the following snippet into the web.xml.

<login-config>
<auth-method>FORM</auth-method>
<realm-name>file-realm</realm-name>
<form-login-config>

<form-login-page>auth/login.jsp</form-login-page>
<form-error-page>auth/login-error.jsp</form-error-page>

</form-login-config>
 </login-config>

The simplest content for the login.jsp is as follow:

<form action=”j_security_check” method=”POST”>
<input type=”hidden” name=”A” value=”1”>
<input type=”hidden” name=”B” value=”2”>
</form>

The login-error.jsp page can contain any sort of information
you feel necessary for the users to understand they provided wrong
credentials and they can probably recover the password and so on.

Now it is time to let the application server know where the users
credentials are stored so it can authenticate the received credentials
with them and decide whether the user is authentic or not. This is
where vendor specific deployment descriptor comes into play. Basically
we need to map the roles we used in the standard deployment
descriptor to users and groups (in some cases users and roles) defined
in security realm. Different vendors use different configuration elements
to map roles to individual users and groups of users in the security
realm. The following table shows how a role can be mapped to users
and groups in different application servers.

Application Server Mapping Sample

GlassFish:
sun-web.xml

 <security-role-mapping>
 <role-name>manager</role-name>
 <principal-name>JoneDoe</principal-name>
 <group-name>managers</group-name>
 </security-role-mapping>

Geronimo:
geronimo-web.xml

<security-realm-name>file-realm</security-realm-name>

<security>
 <role-mapping>
 <role role-name=”manager”>

<principal class=”org.apache.geronimo.security.realm.
providers.GeronimoUserPrincipal” name=”JohnDoe” />

<principal class=”org.apache.geronimo.security.realm.
providers.GeronimoGroupPrincipal” name=”managers” />
 </role>
 </role-mapping>
</security>

The realm need to be created as a top level realm in the application
server management console or it can be added to the web application
as a deployment module. Using the second way, the security realm will
be deployed along with the application and will be underployed when
we undeploy the application.

JBoss:
jboss-web.xml

The JBoss case is different because JBoss uses the concept of Security
Domain which is defined in a separate descriptor file named jboss-web.
xml and is located in the conf directory of server instance. Following
element is used to specify the security domain.

<security-domain>java:/jaas/jboss-sec-domain</security-domain>

For JBoss application server some of the declaration we specified
in *-web.xml is moved to login-config.xml which includes both role
mappings and security realm definition. A security domain can be
deployed with the enterprise application itself or it can be defined in
the global login-conf.xml file. A sample security domain definition is
shown in the listing 2.

Table 1: Application server specific role mappings

Listing 2: Sample security domain for JBoss

<application-policy name=”jboss-sec-domain”>
 <authentication>
 <login-module code=”org.jboss.security.auth.spi.DatabaseServerLoginModule”
flag=”required”>

<module-option name=”dsJndiName”>java:/user-data-source</module-option>
<module-option name=”principalsQuery”>select passwd from users where

userid=?</module-option>
<module-option name=”rolesQuery”>select roleid, ‘Roles’ from roles where

userid=?</module-option>
 </login-module>
 </authentication>
</application-policy>

This sample domain specifies that the user information is stored in a
database which is accessible through a data source named user-data-
source. Two other elements specify how a username can be searched in
the users table and how the associated roles can be extracted from the
roles table.

So far we specified how we can perform authentication using the
container provided features. Now we need to conduct access control or
authorization.

http://www.dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline

DZone, Inc. | www.dzone.com

3
Getting Started with Java EE Security

Enforcing Transport Security
Transport security ensures that no one can tamper with the data being
sent to a client or data we receive from a client. Java EE specification
lets us enforce the transport security in two levels.

CONFIDENTIAL: By using SSL, this level guarantees that our data is
encrypted so that it cannot be deciphered by third parties and the data
remains confidential.

INTEGRAL: By using SSL, this level guarantees that the data will not be
modified in transit by third parties.

NONE: This level does not apply SSL, and lets the data transport
happen as usual.

We can enforce transport security in web.xml using the user-data-
constraint element which we should place inside the security-constraint
tag containing the resource which need transport protection. For
example we can add the following snippet inside the security-constraint
of Listing 1 to enforce use of SSL when user is accessing manager
resources.

<user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

When we specify CONFIDENTIAL or INTEGRAL as transport guarantee
level, the application server will use the HTTPS listener (HTTP listener
with SSL enabled) to communicate with client. Different application
servers use a variety of methods to define and configure the HTTPS
listeners. Each listener will have a dedicated port like 8080 for HTTP
and 8181 for HTTPs.

Other Security Elements of Web application
deployment descriptors
Other elements which we can use in web.xml for security purposes
which are listed in the Table 2.

Element Description

security-role Each role must be referenced in a security-role tag before it can be used
in the auth-constraint element of a security-constraint. For example:
<security-role>
 <description>All Manager </description>
 <role-name>manager</role-name>
</security-role>

session-config To specify for how long a session should remain valid. For example:
 <session-config>
 <session-timeout>120</session-timeout>
 </session-config>

run-as To use an specific internal role for any out going call from the Servlet.
 <run-as>
 <role-name>internal_role</role-name>
 </run-as>
This element resides inside the Servlet tag.

Passwords and user names are not protected from eavesdropping
when we use FORM or BASIC authentication methods. To protect them
from being viewed and intercepted by third parties we should enforce
transport security.

We can define as many security-constraints as required and each one
of them can use a different user-data-constraint level.

In production environment we usually front the application server
with a Web server or a dedicated hardware appliance to accelerate
the SSL access among other tasks like hosting static content, load
distribution, decorating HTP headers and so on.

For the security purpose the front end Web server or appliance (like a
Cisco PIX 535, F5 Big IP, etc) can be used to accelerate SSL certificate
processing, unify the access port to both HTTP and HTTPS, act as a
firewall and so on.

We use the run-as element or its counterpart annotation to assign a
specific role to all outgoing calls from a Servlet or an EJB. We use this
element to ensure that an internal role which is required to access
some secured internal EJBs is never assigned to a client and stays
fully in control of the developers.

security-role-ref We can alias a role with a more meaningful title and then link the alias to
real realm using this element. For example:
<security-role-ref>
 <role-name>mid_level_managers</role-name>
 <role-link>manager</role-link>
</security-role-ref>

Table 2: Complete list of Security related elements of web.xml

Using Annotations to enforce security in Web modules
We can use annotations to enforce security in a Web module. For
example, we can specify which roles can access a Servlet by adding
some annotations in the Servlet or we can mark a method in a Servlet
stating that no one can access it.

List of all Java EE 6 annotations and their descriptions are available in
the Table 3.

Annotation Description

@DeclareRoles Prior to referencing any role, it should be defined. The @DeclareRoles
acts like security-role element in defining the roles used in application.

@RunAs Specifies the run-as role for the given Components.

@ServletSecurity The @ServletSecurity can optionally get a @HttpMethodConstraint and
@HttpConstraint as its parameters. The @HttpMethodConstraint is an
array specifying the HTTP methods specific constraint while
@HttpConstraint specifies the protection for all HTTP methods which are
not specified in the @HttpMethodConstraint.

@PermitAll Permitting users with any role to access the given method, EJB or Servlet

@DenyAll If placed on a method, no one can access that method. In case of class
level annotation, all methods of annotated EJB are inaccessible to all
roles unless a method is annotated with a @RolesAllowed annotation.

@RolesAllowed In case of method level annotation, it permits the included roles to
invoke the method. In case of class level annotation, all methods of
annotated EJB are accessible to included roles unless the method is
annotated with a different set of roles using @RolesAllowed annotation.

Table 3: Security Annotations in Java EE 6

Each of the annotations included in table 3 can be placed on different
targets like methods, classes or both and on different Java EE
components like Servlets and EJBs. Table 4 shows what kind of targets
are supported for each one of these annotations.

Annotation Targets Level Target Kind

@DeclareRoles Class EJB, Servlet

@RunAs Class EJB, Servlet

@ServletSecurity Class Servlet

@PermitAll Class, Method EJB

@DenyAll Method EJB

@RolesAllowed Class, Method EJB

Table 4: Security Annotation targets in Java EE 6

Some of the security annotations can not target a method like
@DeclareRoles while some other can target both methods and classes
like @PermitAll. Annotation applied on a method will override the
class level annotations. For example if we apply
@RolesAllowed(“employee”) on an EJB class, and we apply
@RolesAllowed(“manager”) on one specific method of that EJB, only
admin role will be able to invoke the marked method while all other
methods will be available to the employee role.

A role can be mapped to one or more specific principals, groups,
or to both of them. The principal or group names must be valid in
the specified security realm. The role name we use in the mapping
element must match the role-name in the security-role element of the
deployment descriptor [web.xml, ejb-jar.xml] or the role name defined
in the @DeclareRoles annotation.

http://www.dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline

DZone, Inc. | www.dzone.com

4
Getting Started with Java EE Security

Programmatic Security in Web Module
We can access some of the container security context programmatically
from our Java source code. Table 5 shows the seven methods of
HTTPServletRequest class which we can use to extract security related
attributes of the request and decide manually about how to process the
request.

Method Descriptions

String getRemoteUser() If the user is authenticated returns the username otherwise
returns null.

boolean
isUserInRole(String role)

Returns whether the current user has the specified roles or not.

Principal
getUserPrincipal()

Returns a java.security.Principal object containing the
name of the current authenticated user.

String getAuthType() Returns a String containing authentication method used to
protect this application.

void login(String
username, String
password)

This method authenticates the provided username and
password against the security realm which the application is
configured to use. We can say this method does anything that
the BASIC or FORM authentication does but gives the developer
total control over how it is going to happen.

Void logout() Establish null as the value returned when getUserPrincipal,
getRemoteUser, and getAuthType is called on the request.

String getScheme() Returns the schema portion of the URL, for example HTTP or
HTTPS.

Table 5: Programmatic Security functionalities in Web modules

The following snippet shows how we check the user role and decide
where to redirect him.

protected void processRequest(HttpServletRequest request, HttpServletResponse
response)
 throws ServletException, IOException {

 if (request.isUserInRole(“manager”)) response.sendRedirect(“/mgr/index.
jsp”);
 else response.sendRedirect(“/guests/index.jsp”);
 }

This snippet demonstrates the use of login method to programmatically
login a user using the container security.

String userName = request.getParameter(“user”);
String password = request.getParameter(“password”);

try {
request.login(userName, password);
}catch(ServletException ex) {
//Handling Exception
 return;
}

In the sample code, which can happen inside the doGet or doPost of a
Servlet we are extracting the username and password from the request
and then we use the login method to ask the container to authenticate
the given username and password against the configured realm.

EJB MODULE SECURITY

Like Web Container and Web module we can enforce security on EJB
modules as well.

In an EJB module we can enforce security (Authentication &
Authorization) on Entity Beans and Session Beans. No Security
enforcement for the MDBs.

In figure 1 you can see that we either access the EJBs through Web
container or the ACC. In the first method, the Web container conducts
the authentication and propagate the subject to EJB container when
using EJBs. In the second method, the ACC performs authentication
and pass on the subject during context initialization to the EJB
container for authorization.

EJB module deployment descriptors
Each EJB module has one or more deployment description which

contains standard EJB module deployment elements and vendor
specific information.

During this section we assume we have an Entity Bean named
Employee as follows:

Listing 3: Sample Employee EJB

@Entity
public class Employee implements Serializable {
 public String getName() {
 return “name”;
 }
 public void promote(Position toPosition) {
 //promote the emplyee
 }

 public List<EvaluationRecords> getEvaluationRecords() {
 List<EvaluationRecords> evalRecord;
 //return a list containing all
 // EvaluationRecords of
 //this employee
 return evalRecord;
 }
 public List<EvaluationRecords> getEvaluationRecords(Date from, Date to)
{
 List<EvaluationRecords> evalRecord;
 //return a list containin all
 //productivity evaluation of
 //this employee in the given time range
 return evalRecord;
 }
 @Id
 private Integer id;
 public Employee() {
 }
}

Now in the standard deployment descriptor we have can have
something like the following snippet to restrict execution of the
Employee Bean methods to certain roles:

Listing 4: Enforcing access restriction on EJB methods invocation

<method-permission>
 <role-name>manager</role-name>
 <method>
 <ejb-name>Employee</ejb-name>
 <method-name>getName</method-name>
 </method>
</method-permission>
<method-permission>
 <role-name>manager</role-name>
 <method>
 <ejb-name>employee</ejb-name>
 <method-name>getEvaluationRecords</method-name>
 <method-params>
 <method-param>from</method-param>
 <method-param>to</method-param>
 </method-params>
 </method>
</method-permission>

<method-permission>
 <role-name>hr_manager</role-name>
 <method>
 <ejb-name>Employee</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

This snippet should be placed inside the EJB declaration to invoke any
method of the EJB under the given role.

The snippet is instructing EJB container to allow any subject
with manager role to invoke getName method, and only the
getEvaluationRecords overloads which takes a date range. Then it
allows any subject with hr_manager role to invoke all methods of the
Employee EJB.

Like web.xml we will need to include role definitions in the deployment
descriptor. So we will need to add three security-role elements in
the ejb-jar.xml file to define the roles we are using. The syntax is the
same as web.xml element which is included in listing 1.

We said that the EJB module performs authentication only when it
is accessed from ACC and all configurations for the authentication is
provided by the vendor specific deployment descriptors.

http://www.dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline

DZone, Inc. | www.dzone.com

5
Getting Started with Java EE Security

Vendor specific deployment descriptors for EJB module are below.

Application
Server

Description

GlassFish:
sun-ejb-jar.xml

(1) Define the role mapping using the same syntax used in the sun-web.xml

(2) Adding transport security on EJBs using the ior-security-config
subelement of the ejb element.

(3) Adding Web Services security declarations using webservice-endpoint
subelement of the ejb element.
(4) Specifying the authentication realm for EJBs when they are accessed by
the ACC using:

<ior-security-context>
 <as-context>
 <realm>myrealm</realm>
 </as-context>
</ior-security-context>

Geronimo:
openejb-jar.xml

(1) Adding role mapping using the same syntax as geronimo-web.xml

(2) Adding web services security using web-service-security subelement of
the enterprise-beans element.

(3) Adding the security realm using the same syntax as
geronimo-web.xml

JBoss: jboss.xml (1) Specifying the security domain similar to jboss-web.xml

(2) Adding EJB transport security using the ior-security-config subelement
of the message-driven, ejb, service, and session elements.

Table 6: Different application server’s EJB deployment descriptors

Security Annotation of EJB modules in Java EE 6
Java EE provides a rich set of security related annotations for the EJB
modules. Each of these annotations can be applied on one or more
types, as explained previously in Table 3 and Table 4.

Following snippet shows how we can use these annotations to apply
the same security restrictions we declared in the deployment descriptor
showed in listing 4 on the entity source code shown in Listing 3.

Listing 5: Using annotations to enforce acces restriction on EJBs

@Entity
@DeclareRoles({“manager”,”hr_manager”})
public class Employee implements Serializable {
@RolesAllowed({“manager”,”hr_manager”})
 public String getName() {
 return “name”;
 }

@RolesAllowed(”hr_manager”)
 public void promote(Position toPosition) {
 //promote the emplyee
 }
@RolesAllowed({“manager”,”hr_manager”})
 public List<EvaluationRecords> getEvaluationRecords() {
 List<EvaluationRecords> evalRecord;
 //return a list containing all
 // EvaluationRecords of
 //this employee
 return evalRecord;
 }
@RolesAllowed(”hr_manager”)
 public List<EvaluationRecords> getEvaluationRecords(Date from, Date to) {
 List<EvaluationRecords> evalRecord;
 //return a list containin all
 //productivity evaluation of
 //this employee in the given time range
 return evalRecord;
 }
 @Id
 private Integer id;
 public Employee() {
 }
}

Using only two annotations, @RolesAllowed and @DeclareRoles,
frees us from adding all deployment descriptor elements.

Similar to Web module which had a run-as element in the standard
deployment descriptor, here in EJB module we have the same element.
This element will allow outgoing calls from the EJB to use a specific role
included in the role-name element.

<security-identity>
 <run-as>
 <description/>
 <role-name>internal_role</role-name>
 </run-as>
 </security-identity>

This snippet should be placed inside the EJB declaration element of
the deployment descriptor

Different vendors may have specific non-Java EE compliant
annotations for different Java EE components. Like JBoss
@SecurityDomain annotation. Using non-standard compliant
annotations will make it harder to port an application between
different application server.

Securing EJB Modules programmatically
We can use EJB context, javax.ejb.EJBContext, to check
whether the current user has a specific role using isCallerInRole
method or we can extract the principal name of the subject using
getCallerPrincipal method. For example:

@Stateless
public class EmployeeServiceBean
 {
 @Resource
 SessionContext ctx;
public void raiseEmployeePaygrade(int amount, long empID){
Employee employee = null;
//find the employee
String raisedBy =ctx.getCallerPrincipal().getName();
employee.raisePayGrade(850000, raisedBy);
//persist the employee
}
}

In the above sample code we injected the context and then we used
it to get the principal name. Then we used it to keep record of who
changed the salary of employee.

We can use Around Invoke Interceptors to intercept an EJB business
methods call. Intercepting the call lets us access the method name,
its parameters, EJB context (and therefore isCallerInRole and
getCallerPrincipal methods). We can perform tasks like security
check, logging and auditing or ever changing the values of method
parameters using interceptors.

public class SampleInterceptor {
 @Resource
 private EJBContext context;
 @AroundInvoke
 protected Object audit(InvocationContext ctx) throws Exception {

 Principal p = context.getCallerPrincipal();
 if (userIsValid(p)) {
 //do some logging...
 }else{
 //logging and raising exception..
 }
 return ctx.proceed();
 }
}

To use this interceptor we need only to place an Annotation on
the designated EJB, for example to intercept any method call on
EmployeeServiceBean we can do the following:

@Interceptors(SampleInterceptor.class)
@Stateless
public class EmployeeServiceBean {
// Source code omitted.
}

The @Interceptors can target classes, methods or both. To exclude a
method from a class level interceptor we can use
@ExcludeClassInterceptors annotation for that method.

We can use interceptor element of ejb-jar.xml deployment descriptor
to specify interceptors if preferred.

APPLICATION CLIENT SECURITY

Application Client Container, which can host first tier client for
enterprise applications, conducts the authentication by itself and
when communicating with the EJBs, sends the authenticated subject
along with the call. In the standard deployment descriptor we can
configure the callback handler which collect the user credentials for
authentication and all other measures are configured in the vendor
specific deployment descriptor.

http://www.dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline

DZone, Inc. | www.dzone.com

The callback-handler element specifies the name of a callback class
provided by the application for JAAS authentication. This class must
implement the javax.security.auth.callback.CallbackHandler interface.

<resource-ref>
 <res-ref-name>TaskQueueFactory</res-ref-name>
 <jndi-name>jms/TaskQueueFactory</jndi-name>
 <default-resource-principal>
 <name>user</name>
 <password>password</password>
 </default-resource-principal>
 </resource-ref>

Application Client Container will use the authentication realm specified
in the application.xml file to authenticate the users when a request for a
constrained EJB is placed.

Security enforcement in Geronimo ACC
Similar to GlassFish, Geronimo provides some configuration elements
in the vendor specific file named geronimo-application-client.xml.

Notable configuration elements are default-subject, realm-name
and callback-handler. For example to configure the callback handler
we can use the following snippet.

<callback-handler>
security.refcard.SwingCallBackHandler
</callback-handler>

Security enforcement in JBoss ACC
Configuration for the JBoss ACC container is stored in the jboss-
client.xml file. This configuration file provides no further security
customization for the application client.

DEFINING SECURITY IN ENTERPRISE APPLICATION LEVEL

As we saw in the Figure 3, the enterprise application archive (EAR) file
can contain multiple modules intended to be deployed into different
containers like Web, EJB or ACC. This EAR module has the deployment
descriptor of its ow which we can use to include the share deployment
plan details in addition to EAR specific declarations.

We can use the application level deployment descriptors to define
roles, include the required role mappings and to specify the default
security realm of all included modules.

We can use the standard deployment descriptor to define security
roles. The syntax is the same as what we used in the web.xml and the
ejb-jar.xml.

Similar to other vendor specific deployment descriptors, we can use
the application level descriptor to define the application-wide role
mapping and also to define the default security realm for all included
modules.

The following table shows how we can use different vendor specific
deployment descriptors for role mapping and specifying the default
security realm and shows what security measures are accessible
through the vendor specific enterprise application deployment
descriptor.

Application Server Description

GlassFish:
sun-application.xml

Role mapping is similar to other Sun specific deployment
descriptors.
Defining the default security realm is as follow:
 <realm>
 jdbc_realm
 </realm>

The element is an immediate child of the sun-application

Geronimo:
geronimo-application.xml

Roles mapping syntax is similar to other Geronimo specific
deployment descriptor.

Specifying the default security realm is as follow:
<dependency>
 <groupId>console.realm</groupId>
 <artifactId>file_realm</artifactId>
 <version>1.0</version>
 <type>car</type>
</dependency>

This element is immediate child element of the dependencies
element which is a subelement of the environment element

JBoss:
jboss-app.xml

Role mapping and specifying the security realm is the same as
with jboss-web.xml and jboss.xml using the security domain
element.

SECURING JAVA EE WEB SERVICES

In the Java EE specification, Web services can be deployed as a part of
a Web module or an Enterprise module.

Web Services Security in Web Modules
In the Web module we can protect the Web service endpoint the same
way we protect any other resource. We can define a resource collection
and enforce access management and authentication on it. The most
common form of protecting a Web service is using the HTTP Basic or
HTTP Digest authentication.

For example if we use the HTTP basic authentication and our Web
service client uses the Dispatch client API to access the Web service we
we can use a snippet like the following one to include the username
and password with the right access role to invoke a Web service.

sourceDispatch.getRequestContext().put(Dispatch.USERNAME_PROPERTY,”user”);
sourceDispatch.getRequestContext().put(Dispatch.PASSWORD_PROPERTY,”password”);

The user and the password should be valid in the configured realm of
Web application and should have access right to the endpoint URL.

Another way of authenticating the client to the server in HTTP level is
using the Authenticator class which provides more functionalities and
flexibilities. For more information about the authenticator class check
http://java.sun.com/javase/6/docs/technotes/guides/net/http-auth.html

Web Services Security in EJB Modules
We can expose a Stateless Session Bean as a Web Service and
therefore we can use all security annotations like @RolesAllowed,
@PermitAll and their corresponding deployment descriptor elements
to define its security plan.

But the authentication enforcement of the Web Services is vendor
specific and each vendor uses its own method to define the
authentication, security realms and so on.

Web Services Authentication in GlassFish
For GlassFish we should specify the authentication method and the
security realm in the sun-ejb-jar.xml. For example, to specify HTTP
Basic authentication method and a realm named file_realm as the
security realm for a Web service called Echo we will have something
similar to the following snippet.

6
Getting Started with Java EE Security

For example, the following snippet specifies the callback handler to
collect user identity information.

<callback-handler>
security.refcard.SwingCallBackHandler
</callback-handler>

http://www.dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline

By Paul M. Duvall

ABOUT CONTINUOUS INTEGRATION

 G
e

t
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

#84

Continuous Integration:

Patterns and Anti-Patterns

CONTENTS INCLUDE:

■ About Continuous Integration

■ Build Software at Every Change

■ Patterns and Anti-patterns

■ Version Control

■ Build Management

■ Build Practices and more...

Continuous Integration (CI) is the process of building software

with every change committed to a project’s version control

repository.

CI can be explained via patterns (i.e., a solution to a problem

in a particular context) and anti-patterns (i.e., ineffective

approaches sometimes used to “fi x” the particular problem)

associated with the process. Anti-patterns are solutions that

appear to be benefi cial, but, in the end, they tend to produce

adverse effects. They are not necessarily bad practices, but can

produce unintended results when compared to implementing

the pattern.

Continuous Integration

While the conventional use of the term Continuous Integration

efers to the “build and test” cycle, this Refcard

expands on the notion of CI to include concepts such as

Aldon®

Change. Collaborate. Comply.

Pattern

Description

Private Workspace
Develop software in a Private Workspace to isolate changes

Repository

Commit all fi les to a version-control repository

Mainline

Develop on a mainline to minimize merging and to manage

active code lines

Codeline Policy

Developing software within a system that utilizes multiple

codelines

Task-Level Commit
Organize source code changes by task-oriented units of work

and submit changes as a Task Level Commit

Label Build

Label the build with unique name

Automated Build

Automate all activities to build software from source without

manual confi guration

Minimal Dependencies
Reduce pre-installed tool dependencies to the bare minimum

Binary Integrity

For each tagged deployment, use the same deployment

package (e.g. WAR or EAR) in each target environment

Dependency Management Centralize all dependent libraries

Template Verifi er

Create a single template fi le that all target environment

properties are based on

Staged Builds

Run remote builds into different target environments

Private Build

Perform a Private Build before committing changes to the

Repository

Integration Build

Perform an Integration Build periodically, continually, etc.

Send automated feedback from CI server to development team

ors as soon as they occur

Generate developer documentation with builds based on

brought to you by...

By Andy Harris

HTML BASICS

e.
co

m

G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#64

Core HTMLHTML and XHTML are the foundation of all web development.

HTML is used as the graphical user interface in client-side

programs written in JavaScript. Server-side languages like PHP

and Java also receive data from web pages and use HTML

as the output mechanism. The emerging Ajax technologies

likewise use HTML and XHTML as their visual engine. HTML

was once a very loosely-defi ned language with very little

standardization, but as it has become more important, the

need for standards has become more apparent. Regardless of

whether you choose to write HTML or XHTML, understanding

the current standards will help you provide a solid foundation

that will simplify all your other web coding. Fortunately HTML

and XHTML are actually simpler than they used to be, because

much of the functionality has moved to CSS.

common elements
Every page (HTML or XHTML shares certain elements in

common.) All are essentially plain text

extension. HTML pr

CONTENTS INCLUDE:
■ HTML Basics■ HTML vs XHTML

■ Validation■ Useful Open Source Tools

■ Page Structure Elements
■ Key Structural Elements and more...

The src attribute describes where the image fi le can be found,

and the alt attribute describes alternate text that is displayed if

the image is unavailable.Nested tagsTags can be (and frequently are) nested inside each other. Tags

cannot overlap, so <a> is not legal, but <a></

b> is fi ne.

HTML VS XHTMLHTML has been around for some time. While it has done its

job admirably, that job has expanded far more than anybody

expected. Early HTML had very limited layout support.

Browser manufacturers added many competing standar

web developers came up with clever workar

result is a lack of standar

Browse our collection of over 95 Free Cheat Sheets
Upcoming Refcardz
Java EE Security
Adobe Flash Catalyst
Network Security
Subversion

By Daniel Rubio

ABOUT CLOUD COMPUTING

 C
lo

u
d

 C
o

m
p

u
ti

n
g

w

w
w

.d
zo

n
e.

co
m

 G

e
t

M
o

re
 R

e
fc

ar
d

z!
 V

is
it

 r
ef

ca
rd

z.
co

m

#82

Getting Started with
Cloud Computing

CONTENTS INCLUDE:
■ About Cloud Computing
■ Usage Scenarios
■ Underlying Concepts
■ Cost
■ Data Tier Technologies
■ Platform Management and more...

Web applications have always been deployed on servers
connected to what is now deemed the ‘cloud’.

However, the demands and technology used on such servers
has changed substantially in recent years, especially with
the entrance of service providers like Amazon, Google and
Microsoft.

These companies have long deployed web applications
that adapt and scale to large user bases, making them
knowledgeable in many aspects related to cloud computing.

This Refcard will introduce to you to cloud computing, with an
emphasis on these providers, so you can better understand
what it is a cloud computing platform can offer your web
applications.

USAGE SCENARIOS

Pay only what you consume
Web application deployment until a few years ago was similar
to most phone services: plans with alloted resources, with an
incurred cost whether such resources were consumed or not.

Cloud computing as it’s known today has changed this.
The various resources consumed by web applications (e.g.
bandwidth, memory, CPU) are tallied on a per-unit basis
(starting from zero) by all major cloud computing platforms.

also minimizes the need to make design changes to support
one time events.

Automated growth & scalable technologies
Having the capability to support one time events, cloud
computing platforms also facilitate the gradual growth curves
faced by web applications.

Large scale growth scenarios involving specialized equipment
(e.g. load balancers and clusters) are all but abstracted away by
relying on a cloud computing platform’s technology.

In addition, several cloud computing platforms support data
tier technologies that exceed the precedent set by Relational
Database Systems (RDBMS): Map Reduce, web service APIs,
etc. Some platforms support large scale RDBMS deployments.

CLOUD COMPUTING PLATFORMS AND
UNDERLYING CONCEPTS

Amazon EC2: Industry standard software and virtualization
Amazon’s cloud computing platform is heavily based on
industry standard software and virtualization technology.

Virtualization allows a physical piece of hardware to be
utilized by multiple operating systems. This allows resources
(e.g. bandwidth, memory, CPU) to be allocated exclusively to
individual operating system instances.

As a user of Amazon’s EC2 cloud computing platform, you are

DZone, Inc.
140 Preston Executive Dr.
Suite 100
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com

Sponsorship Opportunities
sales@dzone.com

Copyright © 2010 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

DZone communities deliver over 6 million pages each month to

more than 3.3 million software developers, architects and decision

makers. DZone offers something for everyone, including news,

tutorials, cheatsheets, blogs, feature articles, source code and more.

“DZone is a developer’s dream,” says PC Magazine.

7
Getting Started with Java EE Security

RECOMMENDED BOOKABOUT THE AUTHOR

ISBN-13: 978-1-934238-71-4
ISBN-10: 1-934238-71-6

9 781934 238714

50795

 <ejb>
 <ejb-name>Echo</ejb-name>
 <webservice-endpoint>
 <port-component-name>Echo</port-component-name>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm>file_realm</realm>
 </login-config>
 </webservice-endpoint>
 </ejb>

Web Services Authentication in Geronimo
In Geronimo we can use the annotations to define the security plan
and then the EJB deployment descriptor to specify the authentication
mechanism and the security realm. For if the following snippet is
placed inside the openejb-jar.xml we can expect an HTTP Basic
authentication to protect the Echo Web service.

 <enterprise-beans>
 <session>
 <ejb-name>Echo</ejb-name>
 <web-service-security>
 <security-realm-name>file_realm</security-realm-name>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 <auth-method>BASIC</auth-method>
 </web-service-security>
 </session>
 </enterprise-beans>

We simply specified HTTP Basic authentication and the file_realm to be
used for this Web service.

Web Services Authentication in JBoss
To specify the authentication realm for a Web service deployed as a
Stateless Session Bean we can use both annotation and deployment

Each one of the studied application servers provides plethora of
configuration and tweaking for Web services security to comply with
WS-Security profiles. You can check their Websites to see what are the
available options.

For a basic comparison and a quick start for these application servers
take a look at: http://weblogs.java.net/blog/kalali/archive/2009/11/17/
state-open-source-java-ee-application-servers.

descriptor elements in JBoss. For example using annotation to secure a
Web service can be as follows:

@WebService()
@WebContext(contextRoot=”/EchoService”,
 urlPattern=”/Echo”,
 authMethod=”BASIC”,
 secureWSDLAccess = false)
@SecurityDomain(value = “jboss-sec-domain”)
@Stateless
...

The @WebContext annotation simply specifies the Web service
endpoint, the authentication method which can be CLIENT-CERT,
BASIC or DIGEST and finally it specifies whether clients need to provide
credentials to view the WSDL or not.

The @SecurityDomain specify which security domain should be used
for this Web service authentication.

We can access EJB Web services in the same way we access the Servlet
powered Web services using Dynamic Proxy or the Dispatch API.

Masoud Kalali has a software engineering degree and has been
working on software development projects since 1998. He has experience
with a variety of technologies (.NET, J2EE, CORBA, and COM+) on
diverse platforms (Solaris, Linux, and Windows). His experience is in
software architecture, design, and server-side development. Masoud
has published several articles at Java.net and Dzone. He has authored
multiple refcards, published by Dzone, including Using XML in Java,
Berkeley DB Java Edition and GlassFish v3. Masoud is author of GlassFish

security book published by Packt and he is one of founder members of NetBeans Dream
Team and a GlassFish community spotlighted developer.

Masoud blog on Java EE, Software Architecture and Security at http://weblogs.java.net/blog/
kalali/ and you can follow him at http://twitter.com/MasoudKalali/

Masoud can be reached via Kalali@gmail.com in case you had some queries about the book
or if you just felt like talking to him about software engineering.

Security was, is, and will be one of the most important aspects of
Enterprise Applications and one of the most challenging areas for
architects, developers, and administrators. It is mandatory for Java EE
application developers to secure their enterprise applications using
Glassfish security features.

Learn to secure Java EE artifacts (like Servlets and EJB methods), configure
and use GlassFish JAAS modules, and establish environment and network

security using this practical guide filled with examples. One of the things you will love about
this book is that it covers the advantages of protecting application servers and web service
providers using OpenSSO.

BUY NOW
books.dzone.com/books/glassfish-security

http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_Header&utm_campaign=Netline
http://www.dzone.com/books/glassfish-security
http://refcardz.dzone.com/?utm_source=Netline&utm_medium=Ad&utm_content=JavaEE_FreePDF&utm_campaign=Netline

