

Apache Hadoop Cookbook i

Apache Hadoop Cookbook

Apache Hadoop Cookbook ii

Contents

1 “Hello World” Example 1

1.1 Introduction . 1

1.2 Hadoop Word-Count Example . 1

1.2.1 Setup . 2

1.2.2 Mapper Code . 2

1.2.3 Reducer Code . 3

1.2.4 Putting it all together, The Driver Class . 4

1.3 Running the example . 5

1.4 Download the complete source code . 8

2 How to Install Apache Hadoop on Ubuntu 9

2.1 Introduction . 9

2.2 Prerequisites . 9

2.2.1 Installing Java . 9

2.2.2 Creating a Dedicated User . 12

2.2.3 Disable ipv6 . 13

2.2.4 Installing SSH and Setting up certificate . 14

2.3 Installing Apache Hadoop . 16

2.3.1 Download Apache Hadoop . 16

2.3.2 Updating bash . 17

2.3.3 Configuring Hadoop . 18

2.3.4 Formatting the Hadoop Filesystem . 22

2.3.5 Starting Apache Hadoop . 22

2.3.6 Testing MapReduce Job . 27

2.3.7 Stopping Apache Hadoop . 31

2.4 Conclusion . 32

Apache Hadoop Cookbook iii

3 FS Commands Example 33

3.1 Introduction . 33

3.2 Common Commands . 33

3.2.1 Create a directory . 33

3.2.2 List the content of the directory . 35

3.2.3 Upload a file in HDFS . 36

3.2.4 Download a file from HDFS . 37

3.2.5 View the file content . 38

3.2.6 Copying a file . 40

3.2.7 Moving file from source to destination . 41

3.2.8 Removing the file or the directory from HDFS . 42

3.2.9 Displaying the tail of a file . 44

3.2.10 Displaying the aggregate length of a particular file . 44

3.2.11 Count the directories and files . 45

3.2.12 Details of space in the file system . 46

3.3 Conclusion . 47

4 Cluster Setup Example 48

4.1 Introduction . 48

4.2 Requirements . 48

4.3 Preparing Virtual Machine . 48

4.3.1 Creating VM and Installing Guest OS . 48

4.3.2 Installing Guest Additions . 51

4.4 Creating Cluster of Virtual Machines . 52

4.4.1 VM Network settings . 52

4.4.2 Cloning the Virtual Machine . 54

4.4.3 Testing the network IPs assigned to VMs . 56

4.4.4 Converting to Static IPs for VMs . 57

4.5 Hadoop prerequisite settings . 59

4.5.1 Creating User . 59

4.5.2 Disable ipv6 . 59

4.5.3 Connecting the machines (SSH Access) . 60

4.6 Hadoop Setup . 61

4.6.1 Download Hadoop . 62

4.6.2 Update bashrc . 62

4.6.3 Configuring Hadoop . 63

4.6.4 Formatting the Namenode . 64

4.6.5 Start the Distributed Format System . 64

4.6.6 Testing MapReduce Job . 66

4.6.7 Stopping the Distributed Format System . 68

4.7 Conclusion . 68

4.8 Download configuration files . 68

Apache Hadoop Cookbook iv

5 Distcp Example 70

5.1 Introduction . 70

5.2 Syntax and Examples . 70

5.2.1 Basic . 70

5.2.2 Multiple Sources . 72

5.2.3 Update and Overwrite Flag . 73

5.2.4 Ignore Failures Flag . 73

5.2.5 Maximum Map Tasks . 73

5.3 Final Notes . 74

6 Distributed File System Explained 75

6.1 Introduction . 75

6.2 HDFS Design . 75

6.2.1 System failures . 75

6.2.2 Can handle large amount of data . 75

6.2.3 Coherency Model . 75

6.2.4 Portability . 76

6.3 HDFS Nodes . 76

6.3.1 NameNode . 76

6.3.2 DataNode . 76

6.4 HDFS Architecture . 76

6.4.1 Working of NameNode and DataNode . 76

6.4.2 HDFS Namespace . 76

6.4.3 Data Replication . 76

6.4.4 Failures . 77

6.4.5 Data Accessibility . 77

6.5 Configuring HDFS . 78

6.5.1 Configuring HDFS . 78

6.5.2 Formating NameNode . 79

6.5.3 Starting the HDFS . 79

6.6 Interacting with HDFS using Shell . 80

6.6.1 Creating a directory . 80

6.6.2 List the content of the directory . 81

6.6.3 Upload a file in HDFS . 82

6.6.4 Download a file from HDFS . 83

6.7 Interacting with HDFS using MapReduce . 84

6.8 Conclusion . 86

6.9 Download the code . 86

Apache Hadoop Cookbook v

7 Distributed Cache Example 87

7.1 Introduction . 87

7.2 Working . 87

7.3 Implementation . 87

7.3.1 The Driver Class . 88

7.3.2 Map Class . 90

7.3.3 Reduce Class . 92

7.4 Executing the Hadoop Job . 92

7.5 Conclusion . 97

7.6 Download the Eclipse Project . 97

8 Wordcount Example 98

8.1 Introduction . 98

8.2 MapReduce . 98

8.3 Word-Count Example . 98

8.3.1 Setup . 99

8.3.2 Mapper Code . 99

8.3.3 Reducer Code . 100

8.3.4 The Driver Class . 101

8.4 Code Execution . 102

8.4.1 In Eclipse IDE . 102

8.4.2 On Hadoop Cluster . 105

8.5 Conclusion . 108

8.6 Download the Eclipse Project . 108

9 Streaming Example 109

9.1 Introduction . 109

9.2 Prerequisites and Assumptions . 109

9.3 Hadoop Streaming Workflow . 110

9.4 MapReduce Code in Python . 110

9.4.1 Wordcount Example . 110

9.4.2 Mapper . 110

9.4.3 Reducer . 111

9.5 Testing the Python code . 112

9.6 Submitting and Executing the Job on Hadoop cluster . 112

9.6.1 Input Data . 112

9.6.2 Transferring input data to HDFS . 113

9.6.3 Submitting the MapReduce Job . 115

9.6.4 Understanding the Console Log . 117

9.6.5 MapReduce Job Output . 119

9.7 Conclusion . 122

9.8 Download the Source Code . 122

Apache Hadoop Cookbook vi

10 Zookeeper Example 123

10.1 Introduction . 123

10.2 How Zookeeper Works? . 123

10.3 Zookeeper Setup . 124

10.3.1 System Requirements . 124

10.3.2 Install Java . 125

10.3.3 Download Zookeeper . 126

10.3.4 Data Directory . 128

10.3.5 Configuration File . 130

10.3.6 Starting The Server . 132

10.4 Zookeeper Server Basic Interaction . 133

10.4.1 Starting The CLI . 133

10.4.2 Creating The First Znode . 134

10.4.3 Retrieving Data From The First Znode . 135

10.4.4 Modifying Data in Znode . 136

10.4.5 Creating A Subnode . 137

10.4.6 Removing A Node . 138

10.5 Conclusion . 139

10.6 Download . 139

Apache Hadoop Cookbook vii

Copyright (c) Exelixis Media P.C., 2016

All rights reserved. Without limiting the rights under
copyright reserved above, no part of this publication
may be reproduced, stored or introduced into a retrieval system, or
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

Apache Hadoop Cookbook viii

Preface

Apache Hadoop is an open-source software framework written in Java for distributed storage and distributed processing of very
large data sets on computer clusters built from commodity hardware. All the modules in Hadoop are designed with a fundamental
assumption that hardware failures are common and should be automatically handled by the framework.

Hadoop has become the de-facto tool used for Distributed computing. For this reason we have provided an abundance of tutorials
here at Java Code Geeks, most of which can be found here: https://examples.javacodegeeks.com/category/enterprise-java/apache-
hadoop/

In this ebook, we provide a compilation of Hadoop based examples that will help you kick-start your own web projects. We
cover a wide range of topics, from installation and configuration, to distributed caching and streaming. With our straightforward
tutorials, you will be able to get your own projects up and running in minimum time.

https://examples.javacodegeeks.com/category/enterprise-java/apache-hadoop/
https://examples.javacodegeeks.com/category/enterprise-java/apache-hadoop/

Apache Hadoop Cookbook ix

About the Author

Ramaninder has graduated from the Department of Computer Science and Mathematics of Georg-August University, Germany
and currently works with a Big Data Research Center in Austria. He holds M.Sc in Applied Computer Science with specialization
in Applied Systems Engineering and minor in Business Informatics.

He is also a Microsoft Certified Processional with more than 5 years of experience in Java, C#, Web development and related
technologies. Currently, his main interests are in Big Data Ecosystem including batch and stream processing systems, Machine
Learning and Web Applications.

Apache Hadoop Cookbook 1 / 139

Chapter 1

“Hello World” Example

1.1 Introduction

Hadoop is an Apache Software Foundation project. It is the open source version inspired by Google MapReduce and Google
File System.

It is designed for distributed processing of large data sets across a cluster of systems often running on commodity standard
hardware.

Hadoop is designed with an assumption that all hardware fails sooner or later and the system should be robust and able to handle
the hardware failures automatically.

Apache Hadoop consists of two core components, they are:

• Distributed File System called Hadoop Distributed File System or HDFS for short.

• Framework and API for MapReduce jobs.

In this example, we are going to demonstrate the second component of Hadoop framework called MapReduce and we will do
so by Word Count Example (Hello World program of the Hadoop Ecosystem) but first we shall understand what MapReduce
actually is.

MapReduce is basically a software framework or programming model, which enable users to write programs so that data can be
processed parallelly across multiple systems in a cluster. MapReduce consists of two parts Map and Reduce.

• Map: Map task is performed using a map() function that basically performs filtering and sorting. This part is responsible for
processing one or more chunks of data and producing the output results which are generally referred as intermediate results.
As shown in the diagram below, map task is generally processed in parallel provided the maping operation is independent of
each other.

• Reduce: Reduce task is performed by reduce() function and performs a summary operation. It is responsible for consoli-
dating the results produced by each of the Map task.

1.2 Hadoop Word-Count Example

Word count example is the "Hello World" program of the Hadoop and MapReduce. In this example, the program consists of
MapReduce job that counts the number of occurrences of each word in a file. This job consists of two parts Map and Reduce.
The Map task maps the data in the file and counts each word in data chunk provided to the map function. The outcome of the
this task is passed to reduce which combines the data and output the final result on the disk.

Apache Hadoop Cookbook 2 / 139

Figure 1.1: Basic working of Map and Reduce Tasks in a MapReduce Job

1.2.1 Setup

We shall use Maven to setup a new project for Hadoop word count example. Setup a maven project in Eclipse and add the
following Hadoop dependency to the pom.xml. This will make sure we have the required access to the Hadoop core library.

pom.xml

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>1.2.1</version>

</dependency>

After adding the dependency, we are ready to write our word count code.

1.2.2 Mapper Code

The mapper task is responsible for tokenizing the input text based on space and create a list of words, then traverse over all the
tokens and emit a key-value pair of each word with a count of one, for example, <Hello, 1>. Following is the MapClass, it
needs to extends the MapReduce Mapper class and overrides the map() method. This method will receive a chunk of the input

Apache Hadoop Cookbook 3 / 139

data to be processed. When this method is called the value parameter of the function will tokenize the data into words and context
will write the intermediate output which will then be sent to one of the reducers.

MapClass.java

package com.javacodegeeks.examples.wordcount;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MapClass extends Mapper<LongWritable, Text, Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

@Override
protected void map(LongWritable key, Text value,

Context context)
throws IOException, InterruptedException {

String line = value.toString();
StringTokenizer st = new StringTokenizer(line," ");

while(st.hasMoreTokens()){
word.set(st.nextToken());
context.write(word,one);

}

}
}

1.2.3 Reducer Code

Following code snippet contains ReduceClass which extends the MapReduce Reducer class and overwrites the reduce()
function. This function is called after the map method and receives keys which in this case are the word and also the corresponding
values. Reduce method iterates over the values, adds them and reduces to a single value before finally writing the word and the
number of occurrences of the word to the output file.

ReduceClass.java

package com.javacodegeeks.examples.wordcount;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

public class ReduceClass extends Reducer{

@Override
protected void reduce(Text key, Iterable values,

Context context)
throws IOException, InterruptedException {

Apache Hadoop Cookbook 4 / 139

int sum = 0;
Iterator valuesIt = values.iterator();

while(valuesIt.hasNext()){
sum = sum + valuesIt.next().get();

}

context.write(key, new IntWritable(sum));
}

}

1.2.4 Putting it all together, The Driver Class

So now when we have our map and reduce classes ready, it is time to put it all together as a single job which is done in a class
called driver class. This class contains the main() method to setup and run the job. Following code checks for the correct input
arguments which are the paths of the input and output files. Followed by setting up and running the job. At the end, it informs
the user if the job is completed successfully or not. The resultant file with the word counts and the corresponding number of
occurrences will be present in the provided output path.

WordCount.java

package com.javacodegeeks.examples.wordcount;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class WordCount extends Configured implements Tool{

public static void main(String[] args) throws Exception{
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}

public int run(String[] args) throws Exception {
if (args.length != 2) {

System.err.printf("Usage: %s needs two arguments, input and output
files\n", getClass().getSimpleName());

return -1;
}

Job job = new Job();
job.setJarByClass(WordCount.class);
job.setJobName("WordCounter");

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setOutputFormatClass(TextOutputFormat.class);

job.setMapperClass(MapClass.class);
job.setReducerClass(ReduceClass.class);

Apache Hadoop Cookbook 5 / 139

int returnValue = job.waitForCompletion(true) ? 0:1;

if(job.isSuccessful()) {
System.out.println("Job was successful");

} else if(!job.isSuccessful()) {
System.out.println("Job was not successful");

}

return returnValue;
}

}

1.3 Running the example

To test the code implementation. We can run the program for testing purpose from Eclipse itself. First of all, create an input.txt
file with dummy data. For the testing purpose, We have created a file with the following text in the project root.

input.txt

This is the example text file for word count example also knows as hello world example of ←↩
the Hadoop ecosystem.

This example is written for the examples article of java code geek
The quick brown fox jumps over the lazy dog.
The above line is one of the most famous lines which contains all the english language ←↩

alphabets.

In Eclipse, Pass the input file and output file name in the project arguments. Following is how the arguments looks like. In this
case, the input file is in the root of the project that is why just filename is required, but if your input file is in some other location,
you should provide the complete path.

Apache Hadoop Cookbook 6 / 139

Figure 1.2: Run Configuration of Eclipse Project

Note: Make sure the output file does not exist already. If it does, the program will throw an error.

After setting the arguments, simply run the application. Once the application is successfully completed, console will show the
output

Apache Hadoop Cookbook 7 / 139

Figure 1.3: Console output in Eclipse

We are specifically interested in the last line:

Job was successful

That indicates the successful execution of the MapReduce job. This means that the output file is written in the destination
provided in the arguments. Following is how the output file of the provided input looks like.

output

Hadoop 1
The 2
This 2
above 1
all 1
alphabets. 1
also 1
article 1
as 1
brown 1
code 1
contains 1
count 1
dog. 1
ecosystem. 1
english 1
example 4
examples 1

Apache Hadoop Cookbook 8 / 139

famous 1
file 1
for 2
fox 1
geek 1
hello 1
is 3
java 1
jumps 1
knows 1
language 1
lazy 1
line 1
lines 1
most 1
of 3
one 1
over 1
quick 1
text 1
the 6
which 1
word 1
world 1
written 1

1.4 Download the complete source code

This was an example of Word Count(Hello World) program of Hadoop MapReduce.

Download You can download the full source code of this example here: WordCountExample

https://examples.javacodegeeks.com/wp-content/uploads/2015/11/wordcount.zip

Apache Hadoop Cookbook 9 / 139

Chapter 2

How to Install Apache Hadoop on Ubuntu

In this example, we will see the details of how to install Apache Hadoop on an Ubuntu system.

We will go through all the required steps starting with the required pre-requisites of Apache Hadoop followed by how to configure
Hadoop and we will finish this example by learning how to insert data into Hadoop and how to run an example job on that data.

2.1 Introduction

The example will describe all the required steps for installing a single-node Apache Hadoop cluster on Ubuntu 15.10. Hadoop is
a framework for distributed processing of application on large clusters of commodity hardware. It is written in Java and follows
the MapReduce computing paradigm.

2.2 Prerequisites

Following are the prerequisites of running Apache Hadoop on Ubuntu. Follow the steps to get all the prerequisites in place.

2.2.1 Installing Java

As Apache Hadoop is written in Java, it needs latest Java to be installed in the system. To install Java, first of all update the
source list

#Update the source list
sudo apt-get update

It should update all the existing packages as shown in the screeenshot below.

Apache Hadoop Cookbook 10 / 139

Figure 2.1: Update Source List

Now install the default jdk using the following command.

The OpenJDK project is the default version of Java
sudo apt-get install default-jdk

The OpenJDK is the default version of Java for Ubuntu Linux. It should be successfully installed with the apt-get command.

Apache Hadoop Cookbook 11 / 139

Figure 2.2: Installing Java

The default-jdk installs the version 1.7 of Java. Version 1.7 will be fine to run Hadoop but if you would like, you can
explicitely install version 1.8 also.

#Java Version
java -version

Apache Hadoop Cookbook 12 / 139

Figure 2.3: Java Version

This completes the first prerequisite of the Apache Hadoop. Next we will move to creating a dedicated user which Hadoop can
use for execution of its tasks.

2.2.2 Creating a Dedicated User

Hadoop needs a separate dedicated user for execution. With a complete control over the Hadoop executables and data folders.
To create a new user, use the following command in the terminal.

#create a user group for hadoop
sudo addgroup hadoop

#create user hduser and add it to the hadoop usergroup
sudo adduser --ingroup hadoop hduser

The first command creates a new group with the name "hadoop" and the second command creates a new user "hduser" and
assigns it to the "hadoop" group. We have kept all the user data like "First Name", "Phone Number" etc empty. You can keep it
empty or assign values to the account as per your choice.

Apache Hadoop Cookbook 13 / 139

Figure 2.4: Creating dedicated user for Hadoop

2.2.3 Disable ipv6

Next step is to disable ipv6 on all the machines. Hadoop is set to use ipv4 and that is why we need to disable ipv6 before creating
a hadoop cluster. Open /etc/sysctl.conf as root using nano(or any other editor of your choice)

sudo nano /etc/sysctl.conf

and add the following lines at the end of the file.

#commands to disable ipv6
net.ipv6.conf.all.disable-ipv6=1
net.ipv6.conf.default.disable-ipv6=1
net.ipv6.conf.lo.disable-ipv6=1

Apache Hadoop Cookbook 14 / 139

Figure 2.5: Disabling ipv6

Save the file using ctrl+X and then Yes when it prompts for saving the file. After this, to check if the ipv6 is properly disabled
we can use the following command:

cat /proc/sys/net/ipv6/conf/all/disable-ipv6

it should return 0 or 1 as an output and we want it to be 1 as it symbolizes that the ipv6 is disable

2.2.4 Installing SSH and Setting up certificate

Hadoop requires SSH access to manage its remote nodes as well as node on local machine. For this example, we need to configure
SSH access to localhost.

So, we will make sure we have SSH up and running and set up the public key access to allow it to login without a password. We
will set up SSH certificate for allowing a password less authentication. Use the following commands to do the required steps.

ssh has two main components:

• ssh: The command we use to connect to remote machines - the client.

• sshd: The daemon that is running on the server and allows clients to connect to the server.

SSH is pre-enabled on ubuntu but to make sure sshd is enables we need to install ssh first using the following command.

#installing ssh
sudo apt-get install ssh

To make sure everything is setup properly, use the following commands and make sure the output is similar to the one displayed
in the screenshot.

Apache Hadoop Cookbook 15 / 139

#Checking ssh
which ssh

#Checking sshd
which sshd

Both the above commands should show the path of the folder where ssh and sshd is installed as shown in the screenshot below.
This is to make sure that both are present in the system.

Figure 2.6: Checking ssh and sshd

Now, in order to generate the ssh certificate we will switch to the hduser user. In the following command, we are keeping
password empty while generating the key for ssh, you can give it some password if you would like to.

#change to user hduser
su hduser

#generate ssh key
ssh-keygen -t rsa -P ""

The second command will create an RSA key-pair for the machine. The password for this key will be empty as mentioned in
the command. It will ask for the path to store the key with default path being $HOME/.ssh/id-rsa.pub, just press enter when
prompted to keep the same path. If you plan to change the path then remember it as it will be needed in the next step.

Apache Hadoop Cookbook 16 / 139

Figure 2.7: Generating ssh key

Enable SSH access to the machine with the key created in the previous step. For this, we have to add the key to the authorized
keys list of the machine.

cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

We can check if ssh works as following, is the ssh to localhost is succesful witout password prompt, then the certificate is
properly enabled.

ssh localhost

By now, we are done with all the prerequisites for the Apache Hadoop. We will check how to setup Hadoop in the next section.

2.3 Installing Apache Hadoop

After all the prerequisites, we are ready to install Apache Hadoop on our Ubuntu 15.10 machine.

2.3.1 Download Apache Hadoop

• Download Hadoop from Apache Mirrors at www.apache.org/dyn/closer.cgi/hadoop/core. It can be downloaded manually or
using wget command.

• After download finishes, extract hadoop folder and move it to /usr/local/hadoop and finally change the owner of the
folder to hduser and hadoop group.

https://www.apache.org/dyn/closer.cgi/hadoop/core

Apache Hadoop Cookbook 17 / 139

#Change to the directory
cd /usr/local

#move hadoop files to the directory
sudo mv /home/hadoop1/Downloads/hadoop-2.7.1 hadoop

#change the permissions to the hduser user.
sudo chown -R hduser:hadoop

We can now check the permissions of the hadoop folder using the command:

ls -lah

This command shows the list of content in the /usr/local/ directory along with the metadata. Hadoop fodler should have
hduser as the owner and hadoop as the user group as shown in the screenshot below.

Figure 2.8: Placing hadoop in required folder and assigning dedicated user as owner of hadoop

2.3.2 Updating bash

Update the bashrc file for the user hduser.

su - hduser
nano $HOME/.bashrc

At the end of the file, add the following lines.

Apache Hadoop Cookbook 18 / 139

export HADOOP_HOME=/usr/local/hadoop
export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-i386

#Some convenient aliases
unalias fs &> /dev/null
alias fs="hadoop fs"
unalias hls &> /dev/null
alias hls="fs -ls"

export PATH=$PATH:$HADOOP_HOME/bin

The block of convenient aliases is optional and can be omitted. JAVA_HOME, HADOOP_HOME and PATH are the only compulsary
requirements.

Figure 2.9: Updating .bashrc file

2.3.3 Configuring Hadoop

In this step, we will configure the Hadoop.

Open hadoop-env.sh in /usr/local/hadoop/etc/hadoop/ and set the JAVA_HOME variable as shown below:

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-i386

and save the file using ctrl+X and then Yes.

Note: The path to java should be the path where the java is present in the system. By default it should be in the /usr/lib
folder, but make sure it is the correct path as per your system. Also, make sure the version of java is correct which you want to
use. Following screenshot shows where it need to be modified in the hadoop-env.sh.

Apache Hadoop Cookbook 19 / 139

Figure 2.10: Updating hadoop-env.sh file

Next, we will configure the core-site.xml in the folder /usr/local/hadoop/etc/hadoop/ and add the following
property

<configuration>
<property>

<name>fs.defaultFS</name>
<value>hdfs://localhost:54310</value>

</property>
</configuration>

This tells the system where the default file system should be running on the system.

Apache Hadoop Cookbook 20 / 139

Figure 2.11: Updating core-site.xml

Next we need to update hdfs-site.xml. This file is used to specify the directories which will be used as the namenode and
the datanode.

<configuration>
<property>

<name>dfs.replication</name>
<value>2</value>

</property>
<property>

<name>dfs.namenode.name.dir</name>
<value>/usr/local/hadoop/hdfs/namenode</value>

</property>
<property>

<name>dfs.datanode.data.dir</name>
<value>/usr/local/hadoop/hdfs/datanode</value>

</property>
</configuration>

Apache Hadoop Cookbook 21 / 139

Figure 2.12: Updating hdfs-site.xml

Now, we will update mapred-site.xml file. The folder /usr/local/hadoop/etc/hadoop/ contains the file map
red-site.xml.template. Rename this file to mapred-site.xml before modification.

<configuration>
<property>

<name>mapreduce.jobtracker.address</name>
<value>localhost:54311</value>

</property>
</configuration>

Apache Hadoop Cookbook 22 / 139

Figure 2.13: Updating mapred-site.xml

2.3.4 Formatting the Hadoop Filesystem

We are now done with all the configuration, so before starting the cluster we need to format the namenode. To do so, use the
following command on the terminal.

hdfs namenode -format

This command should be executed without any error on the console output. If it is executed without any errors, we are good to
start the Apache Hadoop instance on our Ubuntu system.

2.3.5 Starting Apache Hadoop

Now it is time to start the Hadoop. Following is the command to do so:

/usr/local/hadoop/sbin/start-dfs.sh

Apache Hadoop Cookbook 23 / 139

Figure 2.14: Starting Hadoop

Once the dfs starts without any error, we can check if everything is working fine using the command jps

cd /usr/local/hadoop/sbin

#Checking the status of the Hadoop components
jps

This command displays all the components of Hadoop which are running properly, we should see atleast a Namenode and a
Datanode as shown in the screenshot below.

Apache Hadoop Cookbook 24 / 139

Figure 2.15: jps command

Other options is to check the status of Apache Hadoop using the web interface for the Namenode on https://localhost:
50070.

Apache Hadoop Cookbook 25 / 139

Figure 2.16: Apache Hadoop web interface

Following screenshot displays the details of Namenode in the web interface

Apache Hadoop Cookbook 26 / 139

Figure 2.17: Namenode in Hadoop Web Interface

and the following screenshot shows the Datanode details in the Hadoop web interface

Apache Hadoop Cookbook 27 / 139

Figure 2.18: Datanode in Hadoop Web Interface

2.3.6 Testing MapReduce Job

First of all, lets make the required HDFS directories and copy some input data for testing purpose

#Make the required directories in HDFS
bin/hdfs dfs -mkdir /user
bin/hdfs dfs -mkdir /user/hduser

These directories can be accessed from the web interface also. To do so, go to the web interface, from the menu select ‘Utilities’
and from dropdown select ‘Browse the file system’

Apache Hadoop Cookbook 28 / 139

Figure 2.19: Browse HDFS File System

Now, we can add some dummy files to the directory which we will use for the testing purpose. Let us pass the all the files from
etc/hadoop folder.

#Copy the input files into the distributed file system
/usr/local/hadoop/bin/hdfs dfs -put /usr/local/hadoop/etc/hadoop input

Following screenshot shows the files added to the directories /user/hduser/input in the web interface

Apache Hadoop Cookbook 29 / 139

Figure 2.20: Browse HDFS File System

Run the MapReduce example job included in the Hadoop package using the following command:

/usr/local/hadoop/bin/hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce- ←↩
example-2.7.1.jar grep input output ’dfs[a-z.]+’

Note: For details on how MapReduce example works, refer to the article “Hadoop Hello World Example”

Following screenshot shows the output log of the test example:

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/hadoop-hello-world-example/

Apache Hadoop Cookbook 30 / 139

Figure 2.21: Wordcount example console output

We can now view the output file using the command

/usr/local/hadoop/bin/hdfs dfs -cat output/*

or using the web interface also as displayed in the screenshot below:

Apache Hadoop Cookbook 31 / 139

Figure 2.22: Output folder in hdfs

2.3.7 Stopping Apache Hadoop

We can now stop the dfs(distributed format system) using the following command:

/usr/local/hadoop/sbin/stop-dfs.sh

Apache Hadoop Cookbook 32 / 139

Figure 2.23: Stopping Apache Hadoop

2.4 Conclusion

This brings us to the end of the example. By now, we have Apache Hadoop Installed on our Ubuntu system and we know
how to add data to the Hadoop and how to execute the job on the added data. After this, you can play around with Hadoop.
You may also like to follow the example https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-
commands-example/ to know some of the common Hadoop File System commands.

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/

Apache Hadoop Cookbook 33 / 139

Chapter 3

FS Commands Example

In this example, we will go through most important commands which you may need to know to handle Hadoop File System(FS).

We assume the previous knowledge of what Hadoop is and what Hadoop can do? How it works in distributed fashion and what
Hadoop Distributed File System(HDFS) is? So that we can go ahead and check some examples of how to deal with the Hadoop
File System and what are some of the most important commands. Following are two examples which can help you if you are not
well aware about Apache Hadoop:

• Hadoop "Hello World" Example

• How to set up Hadoop Cluster using Virtual Machines

Let us get started, as said in this example we will see top and the most frequently used Hadoop File System(fs) commands which
will be useful to manage files and data in HDFS clusters.

3.1 Introduction

The Hadoop File System(FS) provides various shell like commands by default which can be used to interact with the Hadoop
Distributed File System(HDFS) or any other supported file system using the Hadoop Shell. Some of the most common com-
mands are the once used for operations like creating directories, copying a file, viewing the file content, changing ownership or
permissions on the file.

3.2 Common Commands

In this section, we will see the usage and the example of most common Hadoop FS Commands.

3.2.1 Create a directory

Usage:

hadoop fs -mkdir <paths>

Example:

hadoop fs -mkdir /user/root/dir1

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/hadoop-hello-world-example/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-cluster-setup-example-virtual-machines/

Apache Hadoop Cookbook 34 / 139

Command in the second line is for listing the content of a particular path. We will see this command in the next sub-section. We
can see in the screenshot that dir1 is created

Figure 3.1: Create Directory in Hadoop FS

Creating multiple directories with single command

hadoop fs -mkdir /user/root/dir1 /user/root/dir2

As shown in the above example, to create multiple directories in one go just pass multiple path and directory names separated by
space.

Apache Hadoop Cookbook 35 / 139

Figure 3.2: Make multiple directories with single command

3.2.2 List the content of the directory

Usage:

hadoop fs -ls <paths>

Example:

hadoop fs -ls /user/root/

The command is similar to the ls command of the unix shell.

Apache Hadoop Cookbook 36 / 139

Figure 3.3: Listing the files and directories

3.2.3 Upload a file in HDFS

Command is used to copy one or multiple files from local system to the Hadoop File System.

Usage:

hadoop fs -put <local_files> ... <hdfs_path>

Example:

hadoop fs -put Desktop/testfile.txt /user/root/dir1/

In the screenshot below, we put the file testfile.txt from Desktop of the Local File System to the Hadoop File System
at the destiantion /user/root/dir1

Apache Hadoop Cookbook 37 / 139

Figure 3.4: Uploading the file to Hadoop FS

3.2.4 Download a file from HDFS

Download the file from HDFS to the local file system.

Usage:

hadoop fs -get <hdfs_paths> <local_path>

Example:

hadoop fs -get /user/root/dir1/testfile.txt Downloads/

As with the put command, get command gets or downloads the file from Hadoop File System to the Local File System in the
Downloads folder.

Apache Hadoop Cookbook 38 / 139

Figure 3.5: Download the file from Hadoop FS

3.2.5 View the file content

For viewing the content of the file, cat command is available in the Hadoop File System. It is again similar to the one available
in the unix shell.

Following is the content of the file which is uploaded to the Hadoop file system at the path /user/root/dir1/ in the previous
steps.

Apache Hadoop Cookbook 39 / 139

Figure 3.6: Testfile.txt

Usage:

hadoop fs -cat <paths>

Example:

hadoop fs -cat /user/root/dir1/testfile.txt

We can see that the content displayed in the screenshot below is same as the content in the testfile.txt

Apache Hadoop Cookbook 40 / 139

Figure 3.7: Hadoop FS cat command

3.2.6 Copying a file

Copying a file from one place to another within the Hadoop File System is same syntax as cp command in unix shell.

Usage:

hadoop fs -cp <source_path> ... <destination_path>

Example:

hadoop fs -cp /user/root/dir1/testfile.txt /user/root/dir2

In copying file from source to destination, we can provide multiple files in source also.

Apache Hadoop Cookbook 41 / 139

Figure 3.8: Copying Hadoop FS file from one place to another

3.2.7 Moving file from source to destination

Following is the syntax and the example to move the file from one directory to another within Hadoop File System.

Usage:

hadoop fs -mv <source_path> <destination_path>

Example:

hadoop fs -mv /user/root/dir1/testfile.txt /user/root/dir2

Apache Hadoop Cookbook 42 / 139

Figure 3.9: Moving file from one path to another

3.2.8 Removing the file or the directory from HDFS

Removing a file or directory from the Hadoop File System is similar to the unix shell. It also have two alternatives, -rm and -
rm -r

Usage:

hadoop fs -rm <path>

Example:

hadoop fs -rm /user/root/dir2/testfile.txt

The above command will only delete the particular file or in case of directory, only if it is empty. But if we want to delete a
directory which contains other file, we have a recursive version of the remove command also.

Apache Hadoop Cookbook 43 / 139

Figure 3.10: Removing file from Hadoop FS

In case, we want to delete a directory which contains files, -rm will not be able to delete the directory. In that case we can use
recursive option for removing all the files from the directory following by removing the directory when it is empty. Below is the
example of the recursive operation:

Usage:

hadoop fs -rm -r <path>

Example:

hadoop fs -rm -r /user/root/dir2

Figure 3.11: Removing the file recursively

Apache Hadoop Cookbook 44 / 139

3.2.9 Displaying the tail of a file

The command is exactly similar to the unix tail command.

Usage:

hadoop fs -tail <path>

Example:

hadoop fs -tail /user/root/dir1/testfile.txt

Figure 3.12: Tail command for Hadoop FS file.

3.2.10 Displaying the aggregate length of a particular file

In order to check the aggregate length of the content in a file, we can use -du. command as below. If the path is of the file,
then the length of the file is shown and if it is the path to the directory, then the aggregated size of the content if shown is shown
including all files and directories.

Usage:

hadoop fs -du <path>

Example:

hadoop fs -du /user/root/dir1/testfile.txt

Apache Hadoop Cookbook 45 / 139

Figure 3.13: Hadoop Fs Aggregated Length

3.2.11 Count the directories and files

This command is to count the number of files and directories under the specified path. As in the following screenshot, the output
shows the number of directories i.e. 2, number of files i.e. 1, the total content size which is 159 bytes and the path to which these
stats belong to.

hadoop fs -count <path>

Example:

hadoop fs -count /user/root/

Apache Hadoop Cookbook 46 / 139

Figure 3.14: Count command output

3.2.12 Details of space in the file system

To get all the space related details of the Hadoop File System we can use df command. It provides the information regarding the
amount of space used and amount of space available on the currently mounted filesystem

hadoop fs -df <path>

Command can be used without the path URI or with the path URI, when used without the path URI, it provides the information
regarding the whole file system. When path URI id provided it provides the information specific to the path.

Example:

hadoop fs -df
hadoop fs -df /user/root

Following screenshot displays the Filesystem, Size of the filesystem, Used Space, Available Space and the Used percentage.

Apache Hadoop Cookbook 47 / 139

Figure 3.15: DF command output

3.3 Conclusion

This brings us to the conclusion of the example. These Hadoop File System commands will help you in getting a head start in
dealing with the files and directories in the Hadoop Ecosystem.

Apache Hadoop Cookbook 48 / 139

Chapter 4

Cluster Setup Example

4.1 Introduction

Apache Hadoop is designed for a multi-machine cluster setup. Though it is possible to run on single machine also for testing
purpose but real implementation is for multi-machine clusters. Even if we want to try out multi-machine setup we will need
multiple systems which are connected to each other over the network which is not possible always; what if you do not have
multiple systems to try out Hadoop Cluster?

Virtual Machines comes to rescue here. Using multiple Virtual Machines we can setup Hadoop Cluster using a single system.
So, in this example, we will discuss how to setup Apache Hadoop Cluster using Virtual Machines.

4.2 Requirements

• VirtualBox (or any other VM environment)

• Lubuntu 15.04 (or any other linux flavor of your preference)

• VBox Guest Additions image file (VBoxGuestAdditions.iso)

I personally prefer Lubuntu as it has lightweight LXDE Desktop GUI and it strips all the additional components which are present
in Ubuntu and is a good option for virtual machines.

4.3 Preparing Virtual Machine

In this section we will go through steps to prepare virtual machines which we will use for cluster later in the example.

4.3.1 Creating VM and Installing Guest OS

Create a virtual machine(VM) in VirtualBox and assign minimum 2GB of memory and 15GB of storage to the virtual machine.
Name the first VM as Hadoop1.

https://www.virtualbox.org/
https://lubuntu.net/
https://www.virtualbox.org/manual/ch04.html

Apache Hadoop Cookbook 49 / 139

Figure 4.1: Creating Virtual Machine in VirtualBox

Once the VM is created, install Lubuntu in the VM and complete the setup, we will get a working virtual machine after this.

Apache Hadoop Cookbook 50 / 139

Figure 4.2: Installing Lubuntu in created VM

Installation of the OS might take some time.

Apache Hadoop Cookbook 51 / 139

Figure 4.3: Lubuntu installation in progress

4.3.2 Installing Guest Additions

Next step is to install Guest Additions in the VM. Guest Additions are additional setup needed for the VM to perform well. It
consist of device drivers and system applications that optimize the guest operating system for better performance and usability.
This is one of the important and needed step whenever creating a virtual machine, one thing it allows the Guest OS to detect the
size of the screen(which helps in running the VM full screen) and also enabling guest operating system to have a shared folder
with the host operating system if needed. Following are the steps which need to be performed for installing guest additions in
the Guest OS:

First of all, prepare the system for building external kernel modules which can be done by running the following command in the
terminal and installing DKMS(DKMS provides support for installing supplementary versions of kernel modules):

sudo apt-get install dkms

Insert VBoxGuestAdditions.iso CD file into Linux guest virtual CD-ROM drive.

Now open the terminal and change the directory to the CD-ROM drive and then execute the following command:

sh ./VBoxLinuxAdditions.run

Note: At this point reboot the system and move on to the next step where we will configure the network settings for the virtual
machine.

https://help.ubuntu.com/community/DKMS

Apache Hadoop Cookbook 52 / 139

4.4 Creating Cluster of Virtual Machines

In this section we will see how to configure the network for the virtual machines to act as single cluster machines, how to clone
the first machine to others which will save all the time as we do not need to perform previous steps on all the machine individually.

4.4.1 VM Network settings

Go to Virtualbox preferences menu and select Preferences from the dropdown menu.

Figure 4.4: VirtualBox Preferences Menu

In Preferences menu, select Network. In network preferences, select Host-only Networks and click on Add Driver. Driver will
be added to the list. Double click the driver and it will open a popup for DHCP server settings, insert DHCP server settings as
shown in the screenshot below.

Apache Hadoop Cookbook 53 / 139

Figure 4.5: DHCP Server Settings

We will set the lower bound and upper bound of the network to be 192.168.56.101 and 192.168.56.254, all the machines will
have the IPs assigned from this range only. Do not forget the check Enable Server

Once the network settings are done and DHCP server ready, in the VirtualBox Manager, right-click on the virtual machine and
from the list and select Settings from the dropdown. From the settings popup, select Network and then Adapter2’Check ’Enable
Network Adapter and then in Attached to dropdown choose Host-only adapter. In second dropdown, names of all the adapters
will be available including the one we created in the previous step. Select that from the dropwdown, in our example it is names
as vboxnet0. This will attach the virtual machine to this particualr network.

Apache Hadoop Cookbook 54 / 139

Figure 4.6: Virtual Machine Settings

4.4.2 Cloning the Virtual Machine

Now we have a virtual machine ready and we cna not clone this virtual machine to create identical machines, this saves us from
the hassle of all the previous steps and we can easily have multiple virtual machines with the same configuration as the one they
are cloned from.

Right-click on the virtual machine and from the dropdown select Clone. In the clone popup, rename the VM to Hadoop2 and
select Reinitialize the MAC address of all the network cards and click Continue.

Apache Hadoop Cookbook 55 / 139

Figure 4.7: Cloning the Virtual Machine

Note: Reinitializing the MAC address make sure that the new Virtual Machine will have a different MAC address for the network
card.

In the next screen, select Full Clone option and click on Clone.

Apache Hadoop Cookbook 56 / 139

Figure 4.8: Full clone of the Virtual Machine

4.4.3 Testing the network IPs assigned to VMs

So now we have 2 machines on the same network. We have to test if both the machines are connected to the network adapter we
setup for the cluster. Following are the steps to do so:

Start both the virtual machines and in terminals use the following command:

ifconfig

This will show the network configuration of the machine. We will notice that the IP assigned is in the range 192.168.56.101 and
192.168.56.254 (i.e. between lower address bound and upper address bound assigned to the DHCP network)

Apache Hadoop Cookbook 57 / 139

Figure 4.9: IP configuration of the virtual machine

Note: Perform the same task for both the machines and confirm everything is fine.

4.4.4 Converting to Static IPs for VMs

There will be one problem with this configuration though. IPs are allocated randomly to the systems and may change in the
future reboots. Hadoop need static IPs to access the machines in the cluster, so we need to fix the IPs of the machines to be static
always and assign specific IPs for both the machines. The following steps need to be performed on both the machines.

Go to /etc/networks in the terminal and edit the file interfaces as a root.

#Go to networks directory
cd /etc/networks
#Edit the file ’interfaces’
sudo nano interfaces

Add the following lines at the end of the interfaces file.

auto eth1
iface eth1 inet static

#Assign a static ip to the virtual machine
address 192.168.56.101
netmast 255.255.255.0
network 192.168.56.0

#Mention the broadcast address, get this address using ifconfig commmand
#in this case, is it 192.168.56.255
broadcast 192.168.56.255

Apache Hadoop Cookbook 58 / 139

Figure 4.10: Interfaces file

On each machine, edit the file /etc/hosts as root and add the hosts. For example:

#Edit file using nano editor
sudo nano /etc/hosts

Add following hosts:

192.168.56.101 hadoop1
192.168.56.102 hadoop2

Note: IPs should be same as assigned in the previous step.

Apache Hadoop Cookbook 59 / 139

Figure 4.11: Hosts file in the virtual machine

Reboot all the machines

4.5 Hadoop prerequisite settings

Following are the prerequisite settings for hadoop setup. Remember all the settings need to be done in all the machines which
will be added to cluster(2 machines in this example)

4.5.1 Creating User

Create hadoop users in all the machines. For that open the terminal and enter the following commands:

#create a user group for hadoop
sudo addgroup hadoop

#create user hduser and add it to the hadoop usergroup
sudo adduser --ingroup hadoop hduser

4.5.2 Disable ipv6

Next step is to disable ipv6 on all the machines. Hadoop is set to use ipv4 and that is why we need to disable ipv6 before creating
a hadoop cluster. Open /etc/sysctl.conf as root using nano

sudo nano /etc/sysctl.conf

and add the following lines at the end of the file.

Apache Hadoop Cookbook 60 / 139

#commands to disable ipv6
net.ipv6.conf.all.disable-ipv6=1
net.ipv6.conf.default.disable-ipv6=1
net.ipv6.conf.lo.disable-ipv6=1

After this, to check if the ipv6 is properly disable, use the following command

cat /proc/sys/net/ipv6/conf/all/disable-ipv6

it will return 0 or 1 as an output and we want it to be 1 as it symbolizes that the ipv6 is disabled.

4.5.3 Connecting the machines (SSH Access)

Now, we have to make sure that the machines are able to reach each other over the network using static IP addresses and SSH.
For this example, we will consider hadoop1 machine as the master node and hadoop1 and hadoop2 both as the slave nodes.
So we have to make sure:

hadoop1(master) should be able to connect to itself using

ssh hadoop1

It should be able to connect to other VM using

ssh hduser@hadoop2

To achieve this, we have to generate SSH key in each machine. So login to hadoop1 and following the steps mentioned below
in the terminal:

Switch to the user hduser and generate the SSH public keys:

#change to user hduser
su - hduser

#generate ssh key
ssh-keygen -t rsa -P ""

Apache Hadoop Cookbook 61 / 139

Figure 4.12: SSH Keygenration

The second command will create an RSA key-pair for the machine. The password for this key will be empty as mentioned in the
command. It will ask for the path to store the key with default path being $HOME/.ssh/id-rsa.pub, just press enter when
prompted to keep the same path. If you plan to change the path then remember it as it will be needed in the next step.

Enable SSH access to the machine with the key created in the previous step. For this, we have to add the key to the authorized
keys list of the machine.

cat $HOME/.ssh/id-rsa.pub >> $HOME/.ssh/authorized_keys

Now we have to add the hduser@hadoop1’s public SSH key (master node) to the authorized keys file of the hduser@
hadoop2 machine. This can be done using the following commands on the terminal of hadoop1:

ssh-copy-id -i $HOME/.ssh/id-ras.pub hduser@hadoop2

This will prompt for the password for the user hduser@hadoop2

Test the SSH connections from hadoop1 to itself and also to hadoop2 to make sure everything is fine using:

ssh hadoop1

This will connect hadoop1 to itself, if connected successfully, exit the connection and try to connect to the hadoop2 machine

ssh hduser@hadoop2

This should also connect successfully.

4.6 Hadoop Setup

So, we are at the step where we have completed all the initial setup and now we are ready to setup hadoop on the cluster.

Apache Hadoop Cookbook 62 / 139

4.6.1 Download Hadoop

Download Hadoop from Apache Mirrors at www.apache.prg/dyn/closer.cgi/hadoop/core

After download finishes, extract hadoop folder and move it to /usr/local/hadoop and finally change the owner of the
folder to hduser and hadoop group.

#Change to the directory
cd /usr/local

#move hadoop files to the directory
sudo mv /home/hadoop1/Downloads/hadoop-2.7.1 hadoop

#change the permissions to the hduser user.
sudo chown -R hduser:hadoop hadoop

We can check the permissions in the folder setting to confirm if they are fine.

Figure 4.13: Folder settings to check permissions

4.6.2 Update bashrc

Update the bashrc file for the user hduser.

su - hduser
nano $HOME/.bashrc

At the end of the file, add the folloeing lines.

export HADOOP_HOME=/usr/local/hadoop
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-i386

#Some convenient aliases
unalias fs &> /dev/null

https://www.apache.prg/dyn/closer.cgi/hadoop/core

Apache Hadoop Cookbook 63 / 139

alias fs="hadoop fs"
unalias hls &> /dev/null
alias hls="fs -ls"

export PATH=$PATH:$HADOOP_HOME/bin

Figure 4.14: Updating bashrc file of user hduser

4.6.3 Configuring Hadoop

Now, it is the time to configure the hadoop setup. Following are the steps which need to be followed:

This need to be performed on all the machines. Open hadoop-env.sh in /usr/local/hadoop/etc/hadoop/ and set
the JAVA_HOME variable as shown below:

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-i386

Next, we will configure the core-site.xml in the folder /usr/local/hadoop/etc/hadoop/ and add the following
property

<configuration>
<property>

<name>fs.default.FS</name>
<value>hdfs://hadoop1:54310</value>

</property>
</configuration>

This will also need to be edited in all the machine but all the value fields should point to the master node only which is
hadoop1 in this example. So for both the machines, same property with same name and value need to be added.

Next we need to update hdfs-site.xml on all master and slave nodes

<configuration>
<property>

Apache Hadoop Cookbook 64 / 139

<name>dfs.replication</name>
<value>2</value>

</property>
<property>

<name>dfs.namenode.name.dir</name>
<value>/usr/local/hadoop/hdfs/namenode</value>

</property>
<property>

<name>dfs.datanode.data.dir</name>
<value>/usr/local/hadoop/hdfs/datanode</value>

</property>
</configuration>

Now, we will update mapred-site.xml file. It need to be edited only on master node

<configuration>
<property>

<name>mapreduce.jobtracker.address</name>
<value>hadoop1:54311</value>

</property>
</configuration>

The last configuration will be in the file slaves in the folder /usr/local/hadoop/etc/hadoop. Add the host names or
the ip addresses of the slave nodes

hadoop1
hadoop2

As hadoop1 acts as both master and slave so we will add both the host names.

4.6.4 Formatting the Namenode

We are now done with all the configuration, so before starting the cluster we need to format the namenode. To do so, use the
following command on the hadoop1(master) node terminal

hdfs namenode -format

4.6.5 Start the Distributed Format System

Now it is time to start the distributed format system and start running the cluster. Following is the command to do so:

/usr/local/hadoop/sbin/start-dfs.sh

Once the dfs starts without any error, we can browse the web interface for the Namenode on https://localhost:50070
on the master node

Apache Hadoop Cookbook 65 / 139

Figure 4.15: Hadoop Web Interface from Master Node

If you notice on the bottom of screenshot, there are two live node at the time what confirms that our cluster has two properly
working nodes.

We can also access the web interface from any of the slave nodes but for those we have to use the master hostname or ip address.
For example, from hadoop2(slave node) we can use the address https://hadoop1:50070 to access the web interface.

Figure 4.16: Hadoop Web Interface from the Slave node

Apache Hadoop Cookbook 66 / 139

4.6.6 Testing MapReduce Job

First of all, lets make the required HDFS directories and copy some input data for testing purpose

#Make the required directories
bin/hdfs dfs -mkdir /user
bin/hdfs dfs -mkdir /user/hduser

These directories can be accessed from the web interface also. To do so, go to the web interface, from the menu select Utilities
and from dropdown select Browse the file system

Figure 4.17: Accessing directories in HDFS using web interface

Now, we can add some dummy files to the directory which we will use for the testing purpose. Lets ass the all the files from
etc/hadoop folder

#Copy the input files into the distributed file system
/usr/local/hadoop/bin/hdfs dfs -put /usr/local/hadoop/etc/hadoop input

Following screenshot shows the files added to the directories /user/hduser/input

Apache Hadoop Cookbook 67 / 139

Figure 4.18: Browsing files in the HDFS

Run the MapReduce included in the hadoop package using the following command

/usr/local/hadoop/bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-example-2.7.1.jar ←↩
grep input output ’dfs[a-z.]+’

Note: For details on how MapReduce example works, refer to the article "Hadoop Hello World Example"

Following screenshot shows the output log of the test example:

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/hadoop-hello-world-example/

Apache Hadoop Cookbook 68 / 139

Figure 4.19: Output of the test MapReduce example

We can now view the output file using

/usr/local/hadoop/bin/hdfs dfs -cat output/*

4.6.7 Stopping the Distributed Format System

We can now stop the dfs(distributed format system) using the following command:

/usr/local/hadoop/sbin/stop-dfs.sh

This brings us to the end of the setup and initial testing.

4.7 Conclusion

This brings us to the conclusion of this example. Hope this makes it a little more clear about how to set up Hadoop cluster on
multiple machines. In case, a cluster need to be setup on multiple physical machines instead of virtual machines, the instructions
are similar except steps containing 4.1 VM Network settings and 4.2 Cloning the Virtual Machine. For physical machines cluster,
we can perform all other steps on the machines and everything should work smoothly.

4.8 Download configuration files

The configuration files which are modified and used for this example can be downloaded from here. Keep in mind that the
modification done in these configuration files can be different based on the user network and other setting and may need to be
changes accordingly. The package contains:

• hosts file

Apache Hadoop Cookbook 69 / 139

• sysctl.conf file

• Hadoop 1 folder (contains master node files)

– core-site.xml

– hdfs-site.xml

– mapred-site.xml

– slaves

• Hadoop 2 folder (contains slave note files)

– core-site.xml

– hdfs-site.xml

Download You can download all the above mentioned files from this example here: HadoopClusterSetup

https://examples.javacodegeeks.com/wp-content/uploads/2015/12/HadoopClusterSetup.zip

Apache Hadoop Cookbook 70 / 139

Chapter 5

Distcp Example

In this example, we are going to show you how to copy large files in inter/intra-cluster setup of Hadoop using distributed copy
tool.

5.1 Introduction

DistCP is the shortform of Distributed Copy in context of Apache Hadoop. It is basically a tool which can be used in case we
need to copy large amount of data/files in inter/intra-cluster setup. In the background, DisctCP uses MapReduce to distribute and
copy the data which means the operation is distributed across multiple available nodes in the cluster. This makes it more efficient
and effective copy tool.

DistCP takes a list of files(in case of multiple files) and distribute the data between multiple Map tasks and these map tasks copy
the data portion assigned to them to the destination.

5.2 Syntax and Examples

In this section, we will check the syntax of DistCP along with some examples.

5.2.1 Basic

Following is the basic syntac of distCp command.

hadoop distcp hdfs://namenode:port/source hdfs://namenode:port/destination

Following the distcp first argument should be the fully qualified address of the source including the namenode and the port
number. Second argument should be the destination address. The basic syntax of distcp is quite easy and symple. It handles
all the distribution and copying automatically using MapReduce.

If copying between the same cluster, the namenode and the port number of both source and destination will be same and in case
of different cluster both will be different.

Example of basic distcp:

hadoop distcp hdfs://quickstart.cloudera:8020/user/access_logs hdfs://quickstart.cloudera ←↩
:8020/user/destination_access_logs

Following is the log of the command execution:

Apache Hadoop Cookbook 71 / 139

15/12/01 17:13:07 INFO tools.DistCp: Input Options: DistCpOptions{atomicCommit=false, ←↩
syncFolder=false, deleteMissing=false, ignoreFailures=false, maxMaps=20, ←↩
sslConfigurationFile=’null’, copyStrategy=’uniformsize’, sourceFileListing=null, ←↩
sourcePaths=[hdfs://quickstart.cloudera:8020/user/access_logs], targetPath=hdfs:// ←↩
quickstart.cloudera:8020/user/destination_access_logs, targetPathExists=false, ←↩
preserveRawXattrs=false, filtersFile=’null’}

15/12/01 17:13:07 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
15/12/01 17:13:08 INFO tools.SimpleCopyListing: Paths (files+dirs) cnt = 2; dirCnt = 1
15/12/01 17:13:08 INFO tools.SimpleCopyListing: Build file listing completed.
15/12/01 17:13:08 INFO Configuration.deprecation: io.sort.mb is deprecated. Instead, use ←↩

mapreduce.task.io.sort.mb
15/12/01 17:13:08 INFO Configuration.deprecation: io.sort.factor is deprecated. Instead, ←↩

use mapreduce.task.io.sort.factor
15/12/01 17:13:08 INFO tools.DistCp: Number of paths in the copy list: 2
15/12/01 17:13:08 INFO tools.DistCp: Number of paths in the copy list: 2
15/12/01 17:13:08 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
15/12/01 17:13:09 INFO mapreduce.JobSubmitter: number of splits:2
15/12/01 17:13:09 INFO mapreduce.JobSubmitter: Submitting tokens for job: ←↩

job_1449017643353_0001
15/12/01 17:13:10 INFO impl.YarnClientImpl: Submitted application ←↩

application_1449017643353_0001
15/12/01 17:13:10 INFO mapreduce.Job: The url to track the job: https://quickstart.cloudera ←↩

:8088/proxy/application_1449017643353_0001/
15/12/01 17:13:10 INFO tools.DistCp: DistCp job-id: job_1449017643353_0001
15/12/01 17:13:10 INFO mapreduce.Job: Running job: job_1449017643353_0001
15/12/01 17:13:20 INFO mapreduce.Job: Job job_1449017643353_0001 running in uber mode : ←↩

false
15/12/01 17:13:20 INFO mapreduce.Job: map 0% reduce 0%
15/12/01 17:13:32 INFO mapreduce.Job: map 50% reduce 0%
15/12/01 17:13:34 INFO mapreduce.Job: map 100% reduce 0%
15/12/01 17:13:34 INFO mapreduce.Job: Job job_1449017643353_0001 completed successfully
15/12/01 17:13:35 INFO mapreduce.Job: Counters: 33

File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=228770
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=39594819
HDFS: Number of bytes written=39593868
HDFS: Number of read operations=28
HDFS: Number of large read operations=0
HDFS: Number of write operations=7

Job Counters
Launched map tasks=2
Other local map tasks=2
Total time spent by all maps in occupied slots (ms)=20530
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=20530
Total vcore-seconds taken by all map tasks=20530
Total megabyte-seconds taken by all map tasks=21022720

Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=276
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=94
CPU time spent (ms)=1710
Physical memory (bytes) snapshot=257175552

Apache Hadoop Cookbook 72 / 139

Virtual memory (bytes) snapshot=3006455808
Total committed heap usage (bytes)=121503744

File Input Format Counters
Bytes Read=675

File Output Format Counters
Bytes Written=0

org.apache.hadoop.tools.mapred.CopyMapper$Counter
BYTESCOPIED=39593868
BYTESEXPECTED=39593868
COPY=2

Line number 35 in the log indicate the number of map tasks executed, which is 2 in this case.

To check if the copy was successful, we can run the following command in HDFS:

hadoop fs -ls /user/destination_access_logs

Below is the output if the copy was successful and data is present in the destination folder:

Figure 5.1: Screenshot displaying the out of the hadoop fs command

Note: When the files are copied between the two different clusters, HDFS version on both the clusters should be same or in case
of different versions, the higher version should be backward compatible.

5.2.2 Multiple Sources

In case there are multiple file sources and it need to go to the same destination sources, then all the sources can be passed as the
arguments as shown in the example syntax below:

hadoop distcp hdfs://namenode:port/source1 hdfs://namenode:port/source2 hdfs://namenode: ←↩
port/source3 hdfs://namenode:port/destination

So the files from all the three sources will be copied to the destination specified.

There is another alternative if there are many sources and writing long command becomes an issue. Following is the alternative
approach:

hadoop distcp -f hdfs://namenode:port/sourceListFile hdfs://namenode:port/destination

where, the sourceListFile is a simple file containing the list of all the sources. In this case, the source list file need to be
passed with the flag -f which indicates that the source is not the file to be copied but a file which contains all the sources.

Note: When distcp is used with multiple sources, in case if the sources collide, distcp will abort the copy with an error
message. But in case of collisions at the destination, copying is not aborted but the collision is resolved as per the options
specified. If no options are specified, default is that the files already existing at the destination are skipped.

Apache Hadoop Cookbook 73 / 139

5.2.3 Update and Overwrite Flag

As the names indicate, updatewill update the files at the destination folder but only if the update conditions are met. Conditions
for update to be performed are that update checks id the destination have the same file name, if the file size and content are same
as the source file, if everything is same then the files are not updated but if different the files are updated from the source to
destination.

overwrite will overwrite the files at the destination id the destination have same file name, if so, then the file will be overwrit-
ten.

hadoop distcp -update hdfs://namenode:port/source hdfs://namenode:port/destination

hadoop distcp -overwrite hdfs://namenode:port/source hdfs://namenode:port/destination

5.2.4 Ignore Failures Flag

In distcp is any map task fails, it stops the other map tasks also and the copying process halts completely with an error. In
case, there is the requirement to continue copying other chunks of data even if one or more map tasks fails we have an ignore
failures flag i.e. -i.

hadoop distcp -i hdfs://namenode:port/source hdfs://namenode:port/destination

5.2.5 Maximum Map Tasks

If the user wants to specify the maximum number of map tasks which can be assigned for distcp execution, there is another
flag -m <max_num>.

hadoop distcp -m 5 hdfs://namenode:port/source hdfs://namenode:port/destination

This example command will assign maximum of 5 map tasks to the distcp command.

Example of setting maximum map tasks in distcp:

hadoop distcp -m 1 hdfs://quickstart.cloudera:8020/user/access_logs hdfs://quickstart. ←↩
cloudera:8020/user/destination_access_logs_3

Here we limit the map task to be 1. From the above example log output we know that default map tasks for this file data is 2.

Below is the log of the command execution:

15/12/01 17:19:33 INFO tools.DistCp: Input Options: DistCpOptions{atomicCommit=false, ←↩
syncFolder=false, deleteMissing=false, ignoreFailures=false, maxMaps=1, ←↩
sslConfigurationFile=’null’, copyStrategy=’uniformsize’, sourceFileListing=null, ←↩
sourcePaths=[hdfs://quickstart.cloudera:8020/user/access_logs], targetPath=hdfs:// ←↩
quickstart.cloudera:8020/user/destination_access_logs_3, targetPathExists=false, ←↩
preserveRawXattrs=false, filtersFile=’null’}

15/12/01 17:19:33 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
15/12/01 17:19:34 INFO tools.SimpleCopyListing: Paths (files+dirs) cnt = 2; dirCnt = 1
15/12/01 17:19:34 INFO tools.SimpleCopyListing: Build file listing completed.
15/12/01 17:19:34 INFO Configuration.deprecation: io.sort.mb is deprecated. Instead, use ←↩

mapreduce.task.io.sort.mb
15/12/01 17:19:34 INFO Configuration.deprecation: io.sort.factor is deprecated. Instead, ←↩

use mapreduce.task.io.sort.factor
15/12/01 17:19:34 INFO tools.DistCp: Number of paths in the copy list: 2
15/12/01 17:19:34 INFO tools.DistCp: Number of paths in the copy list: 2
15/12/01 17:19:34 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
15/12/01 17:19:35 INFO mapreduce.JobSubmitter: number of splits:1
15/12/01 17:19:35 INFO mapreduce.JobSubmitter: Submitting tokens for job: ←↩

job_1449017643353_0003

Apache Hadoop Cookbook 74 / 139

15/12/01 17:19:35 INFO impl.YarnClientImpl: Submitted application ←↩
application_1449017643353_0003

15/12/01 17:19:35 INFO mapreduce.Job: The url to track the job: https://quickstart.cloudera ←↩
:8088/proxy/application_1449017643353_0003/

15/12/01 17:19:35 INFO tools.DistCp: DistCp job-id: job_1449017643353_0003
15/12/01 17:19:35 INFO mapreduce.Job: Running job: job_1449017643353_0003
15/12/01 17:19:44 INFO mapreduce.Job: Job job_1449017643353_0003 running in uber mode : ←↩

false
15/12/01 17:19:44 INFO mapreduce.Job: map 0% reduce 0%
15/12/01 17:19:52 INFO mapreduce.Job: map 100% reduce 0%
15/12/01 17:19:52 INFO mapreduce.Job: Job job_1449017643353_0003 completed successfully
15/12/01 17:19:52 INFO mapreduce.Job: Counters: 33

File System Counters
FILE: Number of bytes read=0
FILE: Number of bytes written=114389
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=39594404
HDFS: Number of bytes written=39593868
HDFS: Number of read operations=20
HDFS: Number of large read operations=0
HDFS: Number of write operations=5

Job Counters
Launched map tasks=1
Other local map tasks=1
Total time spent by all maps in occupied slots (ms)=5686
Total time spent by all reduces in occupied slots (ms)=0
Total time spent by all map tasks (ms)=5686
Total vcore-seconds taken by all map tasks=5686
Total megabyte-seconds taken by all map tasks=5822464

Map-Reduce Framework
Map input records=2
Map output records=0
Input split bytes=138
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=45
CPU time spent (ms)=1250
Physical memory (bytes) snapshot=123002880
Virtual memory (bytes) snapshot=1504280576
Total committed heap usage (bytes)=60751872

File Input Format Counters
Bytes Read=398

File Output Format Counters
Bytes Written=0

org.apache.hadoop.tools.mapred.CopyMapper$Counter
BYTESCOPIED=39593868
BYTESEXPECTED=39593868
COPY=2

Map tasks in this example is maximum 1 as indicated in the line 34 of the above log.

5.3 Final Notes

In this example, we saw the use of distcp command in Apache Hadoop to copy large amount of data. For more help and
details about distcp command and all the options available, use the following command to check the built-in help:

hadoop distcp

Apache Hadoop Cookbook 75 / 139

Chapter 6

Distributed File System Explained

In this example, we will discuss Apache Hadoop Distributed File System(HDFS), its components and the architecture in detail.
HDFS is one of the core components of Apache Hadoop ecosystem also.

6.1 Introduction

Apache Hadoop provides a distributed filesystem and a framework for the transformation of large data sets using the MapReduce
paradigm. HDFS is designed to store very large data sets reliably while running on commodity hardware. It is fault-tolerant
and provides high thoughput access to the data stored. While the interface of HDFS is patterned after the Unix filesystem, but it
relaxes a few POSIX requirements to improve the performance of the application it targets to address and to provide streaming
access to the data stored in the file system.

6.2 HDFS Design

Following are the properties of HDFS which makes it different from other file systems and which make HDFS capable of handling
very large amount of data reliably.

6.2.1 System failures

HDFS is designed to work on a set of commodity hardware. System failures are considered a norm. As there are a large number
of components on which HDFS rely on, considering these components have a non-trivial probability of failure will also result in
one component or the other failing all the time. So HDFS is designed to detect the failures and perform automatic recovery in
order to provide required performance is one of the core properties of HDFS.

6.2.2 Can handle large amount of data

HDFS is designed to be used with applications which depend on a large amount of data. This data can be in gigabytes, terabytes
or petabytes also. So HDFS is tuned to support such large data sets and to scale to a large cluster of systems to store this data
without compromising with the data thoughput.

6.2.3 Coherency Model

HDFS is tuned to address the applications which require to write data once or at maximum only a few times and read the data
a lot more. As these applications are assumed to rely on "write once read many times" model, it simplifies the data coherency
issues and allow HDFS to provide high thoughput data access.

Apache Hadoop Cookbook 76 / 139

6.2.4 Portability

HDFS is designed to be portable across heterogeneous hardware and software platforms. Which makes the adaptation of HDFS
very easy and it became the platform of choice for the application dependent on distributed large set of data.

6.3 HDFS Nodes

There are two main components of HDFS NameNode and DataNode.

6.3.1 NameNode

HDFS follows a master-slave architecture in which NameNode is node which acts as the master node. One HDFS cluster consists
of only one NameNode. The main functionality of NameNode is to manage the file system namespace and control the client
authentication to the files stored in the HDFS cluster. It also handles the mapping of the data stored in different DataNodes.

6.3.2 DataNode

DataNode are the nodes which as the name indicates stores the actual data in the cluster. There are multiple DataNodes in the
cluster, usually the number of DataNodes is same as the node of hardware nodes in the cluster. DataNode serve the read and write
requests from the clients and also handles operation related to blocks of data like creation of blocks, deletion and replication of
blocks.

6.4 HDFS Architecture

In this section we will understand the basic architecture of Hadoop Distributed File System(HDFS).

6.4.1 Working of NameNode and DataNode

HDFS is block-structured file system, that means all the individual files are divided into small blocks of data having a fixed block
size. These blocks are then stored across the cluster of machines in the DataNodes. The NameNode handles the functions like
opening, closing and renaming files or directories. NameNode as mentioned above also handles the mapping of the data in the
cluster that means NameNode keeps track of which block of data is stored on which DataNode and how the replication of this
data is handled.

6.4.2 HDFS Namespace

HDFS namespace defines how the data is stored and accessed in the cluster. HDFS supports the traditional hierarchical organiza-
tion of the files and directories. It also supports almost all the required functions to handle the namespace operations like creation
or removal of files or directories, moving files/Directories from one place to another etc.

As we discussed in section 3, NameNode is the component which maintains the HDFS file system namespace. Any operation on
the data like creation or deletion of files, displacement of files or directories are maintained in the NameNode.

6.4.3 Data Replication

As HDFS is designed to store large amount of data reliably and securely on a set of commodity hardware. As this hardware is
prone to easy failure, HDFS need to handle the data in a way that it can be retrieved easily in the event of hardware failure of one
or more systems. HDFS uses data replication as the strategy to provide fault-tolerance feature. The application using the HDFS
can configure the replication factor as well as the block size of data as per the requirement.

Apache Hadoop Cookbook 77 / 139

Now the question arises how the replication is decided, what if all the replicas are in a single rack in the cluster and the whole
rack fails. HDFS tries to maintain the rack aware replication strategy which in fact needs a lot of tuning and experience. A simple
but non-optimal policy is to place each replica of the block on a unique rack so that in case of a whole rack failure. Atleast the
replica os the block is safe in another rack.

In most of the production systems the replication factor of three is used. In those cases. HDFS uses a slight different version of
unique rack policy. It usually places one replica on a node in the local rack, another on a node on a completely different remote
rack and the third one on a different node on the remote rack. This policy improves the write speed by cutting the inter-rack
transfer time while writing on two different racks instead of three. This provides us backup in case of node failures and also in
case of rack failures. This policy improves the write performance without and compromising data reliability.

6.4.4 Failures

The main objective and goal of Hadoop Distributed File System(HDFS) is to provide access to data reliably even in case of
failures. As failures are more of norm in the commodity hardware cluster than an exception, HDFS needs a strategy to handle
the failures. The three common types of failures are:

• NameNode failure

• DataNode failure

• Network partitions

Each and every DataNode in the cluster sends a periodic message to NameNode, this message is called heartbeat. This heartbeat
conveys to NameNode that the particular DataNode is working fine and is live. Now in case of DataNode failures, there will be
no heartbeats from the DataNode to the NameNode. Similarly in case of network partition also a subset of DataNodes may loose
its connection to the NameNode and stops sending Heartbeats. Once the NameNode stop getting heartbeats from a particular
DataNode or a set of DataNodes, it declares those nodes to be dead and then start the procedure to check the damage which
include checking if all the blocks which are in dead DataNodes still have the sufficient number of replicas, if not then it starts the
process to create re-replicas to attain the minimum number of replicas configured in the applicaion.

The NameNode failures are more serious as NameNode system is the only single point of failure for the complete HDFS cluster.
If the NameNode system fails, the whole cluster is useless and it needs a manual intervention and another NameNode need to be
setup.

6.4.5 Data Accessibility

Now in order to allow applications to access the data stored in an HDFS cluster, it provides a Java API for applications to use. A
C language wrapper is also provided over the Java API if C language need to be used.

Besides Java and C API, HDFS also provides an option to access the HDFS data through web browser over the TCP port which
can be configured in the settings of HDFS.

Third accessibility option is to use the file system shell. HDFS also provides a command line interface called FS Shell that let
a user interact with the data in HDFS. The syntax for this command line interface is similar to the Linux shell commands. For
example:

#To make a new directory
hadoop fs -mkdir /user1/project1

#List the content of the file
hadoop fs -ls /user1/project1

#Upload a file from local system to HDFS
hadoop fs -put Desktop/textfile.txt /user1/project1

For more examples and explanation of the FS Shell commands, you can check the article Apache Hadoop FS Commands Example

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/

Apache Hadoop Cookbook 78 / 139

6.5 Configuring HDFS

Configuration of HDFS is very easy and it does not take much time to set up HDFS cluster. All the configuration files for HDFS
are by default included in the Hadoop package and can be directly configured.

Note: We assume that the Hadoop package is already downloaded, unzipped and placed in the desired directory. In this article,
we will discuss just the required configurations for HDFS. For detailed articles on how to setup Hadoop and Hadoop cluster.
Follows the following tutorials:

• How to Install Apache Hadoop on Ubuntu

• Apache Hadoop Cluster Setup Example(with Virtual Machines)

6.5.1 Configuring HDFS

The HDFS is configured using the set of XML files which are by default present in the Hadoop configuration directory. This
configuration directory is present in the root of the Hadoop folder and is named conf.

First of all, we will modify the file conf/hadoop-sites.xml and we need to setup three properties in this file i.e. fs.
default.name, dfs.data.dir, dfs.name.dir

To modify the file open the file in the editor and add the following lines of code:

<configuration>
<property>

<name>dfs.replication</name>
<value>2</value>

</property>
<property>

<name>dfs.namenode.name.dir</name>
<value>/usr/local/hadoop/hdfs/namenode</value>

</property>
<property>

<name>dfs.datanode.data.dir</name>
<value>/usr/local/hadoop/hdfs/datanode</value>

</property>
</configuration>

First configuration we set here is dfs.replication which sets the replication factor to be used by the distributed file system.
In this case we have set it up to be two.

The next configuration is to define the NameNode path i.e. dfs.namenode.name.dir and the value here need to be the
directory to store the namenode information.

The third and the last configuration we need to set up is defining the path for the DataNode i.e. dfs.datanode.data.dir
which will define the path to the directory to store the datanode information.

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/how-to-install-apache-hadoop-on-ubuntu/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-cluster-setup-example-virtual-machines/

Apache Hadoop Cookbook 79 / 139

Figure 6.1: Updating hdfs-site.xml

Note: Make sure the directory where the namenode and datanode directory will be created and data will be stored is
owned by the user which will run Hadoop. So that the user have read and write permission in the directory.

6.5.2 Formating NameNode

Now the next step is to format the NameNode that we just configured. Following command is used to format the NameNode:

hdfs namenode -format

This command should be executed without any error on the console output. If it is executed without any errors, we are good to
start the Apache Hadoop instance on our Ubuntu system.

6.5.3 Starting the HDFS

Now we are ready to start the Hadoop File System. To start HDFS, use the following command to run the start-dfs.sh file:

/usr/local/hadoop/sbin/start-dfs.sh

Apache Hadoop Cookbook 80 / 139

Figure 6.2: Starting HDFS

Once this script is executed without any errors, HDFS will be up and running.

6.6 Interacting with HDFS using Shell

Now we will see some commands which are necessary to interact with HDFS using shell. In this section we will see just the
basic introductory commands and will use only the command line interface. The commands which communicate with the cluster
are present in the script bin/hadoop. This script loads the Hadoop package with the Java Virtual Machine(JVM), followed by
the execution of the user command.

6.6.1 Creating a directory

Usage:

hadoop fs -mkdir

Example:

hadoop fs -mkdir /user/root/dir1

Command in the second line is for listing the content of a particular path. We will see this command in the next sub-section. We
can see in the screenshot that dir1 is created

Apache Hadoop Cookbook 81 / 139

Figure 6.3: Create Directory in Hadoop FS

6.6.2 List the content of the directory

Usage:

hadoop fs -ls

Example:

hadoop fs -ls /user/root/

The command is similar to the ls command of the unix shell.

Apache Hadoop Cookbook 82 / 139

Figure 6.4: Listing the files and directories

6.6.3 Upload a file in HDFS

Command is used to copy one or multiple files from local system to the Hadoop File System. Usage:

hadoop fs -put ...

Example:

hadoop fs -put Desktop/testfile.txt /user/root/dir1/

In the screenshot below, we put the file testfile.txt from Desktop of the Local File System to the Hadoop File System
at the destination /user/root/dir1

Apache Hadoop Cookbook 83 / 139

Figure 6.5: Uploading the file to Hadoop FS

6.6.4 Download a file from HDFS

Download the file from HDFS to the local file system.

Usage:

hadoop fs -get

Example:

hadoop fs -get /user/root/dir1/testfile.txt Downloads/

As with the put command, get command gets or downloads the file from Hadoop File System to the Local File System in the
Downloads folder.

Apache Hadoop Cookbook 84 / 139

Figure 6.6: Download the file from Hadoop FS

Note: For details about the file system commands and for example of other important commands, refer to the article Apache
Hadoop FS Commands Example or you can check the complete documentation of shell commands on the Apache Hadoop
website in the documentation here: File System Shell Commands and HDFS Commands Guide

6.7 Interacting with HDFS using MapReduce

As we discussed that HDFS is a base component of Hadoop and MapReduce. Hadoop MapReduce jobs fetch data from the
HDFS and stores the final result data in the HDFS.

Hadoop also provides a Java API using which we can execute HDFS functionality in out Java Application is required. In this
section, we will see how to consume Java API in java code.

package com.javacodegeeks.examples.HDFSJavaApi;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.Path;

/**
* Example application to show how the HDFS file system Java API works

*
* @Author Raman Jhajj

*/
public class App
{

public static final String filename ="dummy.txt";

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/FileSystemShell.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html

Apache Hadoop Cookbook 85 / 139

public static final String message = "This is the dummy text for test the write to ←↩
file operation of HDFS";

public static void main(String[] args) throws IOException
{

//Get the file system instance
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(configuration);

Path filenamePath = new Path(filename);

try {
if(fs.exists(filenamePath)) {

//Delete Example
fs.delete(filenamePath, true);

}

//Write example
FSDataOutputStream out = fs.create(filenamePath);
out.writeUTF(message);
out.close();

//Read example
FSDataInputStream in = fs.open(filenamePath);
String messageIn = in.readUTF();
System.out.println(messageIn);
in.close();

//Rename the file
if(fs.exists(filenamePath)) {

Path renameFilenamePath = new Path("renamed_" + filename);
fs.rename(filenamePath, renameFilenamePath);

}

} catch(IOException ex) {
System.out.println("Error: " + ex.getMessage());

}
}

}

This code above creates a file named dummy.txt, writes dummy message into this file.

• Line no. 24-25 creates an abstract FileSystem object with Configuration object. Configuration object uses default
parameters in this case as we have not defined any parameters.

• Line no. 30-33 checks if the file already exists in HDFS and if it does exist, it tries deleting the file. This example introduces
us to two methods available in the file system exists() and delete()

• Line no.35-38 writes the file into HDFS on the provided path, followed by writing the dummy messages in the file. This
introduces to another method about how to write files in HDFS.

• Line no. 40-44 reads the file which we just wrote in the previous code lines and write the content of the file on the console.
This code example does not provide much useful work, it is just designed to get the basic understanding of how reading and
writing files works in HDFS using Java API.

• Line no. 47-50 checks if the file exists in HDFS and if it does, renames the file from dummy.txt to renamed_dummy.txt

For further reading, you can check the HDFS API JavaDoc on HDFS API JavaDoc

https://hadoop.apache.org/docs/current/api/index.html

Apache Hadoop Cookbook 86 / 139

6.8 Conclusion

This brings us to the conclusion of the article. We discussed the basics of Hadoop Distributed File System(HDFS) starting with
the design, followed by the understanding of the HDFS architecture. Then we saw how to configure and start the HDFS node and
finally we discussed how to interact with the running HDFS cluster using the shell command line and HDFS Java API. I hope
this gives the basic explanation about HDFS and its building blocks.

6.9 Download the code

Download the Eclipse project containing the code used to understand the HDFS Java API in this example.

Download You can download the full source code of this example here: HDFSJavaApi

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/HDFSJavaApi.zip

Apache Hadoop Cookbook 87 / 139

Chapter 7

Distributed Cache Example

In this example article, we will go through Apache Hadoop Distributed Cache and will understand how to use it with MapReduce
Jobs.

7.1 Introduction

Distributed Cache as the name indicates is the caching system to store files or data which is required frequently and this mecha-
nism is distributed in nature as all other components of Hadoop are.

It can cache read-only text files, archives, jar files etc. Which are needed by the application. So if there is a file which is needed
by let us say map tasks. So it needs to be present on all the machines which will run Map tasks, This is what distributed cache is
used for.

7.2 Working

Application which needs to use distributed cache to distribute a file should make sure that the file is available and can be accessed
via urls. Urls can be either hdfs:// or https://.

Now once the file is present on the mentioned url and user mention it to be a cache file to the distributed cache API, the Map-
Reduce framework will copy the necessary files on all the nodes before initiation of the tasks on those nodes.

Notes: In case the files provided are archives, these will be automatically unarchived on the nodes after transfer.

7.3 Implementation

For understanding how to use the distributed cache API we will see an example in which we will write a modified version of the
word count program.

For the basic word count example and if you like to understand the basics of how MapReduce job works, please refer to the
article Apache Hadoop Wordcount Example

In this program, we will provide an input file to the Map-Reduce job with the words we need to count but we will also provide
another file which contains stop words which we need to remove from the input text before counting the word occurrences.

So let’s start looking into the code:

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-wordcount-example/

Apache Hadoop Cookbook 88 / 139

7.3.1 The Driver Class

The driver class is the main entry point of the system and the class which set up the Map-Reduce job.

package com.javacodegeeks.examples.distributedcache;

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

/**
* The entry point for the WordCount example,

* which setup the Hadoop job with Map and Reduce Class

*
* @author Raman

*/
public class Driver extends Configured implements Tool{

/**
* Main function which calls the run method and passes the args using ToolRunner

* @param args Two arguments input and output file paths

* @throws Exception

*/
public static void main(String[] args) throws Exception{

int exitCode = ToolRunner.run(new Driver(), args);
System.exit(exitCode);

}

/**
* Run method which schedules the Hadoop Job

* @param args Arguments passed in main function

*/
public int run(String[] args) throws Exception {

if (args.length != 3) {
System.err.printf("Usage: %s needs two arguments files\n",

getClass().getSimpleName());
return -1;

}

//Initialize the Hadoop job and set the jar as well as the name of the Job
Job job = new Job();
job.setJarByClass(Driver.class);
job.setJobName("Word Counter With Stop Words Removal");

//Add input and output file paths to job based on the arguments passed
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setOutputFormatClass(TextOutputFormat.class);

//Set the MapClass and ReduceClass in the job
job.setMapperClass(MapClass.class);

Apache Hadoop Cookbook 89 / 139

job.setReducerClass(ReduceClass.class);

DistributedCache.addCacheFile(new Path(args[2]).toUri(), job. ←↩
getConfiguration());

//Wait for the job to complete and print if the job was successful or not
int returnValue = job.waitForCompletion(true) ? 0:1;

if(job.isSuccessful()) {
System.out.println("Job was successful");

} else if(!job.isSuccessful()) {
System.out.println("Job was not successful");

}

return returnValue;
}

}

Above is the complete code of the driver class. You can see is the main() method we set up and initialize a Hadoop Job().
First of all this code checks for the arguments passed to the method. Arguments need to be 3 in number:

• Input text file path which containc the text for word count

• Output path for storing the output of the program

• File path and name containing the stop words which we will distribute through the Hadoop Distributed Cache

The code:

if (args.length != 3) {
System.err.printf("Usage: %s needs two arguments files\n",

getClass().getSimpleName());
return -1;

}

checks for the number fo arguments and make sure we have the required number of arguments present otherwise it stops the
program then and there.

After this the Job is initialized:

//Initialize the Hadoop job and set the jar as well as the name of the Job
Job job = new Job();

followed by all the necessary configuration settings including configuring the jar file, map and reduce classes, input and output
methods and input and output paths.

Out main focus here is on the line number 61, which is:

DistributedCache.addCacheFile(new Path(args[2]).toUri(), job.getConfiguration());

This line of code calls the DistributedCache API and adds the cache file URL which we passed as the third argument to the
program. Before passing this argument, it need to be converted to the path url. Second argument needs to be the configurations
of the Hadoop job we are setting up.

The above code will set up the Hadoop Job and sets up the required file as the cache file in the Hadoop cluster. It is as easy
as calling a single function. The main task is how to retrieve this cache file and how to use it to remove stop words from the
processing text. That we will see in the map class in the following section.

Apache Hadoop Cookbook 90 / 139

7.3.2 Map Class

Map class contains the mapper method which is the main focus which contains the code regarding how to use the cache files in
the MapReduce Tasks.

package com.javacodegeeks.examples.distributedcache;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashSet;
import java.util.Set;
import java.util.StringTokenizer;

import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
* Map Class which extends MaReduce.Mapper class

* Map is passed a single line at a time, it splits the line based on space

* and generated the token which are output by map with value as one to be consumed

* by reduce class

* @author Raman

*/
public class MapClass extends Mapper{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
private Set stopWords = new HashSet();

@Override
protected void setup(Context context) throws IOException, InterruptedException {

try{
Path[] stopWordsFiles = DistributedCache.getLocalCacheFiles(context. ←↩

getConfiguration());
if(stopWordsFiles != null && stopWordsFiles.length > 0) {

for(Path stopWordFile : stopWordsFiles) {
readFile(stopWordFile);

}
}

} catch(IOException ex) {
System.err.println("Exception in mapper setup: " + ex.getMessage());

}
}

/**
* map function of Mapper parent class takes a line of text at a time

* splits to tokens and passes to the context as word along with value as one

*/
@Override
protected void map(LongWritable key, Text value,

Context context)
throws IOException, InterruptedException {

String line = value.toString();
StringTokenizer st = new StringTokenizer(line," ");

while(st.hasMoreTokens()){

Apache Hadoop Cookbook 91 / 139

String wordText = st.nextToken();

if(!stopWords.contains(wordText.toLowerCase())) {
word.set(wordText);
context.write(word,one);

}
}

}

private void readFile(Path filePath) {
try{

BufferedReader bufferedReader = new BufferedReader(new FileReader(←↩
filePath.toString()));

String stopWord = null;
while((stopWord = bufferedReader.readLine()) != null) {

stopWords.add(stopWord.toLowerCase());
}

} catch(IOException ex) {
System.err.println("Exception while reading stop words file: " + ex ←↩

.getMessage());
}

}
}

Now this is where this code varies significantly from the standard word count MapReduce code. The map class contains a setup
method which is the first method called when a node is setup to perform the map task.

@Override
protected void setup(Context context) throws IOException, InterruptedException {

try{
Path[] stopWordsFiles = DistributedCache.getLocalCacheFiles(context. ←↩

getConfiguration());
if(stopWordsFiles != null && stopWordsFiles.length > 0) {

for(Path stopWordFile : stopWordsFiles) {
readFile(stopWordFile);

}
}

} catch(IOException ex) {
System.err.println("Exception in mapper setup: " + ex.getMessage());

}
}

So this is the place where we read the file stored in the distribute cache using the DistributedCache API and getLocalC
acheFiles() method as shown in the line number 4 of the above code snippet. If you notice the methods return an array of
the type Path. So for each file(we have only one in this case) we will call another method called readFile() and pass the
path of the file to this method.

readFile() is the method which reads the content of the file and adds the stop words in the global Set of stopWords. The
details of the method are in line numebr 67-77 of the Map class.

Now in the map() method, after splitting the lines into word tokens, we will check if a particular word is present in the stop
words set, if it is present we skip that word and move to the next but if it is not a stop word then we pass it on to the context to be
executed in the Reduce class as shown in the code snippet below:

StringTokenizer st = new StringTokenizer(line," ");

while(st.hasMoreTokens()){
String wordText = st.nextToken();

if(!stopWords.contains(wordText.toLowerCase())) {
word.set(wordText);

Apache Hadoop Cookbook 92 / 139

context.write(word,one);
}

}

7.3.3 Reduce Class

Reduce class in this article is exactly same as it is in the standard word count example, the reduce() method will contain only
those words which are not stop words and reduce will count only the good words. Following is the code of the reduce class:

package com.javacodegeeks.examples.distributedcache;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
* Reduce class which is executed after the map class and takes

* key(word) and corresponding values, sums all the values and write the

* word along with the corresponding total occurances in the output

*
* @author Raman

*/
public class ReduceClass extends Reducer{

/**
* Method which performs the reduce operation and sums

* all the occurrences of the word before passing it to be stored in output

*/
@Override
protected void reduce(Text key, Iterable values,

Context context)
throws IOException, InterruptedException {

int sum = 0;
Iterator valuesIt = values.iterator();

while(valuesIt.hasNext()){
sum = sum + valuesIt.next().get();

}

context.write(key, new IntWritable(sum));
}

}

7.4 Executing the Hadoop Job

We will execute the MapReduce task we discussed in the previous section on the Hadoop cluster. But before we do so, we need
two files

• Input file

• Stop Words file

Apache Hadoop Cookbook 93 / 139

So following is the dummy text file which we will use for the example:

Figure 7.1: Input.txt file to be processed

and following is the file containing stop words:

Apache Hadoop Cookbook 94 / 139

Figure 7.2: StopWords.txt file containing list of stop words

Make sure that both the files are present in the Hadoop Distributed File System. If you would like to read about the basics of
HDFS and Hadoop File System including how to put files in HDFS, please refer to the article Apache Hadoop FS Commands

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/

Apache Hadoop Cookbook 95 / 139

Example

Figure 7.3: Listing the file present in HDFS

Now, to execute the Distributed Cache Example Task on the Hadoop Cluster, we have to submit the jar file along with the URLs
of the input and stopwords files to the Hadoop Cluster. Following is the command to do so:

hadoop jar DistributedCacheExample.jar /user/root/distributedcache/Input.txt /user/root/ ←↩
distributedcache/Output /user/root/distributedcache/StopWords.txt

First argument mentions the input file to be used, second argument tells about the path where the output should be stored and the
third argument tells the path of the stop words file.

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/

Apache Hadoop Cookbook 96 / 139

Figure 7.4: Command to submit hadoop job to the cluster

Once the job is successfully executed we will a console output something similar to:

Figure 7.5: Console Output

Notice the last line which says "Job was successful". This is the line we printed from the Driver class on successful execution of

Apache Hadoop Cookbook 97 / 139

the job. You can check the other details in the console output to know more about the job execution.

The output of the Hadoop job will be present on the HDFS path /user/root/distributedcache/Output in the Out
put folder as mentioned in the execution argument, this folder can be downloaded on the system from the HDFS. Following is
how the output file looks like:

Figure 7.6: Output file

7.5 Conclusion

In this example article, we talked about the Distributed Cache API of Apache Hadoop. We started with the introduction of
what exactly distributed cache is and then understood the basic workflow of the distributed cache. Then we dived into the
implementation section where we saw how we can use the Distributed Cache API to pass the common files, jars and other
archives to the nodes executing the Hadoop Job.

7.6 Download the Eclipse Project

Complete code of the example and the dummy input and stop words text file can be useful for experimentation.

Download You can download the full source code of this example here: DistributedCacheExample

https://examples.javacodegeeks.com/wp-content/uploads/2016/03/DistributedCacheExample.zip

Apache Hadoop Cookbook 98 / 139

Chapter 8

Wordcount Example

In this example, we will demonstrate the Word Count example in Hadoop. Word count is the basic example to understand the
Hadoop MapReduce paradigm in which we count the number of instances of each word in an input file and gives the list of words
and the number of instances of the particular word as an output.

8.1 Introduction

Hadoop is an Apache Software Foundation project which is the open source equivalent of Google MapReduce and Google File
System. It is designed for distributed processing of large data sets across a cluster of systems running on commodity standard
hardware.

Hadoop is designed with an assumption that hardware failure is a norm rather an exception. All hardware fails sooner or later
and the system should be robust and capable enough to handle the hardware failures gracefully.

8.2 MapReduce

Apache Hadoop consists of two core components, one being Hadoop Distributed File System(HDFS) and second is the Frame-
work and APIs for MapReduce jobs.

In this example, we are going to demonstrate the second component of Hadoop framework called MapReduce. If you are
interested in understanding the basics if HDFS, the article Apache Hadoop Distributed File System Explained may be of help.
Before moving to the example of MapReduce paradigm, we shall understand what MapReduce actually is.

MapReduce is basically a software framework or programming paradigm, which enable users to write programs as separate
components so that data can be processed parallelly across multiple systems in a cluster. MapReduce consists of two parts Map
and Reduce.

• Map: Map task is performed using a map() function that basically performs filtering and sorting. This part is responsible for
processing one or more chunks of data and producing the output results which are generally referred as intermediate results.
As shown in the diagram below, map task is generally processed in parallel provided the mapping operation is independent of
each other.

• Reduce: Reduce task is performed by reduce() function and performs a summary operation. It is responsible for consoli-
dating the results produced by each of the Map task.

8.3 Word-Count Example

Word count program is the basic code which is used to understand the working of the MapReduce programming paradigm. The
program consists of MapReduce job that counts the number of occurrences of each word in a file. This job consists of two parts

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-distributed-file-system-explained/

Apache Hadoop Cookbook 99 / 139

map and reduce. The Map task maps the data in the file and counts each word in data chunk provided to the map function. The
outcome of this task is passed to reduce task which combines and reduces the data to output the final result.

Figure 8.1: Working of Map and Reduce

8.3.1 Setup

We shall use Maven to setup a new project for Hadoop word count example. Setup a maven project in Eclipse and add the
following Hadoop dependency to the pom.xml. This will make sure we have the required access to the Hadoop core library.

<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-core</artifactId>
<version>1.2.1</version>

</dependency>

After adding the dependency, we are ready to write our word count code.

8.3.2 Mapper Code

The mapper task is responsible for tokenizing the input text based on space and create a list of words, then traverse over all the
tokens and emit a key-value pair of each word with a count of one. Following is the MapClass:

Apache Hadoop Cookbook 100 / 139

package com.javacodegeeks.examples.wordcount;

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class MapClass extends Mapper{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

@Override
protected void map(LongWritable key, Text value,

Context context)
throws IOException, InterruptedException {

//Get the text and tokenize the word using space as separator.
String line = value.toString();
StringTokenizer st = new StringTokenizer(line," ");

//For each token aka word, write a key value pair with
//word and 1 as value to context

while(st.hasMoreTokens()){
word.set(st.nextToken());
context.write(word,one);

}

}
}

Following is what exactly map task does:

• Line 13-14, defines static variable one with interger value 1 and word for storing the words.

• Line 22-23, In map method the input Text varoable is converted to String and Tokenized based on the space to get all the
words in the input text.

• Line 27-30, For each word in the text, set the word variable and pass a key-value pair of word and integer value one to the
context.

8.3.3 Reducer Code

Following code snippet contains ReduceClass which extends the MapReduce Reducer class and overwrites the reduce()
function. This function is called after the map method and receives keys from the map() function corresponding to the specific
key. Reduce method iterates over the values, adds them and reduces to a single value before finally writing the word and the
number of occurrences of the word to the output file.

package com.javacodegeeks.examples.wordcount;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

Apache Hadoop Cookbook 101 / 139

public class ReduceClass extends Reducer{

@Override
protected void reduce(Text key, Iterable values,

Context context)
throws IOException, InterruptedException {

int sum = 0;
Iterator valuesIt = values.iterator();

//For each key value pair, get the value and adds to the sum
//to get the total occurances of a word

while(valuesIt.hasNext()){
sum = sum + valuesIt.next().get();

}

//Writes the word and total occurances as key-value pair to the context
context.write(key, new IntWritable(sum));

}
}

Following is the workflow of reduce function:

• Lines 17-18, define a variable sum as interger with value 0 and Iterator over the values received by the reducer.

• Lines 22-24, Iterate over all the values and add the occurances of the words in sum

• Line 27, write the word and the sum as key-value pair in the context

8.3.4 The Driver Class

So now when we have our map and reduce classes ready, it is time to put it all together as a single job which is done in a class
called driver class. This class contains the main() method to setup and run the job.

package com.javacodegeeks.examples.wordcount;

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class WordCount extends Configured implements Tool{

public static void main(String[] args) throws Exception{
int exitCode = ToolRunner.run(new WordCount(), args);
System.exit(exitCode);

}

public int run(String[] args) throws Exception {
if (args.length != 2) {

System.err.printf("Usage: %s needs two arguments, input and output
files\n", getClass().getSimpleName());

return -1;
}

Apache Hadoop Cookbook 102 / 139

//Create a new Jar and set the driver class(this class) as the main class of ←↩
jar

Job job = new Job();
job.setJarByClass(WordCount.class);
job.setJobName("WordCounter");

//Set the input and the output path from the arguments
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setOutputFormatClass(TextOutputFormat.class);

//Set the map and reduce classes in the job
job.setMapperClass(MapClass.class);
job.setReducerClass(ReduceClass.class);

//Run the job and wait for its completion
int returnValue = job.waitForCompletion(true) ? 0:1;

if(job.isSuccessful()) {
System.out.println("Job was successful");

} else if(!job.isSuccessful()) {
System.out.println("Job was not successful");

}

return returnValue;
}

}

Following is the workflow of main function:

• Line 22-26, check if the required number of arguments are provided.

• Line 29-31, create a new Job, set the name of the job and the main class.

• Line 34-35, set the input and the output paths from the arguments.

• Line 37-39, set the key value type classes and the output format class. These classes need to be the same type whichw e use in
the map and reduce for the output.

• Line 42-43, set the Map and Reduce classes in the job

• Line 46, execute the job and wait for its completion

8.4 Code Execution

There are two ways to execute the code we have written, first is to execute it within Eclipse IDE itself for the testing purpose and
second is to execute in the Hadoop Cluster. We will see both ways in this section.

8.4.1 In Eclipse IDE

For executing the wordcount code in eclipse. First of all, create an input.txt file with dummy data. For the testing purpose, We
have created a file with the following text in the project root.

This is the example text file for word count example also knows as hello world example of ←↩
the Hadoop ecosystem.

This example is written for the examples article of java code geek

Apache Hadoop Cookbook 103 / 139

The quick brown fox jumps over the lazy dog.
The above line is one of the most famous lines which contains all the english language ←↩

alphabets.

In Eclipse, Pass the input file and output file name in the project arguments. Following is how the arguments looks like. In this
case, the input file is in the root of the project that is why just filename is required, but if your input file is in some other location,
you should provide the complete path.

Figure 8.2: Run Configuration of Eclipse Project

Note: Make sure the output file does not exist already. If it does, the program will throw an error.

After setting the arguments, simply run the application. Once the application is successfully completed, console will show the
output.

Apache Hadoop Cookbook 104 / 139

Figure 8.3: Console output in Eclipse

Below is the content of the output file:

Hadoop 1
The 2
This 2
above 1
all 1
alphabets. 1
also 1
article 1
as 1
brown 1
code 1
contains 1
count 1
dog. 1
ecosystem. 1
english 1
example 4
examples 1
famous 1
file 1
for 2
fox 1
geek 1
hello 1
is 3

Apache Hadoop Cookbook 105 / 139

java 1
jumps 1
knows 1
language 1
lazy 1
line 1
lines 1
most 1
of 3
one 1
over 1
quick 1
text 1
the 6
which 1
word 1
world 1
written 1

8.4.2 On Hadoop Cluster

For running the Wordcount example on hadoop cluster, we assume:

• Hadoop cluster is setup and running

• Input file is at the path /user/root/wordcount/Input.txt in the HDFS

In case, you need any help with setting up the hadoop cluster or Hadoop File System, please refer to the following articles:

• How to Install Apache Hadoop on Ubuntu

• Apache Hadoop Cluster Setup Example(with Virtual Machines)

• Apache Hadoop Distributed File System Explained

• Apache Hadoop FS Commands Example

Now, first of all make sure the Input.txt file is present at the path /user/root/wordcount using the command:

hadoop fs -ls /user/root/wordcount

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/how-to-install-apache-hadoop-on-ubuntu/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-cluster-setup-example-virtual-machines/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-distributed-file-system-explained/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-fs-commands-example/

Apache Hadoop Cookbook 106 / 139

Figure 8.4: Confirm if Input file exists in the required folder

Now it is time to submit the MapReduce job. Use the following command for execution

hadoop jar Downloads/wordcount-0.0.1-SNAPSHOT.jar com.javacodegeeks.examples.wordcount. ←↩
Wordcount /user/root/wordcount/Input.txt /user/root/wordcount/Output

In the above code, jar file is in the Downloads folder and the Main class is at the path com.javacodegeeks.examples.
wordcount.Wordcount

Figure 8.5: Jar execution command

Following should be the output of the execution. Console output’s last line informs us that the job was successfully completed.

Apache Hadoop Cookbook 107 / 139

Figure 8.6: Console Output

Now we can read the output of the Wordcount map reduce job in the folder /user/root/wordcount/Output/. Use the
following command to check the output in the console:

hadoop fs -cat /user/root/wordcount/Output/part-r-00000

Following screenshot display the content of the Output folder on the console.

Apache Hadoop Cookbook 108 / 139

Figure 8.7: Output file

8.5 Conclusion

This example explains the MapReduce paradigm with respect to Apache Hadoop and how to write the word count example in
MapReduce step by step. Next we saw how to execute the example in the eclipse for the testing purpose and also how to execute
in the Hadoop cluster using HDFS for the input files. The article also provides links to the other useful articles for setting up
Hadoop on Ubuntu, Setting up Hadoop Cluster, Understanding HDFS and Basic FS commands. We hope, this article serves the
best purpose of explaining the basics of the Hadoop MapReduce and provides you with the solid base for understanding Apache
Hadoop and MapReduce.

8.6 Download the Eclipse Project

Click on the following link to download the complete eclipse project of wordcount example.

Download You can download the full source code of this example here: HadoopWordCount

https://examples.javacodegeeks.com/wp-content/uploads/2016/02/wordcount.zip

Apache Hadoop Cookbook 109 / 139

Chapter 9

Streaming Example

In this example, we will dive into the streaming component of Hadoop MapReduce. We will understand the basics of Hadoop
Streaming and see an example using Python.

9.1 Introduction

Hadoop Streaming is the name which is quite misleading, here streaming has nothing to do with the continuous data streams
or continuous data flow as it is understood generally. Hadoop Streaming is just a utility provided by the Hadoop MapReduce
distribution which gives users the possibility to write MapReduce jobs in other programming languages like Python or Cpp etc
which can make use of stdin and stdout to readin and writeout lines of text data. Support for Cpp is available on since the
version 0.14.1

When we talk about using other programming languages, we do not mean that the code written in those languages need to be
converted to the Java code. For example, if the original code is in Python, it is not required that the code be converted to Java
using Jython or any similar utility. Direct Python code can run in Hadoop ecosystem using Hadoop Streaming.

9.2 Prerequisites and Assumptions

Following are the prerequisites/assumptions we made before diving into the details of Hadoop Streaming:

• It is assumed that you are familiar with Hadoop and MapReduce or atleast knows the basics of it. In case you need some basic
understanding of those you can refer to the following articles.

– Hadoop Hello World Example

– Apache Hadoop Distributed File System Explained

– Apache Hadoop Wordcount Example

• It is also assumed that you understand the basics of running and setting up a Hadoop Cluster or atleast a single instance for
testing purpose. In case you need help with that, you can refer to the following articles.

– How to Install Apache Hadoop on Ubuntu

– Apache Hadoop Cluster Setup Example (with Virtual Machines)

Once we have all this prerequisites setup and clear, we can dive into the details of Hadoop Streaming and check out some
examples.

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/hadoop-hello-world-example/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-distributed-file-system-explained/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-wordcount-example/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/how-to-install-apache-hadoop-on-ubuntu/
https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-cluster-setup-example-virtual-machines/

Apache Hadoop Cookbook 110 / 139

9.3 Hadoop Streaming Workflow

For using Hadoop Streaming, both the mapper and reducer need to be executables and should be able to read input from stdin
line by line and emit the output to stdout

Hadoop Streaming API will create and submit a MapReduce job from the executables defined for Mapper and Reducers. On
initialization of each Map or Reduce task, a new process will be started with the corresponding executable.

For each input data, the mapper task takes the input line-by-line and feed the lines to the stdin of the mapper executable. After
execution, the lines from stdout are taken by mapper and converted to key-value pair which will be the output of the mapper
task and will be passed on to the reducer task.

In the similar fashion, reducer takes the key-value pair and convert it into lines and feed the reducer executable using stdin.
After reducer is executed, it again takes the line from stdout and convert it into the key-value pair to be passed on as the final
result.

Note: By default, the text in the lines upto first tab will be taken as the key and the rest of the line as value. In case, there is no
tab character present in the line, the whole line will be taken as the key and value will be null. But this behavior is not binding
and can be changed is required and the required behavior can be configured.

9.4 MapReduce Code in Python

As discussed in the section above, we will use Hadoop Streaming API to run Python Code on Hadoop. We will use sys.stdin
and sys.stdout in Python to read in the data and write out the output data, everything else will be handled by the Streaming
API itself.

9.4.1 Wordcount Example

Wordcount, as you might be knowing is the basic program which is used to explain the basics of the Hadoop MapReduce
framework. In wordcount program, a bunch of text input is provided to the Mapper function which splits the lines of text into
single words and pass these single words as key-value pair to the Reducer functions. Reducer received the input as the key-value
pair and counts the number of instances of a particular word in the provided input text and output the key-value pairs with word
as the key and the number of counts as the value. If you are not familiar with basics of wordcount program, please refer to the
article Apache Hadoop Wordcount Example for the detailed explanation. In this article we will implement the same wordcount
example but instead of Java we will use Python and will run the MapReduce job using Hadoop Streaming API

9.4.2 Mapper

The Mapper function in Python will read the line from stdin, split the line in the individual words and output the word as
key-value pair with value as 1 and word as the key. For example, <word,1>

#!/usr/bin/env python

import sys

read the input from stdin
for line in sys.stdin:

trim any leading and trailing spaces
line = line.strip()

split the line into individual words
words = line.split()

for each word in words, output key-value pair
for word in words:

outputs the result to stdout
MapReduce Streaming API will take this output

https://examples.javacodegeeks.com/enterprise-java/apache-hadoop/apache-hadoop-wordcount-example/

Apache Hadoop Cookbook 111 / 139

and feed as the input to the Reduce step

tab-delimited
word count is always one
print ’%s\t%s’ % (word, 1)

Above is the Python code to perform the Map task, now save it as mapper.py and make sure we have read and run permission
for the python file.

9.4.3 Reducer

The Reducer will take the input from the mapper.py through stdin. Reducer then sums the occurrence of each word and
output the file reduced output in the form of key-value pair having the particular word as key and the total occurrences of the
word as the value. For example, <word, 5>

#!/usr/bin/env python

from operator import itemgetter
import sys

#variable initialization
current_word = None
current_count = 0
word = None

takes input stdin
for line in sys.stdin:

trim any leading and trailing spaces
line = line.strip()

split the input from mapper.py and take the word and its count
word, count = line.split(’\t’, 1)

convert count string to int
try:

count = int(count)
except ValueError:

in case of exception
ignore the exception and discard the input line
continue

this IF-switch only works because Hadoop sorts map output
by key (here: word) before it is passed to the reducer
if current_word == word:

current_count += count
else:

if current_word:
write result to STDOUT
print ’%s\t%s’ % (current_word, current_count)

current_count = count
current_word = word

do not forget to output the last word if needed!
if current_word == word:

print ’%s\t%s’ % (current_word, current_count)

Above is the Python code to perform the reduce task. Save this code in the file reducer.py and also make sure this file also
have read and execution permission.

Apache Hadoop Cookbook 112 / 139

9.5 Testing the Python code

Before submitting the Python code as MapReduce job to the Hadoop cluster, it is preferred that we test the code to confirm that
it works as excepted. Is it easy to make sure that the code works fine with a small input text before submitting to the cluster to
parse large amount of data. We can perform the following two tests:

• First test will be to test the Mapper code. Execute the following command in the console. It will run the mapper.py script
with the given input string and we can confirm that the output is as expected.

echo "the quick brown fox jumps over the lazy dog" | /home/cloudera/mapper.py

The output should be as shown in the screenshot below: .Test for mapper.py Test for mapper.py

* Now we can also test the Reducer code. Execute the following command in the console.

echo "the quick brown fox jumps over the lazy dog" | /home/cloudera/mapper.py | sort -k1,1 ←↩
| /home/cloudera/reducer.py

The output of the above command should be as shown in the screenshot below: .Test for reducer.py Test for reducer.py

9.6 Submitting and Executing the Job on Hadoop cluster

In this section, we will learn how to run the Python MapReduce scripts on the Hadoop Cluster using Hadoop Streaming API.

9.6.1 Input Data

For this example, we will download a book from the Project Gutenberg which we will use as the input data for the MapReduce
program. I have downloaded the book "Opportunities in Engineering by Charles M. Horton".

When you visit the webpage, you will find the book in many formats as shown in the screenshot below. Make sure to download
the book in Plain Text UTF-8 encoding format so that it can be easily read by the MapReduce program.

Figure 9.1: Project Gutenberg book download page

https://www.gutenberg.org/ebooks/24681

Apache Hadoop Cookbook 113 / 139

Once the book is downloaded, lets rename it to input.txt for easy reference

Figure 9.2: Renaming the file

9.6.2 Transferring input data to HDFS

MapReduce needs the input data to be present and accessible in the corresponding HDFS. So before we can run the MapReduce
job, we need to transfer the book we just downloaded in the previous step to the HDFS. To do so, please use the following
command:

hadoop fs -put input.txt input.txt

The above command, puts the input.txt file from the local system to the HDFS at the root location and with the name
input.txt as shown in the screenshot below:

Apache Hadoop Cookbook 114 / 139

Figure 9.3: Tranferring the input file from local to HDFS

You can check if the file is successfully transferred using the command:

hadoop fs -ls

or from the Hadoop User Panel

Apache Hadoop Cookbook 115 / 139

Figure 9.4: Hadoop User Panel

With the successful completion of this step we are now ready to submit the Python MapReduce job to Hadoop cluster.

9.6.3 Submitting the MapReduce Job

For running the job on Hadoop Cluster we will use the Streaming API so that the data can be passed between the Mapper and the
Reducer using stdin and stdout. Following is the command used to submit and run the job:

hadoop jar /usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop-streaming-mr1.jar \
-file mapper.py -mapper mapper.py \
-file reducer.py -reducer reducer.py \
-input /user/cloudera/input.txt \
-output /user/cloudera/output

Following is the screenshot of complete command in the console:

Apache Hadoop Cookbook 116 / 139

Figure 9.5: Submitting the job

If the job is successfully submitted and running, you will see the console out similar to the one in the screenshot below:

Figure 9.6: Console Log of Job Submission

Notice the console log assigned a job id to the MapReduce job and started running the job.

Once the job is finished without any exceptions or errors, you will see the following console log with the last line mentioning the
path where the output of the job is stored.

Apache Hadoop Cookbook 117 / 139

Figure 9.7: Console output of the job

9.6.4 Understanding the Console Log

Successful execution of the MapReduce job will output a significant amount of log to the console. There are few important parts
of the log which you should be aware of. Following is the complete console log of the execution of the above MapReduce job.

[cloudera@quickstart ~]$ hadoop jar /usr/lib/hadoop-0.20-mapreduce/contrib/streaming/hadoop ←↩
-streaming-mr1.jar \

> -file mapper.py -mapper mapper.py \
> -file reducer.py -reducer reducer.py \
> -input /user/cloudera/input.txt \
> -output /user/cloudera/output
16/03/25 15:05:47 WARN streaming.StreamJob: -file option is deprecated, please use generic ←↩

option -files instead.
packageJobJar: [mapper.py, reducer.py] [/usr/jars/hadoop-streaming-2.6.0-cdh5.5.0.jar] /tmp ←↩

/streamjob2041411851648907386.jar tmpDir=null
16/03/25 15:05:49 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
16/03/25 15:05:49 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
16/03/25 15:05:50 INFO mapred.FileInputFormat: Total input paths to process : 1
16/03/25 15:05:50 INFO mapreduce.JobSubmitter: number of splits:2
16/03/25 15:05:50 INFO mapreduce.JobSubmitter: Submitting tokens for job: ←↩

job_1458942920400_0001
16/03/25 15:05:51 INFO impl.YarnClientImpl: Submitted application ←↩

application_1458942920400_0001
16/03/25 15:05:51 INFO mapreduce.Job: The url to track the job: https://quickstart.cloudera ←↩

:8088/proxy/application_1458942920400_0001/
16/03/25 15:05:51 INFO mapreduce.Job: Running job: job_1458942920400_0001
16/03/25 15:06:03 INFO mapreduce.Job: Job job_1458942920400_0001 running in uber mode : ←↩

false
16/03/25 15:06:03 INFO mapreduce.Job: map 0% reduce 0%
16/03/25 15:06:20 INFO mapreduce.Job: map 100% reduce 0%
16/03/25 15:06:32 INFO mapreduce.Job: map 100% reduce 100%
16/03/25 15:06:32 INFO mapreduce.Job: Job job_1458942920400_0001 completed successfully

Apache Hadoop Cookbook 118 / 139

16/03/25 15:06:32 INFO mapreduce.Job: Counters: 49
File System Counters

FILE: Number of bytes read=204052
FILE: Number of bytes written=753127
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=130122
HDFS: Number of bytes written=50688
HDFS: Number of read operations=9
HDFS: Number of large read operations=0
HDFS: Number of write operations=2

Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=29025
Total time spent by all reduces in occupied slots (ms)=10319
Total time spent by all map tasks (ms)=29025
Total time spent by all reduce tasks (ms)=10319
Total vcore-seconds taken by all map tasks=29025
Total vcore-seconds taken by all reduce tasks=10319
Total megabyte-seconds taken by all map tasks=29721600
Total megabyte-seconds taken by all reduce tasks=10566656

Map-Reduce Framework
Map input records=2205
Map output records=20379
Map output bytes=163288
Map output materialized bytes=204058
Input split bytes=214
Combine input records=0
Combine output records=0
Reduce input groups=4754
Reduce shuffle bytes=204058
Reduce input records=20379
Reduce output records=4754
Spilled Records=40758
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=403
CPU time spent (ms)=3960
Physical memory (bytes) snapshot=579469312
Virtual memory (bytes) snapshot=4513931264
Total committed heap usage (bytes)=391979008

Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0

File Input Format Counters
Bytes Read=129908

File Output Format Counters
Bytes Written=50688

16/03/25 15:06:32 INFO streaming.StreamJob: Output directory: /user/cloudera/output

Following are the important parts of the whole console log:

• Line 10: Logs the total number of paths to be processed for the job. Here we have only one input file so the path to be processed
is also 1.

Apache Hadoop Cookbook 119 / 139

• Line 14: Logs the url which can be used to track the progess of the job in the web-browser

• Line 17-19: Logs the progress of the Map and the Reduce taks respectively.

• Line 20: Informs that the job is completed succesfully and after this the console log will display the stats of the job.

• Line 22-32:Displays the file system stats including the number of bytes read, total number of bytes written, number of read
operations and number of write operations

• Line 33-44:Displays the Job stats including total number of map and reduce jobs launched (2 and 1 respectively in this case),
total time spent by map tasks and reduce tasks for exections etc.

• Line 45-64:Display the MapReduce Framework stats including the Map and Reduce records processed, total CPU time spent
in processing, amount of physical and virtual memory used etc.

• Line 77: Finally the line 77 logs the path where the output of the MapReduce job is stored.

9.6.5 MapReduce Job Output

So after the successful execution of the job, the output data is present at the provided path. We can check if the output directory
is present using the command:

hadoop fs -ls

Figure 9.8: Checking the output data

or through the Hadoop user interface:

Apache Hadoop Cookbook 120 / 139

Figure 9.9: Output file in UI

This output file can be downloaded either using the command:

hadoop fs -get output

or directly using the user interface:

Apache Hadoop Cookbook 121 / 139

Figure 9.10: Downloading the output

After downloading the output directly should have a text file with the name part-00000 which contains the output of the
job. Following is the screenshot of the part of the file:

Figure 9.11: Output file

Apache Hadoop Cookbook 122 / 139

9.7 Conclusion

This brings us to the end of the article, to conclude, we started by understanding the basic working of the Hadoop Streaming API
and its complete workflow, we saw how MapReduce code can be written in Python and how the Streaming API can be used to
run the jobs on the Hadoop Cluster.

We followed the theoretical understanding with the actually WordCount example in Python, we learnt how to submit the job
using Streaming API, how to interpret the console log of the Hadoop job and finally how to get the output of the processed job
for further usage.

9.8 Download the Source Code

The following download package contains the mapper.py and reducer.py scripts used in the article.

Download You can download the full source code of this example here: HadoopStreaming_WordCount_Python

https://examples.javacodegeeks.com/wp-content/uploads/2016/03/HadoopStreaming_WordCount_Python.zip

Apache Hadoop Cookbook 123 / 139

Chapter 10

Zookeeper Example

In this example, we will explore Apache Zookeeper, starting with the introduction and then followed by the steps to setup the
Zookeeper and to get it up and running.

10.1 Introduction

Apache Zookeeper is the building block of distributed systems. When a distributed system is designed there is always a need of
developing and deploying something which can coordinate through the cluster. This is where Zookeeper comes into the picture.
It is an open-source project maintained by Apache for maintenance and coordination of the distributed cluster. Some of the
services provided by Zookeeper are:

• Naming Service: A name service is used to map a name to some sort of data which can then be accessed using this name.
For example, DNS servers map to the ip address of the server and then client can access the server using that url name. In
distributed systems we may need to check the status of servers or nodes using the name assigned to them. This can be done by
using the naming service interface provided by default by Zookeeper.

• Configuration Management: Zookeeper also provides the option to manage the configuration of distributed system cen-
trally. Configuration can be stored centrally on Zookeeper and any new node on joining the distributed system can pick the
configuration from Zookeeper. This makes managing configuration quite easy and effort free.

• Leader Election: Distributed Systems usually needs an automatic fail-over strategy in case some nodes fails. Zookeeper
provides an option to do so using leader election functionality.

• Locking: In every distributed system, there will be some shared resources and multiple services may need to access this. So
to allow serialized access to this resource, a locking mechanism is required. Zookeeper provides this functionality.

• Synchronization: The access to the shared resources also need to the synchronized in the distributed setup. Zookeeper also
provides a simple interface for this.

10.2 How Zookeeper Works?

Zookeeper follows a client-server model. In which clients are the machines in the cluster. These machines are also called nodes.
These clients consume the service provided by the servers. Zookeeper coordinates the distributed system but it in itself is also a
distributed system. The collection of Zookeeper servers in distributed mode is called Zookeeper ensemble.

Apache Hadoop Cookbook 124 / 139

Figure 10.1: Zookeeper Client-Server Architecture

At any given time, one client can be connected to only one Zookeeper server but each zookeeper server can handle multiple
clients at the time. Clients send pings(heartbeats) to the server periodically to let it know that it is alive and connected to the
server. Zookeeper server also responds with an acknowledgement informing that it is alive and connected as well. The frequency
of these pings/heartbeats can be set in the configuration file which we will see in the next section.

In case the client does not receive an acknowledgement from the server it is connected to within the specified time period, the
client then tries to connect to the another server from the pool and on the successful connection the client session is transferred
to the new Zookeeper server it is connected to.

Zookeeper follows a hierarchical system similar to the file system to store data in the nodes and it is called znodes. Znode
is derived from "Zookeeper data nodes". Each znode acts as a directory and can have multiple sub-node and the hierarchy
continues. To access the znodes also, Zookeeper follows the file path like structure. For example: the path to znode firstnode and
the corresponsing sub nodes can look like this, /firstnode/sub-node/sub-sub-node

10.3 Zookeeper Setup

In this section, we will go through the steps to setup the Zookeeper server on the localhost for experimentation purpose.
Zookeeper provides a single server in the package and can be directly run on the machine.

10.3.1 System Requirements

• Java, JDK 6 or later (We will use JDK 8)

Apache Hadoop Cookbook 125 / 139

• Minimum 2GB RAM

• Dual Core Processor

• Linux OS. Linux is supported as both development and production systems. Both Windows and MacOSX are only supported
as the development system and not as production systems.

10.3.2 Install Java

First of all, we will check if Java is installed on the system and if not, we need to install Java first. To check if Java is installed
use:

java -version

If this returns the Java version number then Java is installed. Make sure it is atleast JDK 6 or higher. In case Java is not installed,
we have to install it first. Use the following commands to install Java JDK 8.

sudo apt-get update
sudo apt-get intstall openjdk-8-jre-headless

Th first command will update all the packages already installed and the second command will install the OpenJDK 8. Following
is the console output we get after running the above commands:

Figure 10.2: Console output after installing Java JDK 8

To check if the installation was successful, again run the command

Apache Hadoop Cookbook 126 / 139

java -version

the output should be something similar to what is displayed in the following screenshot:

Figure 10.3: Console Output for Java Version

10.3.3 Download Zookeeper

Next step is to download the stable release version of Zookeeper from Resease site. Download manually the stable version from
the Download section of the release site(at the time of writing, stable release is 3.4.6). We can use any of the mirrors mentioned
in the site(as shown in the screenshot below) and unzip/untar to the desired folder.

https://zookeeper.apache.org/releases.html

Apache Hadoop Cookbook 127 / 139

Figure 10.4: Apache Zookeeper Mirrors

or use the following commands to download and untar.

wget https://www.eu.apache.org/dist/zookeeper/stable/zookeeper-3.4.6.tar.gz
tar -xvf zookeeper-3.4.6.tar.gz
cd zookeeper-3.4.6/

Figure 10.5: Downloading the stable Zookeeper version

Apache Hadoop Cookbook 128 / 139

10.3.4 Data Directory

Next we need a directory to store the data related to the znodes and other zookeeper metadata. For that we will create a new
directory in /var/lib/ by the name zookeeper

sudo mkdir /var/lib/zookeeper
cd /var/lib
ls

Figure 10.6: Make Zokeeper Data Directory

When this directory is created using sudo, it will by default be with root as the owner which we need to change to the user
where Zookeeper will be running so that Zookeeper server can access the directory without any trouble. To change the user, run
the following command from the folder /var/lib

cd /var/lib
sudo chown raman: zookeeper

Note: There is a space between : and zookeeper. Here we are only mentioning the raman user as the owner of the directory
and no user group(usergroup comes after :). So it will assign the default usergroup of the user to the directory zookeeper.

Apache Hadoop Cookbook 129 / 139

Figure 10.7: Zookeeper user change command

To make sure that the owner is changed, go to the properties of the /var/lib/zookeeper directory and check the permis-
sions. It should be assigned to user we set it in:

Apache Hadoop Cookbook 130 / 139

Figure 10.8: Zookeeper data folder properties

10.3.5 Configuration File

Now it is the time to make the required changes in the configurations of the Zookeeper server. It already contains the sample
configuration file which we will use as the template. Sample configuration file is in the folder zookeeper-3.4.6/conf/
and is named zoo-sample.cfg

First lets rename the file to zoo.cfg. Name of the file does not matter but there should be only one .cfg file present in the
conf folder.

cd zookeeper-3.4.6/conf
mv zoo-sample.cfg zoo.cfg

Apache Hadoop Cookbook 131 / 139

Figure 10.9: Renaming sample configuration file to the configuration file

Now, let’s edit this zoo.cfg file. In this example, we used the nano editor but you can use whichever editor you like to.

nano zoo.cfg

Make sure the file looks like what is in the screenshot below and contain the following settings:

tickTime = 2000
initLimit=10
syncLimit=5
dataDir=/var/lib/zookeeper
clientPort=2181

Note: dataDir should be set to the directory we created in the previous step i.e. /var/lib/zookeeper

Apache Hadoop Cookbook 132 / 139

Figure 10.10: zoo.cfg file

Let us have a short overview of what these configuration settings mean:

• tickTime: It is the time used by Zookeeper to do heartbeat with all the system nodes to check if all the nodes are alive and
connected.

• initTime: The number of ticks that an initial synchronization phase can take.

• syncTime: The number of ticks that can pass between sending the request and getting an acknowledgement.

• dataDir: Directory to store in-memory database snapshots and the transaction logs by Zookeeper.

• clientPort: The port which will be used for the client connections.

10.3.6 Starting The Server

Now it is the time to start the Zookeeper server. Zookeeper comes with a script file to make it easy to start the server. The file is
called zkServer.sh. So to start the server use the following code:

cd zookeeper-3.4.6/
bin/zkServer.sh start

It should display the console output similar to the following screenshot:

Apache Hadoop Cookbook 133 / 139

Figure 10.11: Starting Zookeeper Server

10.4 Zookeeper Server Basic Interaction

10.4.1 Starting The CLI

Once the Zookeeper server is running successfully, we can start the CLI(Command Line Interface) to interact with the server.
Use the following command to do so:

cd zookeeper-3.4.6/
bin/zkCLi.sh -server

With this command, the console will go into the Zookeeper command line mode where we can use the Zookeeper specific
commands to interact with the server.

Apache Hadoop Cookbook 134 / 139

Figure 10.12: Zookeeper Command Line Interface

10.4.2 Creating The First Znode

Let us start by creating a new node. Following is the Zookeeper command to create a new znode with dummy data.

create /firstnode helloworlddummytext

Here firstnode is the name of the znode which will be created on the root path as indicated by / and helloworlddummy
text is the dummy text stored in the znode memory.

Apache Hadoop Cookbook 135 / 139

Figure 10.13: Create znode in Zookeeper

10.4.3 Retrieving Data From The First Znode

Similar to how we created a new znode, we can get back the details and data of the znode using the CLI(Command Line Interface).
Following is the command for getting the data from znode.

get /firstnode

Apache Hadoop Cookbook 136 / 139

Figure 10.14: Getting data from znode in Zookeeper

If you notice in the screenshot, along with the data we stored in the znode while creating, the server also returned some metadata
related to this particular znode.

Some of the important fields in the metadata are:

• ctime: Time when this znode was created.

• mtime: Last modified time.

• dataVersion: Version of the data which changes everytime data is modified

• datalength: Length of the data stored in the znode. In this case data is helloworlddummydata and the length is 19.

• numchildren: Number of children of this aprticualr znode.

10.4.4 Modifying Data in Znode

If we want to modify data in a particular node Zookeeper provides a command for that also. Following is how to modify the data
in an existing znode:

set /firstnode helloworld

Where firstnode is the existing znode and helloworld is the new data which need to be written in the znode. Old data
will be removed when new data is set.

Apache Hadoop Cookbook 137 / 139

Figure 10.15: Modifying data in an existing znode

If you notice in the screenshot above datalength, mtime, and dataversion is also updated when a new value is set.

10.4.5 Creating A Subnode

Creating a subnode in an existing node is as easy as creating a new node. We just need to pass the full path for the new subnode.

create /firstnode/subnode subnodedata
get /firstnode/subnode

Apache Hadoop Cookbook 138 / 139

Figure 10.16: Creating a subnode for an existing node

10.4.6 Removing A Node

Removing a node is quite easy using rmr command in the Zookeeper CLI. Removing a node also removing all its subnodes.
Following is the code to remove firstnode which we created for this example:

rmr /firstnode

Apache Hadoop Cookbook 139 / 139

Figure 10.17: Removing a node from Zookeeper

10.5 Conclusion

This brings us to the conclusion of this introductory example for Apache Zookeeper. In this example, we started with the
introduction and the general architecture of Zookeeper followed by learning how to setup Zookeeper in a single machine. We
also saw that using Zookeeper CLI to interface with the Zookeeper Service is also quite easy and command are present for all
the basic interactions.

10.6 Download

Download You can download the configuration file zoo.cfg used in this example here: Zookeeper Configuration

https://examples.javacodegeeks.com/wp-content/uploads/2016/01/Zookeeper.zip

	“Hello World” Example
	Introduction
	Hadoop Word-Count Example
	Setup
	Mapper Code
	Reducer Code
	Putting it all together, The Driver Class

	Running the example
	Download the complete source code

	How to Install Apache Hadoop on Ubuntu
	Introduction
	Prerequisites
	Installing Java
	Creating a Dedicated User
	Disable ipv6
	Installing SSH and Setting up certificate

	Installing Apache Hadoop
	Download Apache Hadoop
	Updating bash
	Configuring Hadoop
	Formatting the Hadoop Filesystem
	Starting Apache Hadoop
	Testing MapReduce Job
	Stopping Apache Hadoop

	Conclusion

	FS Commands Example
	Introduction
	Common Commands
	Create a directory
	List the content of the directory
	Upload a file in HDFS
	Download a file from HDFS
	View the file content
	Copying a file
	Moving file from source to destination
	Removing the file or the directory from HDFS
	Displaying the tail of a file
	Displaying the aggregate length of a particular file
	Count the directories and files
	Details of space in the file system

	Conclusion

	Cluster Setup Example
	Introduction
	Requirements
	Preparing Virtual Machine
	Creating VM and Installing Guest OS
	Installing Guest Additions

	Creating Cluster of Virtual Machines
	VM Network settings
	Cloning the Virtual Machine
	Testing the network IPs assigned to VMs
	Converting to Static IPs for VMs

	Hadoop prerequisite settings
	Creating User
	Disable ipv6
	Connecting the machines (SSH Access)

	Hadoop Setup
	Download Hadoop
	Update bashrc
	Configuring Hadoop
	Formatting the Namenode
	Start the Distributed Format System
	Testing MapReduce Job
	Stopping the Distributed Format System

	Conclusion
	Download configuration files

	Distcp Example
	Introduction
	Syntax and Examples
	Basic
	Multiple Sources
	Update and Overwrite Flag
	Ignore Failures Flag
	Maximum Map Tasks

	Final Notes

	Distributed File System Explained
	Introduction
	HDFS Design
	System failures
	Can handle large amount of data
	Coherency Model
	Portability

	HDFS Nodes
	NameNode
	DataNode

	HDFS Architecture
	Working of NameNode and DataNode
	HDFS Namespace
	Data Replication
	Failures
	Data Accessibility

	Configuring HDFS
	Configuring HDFS
	Formating NameNode
	Starting the HDFS

	Interacting with HDFS using Shell
	Creating a directory
	List the content of the directory
	Upload a file in HDFS
	Download a file from HDFS

	Interacting with HDFS using MapReduce
	Conclusion
	Download the code

	Distributed Cache Example
	Introduction
	Working
	Implementation
	The Driver Class
	Map Class
	Reduce Class

	Executing the Hadoop Job
	Conclusion
	Download the Eclipse Project

	Wordcount Example
	Introduction
	MapReduce
	Word-Count Example
	Setup
	Mapper Code
	Reducer Code
	The Driver Class

	Code Execution
	In Eclipse IDE
	On Hadoop Cluster

	Conclusion
	Download the Eclipse Project

	Streaming Example
	Introduction
	Prerequisites and Assumptions
	Hadoop Streaming Workflow
	MapReduce Code in Python
	Wordcount Example
	Mapper
	Reducer

	Testing the Python code
	Submitting and Executing the Job on Hadoop cluster
	Input Data
	Transferring input data to HDFS
	Submitting the MapReduce Job
	Understanding the Console Log
	MapReduce Job Output

	Conclusion
	Download the Source Code

	Zookeeper Example
	Introduction
	How Zookeeper Works?
	Zookeeper Setup
	System Requirements
	Install Java
	Download Zookeeper
	Data Directory
	Configuration File
	Starting The Server

	Zookeeper Server Basic Interaction
	Starting The CLI
	Creating The First Znode
	Retrieving Data From The First Znode
	Modifying Data in Znode
	Creating A Subnode
	Removing A Node

	Conclusion
	Download

