
© DZONE, INC. | DZONE.COM

C
O

N
T

E
N

T
S

WHAT IS KUBERNETES?
Kubernetes (kubernetes.io) is an open-source orchestration system
for managing containerized applications across multiple hosts,
providing basic mechanisms for the deployment, maintenance,
and scaling of applications.

Kubernetes, or “k8s” or “kube” for short, allows the user to
declaratively specify the desired state of a cluster using high-level
primitives. For example, the user may specify that they want three
instances of the Couchbase server container running. Kubernetes’
self-healing mechanisms, such as auto-restarting, re-scheduling,
and replicating containers then converge the actual state towards
the desired state.

Kubernetes supports Docker and Rocket containers. An abstraction
around the containerization layer will allow for other container
image formats and runtimes to be supported in the future.

KEY CONCEPTS OF KUBERNETES

POD
A Pod is the smallest deployable unit that can be created, scheduled,
and managed. It’s a logical collection of containers that belong to an
application.

Each resource in Kubernetes is defined using a configuration file.
For example, a Couchbase pod can be defined with the following
.yaml file:

apiVersion: v1
kind: Pod
labels attached to this Pod
metadata:
 labels:
 name: couchbase-pod
spec:
 containers:
 - name: couchbase
 # Docker image that will run in this Pod
 image: couchbase
 ports:
 - containerPort: 8091

LABEL
A label is a key/value pair that is attached to objects, such as pods. In
the previous example, metadata.labels define the labels attached
to the pod.

Labels define identifying for the object and is only meaningful and
relevant to the user. Multiple labels can be attached to a resource.
Labels can be used to organize and to select subsets of objects.

REPLICATION CONTROLLER
A replication controller ensures that a specified number of pod
replicas are running on worker nodes at all times. It allows both up-
and down-scaling the number of replicas. It also ensures recreation
of a pod when the worker node reboots or otherwise fails.

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
233

K
U

B
ER

N
E

TE
S

A Replication Controller creating two instances of a Couchbase pod
can be defined as:

apiVersion: v1
kind: ReplicationController
metadata:
 name: couchbase-controller
spec:
 # Two replicas of the Pod to be created
 replicas: 2
 # Identifies the label key and value on the Pod that
 # this Replication Controller is responsible for
managing

 selector:
 app: couchbase-rc-pod
 # ‘cookie cutter’ used for creating new pods when
necessary

 template:
 metadata:
 labels:
 # label key and value on the pod.
 # These must match the selector above.
 app: couchbase-rc-pod
 spec:
 containers:
 - name: couchbase
 image: couchbase
 ports:
 - containerPort: 8091

SERVICE
Each Pod is assigned a unique IP address. If the Pod is inside a
Replication Controller, then the pod is recreated but may be given
a different IP address. This makes it difficult for an application
server, such as WildFly, to access a database, such as Couchbase,
using its IP address.

A Service defines a logical set of Pods and a policy by which to access
them. The IP address assigned to a Service does not change over
time, and thus can be relied upon by other Pods. Typically, the Pods
belonging to a Service are defined by a label selector.

For example, a Couchbase service might be defined as:

Use Containers at Scale
The easiest way to run Docker & JAR Java

apps at scale. 100% Open Source.

Get Started

dcos.io/get-started

Kubernetes
BY ARUN GUPTA

» What Is Kubernetes?

» Kubernetes Architecture

» Starting With Kubernetes

» Run Your First Container

» Scale Applications...and more!

BROUGHT TO YOU IN PARTNERSHIP WITH

http://www.dzone.com?refcardz
http://www.kubernetes.io
http://www.refcardz.com
https://DZone.com/Refcardz
http://www.pivotpodcast.com/
http://bit.ly/1Y4SqTj

Use Containers at Scale
The easiest way to run Docker & JAR Java

apps at scale. 100% Open Source.

Build apps quickly using a rich ecosystem. Get Kafka, Cassandra,
Jenkins, Spark, ArangoDB, and other datacenter-scale services
running in minutes. DC/OS is 100% open source and built with
the experience of Mesosphere, Yelp, Twitter, and Airbnb. Run
your infrastructure agnostic application with DC/OS on any

bare-metal, private and public clouds, or your laptop.

Get Started

dcos.io/get-started

© 2016 Mesosphere, Inc. All Rights Reserved.

http://www.predix.io/registration
http://bit.ly/1Y4SqTj

© DZONE, INC. | DZONE.COM

3 KUBERNETES

apiVersion: v1
kind: Service
metadata:
 name: couchbase-service
 labels:
 app: couchbase-service-pod
spec:
 ports:
 - port: 8091
 # label keys and values of the Pod started elsewhere
 selector:
 app: couchbase-rc-pod

Note that the labels used in selector must match the metadata used for
creating the Pod by the Replication Controller.

VOLUMES
A Volume is a directory on disk or in another container. A volume
outlives any containers that run within the Pod, and the data is
preserved across container restarts. The directory, the medium that
backs it, and the contents within it are determined by the particular
volume type used.

Multiple types of volumes are supported. Some of the commonly used
volume types are shown below:

VOLUME TYPE MOUNTS INTO YOUR POD

hostPath A file or directory from the host node’s filesystem

nfs Existing Network File System share

awsElasticBlockStore An Amazon Web Service EBS Volume

gcePersistentDisk A Google Compute Engine Persistent Disk

A Volume is specified in the Pod configuration file as shown:

apiVersion: v1
kind: ReplicationController
metadata:
 name: couchbase-controller
spec:
 replicas: 1
 # In-line template of the Pod
 template:
 metadata:
 app: couchbase-rc-pod
 spec:
 containers:
 - name: couchbase-rc-pod
 image: arungupta/couchbase
 ports:
 - containerPort: 8091
 volumeMounts:
 # name must match the volume name below
 - name: nfs
 mountPath: /usr/share/couchbase
 volumes:
 - name: nfs
 persistentVolumeClaim:
 claimName: nfs

This configuration file also shows that a Pod template can be specified
within a ReplicationController specification.

KUBERNETES ARCHITECTURE
Kubernetes architecture with key components is shown:

A Kubernetes cluster is a set of physical or virtual machines and other
infrastructure resources that are used to run your applications. The
machines that manage the cluster are called Master Nodes and the
machines that run the containers are called Worker Nodes.

NODE
A Node is a physical or virtual machine. It has the necessary services to
run application containers.

A Master Node is the central control point that provides a unified view
of the cluster. Multiple masters can be setup to create a highly-
available cluster.

A Worker Node runs tasks as delegated by the master. Each Worker
Node can run multiple pods.

KUBELET
Kubelet is a service running on each Node that manages containers
and is managed by the master. This service reads container manifests
as YAML or JSON files that describe each Pod. A typical way to provide
this manifest is using the configuration file as shown in the previous
sections. Kubelet ensures that the containers defined in the Pods are
started and continue running.

Kubelet is a Kubernetes-internal concept and generally does not require
direct manipulation.

GETTING STARTED WITH KUBERNETES

START THE KUBERNETES CLUSTER
A Kubernetes cluster can be started in multiple ways. The most
common ones use Vagrant, Amazon Web Service (AWS), Google
Compute Engine (GCE), and Azure. This link provides complete details
about different options.

The latest Kubernetes release can be downloaded here. This includes the
binary to start the cluster and the kubectl script to manage this cluster.

Alternatively, the cluster can also be started as curl -sS https://
get.k8s.io | bash.

The KUBERNETES_PROVIDER environment variable defines which
variant to use. A cluster can be started as:

./cluster/kube-up.sh

Additional worker nodes can be created by setting the environment
variable NUM_MINIONS, for example:

http://www.dzone.com?refcardz
http://kubernetes.io/v1.1/docs/getting-started-guides/README.html
https://github.com/kubernetes/kubernetes/releases/latest
https://get.k8s.io
https://get.k8s.io

© DZONE, INC. | DZONE.COM

4

export NUM_MINIONS=6

A cluster can be shut down with:

./cluster/kube-down.sh

Variant-specific configurations for Vagrant, Amazon, GCE, and Azure are
shown next.

START THE CLUSTER USING VAGRANT
Running Kubernetes with Vagrant is an easy way to run, develop, and test
on your local machine.

A Kubernetes cluster using Vagrant can be started with:

export KUBERNETES_PROVIDER=vagrant
./cluster/kube-up.sh

By default, the Vagrant will create two Fedora VMs—one for the master
node and one for the worker node. The status of the created VMs can be
seen using the vagrant status command, for example:

vagrant status
Current machine states:

master running (virtualbox)
minion-1 running (virtualbox)

By default, each VM is assigned 1GB memory. A different number can be
assigned by setting the KUBERNETES_MEMORY environment variable, for
example:

export KUBERNETES_MEMORY=2048

Complete instructions to run and manage a Kubernetes cluster using
Vagrant are available at: kubernetes.io/v1.1/docs/getting-started-guides/
vagrant.html.

START THE CLUSTER USING AWS
Running Kubernetes with AWS requires:

• An AWS account

• Installation and configuration of AWS CLI

• An AWS instance and profile with EC2 full access

Set KUBERNETES_PROVIDER to aws with:

export KUBERNETES_PROVIDER=aws

Start and configure the cluster as explained earlier.

By default, the script will provide a new VPC and a 4 node Kubernetes
cluster in us-west-2a (Oregon) with t2.micro instances running on
Ubuntu. These, and other values, such as memory allotment for Master
and Worker node, can be configured in cluster/aws/config-default.sh.

START THE CLUSTER USING GCE
Running Kubernetes with GCE requires:

• A Google Cloud Platform account with billing enabled

• Installation and configuration of the Google Cloud SDK as explained
at kubernetes.io/v1.1/docs/getting-started-guides/gce.html

Either unset KUBERNETES_PROVIDER or set it to gce as:

export KUBERNETES_PROVIDER=gce

Start and configure the cluster as explained earlier.

By default, the script will provision a single Master node and 4 Worker
nodes in us-central1-b zone with n1-standard-1 instances running on
Debian. These, and other values, such as memory allotment for Master and
Worker node, can be configured in cluster/gce/config-default.sh.

START THE CLUSTER USING AZURE
Running Kubernetes with Azure requires:

• Azure account

• Installation and configuration of the Azure CLI

Set KUBERNETES_PROVIDER to azure as:

export KUBERNETES_PROVIDER=azure

You also need to set AZURE_TENANT_ID and AZURE_SUBSCRIPTION_ID.
Values for these can be obtained using the command azure account show.

Start and configure the cluster as explained earlier.

By default, the script will provision a single Master node and 3 Worker
nodes in westus zone with Standard_A1 instances. These, and other
values can be configured in cluster/azure/config-default.sh.

KUBECTL CLI
kubectl is a command-line utility that controls the Kubernetes cluster.
This utility can be used in the following format:

kubectl [command] [type] [name] [flags]

• [command] specifies the operation that needs to be performed on
the resource. For example, create, describe, delete, or scale.

• [type] specifies the Kubernetes resource type. For example, pod,
service, replicationcontroller, or node. Resource types
are case-sensitive, and you can specify the singular, plural, or
abbreviated forms.

• [name] Specifies the name of the resource. Names are case-
sensitive. If the name is omitted, details for all resources will be
displayed (for example, kubectl get pods).

Some examples of kubectl commands and their purpose:

COMMAND PURPOSE

kubectl create -f couchbase-pod.yml Create a Couchbase pod

kubectl create -f couchbase-rc.yml
Create a Couchbase
Replication Controller

kubectl get pods List all the pods

kubectl describe pod couchbase-pod Describe the Couchbase pod

kubectl --help shows the complete list of available commands.

RUN YOUR FIRST CONTAINER

A Container can be started on a Kubernetes cluster using the kubectl
script. The easiest way to do this is to specify the Docker image name to
the run command:

KUBERNETES

http://www.dzone.com?refcardz
http://kubernetes.io/v1.1/docs/getting-started-guides/vagrant.html
http://kubernetes.io/v1.1/docs/getting-started-guides/vagrant.html
http://kubernetes.io/v1.1/docs/getting-started-guides/gce.html

© DZONE, INC. | DZONE.COM

5

kubectl.sh run couchbase --image=arungupta/couchbase

This command will start a pre-configured Couchbase container in a Pod
wrapped inside a Replication Controller. The status of this RC can be seen:

kubectl.sh get rc
CONTROLLER CONTAINER(S) IMAGE(S)
SELECTOR REPLICAS AGE

couchbase couchbase arungupta/couchbase
run=couchbase 1 16s

 The status of the Pod can be seen:

kubectl.sh get po
NAME READY STATUS RESTARTS AGE
couchbase-0s8lx 1/1 Running 0 1m

Alternatively, the Container can also be started using the configuration file:

kubectl.sh create -f couchbase-pod.yaml

 The file couchbase-pod.yaml contains the Pod definition as explained earlier.

SCALE APPLICATIONS

Pods in a replication controller can be scaled up and down:

kubectl.sh scale --replicas=3 rc couchbase
replicationcontroller “couchbase” scaled

 Then the updated number of replicas can be seen:

kubectl.sh get rc
CONTROLLER CONTAINER(S) IMAGE(S)
SELECTOR REPLICAS AGE

couchbase couchbase arungupta/couchbase
run=couchbase 3 3m

Note, the updated number of replicas is 3 here. The image, arungupta/
couchbase in this case, will need to ensure that the cluster can be
formed using three indvidual instances.

APPLICATION USING MULTIPLE CONTAINERS

Typical applications consist of a “frontend” and a “backend.” The “frontend”
would typically be an application server, such as WildFly. The “backend”
would typically be a database, such as Couchbase.

The steps involved are:

• Start the “backend” Replication Controller: The Couchbase
Replication Controller should contain the spec for a Couchbase

Pod. The template should include metadata that will be used by
the Service.

• Start the “backend” Service: The Couchbase Service uses the
selector to select the previously started Pods.

• Start the “frontend” Replication Controller: The WildFly
Replication Controller should contain the spec for the WildFly
pod. The Pod should include the application predeployed. This
is typically done by extending WildFly’s Docker image, copying
the WAR file in the /opt/jboss/wildfly/standalone/
deployments directory, and creating a new Docker image. The
application can connect to the database by discovering “backend”
services using Environment Variables or DNS.

NAMESPACE, RESOURCE QUOTAS, AND LIMITS

By default, all user resources in the Kubernetes cluster are created in a
namespace called default. Objects created by Kubernetes are in the
kube-system namespace.

By default, a pod runs with unbounded CPU and memory requests/limits.

A resource can be created in a different namespace and assigned
different memory requests/limits to meet the application’s needs.

Resources created by the user can be partitioned into multiple
namespaces. Resources created in one namespace are hidden from a
different namespace. This allows for a logical grouping of resources.

Each namespace provides:
• a unique scope for resources to avoid name collisions

• policies to ensure appropriate authority to trusted users

• ability to specify constraints for resource consumption

A new namespace can be created using the following configuration file:

apiVersion: v1
kind: Namespace
metadata:
 name: development
 labels:
 name: development

A replication controller in the default namespace can be created:

kubectl.sh create -f couchbase-rc.yml
replicationcontroller “couchbase” created

And a replication controller in the new namespace can be created:

kubectl.sh --namespace=development create -f couchbase-
rc.yml

replicationcontroller “couchbase” created

A list of replication controllers in all namespaces can be obtained:

kubectl.sh get rc --all-namespaces
NAMESPACE CONTROLLER

CONTAINER(S) IMAGE(S)
SELECTOR REPLICAS AGE

default couchbase couchbase
arungupta/couchbase
run=couchbase 1 4m

development couchbase couchbase
arungupta/couchbase
run=couchbase 1 2m

KUBERNETES

http://www.dzone.com?refcardz

6

Specifying a quota allows you to restrict how much of a cluster’s
resources can be consumed across all pods in a namespace.

Resource quotas can be specified using a configuration file:

apiVersion: v1
kind: ResourceQuota
metadata:
 name: quota
spec:
 hard:
 cpu: “20”
 memory: 1Gi
 pods: “10”
 replicationcontrollers: “20”
 resourcequotas: “1”
 services: “5”

Now a pod can be created by the specifying limits:

apiVersion: v1
kind: Pod
metadata:
 name: couchbase-pod
spec:
 containers:
 - name: couchbase
 image: couchbase
 ports:
 - containerPort: 8091
 resources:
 limits:
 cpu: “1”
 memory: 512Mi

 Namespace, resource quota, and limits allow a Kubernetes cluster to
share the resources of multiple groups and provide different levels of
QoS for each group.

KUBERNETES

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

DZONE, INC.

150 PRESTON EXECUTIVE DR.

CARY, NC 27513

888.678.0399

919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

DZone communities deliver over 6 million pages each month to more than 3.3 million software

developers, architects and decision makers. DZone offers something for everyone, including

news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

ARUN GUPTA is the vice president of developer advocacy at
Couchbase. He has built and led developer communities for 10+ years
at Sun, Oracle, and Red Hat. He has a deep expertise in leading cross-
functional teams to develop and execute strategy, planning and execution
of content, marketing campaigns, and programs. Prior to that he led
engineering teams at Sun and is a founding member of the Java EE team.

Gupta has authored more than 2,000 blog posts on technology. He has
extensive speaking experience in more than 40 countries on a myriad
of topics and is a JavaOne RockStar for three years in a row. Gupta also
founded the Devoxx4Kids chapter in the US and continues to promote
technology education among children. An author of a best-selling book, an
avid runner, a globe trotter, a Java Champion, a JUG leader, and a Docker
Captain, he is easily accessible at @arungupta.

ABOUT THE AUTHOR RESOURCES

Kubernetes docs:
kubernetes.io/docs

Kubernetes Issue Tracker:
github.com/kubernetes/kubernetes

BROUGHT TO YOU IN PARTNERSHIP WITH

https://dzone.com/user/register?step=1
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://www.twitter.com/arungupta
http://kubernetes.io/docs/

http://kubernetes.io/docs/

https://github.com/kubernetes/kubernetes
http://kubernetes.io/docs

