
Java Performance Optimization
BY PIERRE-HUGUES CHARBONNEAU

» JVM Internals

» Class Loading

» Garbage Collection

» Java Concurrency

» Application Budgeting

» Tools

» And more...

JA
VA

 E
N

T
E

R
P

R
IS

E
 E

D
IT

IO
N

 7

Java is among the most widely used programming languages in the
software development world today. Java applications are used within many
verticals (banking, telecommunications, healthcare, etc.), and in some
cases each vertical suggests a particular set of design optimizations. Many
performance-related best practices are common to applications of all kinds.
The purpose of this Refcard is to help developers improve application
performance in as many business contexts as possible by focusing on the
JVM internals, performance tuning principles and best practices, and how
to make use of available monitoring and troubleshooting tools.

It is possible to define “optimal performance” in different ways, but the
basic elements are: the ability of a Java program to perform its computing
tasks within the business response time requirements, and the ability
of an application to fulfill its business functions under high volume, in
a timely manner, with high reliability and low latency. Sometimes the
numbers themselves become patternized: for some major websites, a
page response time of 500ms maximum per user function is considered
optimal. This Refcard will include target numbers when appropriate,
but in most cases you will need to decide these on your own, based on
business requirements and existing performance benchmarks.

JVM INTERNALS
FOUNDATIONS

CODE COMPILATION AND JIT
Java byte code interpretation is clearly not as fast as native code executed
directly from the host. In order to improve performance, the HotSpot JVM
looks for the busiest areas of byte code and compiles these into native,
more efficient, machine code (adaptive optimization). Such native code is
then stored in the code cache in non-heap memory.

NOTE: most JVM implementations offer ways to disable the JIT compiler
(Djava.compiler=NONE). You should only consider disabling such crucial
optimization in the event of unexpected JIT problems such as JVM crashes.

The following diagram illustrates the Java source code, just-in-time
compilation processes and life cycle.

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
R

ef
ca

rd
z.

co
m

BROUGHT TO YOU IN PARTNERSHIP WITH:

200
J

A
VA

 P
E

R
F

O
R

M
A

N
C

E
 O

P
T

IM
IZ

A
T

IO
N

MEMORY SPACES
The HotSpot Java Virtual Machine is composed of the following memory spaces.

MEMORY SPACE DESCRIPTION

Java Heap
Primary storage of the Java program class
instances and arrays.

Permanent Generation
(JDK 1.7 and older)

Metaspace
(JDK 1.8 and later)

Primary storage for the Java class metadata.

NOTE: Starting with Java 8, the PermGen space
is replaced by the Metaspace and using native
memory, similar to the IBM J9 JVM.

Native Heap
(C-Heap)

Native memory storage for the Threads, Stack,
code cache including objects such as MMAP files
and third party native libraries.

CLASS LOADING
Another important feature of Java is its ability to load your compiled Java
classes (bytecode) following the start-up of the JVM. Depending on the
size of your application, the class loading process can be intrusive and
significantly degrade the performance of your application under high load
following a fresh restart. This short-term penalty can also be explained by
the fact that the internal JIT compiler has to start over its optimization work
following a restart.

It is important to note that several improvements were introduced since
JDK 1.7, such as the ability for the default JDK class loader to better load
classes concurrently.

HOT SPOTS

AREA OF CONCERN RECOMMENDATION

Performance degradation following
a JVM restart.

Avoid deploying an excessive amount
of Java classes to a single application
classloader (ex: very large WAR file).

Free Report]

5 Important Critical
Capabilities for APM

Gartner Research:

C
O

N
T

E
N

T
S

© DZONE, INC. | DZONE.COM

http://www.refcardz.com
http://www.refcardz.com
https://appresponse.opnet.com/saas_edition/accounts/new?CID=70140000000W6Qr&LSD=1Q14_Dzone_Refcard_APM_BrowserMetrix_WebAnalyzer_Trial
https://www.appdynamics.com/gartner-critical-capabilities-for-application-performance-monitoring/?utm_source=dzone&utm_medium=sponsorship&utm_campaign=dzone%20java%20refcard&utm_content=3.5x2.75-gartner-cc&utm_term=dzone-ad

When your business runs on Java, count on AppDynamics to give you the complete visibility you need to be
sure they are delivering the performance and business results you need — no matter how complex,
distributed or asynchronous your environment, live ‘in production’ or during development.

See every line of code. Get a complete view of your environment with deep code diagnostics and
auto-discovery. Understand performance trends with dynamic baselining. And drastically reduce time
to root cause and remediation.

See why the world’s largest Java deployments rely on the AppDynamics Application Intelligence
Platform. Sign up for a FREE trial today at www.appdynamics.com/java.

There’s nothing about Java
that AppDynamics doesn’t see.
AppDynamics gives you the visibility to take command
of your Java application’s performance, no matter
how complicated or distributed your environment is.

Device

Events
Health Rule Violations Started 2
 Overall Application Performance 1
AppDynamics Internal Diagnostics 1

Business Transaction Health

 1 critical, 0 warning, 36 normal

Server Health

 0 critical, 5 warning, 1 normal

Transaction Scorecard

Normal 83.1% 963

Slow 0.3% 4

Very Slow 1.3% 15

Stall 0.2% 2

Errors 15.1% 175

IIS Internet
Information
Services

Shipments DB

Java

Java

Java

Java

Java

Start your Free Trial

http://www.riverbed.com/about/document-repository/Application-Performance-Management-for-Dummies.html?CID=70140000000W6Qm&LSD=1Q14_Dzone_Refcard_APM_for_Dummies_ad_AppInternals
http://www.riverbed.com/about/document-repository/Application-Performance-Management-for-Dummies.html?CID=70140000000W6Qm&LSD=1Q14_Dzone_Refcard_APM_for_Dummies_ad_AppInternals
http://www.riverbed.com/about/document-repository/Application-Performance-Management-for-Dummies.html?CID=70140000000W6Qm&LSD=1Q14_Dzone_Refcard_APM_for_Dummies_ad_AppInternals
https://portal.appdynamics.com/account/signup/signupForm/?utm_source=dzone&utm_medium=sponsorship&utm_campaign=dzone%20java%20refcard&utm_content=3.5x2.75-free-trial&utm_term=dzone-ad

Excessive class loading contention
(thread lock, JAR file searches…)
observed at runtime, degrading the
overall performance.

Profile your application and identify
code modules performing dynamic class
loading operations too frequently. Look
aggressively for non-stop class loading
errors such as ClassNotFoundException
and NoClassDefFoundError.

Revisit any excessive usage of the Java
Reflection API and optimize where
applicable.

java.lang.OutOfMemoryError:
PermGen space (JDK 1.7 and
older)

java.lang.OutOfMemoryError:
Metaspace (JDK 1.8 and later)

Native memory leak observed.

Revisit the sizing of your JVM
Permanent Generation, Metaspace
(MaxMetaSpaceSize) and / or native
memory capacity, where applicable.

Analyze your application class loaders and
identify any source of metadata memory leak.

TROUBLESHOOTING & MONITORING

GOAL RECOMMENDATION

Keep track of the
Java classes loaded
to the different class
loaders.

Profile your application using a Java profiler of your
choice such as JProfiler or Java VisualVM . Focus on
class loader operations and memory footprint.

Enable class loading details via –verbose:class. For the
IBM JVM, generate multiple Java core snapshots and
keep track of the active class loaders and loaded classes.

Investigate suspected
source(s) of class
metadata memory
leak(s).

Profile your application and identify the possible culprit(s).

Generate and analyze JVM heap dump snapshots with
a primary focus on ClassLoader and java.lang.Class
instances.

Ensure a proper
Permanent Generation
/ Metaspace and
native memory sizing.

Closely monitor your PermGen, Metaspace and native
memory utilization, and adjust the maximum capacity
where applicable.

Analyze your application class loaders size and identify
opportunities to reduce the metadata footprint of your
applications, where possible.

GARBAGE COLLECTION

The Java garbage collection process is one of the most important contributing
factors for optimal application performance. In order to provide efficient
garbage collection, the Heap is essentially divided into sub areas.

HEAP AREAS

AREA DESCRIPTION

Young
Generation
(nursery
space)

Part of the heap reserved for allocation of new or short-lived objects.

Garbage is collected by a fast but stop-the-world YG collector.
Objects that have lived long enough in the young space are
promoted to the old space

NOTE: It is important to realize that an excessive size and / or GC
frequency of the YG space can significantly affect the application
response time due to increased JVM pause time.

Old
Generation
(tenured
space)

Part of the heap reserved for long-lived objects.

Garbage is usually collected by a parallel or mostly concurrent
collector such as CMS or gencon (IBM JVM).

PERFORMANCE TIP: It is very important to choose and test
the optimal GC policy for your application needs. For example,
switching to a “mostly” concurrent GC collector such as CMS or
G1 may significantly improve your application average response
time (reduced latency).

GC COLLECTORS
Choosing the right collector or GC policy for your application is a determinant
factor for optimal application performance, scalability and reliability. Many
applications are very sensible to response time latencies, requiring the use of
mostly concurrent collectors such as the HotSpot CMS or the IBM GC policy
balanced.

As a general best practice, it is highly recommended that you determine
most suitable GC policy through proper performance and load testing. A
comprehensive monitoring strategy should also be implemented in your
production environment in order to keep track of the overall JVM performance
and identify future areas for improvement.

GC ARGUMENTS DESCRIPTION

Serial
Collector

-XX:+UseSerialGC

(Oracle HotSpot)

Both Young and Old collections are done
serially, using a single CPU and in a stop-
the-world fashion.

NOTE: This policy should only be used by
client-side applications not sensitive to JVM
pauses.

© DZONE, INC. | DZONE.COM

2 JAVA PERFORMANCE OPTIMIZATION

Parallel
Collector
(throughput
collector)

-XX:+UseParallelGC

-XX:+UseParallelOldGC

(Oracle HotSpot)

-Xgcpolicy:optthruput

(IBM J9, single space, stop-
the-world)

Designed to take advantage of available
CPU cores. Both Young and Old collections
are done using multiple GC threads (via –
XX:ParallelGCThreads=n), thus better
leveraging the available CPU cores from the host.

NOTE: While the collection time can be
reduced significantly, applications with large
heap size are still exposed to large and stop-
the-world old collections and affecting the
response time

Serial Collector Parallel Collector

Stop the world pause

Mostly
concurrent
collectors
(low-latency
collectors)

Concurrent Mark-Sweep

-XX:+UseConcMarkSweepGC
Garbage First (G1), JDK
1.7u4+
-XX:+UseG1GC
(Oracle HotSpot)

-Xgcpolicy:balanced
(IBM J9 1.7+, region-based
layout for the Java heap,
designed for Java heap space
greater than 4 GB)

-XX:UseConcMarkSweepGC
-XX:+UseConcMarkSweepGC
Garbage First (G1), JDK
1.7u4+
-XX:+UseG1GC
(Oracle HotSpot)

-Xgcpolicy:balanced
(IBM J9 1.7+, region-based
layout for the Java heap,
designed for Java heap space
greater than 4 GB)

Designed to minimize impact on application
response time associated with Old generation
stop-the-world collections.

Most of the collection of the old generation
using the CMS collector is done concurrently
with the execution of the application.

NOTE: The YoungGen collections are still
stop-the-world events, thus requiring proper
fine-tuning in order to reduce the overall JVM
pause time.

GARBAGE FIRST (G1) COLLECTOR
The HotSpot G1 collector is designed to meet user-defined garbage collection
(GC) pause time goals with high probability, while achieving high throughput.
This latest HotSpot collector essentially partitions the heap into a set of equal-
sized heap regions, each a contiguous range of virtual memory. It concentrates
its collection and compaction activity on the areas of the heap that are likely to
be full of reclaimable objects (garbage first), or in other words on areas with the
least amount of “live” objects.

Oracle recommends the following use cases or candidates for using the G1
collector, especially for existing applications currently using either the CMS or
parallel collectors:

• Designed for applications that require large heaps (>= 6 GB) with limited GC
latency (pause time <= 0.5 second).

• More than 50% of the Java heap is occupied with live data (objects that
cannot be reclaimed by the GC).

• The rate of object allocation rate or promotion varies significantly.

• Undesired long garbage collection or compaction pauses (longer than 0.5 to 1 second).

JAVA HEAP SIZING
It is important to realize that no GC policy can save your application from an
inadequate Java heap sizing. Such exercise involves configuring the minimum
and maximum capacity for the various memory spaces such as the Young and Old
generations, including the metadata and native memory capacity. As a starting point,
here are some recommended guidelines:

 � Choose wisely between a 32-bit or 64-bit JVM. If your application needs more
than 2 GB to run with acceptable JVM pause time due to a large live data
footprint, consider using a 64-bit JVM.

 � Remember that the application is king: make sure that you profile it and adjust the
heap sizing based on our application memory footprint. It is always recommended
to measure the live data footprint through performance and load testing.

 � A larger heap is not always better or faster: do not over-tune the Java heap. In parallel
of JVM tuning, identify opportunities to reduce or “spread” your application memory
footprint in order to keep the average JVM pause time < 1 %.

 � For a 32-bit JVM, consider a maximum heap size of 2 GB in order to leave some
memory from the address space to the metadata and native heap.

 � For 64-bit JVMs, explore vertical and horizontal scaling strategies instead of simply
attempting to expand the Java heap size beyond 15 GB. Such an approach very
often provides better throughput, better leverages the hardware, and increases your
application fail-over capabilities.

 � Do not re-invent the wheel: take advantage of the multiple open source
and commercials troubleshooting and monitoring tools available. The APM
(Application Performance Management products have evolved significantly over
the past decade.

JDK 1.8 METASPACE GUIDELINES
Reference: Oracle Java 8 – GC tuning

GOAL RECOMMENDATION

Memory Sizing

GC Tuning

Monitoring &
Troubleshooting

By default, the Metaspace memory space is unbounded and will
use the available process and/or OS native memory available for
dynamic expansions. The memory space is divided into chunks
and allocated by the JVM via mmap. We recommend keeping the
default, dynamic resize mode as a starting point for simpler sizing
combined with close monitoring of your application metadata
footprint over time for optimal capacity planning.

A new JVM option is available (-XX:MaxMetaspaceSize=<NNN>),
allowing you to limit the amount of native memory committed
for class metadata. It is recommended to use it as a safeguard
mechanism when facing physical resources (RAM) constraints and
other scenarios such as the presence of memory leaks.

For Java applications with larger class metadata footprint
and/or dynamic classloading, we recommend to tune
the initial Metaspace size via the new JVM option:
-XX:MetaspaceSize=<NNN> ex: 1 GB. This tuning approach will
help avoid early garbage collections induced for class metadata,
especially during the “warm-up” period of your Java application.

Similar to UseCompressedOops for Java object references,
UseCompressedClassesPointers can also be used (it is enabled
by default) to minimize the memory footprint. NOTE: while this
tuning can help contain the “committed” memory footprint of
class pointers, the default metaspace memory reservation is 1 GB
when using this option. You may observe a larger virtual memory
footprint of the Java process vs. JDK 1. 7. In order to monitor the
Metaspace usage, Oracle has updated both the Java VisualVM tool
and the GC logs. We recommend to analyze the verbose:gc data for
a detailed view of the Metaspace memory usage, GC behavior and
dynamic resize frequency.

PERFORMANCE TIP: the new Metaspace implementation will
not resolve by itself existing class metadata memory leaks. It
is recommended to analyze any unexpected class metadata
reachable references when such problem is suspected.

PERFORMANCE TIP: there are some risks associated with using the
default or unbounded mode for the Metaspace. If left unchecked,
a Metaspace memory leak has the potential to deplete the
physical RAM of your infrastructure and may lead to excessive
disk paging and/or OS hang. It is recommended to monitor
closely the Metaspace usage and take preventive (restart) actions
of the JVM, when required, as a short-term action. Long-term
solutions normally involve resolving memory leaks and tuning your
application class metadata footprint The usage of Java profiler
tools and JVM Heap Dump analysis will greatly help you achieve
such goals.

3 JAVA PERFORMANCE OPTIMIZATION

© DZONE, INC. | DZONE.COM

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/considerations.html

HOT SPOTS

TROUBLESHOOTING & MONITORING

GOAL RECOMMENDATION

Measure and
monitor your
application
YoungGen and
OldGen memory
footprint, including
the GC activity.

Determine the
right GC policy and
Java heap size for
your application.

Fine-tune your
application
memory footprint
such as live
objects.

Profile and monitor your application using a Java profiler
of your choice such as JProfiler, Java VisualVM, or other
commercial APM products.

Enable the JVM GC activity logging via –verbose:gc. You can
also use tools such as GCMV (GC Memory Visualizer) in order
to assess your JVM pause time and memory allocation rate.

PERFORMANCE TIP: an excessive memory allocation rate may
indicate a need to perform vertical and/or horizontal scaling,
or to decouple your live data across multiple JVM processes.

For your long-lived objects or long-term live data, consider
generating and analyzing JVM heap dump snapshots.
Heap dump analysis is also very useful at optimizing your
application memory footprint (retention).

PERFORMANCE TIP: Since going from a 32-bit to a
64-bit machine increases heap requirement for an
existing Java application by up to 1.5 times (bigger
ordinary object pointers), it is very important to use
-XX:+UseCompressedOops in Java version prior to 1.7 (which
is now default). This tuning argument greatly alleviates the
performance penalty associated with a 64-bit JVM.

Investigate
OutOfMemoryError
problems and
suspected
source(s) of
OldGen memory
leak.

Profile your application for possible memory leaks using
tools such as Java VisualVM or Plumbr (Java memory leak
detector).

PERFORMANCE TIP: Focus your analysis on the biggest Java
object accumulation points. It is important to realize that
reducing your application memory footprint will translate in
improved performance due to reduced GC activity.

Generate and analyze JVM heap dump snapshots using tools
such as Memory Analyzer.

JAVA CONCURRENCY
Java concurrency can be defined as the ability to execute several tasks of a
program in parallel. For large Java EE systems, this means the capability to
execute multiple user business functions concurrently while achieving optimal
throughput and performance.

Regardless of your hardware capacity or the health of your JVM, Java
concurrency problems can bring any application to its knees and severely
affect the overall application performance and availability

THREAD LOCK CONTENTION

Thread lock contention is by far the most common Java concurrency problem
that you will observe when assessing the concurrent threads health of your Java
application. This problem will manifest itself by the presence of 1...n BLOCKED
threads (thread waiting chain) waiting to acquire a lock on a particular object
monitor. Depending on the severity of the issue, lock contention can severely
affect your application response time and service availability.

EXAMPLE: Thread lock contention triggered by non-stop attempts to load
a missing Java class (ClassNotFoundException) to the default JDK 1.7
ClassLoader.

It is highly recommended that you aggressively assess the presence of such
a problem in your environment via proven techniques such as Thread Dump
analysis. Typical root causes of this issue can vary from abuse of plain old Java
synchronization to legitimate IO blocking or other non-thread safe calls. Lock
contention problems are often the “symptoms” of another problem.

JAVA-LEVEL DEADLOCKS
True Java-level deadlocks, while less common, can also greatly affect the
performance and stability of your application. This problem is triggered when
two or more threads are blocked forever, waiting for each other. This situation
is very different from other more common “day-to-day” thread problems such
as lock contention, threads waiting on blocking IO calls etc. A true lock-
ordering deadlock can be visualized as per below:

4 JAVA PERFORMANCE OPTIMIZATION

© DZONE, INC. | DZONE.COM

5 JAVA PERFORMANCE OPTIMIZATION

The Oracle HotSpot and IBM JVM implementations provide deadlock detectors
for most scenarios, allowing you to quickly identify the culprit threads involved
in such condition. Similar to lock contention troubleshooting, it is recommended
to use techniques such as thread dump analysis as a starting point.

Once the culprit code is identified, solutions involve addressing the lock-
ordering conditions and/or using other available concurrency programming
techniques from the JDK such as java.util.concurrent.locks.
ReentrantLock, which provides methods such as tryLock(). This
approach gives Java developers much more flexibility and ways to prevent
deadlock or thread lock “starvation.”

CLOCK TIME AND CPU BURN
In parallel with the JVM tuning, it is also essential that you review your
application behavior, more precisely the highest clock time and CPU burn
contributors.

When the Java garbage collection and thread concurrency are no longer
a pressure point, it is important to drill down into your application code
execution patterns and focus on the top response time contributors, referred
as clock time. It is also crucial to review the CPU consumption of your
application code and Java threads (CPU burn). High CPU utilization (> 75%)
should not be assumed to be “normal” (good physical resource utilization). It
is often the symptom of inefficient implementation and/or capacity problems.
For large Java EE enterprise applications, it is essential to keep a safe CPU
buffer zone in order to deal with unexpected load surges.

Stay away from traditional tracing approaches such as adding response time
“logging” in your code. Java profiler tools and APM solutions exist precisely to
help you with this type of analysis and in a much more efficient and reliable
way. For Java production environments lacking a robust APM solution, you
can still rely on tools such Java VisualVM, thread dump analysis (via multiple
snapshots) and OS CPU per Thread analysis.

Finally, do not try to address all problems at the same time. Start by building a
list of your top five clock time and CPU burn contributors and explore solutions.

APPLICATION BUDGETING
Other important aspects of your Java applications performance are stability
and reliability. This is particularly important for applications operating under
a SLA umbrella with typical availability targets of 99.9%. These systems
require a high fault-tolerant level, with strict application and resource
budgeting in order to prevent domino effect scenarios. This approach
prevents for example one business process from using all available physical,
middleware, or JVM resources.

HOT SPOTS

TIMEOUT MANAGEMENT
Lack of proper HTTP/HTTPS/TCP IP timeouts between your Java application
and external systems can lead to severe performance degradation and outage
due to middleware and JVM threads depletion (blocking IO calls). Proper
timeout implementation will prevent Java threads from waiting for too long in
the event of major slowdown of your external service providers.

TOOLS

GOALS RECOMMENDED TOOLS

Pro-active and real-time
performance monitoring, tuning,
alerting, trending, capacity
management and more

Enterprise APM solutions

NOTE: APM solutions provide tools
allowing you to achieve most of the
following Java performance goals out-
of-the-box

Performance and load testing

Commercial performance testing
solutions

Apache JMeter (jmeter.apache.org)

© DZONE, INC. | DZONE.COM

http://jmeter.apache.org

JVM garbage
collection
assessment,
memory allocation
rate and
troubleshooting

Oracle Java VisualVM
docs.oracle.com/javase/8/docs/technotes/guides/visualvm/intro.html

java.dzone.com/articles/profile-your-applications-java

Oracle Java Mission Control
oracle.com/technetwork/java/javaseproducts/mission-control/java-
mission-control-wp-2008279.pdf

oracle.com/technetwork/java/javase/jmc53-release-
notes-2157171.html

IBM Monitoring and Diagnostic Tools for Java (via IBM Support
Assistant tool)
www-01.ibm.com/software/support/isa

JVM verbose:gc logs
JVM argument : -verbose:gc
docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html

IBM GCMV
ibm.com/developerworks/java/jdk/tools/gcmv

JVM heap and
class metadata
memory leak
analysis

Oracle Java VisualVM and Oracle Java Mission Control

IBM Monitoring and Diagnostic Tools for Java

Memory Analyzer (heap dump analysis, hprof and phd formats)
eclipse.org/mat
ibm.com/developerworks/java/jdk/tools/memoryanalyzer

Plumbr (Java memory leak detector)
plumbr.eu

jmap (heap histogram and heap dump generation)
oracle.com/technetwork/java/javase/tooldescr-136044.html#gbdid

JVM verbose:class logs
JVM argument : -verbose:gc & -verbose:class

IBM Java core file analysis (via kill -3 <PID>))

JVM memory
profiling and heap
capacity sizing

Oracle Java VisualVM and Java Mission Control

IBM Monitoring and Diagnostic Tools for Java

Java profilers (JProfiler, YourKit)
en.wikipedia.org/wiki/JProfiler

www.yourkit.com

Memory Analyzer (heap dump and application memory footprint analysis)

JVM and
middleware
concurrency
troubleshooting
such as thread
lock contention
and deadlocks

Oracle Java VisualVM and Oracle Java Mission Control (threads
monitoring, thread dump snapshots)

jstack, native OS signal such as kill -3 (thread dump snapshots)

oracle.com/technetwork/java/javase/tooldescr-136044.html#gblfh

IBM Monitoring and Diagnostic Tools for Java

NOTE: Proper knowledge on how to perform a JVM thread dump
analysis is highly recommended

Java application
clock time
analysis and
profiling

Oracle Java VisualVM and Oracle Java Mission Control (build-in
profiler, sampler and recorder)

Java profilers (JProfiler, YourKit)

Java application
and threads CPU
burn analysis

Oracle Java VisualVM and Oracle Java Mission Control (CPU
profiler)

Java profilers (JProfiler, YourKit)

NOTE: You can also fall back on JVM thread dump and OS CPU
per Thread analysis, if necessary

Java IO and
remoting
contention
analysis,
including timeout
management
assessment and
tuning

Oracle Java VisualVM and Oracle Java Mission Control (threads
monitoring, thread dump snapshots)

jstack, native OS signal such as kill -3 (thread dump snapshots)

IBM Monitoring and Diagnostic Tools for Java

NOTE: Proper knowledge on how to perform a JVM thread dump
analysis is highly recommended

Middleware, Java
EE container
tuning such as
threads, JDBC
data sources and
more.

Oracle Java VisualVM and Oracle Java Mission Control (extra
focus on exposed Java EE container runtime MBeans)

Java EE container administration and management console

© DZONE, INC. | DZONE.COM

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513
888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.comCopyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

PIERRE-HUGUES (‘P-H’) CHARBONNEAU has worked
as an IT architect for CGI Canada for the last 15 years.
He specializes in production system troubleshooting,
middleware, JVM tuning and capacity analysis. P-H
is the creator and primary author of Java EE Support
Patterns, a technology blog dedicated to Java EE and
Java technologies, focusing on memory leaks, coding best
practices, anti-patterns, and troubleshooting techniques.
He also runs a YouTube channel offering interactive videos
and tutorials on Java and middleware. In his free time he
enjoys cinema, sports, nutrition and spending quality time
with his family.

Java Performance is the most comprehensive book
on the subject, covering all aspects of performance
tuning at every stage. Includes sections on JVM
performance monitoring, systematic profiling, HotSpot
tuning, bencharking, web application and services
performance, Enterprise Java Beans performance, tips
and tricks, and more.

ABOUT THE AUTHOR RECOMMENDED BOOK

BUY NOW

6 JAVA PERFORMANCE OPTIMIZATION

http://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/intro.html
http://java.dzone.com/articles/profile-your-applications-java
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-wp-2008279.pdf
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-wp-2008279.pdf
http://www.oracle.com/technetwork/java/javase/jmc53-release-notes-2157171.html
http://www.oracle.com/technetwork/java/javase/jmc53-release-notes-2157171.html
http://www-01.ibm.com/software/support/isa/
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://eclipse.org/mat

http://ibm.com/developerworks/java/jdk/tools/memoryanalyzer
http://plumbr.eu
http://oracle.com/technetwork/java/javase/tooldescr-136044.html#gbdid
http://en.wikipedia.org/wiki/JProfiler
http://www.yourkit.com/
http://www.oracle.com/technetwork/java/javase/tooldescr-136044.html#gblfh
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://javaeesupportpatterns.blogspot.com/
http://javaeesupportpatterns.blogspot.com/
http://www.youtube.com/channel/UCmG437Vr2b_67jkiy1I5NyQ
http://www.amazon.com/Java-Performance-Charlie-Hunt/dp/0137142528/ref=sr_1_3?s=books&ie=UTF8&qid=1405540896&sr=1-3&keywords=java+performance
http://www.amazon.com/Java-Performance-Charlie-Hunt/dp/0137142528

