
© DZONE, INC.   |   DZONE.COM

» What is a Linux Container?

» Docker’s Architecture

» How is Docker different than JVM?

» Docker’s Benefits

» Docker Basic Workflow... and more!C
O

N
T

E
N

T
S

WHAT IS A LINUX CONTAINER?

A Linux container is an operating system level virtualization 
technology that, unlike a virtual machine (VM), shares the host 
operating system kernel and makes use of the guest operating 
system system libraries for providing the required OS capabilities. 
Since there is no dedicated operating system, containers are more 
lightweight and start much faster than VMs.

In 2013, Docker was developed as an open platform for packaging, 
deploying, and running distributed applications. Docker uses its 
own Linux container library called libcontainer. It has become the 
most popular and widely used container management system.

This Refcard will focus on the design, deployment, service 
discovery and management of Java applications on Docker.

DOCKER’S ARCHITECTURE

Docker uses a typical client-server architecture. The Docker 
client talks to the Docker daemon, which does the heavy lifting of 
building, running, and distributing your Docker containers. The 
Docker client and daemon communicate via sockets or through a 
RESTful API.

REFERENCE DESCRIPTION

Docker Images
Read-only templates that use union file systems to 
combine layers—making them very lightweight. Images 
are built from Dockerfiles.

Docker 
Registries

Store Docker images. Users can push (or publish) their 
images to a public registry (like Docker Hub) or to their 
own registry behind a firewall. Registries store the 
“tagged” images—allowing users to maintain different 
versions of the same image.

Docker 
Containers

Virtualized application environments that run on a Docker 
Host in isolation. Containers are launched from Docker 
images, adding a read-write layer on top of the image 
(using a union file system) as well as the network/bridge 
interface and IP address. When a container is launched, 
the process specified in the Dockerfile is executed and 
the logs are captured for auditing and diagnostics.

Dockerfiles

Composed of various commands (instructions) listed 
successively to automatically perform actions on a base 
image in order to create a new one. The instructions 
specify the operating system, application artifacts, data 
volumes, and exposed ports to be used, as well as the 
command (or script) to run when launching a Docker 
container.

Docker Host

A Linux host (either a physical/bare-metal server or 
a virtual machine) that is running a Docker daemon 
on which images can be built, pulled or pushed and 
containers can run in isolation.

Docker Client
Command-line utility or other tool that takes advantage of 
the Docker API (docs.docker.com/reference/api/docker_
remote_api) to communicate with a Docker daemon

G
et

 M
or

e 
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
230

JA
VA

 C
O

N
TA

IN
ER

IZ
A

TI
O

N

FIGURE 1: DOCKER ARCHITECTURE

HOW IS DOCKER DIFFERENT THAN JVM?

The JVM is Java’s solution for application portability across 
different platforms—but Docker provides a different kind of 
virtualization that makes use of the guest operating system 
system libraries, and not just the Java application. When a Docker 
container is launched, a filesystem is allocated, along with the 
network/bridge interface and IP address. The command (or script) 
specified in the Dockerfile used to build the underlying Docker 
image is then executed and the resulting Linux process then runs 
in isolation.

As a result, Docker can be used to package an entire JVM along 
with the JAR or WAR files and other parts of the application into a 
single container that can run on any Linux host consistently. This 
eliminates some of the challenges associated with making sure 
that the right JAR file version is used on the right JVM. Moreover, 
CPU and Memory resource controls can be used with Docker 
containers—allowing users to allocate maximum amounts of 
resources to allocate for an application.

DOCKER’S BENEFITS

The main advantages of Docker are:

Application Portability—Docker containers run exactly the same 
on any Linux host. This eliminates the challenge of deploying 

Enterprise IT. Simpli�ed.
Cloud Automation App Automation Governance

PRIVATE PUBLIC

Deploy & monitor your Java applications on any cloud

Download Now
http://dchq.co/dchq-on-premise.html

Java Containerization
BY AMJAD AFANAH

http://www.dzone.com?refcardz
https://hub.docker.com/
http://www.refcardz.com
https://DZone.com/Refcardz
http://dchq.co/dchq-on-premise.html


Enterprise IT. Simpli�ed
Multi-Cloud & Enterprise App Automation

Cloud Automation App Automation Governance

PRIVATE PUBLIC

Infrastructure Provisioning 
& Auto-Scaling

on 18+ Clouds & 
Virtualization Platforms 

Model Anything, Deploy Anywhere 
Compatible with Enterprise Apps

& Microservices
In�nitely Flexible Plug-in Framework

Role-based Access Controls,
Approvals, Quotas, Policies,

Monitoring & Alerts

Download Now
http://dchq.co/dchq-on-premise.html

Deploy & monitor your Java applications on any cloud

founders@dchq.io

http://dchq.co

http://dchq.co/dchq-on-premise.html


© DZONE, INC.   |   DZONE.COM

3 JAVA CONTAINERIZATION

applications across different compute infrastructure (e.g. local 
developer machine, vSphere VM or in the cloud).

Higher Server Density—The light-weight nature of containers allows 
developers to optimize server utilization for their application workloads 
by running more containers on the same host while achieving the same 
isolation and resource allocation benefits of virtual machines.

THE CHALLENGES WITH DOCKERIZING JAVA APPLICATIONS

Containerizing enterprise Java applications is still a challenge mostly 
because existing application composition frameworks do not address 
complex dependencies, service discovery or auto-scaling workflows 
post-provision. Moreover, the ephemeral design of containers meant 
that developers had to spin up new containers and re-create the complex 
dependencies & external integrations with every version update.

DCHQ, available in hosted and on-premise versions, addresses all of 
these challenges and simplifies the containerization of enterprise Java 
applications through an advanced application composition framework 
that extends Docker Compose with cross-image environment variable 
bindings, automatic container IP retrieval and injection, extensible plug-ins 
with lifecycle stages to handle service discovery use cases, and application 
clustering for high availability across multiple hosts or regions.

Once an application is provisioned, a user can monitor the CPU, Memory, 
& I/O of the running containers, get notifications & alerts, and get access 
to application backups, automatic scale in/out workf lows, and plug-in 
execution workf lows to update running containers. Moreover, out-of-
box workf lows that facilitate Continuous Delivery with Jenkins allow 
developers to refresh the Java WAR file of a running application without 
disrupting the existing dependencies & integrations.

DOCKER BASIC WORKFLOW

The typical workf low in Docker involves building an image from a 
Dockerfile or pulling an image from a registry (like Docker Hub). 

Once the image is available on the Docker Host, a container can be 
launched as a runtime environment. Docker Hub has approximately 
100 “official” images published by software vendors—eliminating the 
need to build a Tomcat or MySQL image from scratch in most cases. 
Once a container is running, it can be stopped, started or restarted 
using the CLI. If changes are made to the container, a user can commit 
the changes made into a new image with either the same tag (or 
version) or a different one. The new image can of course then be pushed 
to a registry (like Docker Hub).

Instead of listing all the supported workf lows, this Refcard walks 
through Docker Java application examples—starting with basic use 
cases to more advanced ones.

SETTING UP DOCKER

INSTALLING DOCKER MANUALLY
You can refer to Docker’s official documentation for detailed 
installation instructions. For Ubuntu for example, please refer to this 
document: docs.docker.com/engine/installation/ubuntulinux.

You can use these simple commands to install Docker: 

apt-get update 
apt-get -y install wget 
wget -qO- https://get.docker.com/ | sh

PROVISION A DOCKER-ENABLED LINUX HOST ON ANY CLOUD
Sign Up on dchq.io for a free account.

• Register a Cloud Provider—navigate to Cloud Providers and 
register an end-point for one of the following: VMware vSphere, 
OpenStack, Cloudstack, AWS, Google Compute Engine, Microsoft 
Azure, Rackspace, DigitalOcean, IBM SoftLayer, and others.

• Create a Cluster—navigate to Clusters and create a new cluster 
with Docker networking selected

• Provision a Docker-enabled Host—navigate to Machines and 
provision a Docker-enabled Linux host on the cloud provider & 
cluster of your choosing.

You can refer to the detailed documentation here: dchq.co/docker-
infrastructure-as-a-service.html.

DEPLOYING A CONTAINER

USING DOCKER CLI
In this example, we’ll show you how to deploy a simple Tomcat 
container with a sample Java WAR file using the Docker CLI.

CREATE A DOCKER HUB ACCOUNT FOR STORING YOUR IMAGES

• Sign up a free account on Docker Hub: hub.docker.com

• Create a public repository called “tomcat”

BUILD A CUSTOM TOMCAT IMAGE WITH A SAMPLE JAVA WAR FILE ON YOUR LINUX 
MACHINE

Clone this GitHub project. 

git clone https://github.com/dchqinc/basic-docker-tomcat-example.git

Build your own custom Tomcat image using the Dockerfile cloned from 
GitHub and push the image to your Docker Hub repository. 

docker login
docker build -t /tomcat:latest .
docker push /tomcat:latest

Here’s the basic Dockerfile used in this GitHub project. 

FROM tomcat:8.0.21-jre8

COPY ./software/ /usr/local/tomcat/webapps/

The image is built using the Tomcat image with the tag 8.0.21-jre8 and copies 
the sample Java WAR file into the /usr/local/tomcat/webapps/ directory.

RUN THE CONTAINER USING THE DOCKER CLI

docker run -p 8080:8080 -d —name tomcat  <your-username>/
tomcat:latest

ACCESS THE SAMPLE APPLICATION

You can access the sample application on this URL: http://host-ip:8080/
sample

FIGURE 2: DOCKER BASIC WORKFLOW

http://www.dzone.com?refcardz
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/ubuntulinux/
http://dchq.io
http://dchq.co/docker-infrastructure-as-a-service.html
http://dchq.co/docker-infrastructure-as-a-service.html
https://hub.docker.com


© DZONE, INC.   |   DZONE.COM

4

ACCESS THE LOGS

You can use this simple command to check the Catalina logs of the 
Tomcat container

docker logs tomcat

CHECK THE FILES INSIDE THE CONTAINER

You can run this command to enter the container and check the files 
under the webapps directory.

USING DCHQ

docker exec -it tomcat bash
ls -lrt /usr/local/tomcat/webapps

Here we’ll show you how to deploy a simple Tomcat container with a 
sample Java WAR file using DCHQ

BUILD A CUSTOM TOMCAT IMAGE WITH A SAMPLE JAVA WAR FILE USING GITHUB 
AND DCHQ

• Sign Up on dchq.io for a free account

• Register your Docker Hub account by navigating to Cloud 
Providers and then selecting Docker Registries from the + 
dropdown

• Navigate to Image Builds and create new build by selecting 

GitHub from the + dropdown

• Enter the this GitHub URL: github.com/dchqinc/basic-docker-
tomcat-example.git

• Run the build using the “play” button

You can refer to the detailed documentation here: dchq.co/docker-
compose.html

CREATE A DOCKER COMPOSE TEMPLATE FOR THE CUSTOM TOMCAT IMAGE

• Sign Up on dchq.io for a free account

• Navigate to App & Machine and select Docker Compose after 
clicking on the + button. Provide the following YAML file.

tomcat:
  image: your-username/tomcat:latest
  mem_min: 500m
  cpu_shares: 1
  publish_all: true

image: your-username/tomcat:latest - This is the Docker image that 
will be pulled from a registry to launch a container. By default, all 
images are pulled from Docker Hub. - In order to pull from a private 
repository, the registry_id parameter needs to be added. This should 
reference the ID of the Docker registry you would have registered. - To 
pull from an official repository (like MySQL), you can use simply enter 

image: mysql:latest - The tag name refers to the tagged images available 
in a repository.

mem_min: 500m - mem_min refers to the minimum amount of 
memory you would like to allocate to a container. In this case, the 
container will be allocated at least 50MB of memory and will continue 
using resources from the host based on the load.

cpu_shares: 1—cpu_shares refer to the amount of CPU allocated to the 
container

publish_all: true—If the value is true, this parameter will randomly 
bind all the exposed ports in the Dockerfile to a random port between 
32000-59000 on the host. In this case, port 8080 is exposed in the 
Dockerfile—so a random port on the host will be bound to port 8080 in 
the container.

RUN THE CUSTOM TOMCAT IMAGE USING DCHQ

• Navigate to the Library and click Customize on the applications 
you would like to run (e.g. Basic Tomcat).

• Select the Cluster of your choosing and then click Run

DEPLOY A MULTI-TIER NAMES DIRECTORY JAVA APPLICATION

CONFIGURING THE WEB.XML AND WEBAPP-CONFIG.XML FILES IN THE JAVA 
APPLICATION
You can clone this sample “Names Directory” Java application from 
GitHub.

git clone https://github.com/dchqinc/dchq-docker-java-example.git

This is the most important step in “Dockerizing” your Java application. 
In order to leverage the environment variables you can pass when 
running containers, you will need to make sure that your application is 
configured in a way that will allow you to change certain properties at 
request time—like:

• The database driver you would like to use

• The database URL

• The database credentials

• Any other parameters that you would like to change at request 
time (e.g. the min/max connection pool size, idle timeout, etc.)

To achieve this, you need pass environment variables in the context file 
storing your JNDI datasource connection details. Instead of hard-coding 
the database information, this file should have environment variables 
that can be overridden at request time. Here is the documentation on 
setting up JNDI connection details in Tomcat: tomcat.apache.org/tomcat-
6.0-doc/jndi-datasource-examples-howto.html

Here’s documentation on defining a context in Tomcat: tomcat.apache.
org/tomcat-6.0-doc/config/context.html#Defining_a_context

FIGURE 5: DOCKER APP REQUEST

JAVA CONTAINERIZATION

FIGURE 4: DOCKER IMAGE BUILD

http://www.dzone.com?refcardz
http://dchq.io
http://dchq.co/docker-compose.html
http://dchq.co/docker-compose.html
http://dchq.io
https://tomcat.apache.org/tomcat-6.0-doc/jndi-datasource-examples-howto.html
https://tomcat.apache.org/tomcat-6.0-doc/jndi-datasource-examples-howto.html
https://tomcat.apache.org/tomcat-6.0-doc/config/context.html#Defining_a_context
https://tomcat.apache.org/tomcat-6.0-doc/config/context.html#Defining_a_context


© DZONE, INC.   |   DZONE.COM

5

In this example, we will configure web.xml to use the bootstrap Servlet 
to start up the Spring context.

github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/
webapp/WEB-INF/web.xml

<servlet>
        <servlet-name>DispatcherServlet</servlet-name>
        <servlet-class>org.springframework.web.servlet.

DispatcherServlet</servlet-class>
        <init-param>
            <param-name>contextConfigLocation</param-name>
            <param-value>/WEB-INF/spring/webapp-config.xml</param-

value>
        </init-param>
        <load-on-startup>1</load-on-startup>
    </servlet>

You will notice that the contextConfigLocation is referencing /WEB-
INF/spring/webapp-config.xml

Next, we will need to configure parameters in the webapp-config.
xml file to reference host environment variables that will be passed at 
request time.

github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/
webapp/WEB-INF/spring/webapp-config.xml

<bean id=”dataSource” class=”snaq.db.DBPoolDataSource” destroy-
method=”release”>

    <property name=”driverClassName” value=”${database_
driverClassName}”/>

    <property name=”url” value=”${database_url}”/>
    <property name=”user” value=”${database_username}”/>
    <property name=”password” value=”${database_password}”/>
    <property name=”minPool” value=”1”/>
    <property name=”maxPool” value=”10”/>
    <property name=”maxSize” value=”10”/>
    <property name=”idleTimeout” value=”60”/>
</bean>

You will notice that specific dataSource properties are referencing the 
following environment variables that will be passed on at request time:

• database_driverClassName
• database_url
• database_username
• database_password

If you are unable to change the context files in your Java application, 
then you can use DCHQ’s plug-in framework to execute custom scripts 
to search for hard-coded parameter values and replace them with 
the right database connection details. DCHQ automatically retrieves 
information about the container IP, port and environment variable 
values for the connected database and allows you to inject this 
information inside Tomcat or other application servers that may need 
to connect to it.

USING THE LIQUIBASE BEAN TO INITIALIZE THE CONNECTED DATABASE
We typically recommend initializing the database schema as part of the 
Java application deployment itself. This way, you don’t have to worry 
about maintaining separate SQL files that need to be executed on the 
database separately.

However, if you already have those SQL files and you still prefer 
executing them on the database separately—then DCHQ can help you 
automate this process through its plug-in framework. You can refer to 
this section for more information.

In order to include the SQL scripts for creating the database tables 
in the Java application, you will need to configure webapp-config.

xml file to use Liquibase bean that checks the dataSource and runs 
new statements from upgrade.sql. Liquibase tracks which changelog 
statements have run against each database.

github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/
webapp/WEB-INF/spring/webapp-config.xml

<bean id=”liquibase” class=”liquibase.integration.spring.
SpringLiquibase”>

    <property name=”dataSource” ref=”dataSource” />
    <property name=”changeLog” value=”/WEB-INF/upgrade/upgrade.sql” 

/>
</bean>

 
Here’s the actual upgrade.sql file with the SQL statements for initializing 
the schema on the connected MySQL, PostgreSQL or Oracle database: 
github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/
webapp/WEB-INF/upgrade/upgrade.sql

DEPLOY A MULTI-TIER JAVA APPLICATION USING THE DOCKER CLI

BUILDING A DOCKER IMAGE FOR TOMCAT WITH THE JAVA WAR FILE USING 
THE DOCKER CLI
You can create a very simple Dockerfile that simply copies the Java 
WAR file into the /usr/local/tomcat/webapps directroy.

First, you can simply wget the actual Java WAR file from the GitHub project. 

wget https://github.com/dchqinc/dchq-docker-java-example/raw/master/
dbconnect.war

 
Then create the Dockerfile 

FROM tomcat:8.0.21-jre8
RUN [“rm”, “-rf”, “/usr/local/tomcat/webapps/ROOT”] COPY dbconnect.

war /usr/local/tomcat/webapps/ROOT.war
CMD [“catalina.sh”, “run”]

Finally, build your “Names Directory” Tomcat image using the 
Dockerfile and push the image to your Docker Hub repository. 

docker login 
docker build -t your-username/tomcat-names:latest . 
docker push your-username/tomcat-names:latest

 
RUN THE TWO-TIER JAVA APPLICATION USING THE DOCKER CLI
First, you can run the MySQL container.

docker run -d -e MYSQL_USER=root -e MYSQL_DATABASE=names -e MYSQL_
ROOT_PASSWORD=password –name mysql mysql:latest

Then you can run the Tomcat container, which already contains the 
Names Directory Java WAR file. The Tomcat container will be linked to 
MySQL.

docker run -d -p 8080:8080 –name names-directory –link mysql:mysql 
-e database_driverClassName=com.mysql.jdbc.Driver -e database_
url=jdbc:mysql://mysql:3306/names -e database_username=root -e 
database_password=password your-username/tomcat-names

You can access the Names Directory application on this URL: http://
host-ip:8080

DEPLOY A MULTI-TIER JAVA APPLICATION USING DCHQ
CREATING DOCKER COMPOSE APPLICATION TEMPLATES THAT CAN RE-
USED ON ANY LINUX HOST RUNNING ANYWHERE
Once logged in to DCHQ (either the hosted DCHQ.io or on-premise 

JAVA CONTAINERIZATION

http://www.dzone.com?refcardz
https://github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/webapp/WEB-INF/web.xml
https://github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/webapp/WEB-INF/web.xml
https://github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/webapp/WEB-INF/spring/webapp-config.xml
https://github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/webapp/WEB-INF/spring/webapp-config.xml
https://github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/webapp/WEB-INF/spring/webapp-config.xml
https://github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/webapp/WEB-INF/spring/webapp-config.xml
https://github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/webapp/WEB-INF/upgrade/upgrade.sql
https://github.com/dchqinc/dchq-docker-java-example/blob/master/src/main/webapp/WEB-INF/upgrade/upgrade.sql


© DZONE, INC.   |   DZONE.COM

6

version), a user can navigate to App & Machine and then click on the + 
button to create a new Docker Compose template.

We have created 52 application templates using the official images from 
Docker Hub for the same “Names Directory” Java application—but 
for different application servers and databases: github.com/dchqinc/
dchq-docker-java-example  github.com/dchqinc/dchq-docker-java-solr-
mongo-cassandra-example

The templates include examples of the following application stacks (for 
the same Java application): Apache HTTP Server (httpd) & NGINX for 
load balancing—Tomcat, Jetty, WebSphere and JBoss for the application 
servers—Solr for the full-text search—and MySQL, MariaDB, 
PostgreSQL, Oracle XE, Mongo and Cassandra for the databases.

DOCKER SERVICE DISCOVERY USING PLUG-IN LIFECYCLE STAGES

Across all these application templates, you will notice that some of the 
containers are invoking BASH, Perl, Python, or Ruby script plug-ins in 
order to configure the container at different life-cycle stages.

These plug-ins can be created by navigating to Plug-ins. Once the 
script is provided, the DCHQ agent will execute this script inside the 
container. A user can specify arguments that can be overridden at 
request time and post-provision. For a BASH script, anything preceded 
by the $ sign is considered an argument—for example:

file_url can be an argument that allows developers to specify the 
download URL for a WAR file. This can be overridden at request time 
and post-provision when a user wants to refresh the Java WAR file on a 
running container.

The plug-in ID needs to be provided when defining the YAML-based 
application template. For example, to invoke a BASH script plug-in for 
NGINX, we would reference the plug-in ID as follows: 

LB: 
  image: nginx:latest 
  publish_all: true 
  mem_min: 50m 
  host: host1 
  plugins: 
    - !plugin 
    id: 0H1Nk 
    restart: true 
    lifecycle: >
      on_create,
      post_scale_out:AppServer, 
      post_scale_in:AppServer,
      post_start:AppServer,
      post_stop:AppServer
    arguments: 
      # Use container_private_ip if you’re using Docker networking     
      - servers=server {{AppServer | container_private_ip}}:8080;   
      # Use container_hostname if you’re using Weave networking 
      #- servers=server {{AppServer | container_hostname}}:8080;

The service discovery framework in DCHQ provides event-driven life-
cycle stages that executes custom scripts to re-configure application 
components. This is critical when scaling out clusters for which a load 
balancer may need to be re-configured or a replica set may need to be 
re-balanced.

You will notice that the NGINX plug-in is getting executed during these 
different stages or events:

• When the NGINX container is created—in this case, the container IP’s 
of the application servers are injected into the default configuration file 
to facilitate the load balancing to the right services

• When the application server cluster is scaled in or scale out—in 
this case, the updated container IP’s of the application servers are 

injected into the default configuration file to facilitate the load 
balancing to the right services

• When the application servers are stopped or started—in this case, 
the updated container IP’s of the application servers are injected 
into the default configuration file to facilitate the load balancing to 
the right services

So the service discovery framework here is doing both service 
registration (by keeping track of the container IP’s and environment 
variable values) and service discovery (by executing the right scripts 
during certain events or stages).

Here are the parameters supported when invoking a plugin: -

• id — this is the ID of the plug-in. This can be retrieved from Manage 
> Plugins and then clicking Edit on your plugin of choice.

• restart — this is a Boolean parameter. If set to true, then the 
container is restarted after executing the plugin.

• arguments — you can override the arguments specified in the plugin 
here. The arguments can be overridden when creating the template, 
when deploying the application and post-provision.

The lifecycle parameter in plug-ins allows you to specify the exact 
stage or event to execute the plug-in. If no lifecycle is specified, then 
by default, the plug-in will execute on_create. Here are the supported 
lifecycle stages:

• on_create—executes the plug-in when creating the container

• on_start—executes the plug-in after a container starts

• on_stop—executes the plug-in before a container stops

• on_destroy—executes the plug-in before destroying a container

• post_create—executes the plug-in after the container is created and 
running

• post_start[:Node]—executes the plug-in after another container starts

• post_stop[:Node]—executes the plug-in after another container stops

• post_destroy[:Node]—executes the plug-in after another container 
is destroyed

• post_scale_out[:Node]—executes the plug-in after another cluster 
of containers is scaled out

• post_scale_in[:Node]—executes the plug-in after another cluster of 
containers is scaled in

The application servers (Tomcat, Jetty, JBoss and WebSphere) are also 
invoking a BASH script plug-in to deploy the Java WAR file from the 
accessible GitHub URL: github.com/dchqinc/dchq-docker-java-example/
raw/master/dbconnect.war

USING PLUG-INS AND THE HOST PARAMETER TO DEPLOY HIGHLY-AVAILABLE DOCKER 

JAVA APPLICATIONS

You will notice that the cluster_size parameter allows you to specify the 
number of containers to launch (with the same application dependencies). 
This allows you to deploy a cluster of application servers for example.

The host parameter allows you to specify the host you would like to use 
for container deployments. This is possible if you have selected Weave 
as the networking layer when creating your clusters. That way you 
can ensure high-availability for your application server clusters across 

JAVA CONTAINERIZATION

http://www.dzone.com?refcardz
https://github.com/dchqinc/dchq-docker-java-example
https://github.com/dchqinc/dchq-docker-java-example
https://github.com/dchqinc/dchq-docker-java-solr-mongo-cassandra-example
https://github.com/dchqinc/dchq-docker-java-solr-mongo-cassandra-example
https://github.com/dchqinc/dchq-docker-java-example/raw/master/dbconnect.war
https://github.com/dchqinc/dchq-docker-java-example/raw/master/dbconnect.war


© DZONE, INC.   |   DZONE.COM

7

different hosts (or regions) and you can comply with affinity rules to 
ensure that the database runs on a separate host for example. Here are 
the values supported for the host parameter:

• host1, host2, host3, etc.—selects a host randomly within a data-
center (or cluster) for container deployments

• IP Address 1, IP Address 2, etc.—allows a user to specify the actual 
IP addresses to use for container deployments

• Hostname 1, Hostname 2, etc.—allows a user to specify the actual 
hostnames to use for container deployments

• Wildcards (e.g. “db-*”, or “app-srv-*”)—to specify the wildcards to 
use within a hostname

ENVIRONMENT VARIABLE BINDINGS ACROSS IMAGES

Additionally, a user can create cross-image environment variable 
bindings by making a reference to another image’s environment 
variable. In this case, we have made several bindings—including 
database_url=jdbc:mysql://{{MySQL|container_ip}}:3306/
{{MySQL|MYSQL_DATABASE}}—in which the database container IP 
is resolved dynamically at request time and is used to ensure that the 
application servers can establish a connection with the database.

Here is a list of supported environment variable values:

• {{alphanumeric | 8}}—creates a random 8-character alphanumeric 
string. This is most useful for creating random passwords.

• {{Image Name | ip}}—allows you to enter the host IP address of 
a container as a value for an environment variable. This is most 
useful for allowing the middleware tier to establish a connection 
with the database.

• {{Image Name | container_ip}}—allows you to enter the name of a 
container as a value for an environment variable. This is most useful 
for allowing the middleware tier to establish a secure connection with 
the database (without exposing the database port).

• {{Image Name | container_private_ip}}—allows you to enter the 
internal IP of a container as a value for an environment variable. 
This is most useful for allowing the middleware tier to establish 
a secure connection with the database (without exposing the 
database port).

• {{Image Name | port_Port Number}}—allows you to enter the Port 
number of a container as a value for an environment variable. 
This is most useful for allowing the middleware tier to establish a 
connection with the database. In this case, the port number specified 
needs to be the internal port number—i.e. not the external port that 
is allocated to the container. For example, {{PostgreSQL | port_5432}} 
will be translated to the actual external port that will allow the 
middleware tier to establish a connection with the database.

• {{Image Name | Environment Variable Name}}—allows you to enter 
the value an image’s environment variable into another image’s 
environment variable. The use cases here are endless—as most multi-
tier applications will have cross-image dependencies.

Here is one example template, but you can check out the GitHub 
projects for 50 more examples at github.com/dchqinc/dchq-docker-
java-example and github.com/dchqinc/dchq-docker-java-solr-mongo-
cassandra-example

3-TIER JAVA (NGINX—TOMCAT—MYSQL)

LB:
  image: nginx:latest
  publish_all: true
  mem_min: 50m
  host: host1
  plugins:
    - !plugin
      id: 0H1Nk
      restart: true
      lifecycle: >
        on_create, 
        post_scale_out:AppServer, 
        post_scale_in:AppServer, 
        post_stop:AppServer, 
        post_start:AppServer
      arguments:
        # Use container_private_ip if you’re using Docker networking
        - servers=server {{AppServer | container_private_ip}}:8080;
        # Use container_hostname if you’re using Weave networking
        #- servers=server {{AppServer | container_hostname}}:8080;
AppServer:
  image: tomcat:8.0.21-jre8
  mem_min: 600m
  host: host1
  cluster_size: 1
  environment:
    - database_driverClassName=com.mysql.jdbc.Driver
    - database_url=jdbc:mysql://{{MySQL|container_hostname}}:3306/

{{MySQL|MYSQL_DATABASE}}
    - database_username={{MySQL|MYSQL_USER}}
    - database_password={{MySQL|MYSQL_ROOT_PASSWORD}}
  plugins:
    - !plugin
      id: oncXN
      restart: true
      arguments:
        - file_url=https://github.com/dchqinc/dchq-docker-java-

example/raw/master/dbconnect.war
        - dir=/usr/local/tomcat/webapps/ROOT.war
        - delete_dir=/usr/local/tomcat/webapps/ROOT
MySQL:
  image: mysql:latest
  host: host1
  mem_min: 400m
  environment:
    - MYSQL_USER=root
    - MYSQL_DATABASE=names
    - MYSQL_ROOT_PASSWORD={{alphanumeric|8}}

ACCESSING THE IN-BROWSER TERMINAL FOR THE RUNNING 
CONTAINERS

A command prompt icon should be available next to the containers’ names 
on the Live Apps page. This allows users to enter the container using a 
secure communication protocol through the agent message queue. A white 
list of commands can be defined by the Tenant Admin to ensure that users 
do not make any harmful changes on the running containers.

For the Tomcat deployment for example, you can use the command 
prompt to make sure that the Java WAR file was deployed under the  
/usr/local/tomcat/webapps/ directory.

FIGURE 6: CONTAINER TERMINAL REQUEST

JAVA CONTAINERIZATION

https://github.com/dchqinc/dchq-docker-java-example
https://github.com/dchqinc/dchq-docker-java-example
https://github.com/dchqinc/dchq-docker-java-solr-mongo-cassandra-example
https://github.com/dchqinc/dchq-docker-java-solr-mongo-cassandra-example


© DZONE, INC.   |   DZONE.COM

8

FIGURE 7: CONTAINER TERMINAL

MONITORING THE CPU, MEMORY & I/O UTILIZATION OF THE 
RUNNING CONTAINERS

Once the application is up and running, a user can monitor the CPU, 
Memory, & I/O of the running containers to get alerts when these 
metrics exceed a pre-defined threshold. This is especially useful when 
developers are performing functional & load testing.

A user can perform historical monitoring analysis and correlate issues 
to container updates or build deployments. This can be done by clicking 
on the *Stats** button. A custom date range can be selected to view CPU, 
Memory and I/O historically.

FIGURE 8: CONTAINER MONITORING

REDEPLOYING CONTAINERS WHEN A NEW IMAGE IS PUSHED 
INTO A DOCKER REGISTRY

A user can set up a container “re-deployment” policy that can be 
triggered when a new image is pushed into a Docker registry. This 
allows users to create continuous delivery workf lows based on Docker 
image builds. This can be done by clicking on the Actions menu of the 
running application and then selecting Redeploy. A user can then select 
the Registry and the name of the Repository.

FIGURE 9: CONTAINER REDEPLOY

ENABLING THE CONTINUOUS DELIVERY WORKFLOW WITH JENKINS

UPDATE THE WAR FILE OF THE RUNNING APPLICATION WHEN A BUILD IS TRIGGERED
Many developers may wish to update the running application 
server containers with the latest Java WAR file instead of re-

deploying containers. This may be a common practice in DEV/TEST 
environments. For that, DCHQ allows developers to enable a continuous 
delivery workf low with Jenkins. This can be done by clicking on the 
Actions menu of the running application and then selecting Continuous 
Delivery. A user can select a Jenkins instance that has already been 
registered with DCHQ, the actual Job on Jenkins that will produce 
the latest WAR file, and then a plug-in to grab this build and deploy it 
on a running application server. Once this policy is saved, DCHQ will 
grab the latest WAR file from Jenkins any time a build is triggered and 
deploy it on the running application server.

SCALING OUT THE TOMCAT APPLICATION SERVER CLUSTER

If the running application becomes resource constrained, a user can 
to scale out the application to meet the increasing load. Moreover, a 
user can schedule the scale out during business hours and the scale in 
during weekends for example.

To scale out the cluster of Tomcat servers from 1 to 2, a user can click on 
the Actions menu of the running application and then select Scale Out. 
A user can then specify the new size for the cluster and then click on 
Run Now.

FIGURE 10: CONTINUOUS DELIVERY

JAVA CONTAINERIZATION

FIGURE 11: CONTAINER REDEPLOY DETAILS.PNG



© DZONE, INC.   |   DZONE.COM

9

FIGURE 13: APP TIMELINE

Alerts and notifications are also available for when containers or hosts 
are down or when the CPU & Memory Utilization of either hosts or 
containers exceed a defined threshold.

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com 

SPONSORSHIP OPPORTUNITIES 
sales@dzone.comCopyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or 

transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0 

DZone communities deliver over 6 million pages each month to more than 3.3 million software 
developers, architects and decision makers. DZone offers something for everyone, including news, 
tutorials, cheat sheets, research guides, feature articles, source code and more. 

"DZone is a developer's dream," says PC Magazine.

AMJAD AFANAH is the Founder of DCHQ, a governance, deployment automation and lifecycle 
management platform for Docker-based applications. He previously worked at VMware and Oracle.

ABOUT THE AUTHOR

FIGURE 12: SCALE OUT

As the scale out is executed, the Service Discovery framework will be 
used to update the load balancer. For Apache HTTP Server, for example, 
a plug-in updates httpd.conf file to inject the application server container 
IP’s to ensure that the load balancer is routing traffic to the new 
application server containers added as part of the scale out.

An application time-line is available to track every change made to the 
application for auditing and diagnostics. This can be accessed from the 
expandable menu at the bottom of the page of a running application.

JAVA CONTAINERIZATION

http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

