
© DZONE, INC. | DZONE.COM

» Introduction

» Setting Up Your Raspberry Pi

» Accessing GPIO From Java

» Where to Go From HereC
O

N
T

E
N

T
S

IN T R O D U C T I O N

The Raspberry Pi is a powerful and inexpensive embedded
computing platform that has great community support. It is
powerful enough to run a full Linux operating system, comes with
Java SE pre-installed, and has digital input/output ports that you
can use to interact with LEDs, buttons, sensors, and motors.

You can use Java on any of the Raspberry Pi models from the
original Model B through the latest Model 3. Here is a list of all
the different Raspberry Pi models and their capabilities:

MODEL PROCESSOR MEMORY GPIO USB

Raspberry
Pi B

700Mhz 1 Core 256/512MB 28 2

Raspberry
Pi A

700Mhz 1 Core 256MB 28 1

Raspberry
Pi B+

700Mhz 1 Core 512MB 40 4

Raspberry
Pi A+

700Mhz 1 Core 256MB 40 1

Raspberry
Pi 2

900Mhz 4 Core 1GB 40 4

Raspberry Pi
Zero

700Mhz 1 Core 512MB 40 1

Raspberry
Pi 3

1.2Ghz 4 Core 1GB 40 4

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
D

Zo
ne

.c
om

/R
ef

ca
rd

z
229

JA
VA

 A
N

D
 R

A
SP

B
ER

R
Y

PI

The Raspberry Pi 2 features a faster processor with exactly the
same price point as the original Raspberry Pi B at 35 USD. One of
the very latest models, the Raspberry Pi Zero, has an even more
compact design than the Model A while keeping all the core
features including a host USB port, HDMI display output, and 40
GPIO pins. And all of these boards support running Java right
out of the box from the Raspbian distribution that the Raspberry
Pi Foundation supports.

S E T T IN G U P Y O U R R A S P B E R R Y P I

To setup your Raspberry Pi for the first time you will need the
following hardware:

• A Raspberry Pi of your choice (The Raspberry Pi 2 and
Zero are both great choices)

• microSD Card – Recommended to get the official
Raspberry Pi SD Card that includes the NOOBS installer

• Power Supply – A Micro USB power supply capable of at
least 700mA, but preferably 2A

• Display or TV – Any HDMI compatible display or TV
will work (You can also use composite on all the models
except the Zero)

• Keyboard and Mouse – A USB keyboard and mouse you
can use to configure the Pi. It is possible to get through
setup without a mouse, which is handy on the A, A+, and
Zero models that only have one USB port.

• HDMI Cable – To connect to your TV/Display. If you are
using the Zero make sure you have a cable with a mini
jack end or the appropriate adapter to full size HDMI.

FIGURE 1: RASPBERRY PI B+ WITH 40 GPIO PINS (TOP LEFT), 4 USB PORTS (TOP RIGHT), ETHERNET
(BOTTOM RIGHT), HDMI AND AUDIO/COMPOSITE (BOTTOM CENTER).

Connect Your Raspberry Pi and
Other Devices in One of ThingWorx's
Pre-Built IoT Device QuickStarts.

Learn how to build an IoT solution today!
thingworx.com/go/RaspberryPi

IOT APPLICATIONS WITH

Java and Raspberry Pi
BY STEPHEN CHIN

http://www.dzone.com?refcardz
http://www.refcardz.com
https://DZone.com/Refcardz
http://thingworx.com/go/RaspberryPi

http://thingworx.com/go/RaspberryPi

© DZONE, INC. | DZONE.COM

3 JAVA AND RASPBERRY PI

FIGURE 2: NOOBS INSTALLER SCREEN

Insert the SD Card with NOOBS on it, hook your Raspberry Pi up
to the keyboard/mouse and Display, and then power it on with the
Micro USB power supply. Upon doing this you should see a rainbow
boot logo followed by the NOOBS installer.

Choose a standard Raspbian distribution, which is a Debian variant
optimized for the Raspberry Pi. This also includes Oracle Java as part
of the distribution allowing you to start coding with Java right out of
the box. Installation takes around 20 minutes, so this is a good time
to grab some liquid Java.

After install is complete, press “Enter” to reboot and the Raspbian
operating system will load. On first boot you will be automatically
logged in and sent to the Raspberry Pi Configuration Tool (raspi-config).

FIGURE 3: RASPBERRY PI SOFTWARE CONFIGURATION TOOL (RASPI-CONFIG)

In the config tool you can change various options, but I would
recommend specifically tweaking the following:

• Password (2) – Default password is “raspberry” for the “pi”
user. Make sure to change this if you use the Raspberry Pi on
an unprotected network.

• Internationalisation Options (4) – The defaults assume you
use a UK keyboard layout. If you are using a US keyboard it is
highly recommended to change this or you will have trouble
typing special symbols like the # and @ characters.

• Advanced Options (8) – And in this submenu:

 • Overscan – If you have a modern Display you can turn this off
and reclaim your borders

 • Memory Split – If you plan to do any Java UI work (e.g. JavaFX),
set this to 128mb or higher

 • SPI – Recommended to enable this so you can use the SPI bus for
high speed communication with devices

 • I2C – Recommended to enable this so you can use the I2C bus,
which is what most sensors require

 • Serial – Recommended to disable this to free up the serial pins
for device communication (this option lets you connect via serial
port in to the Raspberry Pi for headless setup, which is no longer
required if you have made it this far)

Feel free to browse around and look through the other options, but
the ones highlighted above are what I recommend tweaking on your
first pass. You can always bring up the tool again by typing “raspi-
config” on the command line.

The last bit of setup I recommend is networking your Raspberry Pi
so you can access it from your computer via SSH. The easiest way to
do this is to plug it in via Ethernet in which case it will automatically
grab an IP address via DHCP. The IP address will print on startup, or
can be queried using the “ifconfig” command. You can also connect
to a wireless network using a USB wifi dongle.

To confirm you have everything working, reboot your Raspberry
Pi and login (or better yet connect via SSH over the network).
The default username and password are “pi” and “raspberry”.
To confirm you have Java working, type “java –version” on the
command prompt and it should tell you the exact Java SE Runtime
version that you have installed.

A C C E S S IN G G P I O F R O M J AVA
Two libraries are commonly used for accessing the GPIO pins on the
Raspberry Pi: Device I/O and Pi4J. The Device I/O library, which is
part of the OpenJDK project, provides a standard library for accessing
I/O pins across any embedded platform, including the Raspberry
Pi. The Pi4J library is an open-source library that is exclusive to the
Raspberry Pi. Here is a quick comparison of the two libraries:

DEVICE I/O PI4J

Open Source Yes Yes

Portable to Java ME Yes No

API Optimized for Java 8 Yes No

Support for New
Raspberry Pi Boards

Lagging Excellent

Advanced Features None
Button Debouncing,

Interrupt-based Listening

Extensible Providers for
Add-On Boards

No Yes

Low-Level GPIO Access No Yes

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

4

INSTALLING THE DEVICE I/O LIBRARY
Currently the Device I/O library is not released with the version of Java
on the Raspberry Pi. Also, there are no binary builds available, so you
have to build the library from source. Fortunately, this is a fairly easy
process and can be accomplished directly on the Raspberry Pi.

To start, download the source code from the OpenJDK Mercurial
repository by executing the following command from an SSH prompt
or the console on your Raspberry Pi:

sudo apt-get install mercurial

Next, clone the Device I/O library source code to your Raspberry Pi.
The following command creates a folder called dio in your current
working directory with the latest source code:

hg clone http://hg.openjdk.java.net/dio/dev dio

To build the source code, you need to run the make command on the
newly downloaded code. The build script also requires a few
variables to be set up so it knows where to access the Raspberry Pi
native libraries and the Java 8 JDK:

cd dio
export PI_TOOLS=/usr
export JAVA_HOME=/usr/lib/jvm/jdk-8-oracle-arm-vfp-hflt
make

Next, install it into the local Java Runtime Environment (JRE):

sudo cp -r build/deviceio/lib/* $JAVA_HOME/jre/lib

You will also need the libraries locally for your project. To do this you
can use any visual Secure Copy (SCP) or Secure FTP (SFTP) client,
such as Cyberduck. However, real geeks will do it from the command
line (this works out of the box in OS X or Linux). Unlike the other
commands, this one must be run from your desktop or laptop that is
connected to your Raspberry Pi:

scp pi@timerpi.local:~/dio/build/deviceio/lib/ext/dio.jar dio.jar

Note: Substitute your Pi IP address or hostname for timerpi.local.
Also, this command assumes that the dio folder was created in
your user home directory on the Raspberry Pi. If not, adjust the
path as appropriate.

To use the Device I/O library in your project, create a new Java
project called DioLed in NetBeans and add dio.jar as a compile-time
library. To access the library settings, choose File | Project Properties
(DioLed), click Libraries in the Categories pane, and make sure the
Compile tab is selected. Then click Add JAR/Folder and choose the
dio.jar file you copied over from the Raspberry Pi.

FIGURE 4: CONFIGURATION FOR THE DEVICE I/O LIBRARY IN NETBEANS

DEVICE I/O PIN ASSIGNMENTS
The Java Device I/O library uses the standard GPIO port assignments
as specified by the Motorola Broadcom chipset. The following
diagram shows a full list of all the ports, their numbers, and what
their functions are for the Raspberry Pi B+, A+, 2, and Zero.

FIGURE 5: GPIO PORTS FOR THE RASPBERRY PI B+, A+, AND 2 (DIAGRAM BY CHRISTOPHER G. STANTON;
SOURCE: WWW.ELEMENT14.COM/RASPBERRYPI.)

Even though there are 40 pins total, several of them are not usable
for GPIO since they supply power (3.3v/5v) or ground. Most of
the remaining pins can be used for GPIO, but may require some
configuration before they are accessible. Specifically:

• Pins 3 and 5 are for I2C By default, the I2C bus is disabled and
these pins can be used for GPIO. However, these have hard-
wired internal 1.8kΩ pull-up resistors to 3.3V.

• Pins 8 and 10 are for Serial UART These pins are reserved
for console serial communication by default, which needs to
be disabled if you want to use them for GPIO or to connect to a
serial device.

• Pins 19, 21, 23, 24, and 26 are for SPI This is another
communication bus for devices that is disabled by default, so
these pins can be used for GPIO.

• Pins 27 and 28 are for EEPROM These pins are designed for
identifying add-on boards stacked on top of the Raspberry Pi
and can’t be used for GPIO.

DEVICE I/O LIBRARY LED TEST
To demonstrate how to use the Device I/O library for output, we are
going to blink a light-emitting diode (LED). This is a great way to test
out your GPIO pins since it is a visible device that can be powered by
the current from the pins.

Connecting an LED to the Raspberry Pi GPIO pins just requires a
few jumper cables. To prevent the LED from being overloaded, we
also need a resistor that we can hook up in serial as shown in the
following wiring diagram.

SCRUM

JAVA AND RASPBERRY PI

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

5

FIGURE 6: AN LED WIRED TO THE RASPBERRY PI GPIO PINS

This is a simple circuit with a 68Ω resistor, an LED, and some wires.
Note that LEDs have a positive side and a negative side, usually
indicated by the positive lead (the anode) being slightly longer than
the negative lead (the cathode). If you hook up the LED backward, it
won’t damage it, but it won’t light up either, so make sure that you
hook up the longer end to the GPIO pin.

To turn this on and off with the Device I/O library, we need to create
three files:

• java.policy The policy file that grants permissions for us
 to use GPIO

• dio.properties Defines the pin setup for our application

• DioLed.java Our main Java code that will blink the LED

The policy file is really a legacy from the Java ME Device I/O API and
is intended for highly restricted environments where you want to
limit the access to peripherals, such as cell phones. For applications
running on small, embedded systems like the Raspberry Pi, you
will most often have control of the entire embedded device and not
be competing with other applications installed by end users, so a
permissive policy file is fine. The following code is a great boilerplate
permissions file to use for all your projects.

// grant all permissions for the DIO framework
grant {
 permission jdk.dio.DeviceMgmtPermission “*:*”, “open”;
 permission jdk.dio.gpio.GPIOPinPermission “*:*”,

“open,setdirection”;
 permission jdk.dio.gpio.GPIOPortPermission “*:*”;
 permission jdk.dio.i2cbus.I2CPermission “*:*”;
 permission jdk.dio.spibus.SPIPermission “*:*”;
 permission jdk.dio.uart.UARTPermission “*:*”;
};

The pin configuration file requires a little bit more customization
since you will often want to change which pins are used for input/
output and possibly add or remove features like serial, I2C, and SPI.
You can often take an existing pin configuration file and customize it
or pare it down to the features you need. For the simplest cases, it is
easy enough to create one from scratch as well. The following code
opens a single pin for output.

gpio.GPIOPin = initValue:0, deviceNumber:0, direction:1, mode:4,
trigger:3, predefined:true

1 = deviceType: gpio.GPIOPin, pinNumber:18

The first line defines the defaults for the gpio.GPIOPin device type.

Possible constants for direction (dir), mode, and trigger in Device I/O
property files are as follows:

DIR_BOTH_INIT_INPUT = 2;
DIR_BOTH_INIT_OUTPUT = 3;
DIR_INPUT_ONLY = 0;
DIR_OUTPUT_ONLY = 1;
MODE_INPUT_PULL_DOWN = 2;
MODE_INPUT_PULL_UP = 1;
MODE_OUTPUT_OPEN_DRAIN = 8;
MODE_OUTPUT_PUSH_PULL = 4;
TRIGGER_BOTH_EDGES = 3;
TRIGGER_BOTH_LEVELS = 6;
TRIGGER_FALLING_EDGE = 1;
TRIGGER_HIGH_LEVEL = 4;
TRIGGER_LOW_LEVEL = 5;
TRIGGER_NONE = 0;
TRIGGER_RISING_EDGE = 2;

There is also a bit of ceremony around how you need to configure
your NetBeans project to properly deploy the Device I/O
configuration files and refer to them from the run command. To
make sure your property and permission files are copied to the
output directory, you need to add an extra build post-compile step to
your NetBeans build.xml file.

<target name=”-post-jar”>
 <copy todir=”${dist.jar.dir}”>
 <fileset dir=”config” includes=”**”/>
 </copy>
</target>

The ant target assumes that both your java.policy and dio.properties
files are in a folder called config under the project root.

Once these files are configured to copy over to the build folder after
compilation, you also need to modify the java run command to make
use of them. To do this, open the Project Properties dialog, click Run
in the Categories pane, and enter the following VM Options:

-Djdk.dio.registry=dist/dio.properties -Djava.security.policy=dist/
java.policy

And finally the Java code to turn on and off the LED in a file called
DioLed.java.

public class DioLed {
 public static void main(String[] args) throws IOException,

InterruptedException {
 try (GPIOPin led = DeviceManager.open(1);) {
 for (int i = 0; i < 10; i++) {
 led.setValue(i % 2 == 0);
 Thread.sleep(500);
 }
 }
 }
}

Notice that this code is fairly clean and succinct. It uses a try-with-
resources block to open the GPIOPin as well as automatically close
it at the end. The function for setting the LED value is very
straightforward as well. One important thing to note is that the
GPIO number referenced in the open method is the ID in our dio.
properties file, not the Broadcom GPIO number!

USING PI4J
The Pi4J library is written by Robert Savage and based on the very
widely used WiringPi C library. Compared to the Device I/O library,
Pi4J has lots of features and is very easy to get started with.

JAVA AND RASPBERRY PI

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

6

To use Pi4J you just require one JAR file (pi4j-core.jar)—no
permissions, no property files, no custom JVM arguments.
However, you do require root access for the java process. To run
with root from NetBeans, you need to:

1. Choose Tools | Java Platforms.

2. Click your Raspberry Pi platform under the Remote Java SE tree.

3. Click the Exec Prefix field and enter a value of sudo.

PI4J PIN ASSIGNMENTS
By default, Pi4J uses the WiringPi pin assignments. The advantage of
this is that they are sequential and in the same location from revision
to revision of the Raspberry Pi boards. In practice this only matters
between revisions 1 and 2 of the Raspberry Pi B, because the Raspberry
Pi Foundation has standardized on the main header pin layout for all
subsequent boards, opting to add more pins to the header instead. Here
is a diagram showing the pin assignments to use with Pi4J.

FIGURE 7: PIN ASSIGNMENTS FOR THE PI4J LIBRARY (DIAGRAM BY ROBERT SAVAGE; SOURCE: PI4J.COM/
PINS/MODEL-B-PLUS.HTML.)

Pi4J also has the option to initialize pin assignments to the Broadcom
GPIO pin numbering. However, I don’t recommend changing this,
since it will confuse others who are familiar with the Pi4J library and
assume certain pin assignments.

PI4J LED TEST
To demonstrate the usage of the Pi4J library, we are going to recode
exactly the same LED test using the Pi4J library instead. However, the
setup of Pi4J is much simpler and the number of changes is minimal,
so this will be a breeze!

To start, create a new project called Pi4JLed as a Java project type.
Open the Project Properties dialog of your new project and go to the
Libraries category. Click Add JAR/Folder, and select the pi4j-core.jar
file. If you don’t already have this library, you can download it from
the Pi4J Project site here: pi4j.com.

FIGURE 8: PI4J PROJECT IN NETBEANS

Now you can start writing the code for triggering the LED. Here is the
same example with an LED blinking five times, coded using Pi4J libraries:

public class Pi4JLed {
 public static void main(String[] args) {
 GpioController gpio = GpioFactory.getInstance();
 GpioPinDigitalOutput led = gpio.

provisionDigitalOutputPin(RaspiPin.GPIO_01);
 for (int i = 0; i < 10; i++) {
 led.setState(i % 2 == 0);
 Gpio.delay(500);
 }
 gpio.shutdown();
 }
}

Here are some of the differences that you should take note of:

• There is no try block, because Pi4J doesn’t support auto-
closable for use with try-with-resources. However, it does
register shutdown hooks for you, so you can be lazy and let it
do the work for you.

• Pi4J requires initialization before the use of the first pin. Shutdown
is optional, but recommended if you don’t want the system to wait
for threads to time out, which can take up to 30 seconds.

• There are no exceptions in the Pi4J version! Pi4J doesn’t throw
IOExceptions that we have no idea how to recover from
(thankfully!) Also, rather than using Thread.sleep, there are
some nice convenience methods for this on the Pi4J GPIO class.

• The GPIO port is the same. Well, this is not a difference,
but it is a very important similarity by coincidence. We are

JAVA AND RASPBERRY PI

http://www.dzone.com?refcardz
http://pi4j.com

© DZONE, INC. | DZONE.COM

7

AUTONOMOUS DRONE
Hook up a quadcopter using a Raspberry Pi as the
controller to enable autonomous f light algorithms.

“MAGIC” RFID HAT
Read RFID tagged playing cards with an RFID/NFC
reader hooked up to the Raspberry Pi.

PORTABLE GAMING CONSOLE
Create a 100% Java-based gaming system using a
Raspberry Pi, touchscreen, GPIO buttons, and a 3D
printed case.

AND MORE!
These examples and more can be found in the
“Raspberry Pi with Java” title published by
McGraw Hill.

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

STEPHEN CHIN is the Lead Java Community
Manager at Oracle, author of Raspberry Pi with Java,
co-author of Pro JavaFX Platform, and JavaOne
Community Chair. He has keynoted numerous
Java conferences around the world including
JavaOne, where he is a 5-time Rock Star Award
recipient. Stephen is an avid motorcyclist who
has done several Pan-European evangelism tours,

interviewing hackers in their natural habitat and
posting the videos on nighthacking.com. When he
is not traveling, he enjoys teaching kids how to do
embedded and robot programming together with his
12-year-old daughter.

REVIEWED BY: Mark Heckler, @MkHeck

ABOUT THE AUTHOR

referring to Broadcom GPIO port 18 in both cases. This maps
to WiringPi port 1 (per the diagram in the previous section),
and we also happen to have slotted it into configuration 1 in
the dio.properties file. However, don’t rely on ports being the
same in general.

And there you have it. In a single section you were able to replicate
the same LED blinking code that took three sections of this chapter
to explain using the Device I/O library. Now we can move on to more
advanced examples for making use of the GPIO capabilities of the
Raspberry Pi.

W H E R E T O G O F R O M H E R E
Now that you have learned to code Java on the Raspberry Pi and
access the GPIO pins, a wealth of different project possibilities
become possible.

Here are just a few different ideas:

SELF DRIVING CAR
Take advantage of an infrared sensor to follow
a line, and distance sensor to stop when faced
with an obstacle.

JAVA AND RASPBERRY PI

http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://twitter.com/MkHeck

