
© DZONE, INC. | DZONE.COM

GETTING STARTED WITH
Apache JMeter

BY DMITRI TIKHANSKI

» Load Testing Today

» About Apache JMeter

» Getting Started With JMeter

» A Typical Workflow

» Reports and Metrics... and more!C
O

N
T

E
N

T
S

LOAD TESTING TODAY
Load testing has changed dramatically in recent years. Today the
quality of your testing has a direct impact on your business—you
have just three seconds for your website or mobile app to load before
you stand to lose up to 40% of your visitors.

These perpetually increasing customer expectations have
transformed load testing from an afterthought in the later stages
of the release cycle to a vital and integral part of the development
process. It’s more important than ever to apply reliable load testing
tools and processes to ensure your website or app will perform
exactly as expected under all circumstances.

ABOUT APACHE JMETER
Apache JMeter is an open-source tool designed to load test
functional behavior and measure performance. It can be used to
simulate heavy concurrent load on a network, object, or group of
servers to test their strength and analyze their overall performance.

KEY FEATURES
100% Pure Java: Runs on Mac, Linux & Windows.

Runs load and performance tests from various types of servers and
protocols, including:

• Web: HTTP, HTTPS

• SOAP / REST

• FTP

• Database via JDBC

• LDAP

• Message-oriented middleware (MQ, RabbitMQ, ActiveMQ) via JMS

• Mail: SMTP(S), POP3(S) and IMAP(S)

• MongoDB (NoSQL)

• Native commands or shell scripts

• TCP

Full Multithreading Framework: For concurrent sampling by
multiple threads and simultaneous sampling of different functions
by separate thread groups.

Highly Extensible Core:

• Pluggable Samplers: For unlimited testing capabilities

• Data Analysis & Visualization Plugins: For extensibility and
personalization

• Scriptable Samplers: Beanshell, BSF, and JSR 223-compatible
languages

Designed GUI: For faster building and debugging of test plans

Offline analysis/replay of test results

GETTING STARTED WITH JMETER
INSTALLING JMETER
Go to the latest production release (currently Apache JMeter 2.13)
JMeter is a pure Java application, so make sure you have the latest

G
et

 M
or

e
R

ef
ca

rd
z!

 V
is

it
 D

Zo
ne

.c
om

/R
ef

ca
rd

z
228

G
E

T
T

IN
G

 S
TA

R
T

E
D

 W
IT

H
 A

P
A

C
H

E
JM

E
TE

R

64-bit server JRE or JDK installed.

Scroll down and find the Binary to download to your computer.
When completed, move the file to the location you want to install
JMeter in, extract the file, navigate to the folder, and go to the bin
directory. In that directory, you’ll see a series of scripts which can
run JMeter in various modes. Now you have everything you need to
start up JMeter and begin working on your test plan.

A few things to note: JMeter 2.13 contains all the files you need to build
and run most types of tests, including Web (HTTP & HTTPS), JDBC,
Java, JUnit, FTP, etc. There are some exceptions when it comes to JDBC
and JMS testing. Check the Apache JMeter website for full details.

Plugins extend JMeter in many useful ways. The largest repository
is at jmeter-plugins.org/. See jmeter-plugins.org/wiki/Start for
more details.

Note: Mac OS X users can quickly install JMeter and all common
plugins in a single step with Homebrew: brew install jmeter
--with-plugins

ABOUT TEST PLANS
To launch JMeter, switch to the “bin” directory and type the following:

• For Mac/Linux/Unix: ./jmeter.sh

• For Windows: jmeter.bat

Once launched, you’ll see an empty test plan.

Try it Free

blazemeter.com

Run JMeter at Any Scale.
Super Fast. Super Easy.

http://www.dzone.com?refcardz
http://www.refcardz.com
https://DZone.com/Refcardz
http://jmeter.apache.org/
http://jmeter-plugins.org/
http://jmeter-plugins.org/wiki/Start/
http://info.blazemeter.com/freetrial?utm_source=refcard&utm_medium=dzone&utm_campaign=jmeterrefcard&utm_content=%20boxad

Deliver high performance
software at every stage,
every time.
Continuous software delivery depends on automated testing
with BlazeMeter, the world’s largest self-service testing
platform.

Run massively scalable, open source-based performance
tests on all of your apps, from classic web and mobile to
microservices and APIs, and validate performance at every
 software delivery stage.

Start testing now at

 blazemeter.com

https://www.blazemeter.com/?utm_source=refcard&utm_medium=dzone&utm_campaign=jmeterrefcard&utm_content=fullpagead%20

© DZONE, INC. | DZONE.COM

3 GE T T ING S TA R T ED W I T H

APACHE JMETER

If you don’t see the JMeter GUI, make sure you set the following:

• The JAVA_HOME environment pointing to the JRE or JDK
installation folder

• The JAVA_HOME/bin folder added to the PATH environment
variable

A test plan is basically the specification of the overall test settings and
an outline of the steps that JMeter should execute when it runs. You can
give it a name and add a comment for your own reference. To create a
complete test plan, you’ll need to set up one or more Thread Groups and
Samplers. It’s also best practice to add Timers, Configuration Elements,
Assertions, and Listeners. All of these components can be added and set
up within the test plan before you run it. To do this, right click on the
name of your test plan, select Add, and choose the component you want
to set up and configure.

Here’s a quick explanation of each component:

Thread Groups: This is where you specify the number of users that you
want JMeter to simulate when executing the test plan (one thread = one
simulated user). You can also set the Ramp-up Period to tell JMeter how
long it should take to reach the full number of threads chosen and the
Loop Count—the number of iterations for each user in the group.

Timers: The timer sets the duration of the delay between one request to
the other (e.g. navigating from the homepage to the pricing page).

Configuration Elements: These allow you to manage certain elements
(such as the cache and cookies) during the scope of the test. In order to
simulate a browser’s behavior, it’s best practice to add an “HTTP Cache
Manager” and an “HTTP Cookie Manager,” which work autonomously.

Samplers: The samplers perform the actual work in JMeter. Every
sampler (except for Test Action) generates requests that ultimately
receive a response that can be viewed in the Listeners. All results have
attributes (such as elapsed time, data size, success/fail, etc.). The most
commonly used sampler is the HTTP Request.

Assertions: Assertions allow you to define the pass/fail criteria for your
test. For example: let’s say you want to set the maximum duration in
milliseconds in which a test sample will be considered a “pass.” You can
set a Duration Assertion which will ensure that if any response lasts
longer than the value specified, the sample will be marked as “failed.”

The Response Assertion is by far the most popular, and covers 99% of your
needs. You can apply this assertion to test the response body, URL, headers,
messages, initial responses, and/or embedded resources/redirects. It
allows you to test regular expressions rather than text patterns—which
gives far more f lexibility. JMeter’s regular expression handling is much
like Perl, except that you do not enclose the expression in //’s.

JMETER ASSERTIONS: NAMES AND USAGE

Response Assertion

Covers 99% of your needs. Can be applied to test the
response body, URL headers, messages, single requests,
subrequests, and more. Allows you to test Regular
Expressions rather than text patterns—giving far more
flexibility.

Duration Assertion
Checks whether a response’s duration is less than a
predetermined time period (in milliseconds). If it doesn’t
fall within the scope, it will be marked as failed.

Size Assertion
Measures whether the response size matches the
anticipated size in bytes.

XML Assertion Checks the response for XML compliance.

Beanshell Assertion
Allows you to execute Beanshell code and conditionally
set the response status.

MD5Hex Assertion
Calculates the response’s MD5 checksum and compares
it to the expected value. Very handy for checking huge
responses.

HTML Assertion
Checks whether the response is valid HTML with the
JTidy parser.

XPath Assertion

Determines whether the response is valid XML and
checks DTD schema compliance. Can also be used to
ensure that the response has at least one match of an
XPath query.

XML Schema Assertion Validates the response against the XSD schema.

BSF Assertion
Allows the execution of arbitrary code in any language
supported by the Apache Bean Scripting Framework (BSF).

JSR223 Assertion
Allows the execution of arbitrary code in any language
supported in the Java Community Process Specification
Request 223.

Compare Assertion
Compares the results of requests; rarely used, as it
consumes a lot of resources and has a low number of
potential use cases.

SMIME Assertion
Checks that the response from the Mail Reader Sampler
is signed.

Listeners: These enable you to view the results of a sampler. These results
can be viewed as a tree, table, graph, or log file. You can add Listeners
anywhere in the test, just be aware that they will only collect data from
elements on the same level or below.

The most commonly used Listener is the View Results Tree. This
includes details on the requests and responses and presents all the test
plan results in a tree structure. Other listeners include the Aggregate
Report, Assertion Results, and Beanshell Listener.

BUILDING SCRIPTS
USING THE HTTP(S) SCRIPT RECORDER
You don’t have to manually build your scripts. You can use the JMeter
Proxy to record the actions that a user will perform on key paths in
your application. Then you can replay these actions at scale for your
performance tests. For example: on a retail site, you can record the
actions of a user searching for an item, adding it to the cart, and going
through the checkout process. Then you can test it at scale.

There are three steps for configuring JMeter’s recording processes:

1. Set up a Recording Controller in a New Thread Group
You need to create a place to capture the recorded interactions. To
do this, go to the test plan and set up a thread group by selecting

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

4

Add > Threads (Users) > Thread Group.

When you’re there, select Add > Logic Controller > Recording
Controller.

2. Set up the HTTP(S) Test Script Recorder Proxy in the Workbench
Add the HTTP(S) Test Script Recorder. Since the recording proxy is not
part of the script logic, put it in the WorkBench section of the script by
clicking Add > Non-Test Elements > HTTP(S) Test Script Recorder.

The recorder has loads of options, including the ability to filter out
images, style sheets, and JavaScript files. It’s not essential to capture
these elements, and you can keep the script clean by excluding these
URL patterns. To do this, just enter the URL pattern you want to
exclude and click the Add Suggested Excludes button underneath.

Note: As a more convenient alternative, you can also use the Recording
template. To do this, go to: File > Templates > Recording > Create.

3. Configure Your Browser to Send Traffic Through the Proxy
Now configure your browser to capture your actions. Firefox is
one of the easiest browsers to use, as it has a standalone proxy
configuration option. Here’s what you should do:

• Type “about: preferences” in the Firefox address bar to open the
control panel.

• Click Advanced in the sidebar and select the Network tab.

• Click the Settings button next to “Configure how Firefox connects to
the Internet.” This will open the proxy controls.

• Go back to JMeter and take note of the port setting in the HTTP(S)
Test Script Recorder.

• Go back to Firefox and add localhost and that same port number in
the Manual Proxy Configuration.

• Click OK.

• Go back to JMeter, go to the HTTP(S) Test Script Recorder in your Test
Plan tree, and click the Start button (go ahead and accept JMeter’s
temporary security certificate).

Congratulations! You’re now in recording mode. Now browse the site
that you want to test, taking all the actions that a user would take (e.g.
Homepage > Pricing > Checkout). All these actions are placed into the
Recording Controller—and this becomes your test script.

When you’re done, just return to JMeter and click the Stop button in the
HTTP(S) Test Script Recorder. Don’t forget to save the script by clicking
File > Save Test Plan and giving it a name.

A TYPICAL WORKFLOW
Once you’ve setup your test plan (as outlined above), you’ll probably want
to follow a two step process:

1. Run a test in the GUI mode with a single/low thread count and
listeners added and enabled. This will enable you to check that it’s
operating as desired and troubleshoot if necessary.

2. Run from the non-GUI command line mode with listeners disabled
or removed (as outlined below).

RUNNING JMETER
RUNNING YOUR FIRST LOAD TEST IN NON-GUI MODE

You can run a JMeter test from a single machine or in distributed mode.

Running a Test from a Single Machine
The JMeter GUI is designed for developing and debugging tests, so it’s
inadvisable to run a high-volume load test here. Always use the non-GUI
command line mode to run the test itself. Here’s the format you should use:

Tip: Make sure you disable all listeners when running the tests, as many
of them use up a lot of memory. You can open the test_results.jtl file with
the listener of your choice after the test ends.

COMMAND LINE SHORTCUTS

-n Specifies JMeter is to run in non-gui mode

-t The name of the JMX file that contains the Test Plan

-l The name of JTL file to log the sample results on

-j The name of the JMeter run log file

-R The list of remote servers (run the test in the specified remote servers)

-H The proxy server hostname or IP address

-P The proxy server port

Running a Distributed JMeter Test
Sometimes a single JMeter host doesn’t have enough CPU or RAM to
create the required load. In such cases, you have two options:

1. Local Area Network (LAN)-Based Tests
Here you launch JMeter in a clustered mode. In this mode, you have the:

• Master: the system running the JMeter GUI, which controls the test.

• Slave: the system running the JMeter server. This takes commands
from the GUI and sends requests to the target system.

• Target: the webserver you’re stress testing.

The master controller initiates the test on multiple slave systems.
View the step by step guide here: http://jmeter.apache.org/
usermanual/jmeter_distributed_testing_step_by_step.pdf.

But there are problems with this method; the number of JMeter
“Slaves” you have is limited by the number of physical or virtual
machines in your intranet. For this reason, many users opt for the
unlimited scalability of cloud-based distributed testing.

2. Cloud-Based Tests
If you want unlimited scalability, you need to find a way to run
JMeter in the cloud.

The benefits here are that you can run hundreds of load and
performance tests in parallel, and at a massive scale, from
geographically distributed users.

SCRUM

GE T T ING S TA R T ED W I T H

APACHE JMETER

jmeter -n -t /path/to/test_script.jmx -l /path/to/test_results.jtl

http://www.dzone.com?refcardz
http://jmeter.apache.org/usermanual/jmeter_distributed_testing_step_by_step.pdf
http://jmeter.apache.org/usermanual/jmeter_distributed_testing_step_by_step.pdf

© DZONE, INC. | DZONE.COM

5

Although this isn’t offered within JMeter itself, it’s easy to find cloud-
testing platforms and companies that enable full integration with the
open source tool. Just search for JMeter in the Cloud and see.

Starting the Test
Now you can start load testing! To double-check the slave systems are
working, open up JMeter.log in notepad. If it’s working correctly, you
should see the following in the log:

Jmeter.engine.RemoteJMeterEngineImpl:Starting backing engine

LOGGING AND ERROR MESSAGES
All application-level audit entries go into the JMeter log file—the main
source of troubleshooting information. To view the log file, go to Options
> Log Viewer. You’ll see this in the bottom pane on the main JMeter
window. If you’re in GUI mode, you’ll see the number of error messages
in the top-right corner. The log file also records information about the
test run and can be very useful when determining the cause of an error.

A Typical JMeter Log File

Errors in the JMeter test itself (such as Assertions failures) are shown in
the JTL log file. You can also see these in a more user-friendly format in
the Listener that you set up (For example: the View Results Tree Listener).

It’s important to set the actions you want JMeter to take if there’s an
error. To do this, go to your thread group, and you’ll see an option called
“Actions to be taken after a Sampler Error.” Here you can choose to
continue with the test, start the next thread loop, stop the thread, stop
the test, or stop the test now.

DEBUGGING
You could argue that debugging is one of the most important software
development practices. If software doesn’t work immediately upon
coding, you need to detect bugs and fix them.

Here are a few useful JMeter debugging methods:

Real Time Sampler/Expression Debugging
Testing an expression with the RegExp Tester (which is in the View
Results Tree Listener) shows you that the expression is correct and will
work when you run a test. However, sometimes a test will run well with
the RegExp Tester but won’t work when you run the actual test. This is
usually due to dynamic content.

In such cases, it’s easy to find the problem with the Debug Sampler. Just
add the Debug Sampler before View Results Tree and run the test. After the
test is completed, open up View Results Tree and select Debug Sampler.

The Debug Sampler has three options:

1. JMeter Properties
2. JMeter Variables
3. System Properties

JMeter Variables should be true to debug Post Processors. If you want
to debug a sampler, you need to add “Debug PostProcessor” as a child
item. This prints sampler properties, which will help you find the actual
problem in the sampler.

Debugging With Fake Sampler Generation
The Dummy Sampler is a plugin that can generate fake samplers with
defined values. This sampler is useful when you have very complex
scripts, or when running a test will take you too much time. You just
need to copy and paste “Response data” into the Dummy Sampler. When
you run the test, the Dummy Sampler will generate a sampler with the
pasted response data.

Create a new test and add “Thread Group,” “jp@gc - Dummy Sampler,”
and “View Results Tree.” Before running it, increase the number of users
and run the test.

With this plugin, you can choose to view the latency, response time,
response code, and response data—without any network activity.

Debugging JMeter Elements
You can debug all the items in the test tree by printing the debug log.
Here’s how:

1. Uncomment jmeter.loggerpanel.display=true in the
jmeter.properties file. This change will open a log viewer every time
JMeter is started.

2. In the test tree select any item that you want to see the debug
information for.

3. Click the Help menu and then Enable debug. Run the test to see the
debug information.

4. Create a simple test with “HTTP Request” and add “HTTP Cache
Manager.” Select HTTP Cache Manager click Help > Enable debug.
Click Options > Log Viewer to see the log message. Now change the
loop count to three and run a test.

GE T T ING S TA R T ED W I T H

APACHE JMETER

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

6

You’ll now be able to see the debug log of the HTTP Cache Manager in
the Log Viewer. To disable printing the debug information, select HTTP
Cache Manager and click Help > Disable debug.

CONFIGURING JMETER
If you want to modify your JMeter properties, you should modify
user.properties in the /bin directory. Alternatively, you can create your
own copy of jmeter.properties and then specify it in the command line.

PARAMETERIZATION
It’s vital that your load-testing tool can read dynamic data from external
sources. If you’re testing the system with a large number of users, you
need to make sure that JMeter can handle different types of external
data inputs and pass the extracted data to the virtual users’ threads.
Parameterization allows you to run load tests with dynamic data.

Instead of hard-coding certain parameters in the test plan, you can make
your JMeter test-data-driven by populating the properties and variables
from various sources, including:

• The command-line arguments or properties’ files (e.g. you set the
application under test host as “jmeter -Jhost=www.example.com”
and access it as “${__P(host,)}” in the HTTP Request samplers)

• The CSV files via the CSV Data Set Config test element of the
CSVRead() function

• Arbitrary file types via the FileToString() or StringFromFile()
functions

• Databases via JDBC test elements

CORRELATIONS
Dynamic data like those mentioned above (and more) often cause
problems in your script—even if your app appears to be functioning
properly. With JMeter, there are three steps you need to take for each
value you need to parameterize:

1. Identify the Value. With every request you capture in a JMeter
recording, the request parameters are presented clearly in a text
box—and they are often labeled something like “auth-token” or
their value is a long string of random alphanumeric characters, like
“h83ke0d8kgb8xow9cxynb84jSK.”

2. Find Out Which Requests Issue the Value. For example: an
authentication token is probably issued in the response to the
login request. However, it’s not always the immediately preceding
request that issues the value. In such cases, take a look at JMeter’s
Results Tree to inspect the responses.

3. Use a Regular Expression Extractor with a pattern that matches
the expected content. Taking the example above, this might appear
in the text as: <auth-token=“h83ke0d8kgb8xow9cxynb84jSK”>, in

which case one easy regex would be “auth-token=(.*)”>. The
parentheses tell JMeter to retain the value found inside them, and
then places that value into the Reference Name you supplied for the
extractor, which we may call something like “authenticity_token.”

The JMeter variable format would then be ${authenticity_token}, so you
finally go and replace the original captured value wherever it appears in
subsequent requests with the variable, and you’re good to go.

REPORTS AND PERFORMANCE METRICS
For an overview of the summary statistics— such as the total number of
requests executed, failures percentage, throughput in requests/time, and
KB/second—use the JMeter Aggregate Report Listener.

Here’s how:

1. Open the JMeter GUI.

2. Add the Aggregate Report Listener (it can be added everywhere).

3. Click the Browse button in the listener and locate your .jtl test
results file.

PERFORMANCE METRICS & THEIR EXPLANATIONS

Label

The label of the sample. If "Include group name in label?"
is selected, then the name of the thread group is added as
a prefix. This allows identical labels from different thread
groups to be collated separately if required.

Samples The number of samples with the same label.

Average The average time of a set of results.

Median
The time in the middle of a set of results (i.e. 50% of the
samples took no more than this time; the remainder took at
least as long).

90% Line
90% of the samples took no more than this time. The
remaining samples at least as long as this.

Min The shortest time for the samples with the same label.

Max The longest time for the samples with the same label.

Error % The percentage of requests with errors.

Throughput

The Throughput is measured in requests per second/minute/
hour. The time unit is chosen so that the displayed rate is at
least 1.0. When the throughput is saved to a CSV file, it is
expressed in requests/second (e.g. 30.0 requests/minute is
saved as 0.5).

KB/Sec The throughput measured in Kilobytes per second.

GE T T ING S TA R T ED W I T H

APACHE JMETER

http://www.dzone.com?refcardz

© DZONE, INC. | DZONE.COM

7

4. Add the Cookie Manager (unless your app specifically doesn’t
use cookies)

5. Filter Out Irrelevant Requests When Using the HTTP(S) Test
Script Recorder

6. Include User Variables

7. Reduce the Drain on Resources
For example: use the non-GUI mode, use fewer Listeners, only use
Listeners while scripting and debugging, use CSV output rather
than XML, only save the data you need, and use as few Assertions
as possible.

8. Avoid Scripting Wherever Possible.
Try using JMeter’s built-in test elements and functions. If you have
to script, use the JSR223 test elements and the Groovy language.

9. Parameterize Tests

10. Don’t Modify the JMeter.properties File
Copy the property from jmeter.properties and modify its value in
user.properties. This will make it easier for you to migrate to the
next version of JMeter.

BROWSE OUR COLLECTION OF FREE RESOURCES, INCLUDING:

RESEARCH GUIDES: Unbiased insight from leading tech experts

REFCARDZ: Library of 200+ reference cards covering the latest tech topics

COMMUNITIES: Share links, author articles, and engage with other tech experts

JOIN NOW

DZONE, INC.
150 PRESTON EXECUTIVE DR.
CARY, NC 27513

888.678.0399
919.678.0300

REFCARDZ FEEDBACK WELCOME
refcardz@dzone.com

SPONSORSHIP OPPORTUNITIES
sales@dzone.com

Copyright © 2016 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. VERSION 1.0

DZone communities deliver over 6 million pages each month to more than 3.3 million software
developers, architects and decision makers. DZone offers something for everyone, including news,
tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

DMITRI TIKHANSKI is an accomplished Quality

Assurance Engineer. He specializes in testing automation

and performance testing, with hands-on experience

in various vertical markets, including: E-commerce,

Enterprise Content Management, Telecom, and Banking.

A huge fan of free and open source software, Dmitri’s

motto is: “Whatever can be done through technology

should be done through technology.”

ABOUT THE AUTHOR

BEST PRACTICES

That’s it—you’re almost ready to start testing!

Just a few more things to bear in mind:

ASK YOURSELF THESE KE Y QUESTIONS

1. What do we expect the normal load (average number of users) to be?

2. What is our peak number of users likely to be?

3. What days and times should we load test our applications (e.g.
if the testing crashes our servers, when will it affect the least
number of people)?

4. What are we trying to achieve?

FOLLOW THESE BEST PR AC TICES

1. Always Use the Latest JMeter Version

2. Use the Correct Number of Threads

3. Use the Non-GUI Mode to Run Large Scale Tests

GE T T ING S TA R T ED W I T H

APACHE JMETER

http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com

