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Context

Abstract e

Since the early days of LISP, functional programming (FP) has
evolved into a solid paradigm for producing software.

How did this happen? A look into the past shows how FP has
been inspired by category theory.

The use of monads in main-stream FP surely is one of the
“turning points”, admitted even by category-theory non
aficionados.

This tutorial talk addresses recent interest in adjunctions as a
generic device for structuring and reasoning about FP code.
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Algebras L

Functional programming is a data driven style of programming —
programs react to input data by delivering output data.

Clearly, one needs to know
e how to generate the output data.
* how to inspect the input data (i.e. how it is built).

Invariably, data are generated in an algebraic manner, i.e. using
operators of some algebra:

A<"—FA
Example: the Peano algebra

[zero,succ]

No=——1+Np

builds natural numbers, for zero _ = 0 and succ n = n -+ 1.
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9,
Functors o e

F is an (endo)functor in some category, typically S (our name for
the category of sets and functions between sets).

Quite often functional programs arise as homomorphisms between
input and output F-algebras:

A<—FA

[l) 1

B<TFB

As is well known, such F-homomorphisms form a category Cg
whose objects are the algebras themselves.
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. )
Homomorphisms N6 e

Example: the function (nx) which multiplies a natural number by
some given n is the following (14)-homomorphism:

[zero,succ]

[zero, succ] No=————1+No
(nx)l (nx)l lidHnX)
(zero, (n+)] B ooy B

Multiplication happens because the output algebra is n-times
faster than the input one — it runs (n+) while the input runs
(1+):

nx0=0
nx(l+m)y=n+nxm

Another way to write the same is the for-loop:
(nx) = for (n+)0
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- )
Initial algebras W

For many F the category Cg has initial objects HUF <~ F LUF -

Example: Peano algebra iny, = [zero, succ] is initial for F = (1+)
(e = No).

The unique F-homomorphism from the initial UF < F UE to

any other algebra A<"—F A is written (a)):

i NF<7iFMF
k= (|a|)l & kJ/ J/Fk
a A<——F—FA

It is termed catamorphism of a or fold over a.
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Catamorphisms e

Another example:

F X =1+ Ax X for some fixed set A
g = A* (finite sequences of A s)
in = [nil, cons]

where
nil — =[] (empty sequence)
cons (a,x) = a: x (sequence construction).

Catamorphism length = (|[zero, succ - m3]|) computes the length of
a sequence, for m (a, x) = x.

Algebra [zero, succ - 3] is the composition of the Peano algebra
[zero, succ] with natural transformation o = id + m» between the
two functors.
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9,
Not yet there -
However, many programs fall outside these schemas, for instance:

add (0,y) =y
)

add (1+x,y) =1+ add (x,y)

— not a catamorphism because it has two inputs;

sq0=0
sq(1+x)=2x+1+sqx

— not a catamorphism because [zero, (2 x + 1+)] is not a
(1+)-algebra (it depends on x);

msq 0 = return 0
msq (1 + x) =do {y <« msq x; print x; return (2 x+ 1+ y)}

— what 777



Algebras

Not yet there o

The following problems can be identified:
e In Ny 2dd_ Np x Ng there is extra context information in
the input, that is, instead of A<'— pir one has
A< L (1g) for some functor L.
e In Np S Np the output algebra needs to access the input

x (catamorphisms lose the input too quickly!)

e In 10 (No) <= Ny there is a monadic effect on the output

(printing + calculating the output), that is, instead of

A<f— UF one has M A < UF for some monad M.



Mendler

Mendler style .

The second observation suggests the so-called Mendler-style for
catamorphisms:

MF<$FIU,F x-in=W¥ x

under the requirement that V is a natural transformation. In

general, given category C and endofunctor C L C , we shall

assume some C (F X, A) Y c (X, A) such that
(WF)-Fh=W(f h)

holds (naturality of W on X).

nnnnnn
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Mendler style I

Can we be sure that equation
x-in=WVx (1)
for any W as above has a unique solution?

The answer is yes, noting that there is an isomorphism between
algebras A<2—F A and natural transformations

C(FX,A)<Y—C(X,A): from A<2—F A we derive
V,x=a -Fx
and from some given VW derive F-algebra (V id) — recall

(Wf)-Fh=WV(f-h)
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Mendler style W

Let us denote such a solution to x - in = W x by (V| and get
re-assured of its uniqueness:

x-in=WV x

& { naturality: W x=(Vid)-Fx }
x-in=(Vid)-Fx

& { catamorphism }
x = (V id)

=3 {  choice of notation above }
x = (v)

O

Example: for b i = (Af — [i, b- f]) where i x = i for every x.
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Calculational properties N6 e

FP has a long tradition of relying on calculational rules. From
x=(V) & x-in=Vx (2)
we infer rules such as the cancellation rule,
(W) -in = v (W)
the reflexion rule,
id=(V) & Vid=in
the fusion rule,
h-(®) = (V) < h-(®f) =WV (h-f)

etc., all useful in FP transformation, optimization and so on.
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Mendler style with context e

Recall “counter-example”

add (0,y) =y
add (1+x,y) =1+ add (x,y)

We can write the same as
add - [zero x id, succ x id] = [mp, succ - add|
that is

add - (inn, X id) = [m2, succ - add] - distl

where iny, = [zero, succ] and Ax C+ B x C <— L (A+B)x C
is the obvious isomorphism.
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Mendler style with context e

Clearly:

add - iny, X id = [mo, succ - add] - dist/
—_———

L iny, & add

In general, let functor L X = X x C be given, where object C
captures the context which surrounds the input in

L ur L jp <2 L (F pif)
X\L Xi %
B B

Does x - (L in) = ® x have a unique solution?
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L in for left adjoint 6 e
Adjunctions:
C \o
P
L 4 |R D (L A, B) = C (AR B)
/ _—_ >
D A
In the example:
/S\ uncurry
< TT—
(XC)\A/‘(‘C) S(AxC,B) = S(A, BY)
~— 7

curry
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Mendler style + adjunction L
x-(L in) x
B=—"L(F ug) = B<""L (F p)
& { isomorphism X }
A (x+(Lin A (P x
RE<UEM) e R E
& { L+ R — X naturality }
A x)-in AP) x
RBE<M  p e = RB<U F
& { Xisinjective (\° -\ =id) }
A x)-in AD-XA°) (X x
RB<¥F/£F — RBL#F,UF

— overleaf
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Mendler style + adjunction L

A x)-i
RB&FMF — RB

& { @) forx:=Ax,V=X-d-)°}

A®2A°) (A x
( ) ( )F,uF

N A \©
RB~ 2 = R0 4

& { isomorphism X\° }

A° (A-P-A°

Altogether:
x-(Linj)=¢x & x=(?), & Ax=(1-d-X°) (3)
where (®)), abbreviates A° (- ® - A\°).
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Calculation properties (extended) e
From
x-(Lin)=dx & x= (), (4)

we infer extended rules such as the cancellation rule,
(@), - (Lin)=® (&),

the reflexion rule,
Lin=9¢id & id=(®),

the fusion rule,
h- (@), = (W), <= h-(® )=V (h-F)

and others, which generalize what we had before (cf. Id - Id,
A=id.)
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9,
Two examples B

From

add - iny, x id = [mp, succ - add] - dist/
—_———

L inNO ¢;Tjd
adjunction
S \ A°=uncurry
- T
(xC)(% 19 S(AxC,B) = S(A, BY)
/ e
S

grants unique solution add such that \ add is function®

A add - zero = id
A add - succ = (succ-) - (X add)

!Details in the annex.
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. . )
More interesting example e

By primitive recursion,

sq0=20

sq(1+x)=2x+1+sqx
rewrites to

sq0=0

sq(14+n)=odd n+sqn

odd 0 =1

odd (14+n)=2+odd n

leading to mutual recursion. Can we calculate unique solutions to
mutually recursive systems of equations?
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Adjunction A H (x) .
S X f=(m1-f,mo-f)
A(%\m (5xS)(AA(BC) =  S(ABxC)
S xé W

where A A= (A, A) and A f = (f, ) enables us to pair the two
equations,

(sq, 0dd) - (A iny,) = ([zero, add - (sq, odd)], [one, (2+) - odd|)

d (sq,odd)

and therefore, naming sqodd = A (sq, odd)
sqodd - inyy = (A - P - \°)
v

Then (next slide):
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Adjunction A H (x)
sqodd - iny, = (V id) - (id + (sq, odd))
We just have to calculate V id:
v id
= {1}
A (@ (3° id))
= { X f=(m Fimf) }
A (® (m1,72))
= { definition of ¢ }
A ([zero, add - (71, m2)], [one, (2+) - m2])
= { Af.e)=(fg)}
([zero, add] , [one, (2+) - m2])

References

nnnnnn
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Adjunction A H (x) e
This leads to the adjoint solution

sqodd 0 = (0,1)
sqodd (1 + n) = (s + 0,2 + o) where (s,0) = (sq, odd) n

which can also be written (functionally) as
sqodd = for loop (0, 1) where loop (s,0) = (s + 0,2 + o)
interestingly very close to the same program written in C:

int sqodd (int a) {

int s =0;int o =1;int J;
for(j=1,/<a+1,jH#H){s+=00+=2;}
return s;

1%
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. . )
More adjunctions 0 e

For a comprehensive account and many more examples see the
main reference in the field:
Ralf Hinze. Adjoint folds and unfolds-an extended study.
Science of Computer Programming, 78(11):2108-2159,
2013. ISSN 0167-6423. URL
http: //www. sciencedirect. com/science/
article/pii/S0167642312001396 .

This also covers the dual case — final algebras and corresponding
morphisms (‘unfolds’).


http://www.sciencedirect.com/science/article/pii/S0167642312001396
http://www.sciencedirect.com/science/article/pii/S0167642312001396

Monads

9,
Monads o

Note the FP-pragmatic view of an adjunction: a too complex
input gets simpler by “complicating” the output.

Also recall that adjunctions

C \° id
R RC L(IRC)=——=C
Ll 4R k:/\fT LkT f
N/

D A LA

define monads in a natural way — M = R - L is a monad:

=R (\° id) n=X\ id

M (M X) MX <" X
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Monads o

Monads are very important in functional programming — they

help in handling too complex outputs, e.g. M A< e for
some monad M — as we have identified above.

Examples are M X = P X (non-deterministic programs),

M X = D X (distributions with finite support in probabilistic
programs), M X = (X x C) (state monad arising from
(xC) - (__€), for programs with internal state), etc etc

However, the concept still bewilders the programming community
(next slide).
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H 0 7" @,
The monadic “curse” :-) e

that once someone learns
what monads are and how to
use them, they lose the ability
to explain it to other people”

“Monads [...] come with a v ‘ l\‘
curse. The monadic curse is ‘
. ot

(Douglas Crockford: Google
Tech Talk on how to express
monads in JavaScript, 2013)

Douglas Crockford (2013)
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. . . )
Kleisli categories e

It has become practical to reason about monadic programs not in
the original category C but rather in the associated Kleisli
category Cpy arising from adjunction

LX=X | [RX=MX
Lf=n-f Rf=p-Mf

where M (M X) > M X <1— X is the monad of interest:
= A
L<—|>R Cw(AB) =~  C(AMB)
Cwm I

By the way —“folk” FP notation for R f is (in Haskell syntax):
Rfx = do{a« x;fa}
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. . . )
Kleisli categories e

(Enriched) Kleisli categories offer powerful frameworks for
reasoning about FPs, namely:
e Category of binary relations — cf. powerset monad —
homsets = Boolean algebras
e Category of stochastic matrices — cf. distribution monad
— cf. (typed) linear algebra.
Currently studying calculational properties offered by Kleisli
categories concerning our starting point, but now extended with a
monad on the output:

L pi¢ Ly <=L (F u)
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Epilogue e

FP relies on a few ingredients which put the paradigm at the
forefront of program development:

e higher order functions (i.e. exponentials)

¢ polymorphic functions (i.e. natural transformations)
e parametric types, that is, functors

o effect-full types, that is, monads.

Its categorial basis makes possible — and this is rare in the
software sciences — an Algebra of Programming.



Monads

Epilogue e

Galois connections first and adjunctions now are improving our
understanding of the theory behind FP.

What looked different in the past is being unified in a beautiful
piece of engineering mathematics.

Can these mathematics be scaled up to large-scale software
production?

A long way to go, still...



)
Of® st

Annex
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Running example e

Solving

add - iny, X id = [m2, succ - add] - distl
—_————

L iy, ® add
for add:
(curry add) - iny, = curry ([m2, succ - add|] - distl)
& { exponencials: exf g=f-g }
(curry add) - iny, = ex [m2, succ - add] - (curry distl)
& { curry distl = [curry iy, curry i] }

curry add - zero = ex [my, succ - add] - (curry iy)
curry add - succ = ex [mp, succ - add] - (curry i)
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| O,
Running example v

& { coproducts }

curry add - zero = curry
curry add - succ = curry (succ - add)

& { exponentials }

curry add - zero = id
curry add - succ = (succ-) - (curry add)

N {1}

curry add - iny, = [id, (succ-) - (curry add)]

& {3}
curry add = {[id, (succ-) - (L)])

(Higher order solution.)
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