
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282868977

Why category theory matters: a functional programmer’s perspective

Conference Paper · June 2015

CITATIONS

0
READS

670

1 author:

Some of the authors of this publication are also working on these related projects:

Refinement View project

José Nuno Oliveira

INESC TEC and Univ. Minho, Braga

117 PUBLICATIONS 796 CITATIONS

SEE PROFILE

All content following this page was uploaded by José Nuno Oliveira on 16 October 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/282868977_Why_category_theory_matters_a_functional_programmer%27s_perspective?enrichId=rgreq-00f5bab79346f114445fd185455cade4-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2ODk3NztBUzoyODUxMjcyNDM1MTc5NTRAMTQ0NDk5MTA0MDQ0Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/282868977_Why_category_theory_matters_a_functional_programmer%27s_perspective?enrichId=rgreq-00f5bab79346f114445fd185455cade4-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2ODk3NztBUzoyODUxMjcyNDM1MTc5NTRAMTQ0NDk5MTA0MDQ0Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Refinement-3?enrichId=rgreq-00f5bab79346f114445fd185455cade4-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2ODk3NztBUzoyODUxMjcyNDM1MTc5NTRAMTQ0NDk5MTA0MDQ0Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-00f5bab79346f114445fd185455cade4-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2ODk3NztBUzoyODUxMjcyNDM1MTc5NTRAMTQ0NDk5MTA0MDQ0Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Oliveira34?enrichId=rgreq-00f5bab79346f114445fd185455cade4-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2ODk3NztBUzoyODUxMjcyNDM1MTc5NTRAMTQ0NDk5MTA0MDQ0Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Oliveira34?enrichId=rgreq-00f5bab79346f114445fd185455cade4-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2ODk3NztBUzoyODUxMjcyNDM1MTc5NTRAMTQ0NDk5MTA0MDQ0Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Oliveira34?enrichId=rgreq-00f5bab79346f114445fd185455cade4-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2ODk3NztBUzoyODUxMjcyNDM1MTc5NTRAMTQ0NDk5MTA0MDQ0Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jose_Oliveira34?enrichId=rgreq-00f5bab79346f114445fd185455cade4-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg2ODk3NztBUzoyODUxMjcyNDM1MTc5NTRAMTQ0NDk5MTA0MDQ0Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Why category theory matters: a functional
programmer’s perspective.

J.N. Oliveira

Inesc Tec & University of Minho

AMS/EMS/SPM 2015 Meeting
FCUP, Porto

Special Session 7, 13th June 2015, Room M107

Context Algebras Mendler Monads Annex References References

Abstract

Since the early days of LISP, functional programming (FP) has
evolved into a solid paradigm for producing software.

How did this happen? A look into the past shows how FP has
been inspired by category theory.

The use of monads in main-stream FP surely is one of the
“turning points”, admitted even by category-theory non
aficionados.

This tutorial talk addresses recent interest in adjunctions as a
generic device for structuring and reasoning about FP code.

Context Algebras Mendler Monads Annex References References

Algebras

Functional programming is a data driven style of programming —
programs react to input data by delivering output data.

Clearly, one needs to know

• how to generate the output data.

• how to inspect the input data (i.e. how it is built).

Invariably, data are generated in an algebraic manner, i.e. using
operators of some algebra:

A F A
aoo

Example: the Peano algebra

N0 1 + N0
[zero,succ]oo

builds natural numbers, for zero = 0 and succ n = n + 1.

Context Algebras Mendler Monads Annex References References

Functors

F is an (endo)functor in some category, typically S (our name for
the category of sets and functions between sets).

Quite often functional programs arise as homomorphisms between
input and output F-algebras:

a

h
��

A

h
��

F A
aoo

F h
��

b B F B
b

oo

As is well known, such F-homomorphisms form a category CF

whose objects are the algebras themselves.

Context Algebras Mendler Monads Annex References References

Homomorphisms

Example: the function (n×) which multiplies a natural number by
some given n is the following (1+)-homomorphism:

[zero, succ]

(n×)
��

N0

(n×)

��

1 + N0
[zero,succ]oo

id+(n×)

��
[zero, (n+)] B 1 + B

[zero,(n+)]
oo

Multiplication happens because the output algebra is n-times
faster than the input one — it runs (n+) while the input runs
(1+):

n × 0 = 0
n × (1 + m) = n + n ×m

Another way to write the same is the for-loop:

(n×) = for (n+) 0

Context Algebras Mendler Monads Annex References References

Initial algebras

For many F the category CF has initial objects µF F µF
ioo .

Example: Peano algebra inN0 = [zero, succ] is initial for F = (1+)
(µF = N0).

The unique F-homomorphism from the initial µF F µF
ioo to

any other algebra A F A
aoo is written (|a|):

k =

i

(|a|)
��
a

⇔

µF

k
��

F µF
ioo

F k
��

A F Aa
oo

It is termed catamorphism of a or fold over a.

Context Algebras Mendler Monads Annex References References

Catamorphisms

Another example:

F X = 1 + A× X for some fixed set A
µF = A? (finite sequences of A s)
in = [nil , cons]

where

nil = [] (empty sequence)
cons (a, x) = a : x (sequence construction).

Catamorphism length = (|[zero, succ · π2]|) computes the length of
a sequence, for π2 (a, x) = x .

Algebra [zero, succ · π2] is the composition of the Peano algebra
[zero, succ] with natural transformation α = id + π2 between the
two functors.

Context Algebras Mendler Monads Annex References References

Not yet there

However, many programs fall outside these schemas, for instance:

add (0, y) = y
add (1 + x , y) = 1 + add (x , y)

— not a catamorphism because it has two inputs;

sq 0 = 0
sq (1 + x) = 2 x + 1 + sq x

— not a catamorphism because [zero, (2 x + 1+)] is not a
(1+)-algebra (it depends on x);

msq 0 = return 0
msq (1 + x) = do {y ← msq x ; print x ; return (2 x + 1 + y)}

— what ???

Context Algebras Mendler Monads Annex References References

Not yet there

The following problems can be identified:

• In N0 N0 × N0
addoo there is extra context information in

the input, that is, instead of A µF
foo one has

A L (µF)
foo for some functor L.

• In N0 N0
sqoo the output algebra needs to access the input

x (catamorphisms lose the input too quickly!)

• In IO (N0) N0
msqoo there is a monadic effect on the output

(printing + calculating the output), that is, instead of

A µF
foo one has M A µF

foo for some monad M.

Context Algebras Mendler Monads Annex References References

Mendler style

The second observation suggests the so-called Mendler-style for
catamorphisms:

µF

x

��

F µF
inoo

F x
���
�
�

Ψ x

wwoooooooooooooo

A F Aa
oo_ _ _ _ _ _ _

x · in = Ψ x

under the requirement that Ψ is a natural transformation. In

general, given category C and endofunctor C CFoo , we shall

assume some C (F X ,A) C (X ,A)
Ψoo such that

(Ψ f) · F h = Ψ (f · h)

holds (naturality of Ψ on X).

Context Algebras Mendler Monads Annex References References

Mendler style

Can we be sure that equation

x · in = Ψ x (1)

for any Ψ as above has a unique solution?

The answer is yes, noting that there is an isomorphism between

algebras A F A
aoo and natural transformations

C (F X ,A) C (X ,A)
Ψoo : from A F A

aoo we derive

Ψa x = a · F x

and from some given Ψ derive F-algebra (Ψ id) — recall

(Ψ f) · F h = Ψ (f · h)

Context Algebras Mendler Monads Annex References References

Mendler style

Let us denote such a solution to x · in = Ψ x by 〈|Ψ|〉 and get
re-assured of its uniqueness:

x · in = Ψ x

⇔ { naturality: Ψ x = (Ψ id) · F x }

x · in = (Ψ id) · F x

⇔ { catamorphism }

x = (|Ψ id |)

⇔ { choice of notation above }

x = 〈|Ψ|〉
�

Example: for b i = 〈|λf → [i , b · f]|〉 where i x = i for every x .

Context Algebras Mendler Monads Annex References References

Calculational properties

FP has a long tradition of relying on calculational rules. From

x = 〈|Ψ|〉 ⇔ x · in = Ψ x (2)

we infer rules such as the cancellation rule,

〈|Ψ|〉 · in = Ψ 〈|Ψ|〉

the reflexion rule,

id = 〈|Ψ|〉 ⇔ Ψ id = in

the fusion rule,

h · 〈|Φ|〉 = 〈|Ψ|〉 ⇐ h · (Φ f) = Ψ (h · f)

etc., all useful in FP transformation, optimization and so on.

Context Algebras Mendler Monads Annex References References

Mendler style with context

Recall “counter-example”

add (0, y) = y
add (1 + x , y) = 1 + add (x , y)

We can write the same as

add · [zero × id , succ × id] = [π2, succ · add]

that is

add · (inN0 × id) = [π2, succ · add] · distl

where inN0 = [zero, succ] and A× C + B × C (A + B)× C
distloo

is the obvious isomorphism.

Context Algebras Mendler Monads Annex References References

Mendler style with context

Clearly:

add · inN0 × id︸ ︷︷ ︸
L inN0

= [π2, succ · add] · distl︸ ︷︷ ︸
Φ add

In general, let functor L X = X × C be given, where object C
captures the context which surrounds the input in

L µF

x

��

L µF

x

��

L (F µF)
L inoo

Φ x
yytttttttttt

B B

Does x · (L in) = Φ x have a unique solution?

Context Algebras Mendler Monads Annex References References

L in for left adjoint

Adjunctions:

C

L

��
a

D

R

[[

D (L A,B)

λ

33
∼= C (A,R B)

λ◦
ss

In the example:

S

(×C)

��
a

S

(C)

[[

S (A× C ,B)

curry

33
∼= S(A,BC)

uncurry
rr

Context Algebras Mendler Monads Annex References References

Mendler style + adjunction

B L (F µF)
x ·(L in)oo = B L (F µF)

Φ xoo

⇔ { isomorphism λ }

R B F µF
λ (x ·(L in))oo = R B F µF

λ (Φ x)oo

⇔ { L a R — λ naturality }

R B F µF
(λ x)·inoo = R B F µF

(λ·Φ) xoo

⇔ { λ is injective (λ◦ · λ = id) }

R B F µF
(λ x)·inoo = R B F µF

(λ·Φ·λ◦) (λ x)oo

→ overleaf

Context Algebras Mendler Monads Annex References References

Mendler style + adjunction

R B F µF
(λ x)·inoo = R B F µF

(λ·Φ·λ◦) (λ x)oo

⇔ { (2) for x := λ x , Ψ = λ · Φ · λ◦ }

R B µF
λ xoo = R B µF

〈|λ·Φ·λ◦|〉oo

⇔ { isomorphism λ◦ }

B L µF
xoo = B L µF

λ◦ 〈|λ·Φ·λ◦|〉oo

Altogether:

x · (L in) = Φ x ⇔ x = 〈|Φ|〉λ ⇔ λ x = 〈|λ · Φ · λ◦|〉 (3)

where 〈|Φ|〉λ abbreviates λ◦ 〈|λ · Φ · λ◦|〉.

Context Algebras Mendler Monads Annex References References

Calculation properties (extended)

From

x · (L in) = Φ x ⇔ x = 〈|Φ|〉λ (4)

we infer extended rules such as the cancellation rule,

〈|Φ|〉λ · (L in) = Φ 〈|Φ|〉λ

the reflexion rule,

L in = Φ id ⇔ id = 〈|Φ|〉λ

the fusion rule,

h · 〈|Φ|〉λ = 〈|Ψ|〉λ ⇐ h · (Φ f) = Ψ (h · f)

and others, which generalize what we had before (cf. Id a Id,
λ = id .)

Context Algebras Mendler Monads Annex References References

Two examples

From

add · inN0 × id︸ ︷︷ ︸
L inN0

= [π2, succ · add] · distl︸ ︷︷ ︸
Φ add

adjunction

S

(×C)

��
a

S

(C)

[[

S (A× C ,B)

λ=curry

33
∼= S(A,BC)

λ◦=uncurry
rr

grants unique solution add such that λ add is function1{
λ add · zero = id
λ add · succ = (succ ·) · (λ add)

1Details in the annex.

Context Algebras Mendler Monads Annex References References

More interesting example

By primitive recursion,

sq 0 = 0
sq (1 + x) = 2 x + 1 + sq x

rewrites to

sq 0 = 0
sq (1 + n) = odd n + sq n

odd 0 = 1
odd (1 + n) = 2 + odd n

leading to mutual recursion. Can we calculate unique solutions to
mutually recursive systems of equations?

Context Algebras Mendler Monads Annex References References

Adjunction ∆ a (×)
S

∆

��
a

S× S

(×)

ZZ

(S× S) (∆ A, (B,C))

λ (f ,g)=〈f ,g〉
22

∼= S (A,B × C)

λ◦ f =(π1·f ,π2·f)
rr

where ∆ A = (A,A) and ∆ f = (f , f) enables us to pair the two
equations,

(sq, odd) · (∆ inN0) = ([zero, add · 〈sq, odd〉] , [one, (2+) · odd])︸ ︷︷ ︸
Φ (sq,odd)

and therefore, naming sqodd = λ (sq, odd)

sqodd · inN0 = 〈|λ · Φ · λ◦︸ ︷︷ ︸
Ψ

|〉

Then (next slide):

Context Algebras Mendler Monads Annex References References

Adjunction ∆ a (×)

sqodd · inN0 = (Ψ id) · (id + 〈sq, odd〉)

We just have to calculate Ψ id :

Ψ id

= { }

λ (Φ (λ◦ id))

= { λ◦ f = (π1 · f , π2 · f) }

λ (Φ (π1, π2))

= { definition of Φ }

λ ([zero, add · 〈π1, π2〉] , [one, (2+) · π2])

= { λ (f , g) = 〈f , g〉 }

〈[zero, add] , [one, (2+) · π2]〉

Context Algebras Mendler Monads Annex References References

Adjunction ∆ a (×)

This leads to the adjoint solution

sqodd 0 = (0, 1)
sqodd (1 + n) = (s + o, 2 + o) where (s, o) = 〈sq, odd〉 n

which can also be written (functionally) as

sqodd = for loop (0, 1) where loop (s, o) = (s + o, 2 + o)

interestingly very close to the same program written in C:

int sqodd (int a) {
int s = 0; int o = 1; int j ;
for (j = 1; j < a + 1; j++) {s + = o; o + = 2; }
return s;
};

Context Algebras Mendler Monads Annex References References

More adjunctions

For a comprehensive account and many more examples see the
main reference in the field:

Ralf Hinze. Adjoint folds and unfolds-an extended study.
Science of Computer Programming, 78(11):2108–2159,
2013. ISSN 0167-6423. URL
http: // www. sciencedirect. com/ science/

article/ pii/ S0167642312001396 .

This also covers the dual case — final algebras and corresponding
morphisms (‘unfolds’).

http://www.sciencedirect.com/science/article/pii/S0167642312001396
http://www.sciencedirect.com/science/article/pii/S0167642312001396

Context Algebras Mendler Monads Annex References References

Monads

Note the FP-pragmatic view of an adjunction: a too complex
input gets simpler by “complicating” the output.

Also recall that adjunctions

C

L

��
a

D

R

[[R C L (R C)
λ◦ id // C

A

k=λ f

OO

L A

L k

OO

f

;;xxxxxxxxx

define monads in a natural way — M = R · L is a monad:

M (M X)
µ=R (λ◦ id) // M X X

η=λ idoo

Context Algebras Mendler Monads Annex References References

Monads

Monads are very important in functional programming — they

help in handling too complex outputs, e.g. M A µF
foo for

some monad M — as we have identified above.

Examples are M X = P X (non-deterministic programs),
M X = D X (distributions with finite support in probabilistic
programs), M X = (X × C)C (state monad arising from
(×C) a (C), for programs with internal state), etc etc

However, the concept still bewilders the programming community
(next slide).

Context Algebras Mendler Monads Annex References References

The monadic “curse” :-)

“Monads [...] come with a
curse. The monadic curse is
that once someone learns
what monads are and how to
use them, they lose the ability
to explain it to other people”

(Douglas Crockford: Google
Tech Talk on how to express
monads in JavaScript, 2013)

Douglas Crockford (2013)

Context Algebras Mendler Monads Annex References References

Kleisli categories

It has become practical to reason about monadic programs not in
the original category C but rather in the associated Kleisli
category CM arising from adjunction{

L X = X
L f = η · f a

{
R X = M X
R f = µ ·M f

where M (M X)
µ // M X X

ηoo is the monad of interest:

C

L

��
a

CM

R

[[

CM (A,B)

λ

22
∼= C (A,M B)

λ◦
ss

By the way —“folk” FP notation for R f is (in Haskell syntax):

R f x = do {a← x ; f a}

Context Algebras Mendler Monads Annex References References

Kleisli categories

(Enriched) Kleisli categories offer powerful frameworks for
reasoning about FPs, namely:

• Category of binary relations — cf. powerset monad —
homsets = Boolean algebras

• Category of stochastic matrices — cf. distribution monad
— cf. (typed) linear algebra.

Currently studying calculational properties offered by Kleisli
categories concerning our starting point, but now extended with a
monad on the output:

L µF

x

��

L µF

x

��

L (F µF)
L inoo

Φ xyyttttttttt

M B M B

Context Algebras Mendler Monads Annex References References

Epilogue

FP relies on a few ingredients which put the paradigm at the
forefront of program development:

• higher order functions (i.e. exponentials)

• polymorphic functions (i.e. natural transformations)

• parametric types, that is, functors

• effect-full types, that is, monads.

Its categorial basis makes possible — and this is rare in the
software sciences — an Algebra of Programming.

Context Algebras Mendler Monads Annex References References

Epilogue

Galois connections first and adjunctions now are improving our
understanding of the theory behind FP.

What looked different in the past is being unified in a beautiful
piece of engineering mathematics.

Can these mathematics be scaled up to large-scale software
production?

A long way to go, still...

Context Algebras Mendler Monads Annex References References

Annex

Context Algebras Mendler Monads Annex References References

Running example

Solving

add · inN0 × id︸ ︷︷ ︸
L inN0

= [π2, succ · add] · distl︸ ︷︷ ︸
Φ add

for add :

(curry add) · inN0 = curry ([π2, succ · add] · distl)

⇔ { exponencials: ex f g = f · g }

(curry add) · inN0 = ex [π2, succ · add] · (curry distl)

⇔ { curry distl = [curry i1, curry i2] }{
curry add · zero = ex [π2, succ · add] · (curry i1)
curry add · succ = ex [π2, succ · add] · (curry i2)

Context Algebras Mendler Monads Annex References References

Running example

⇔ { coproducts }{
curry add · zero = curry π2

curry add · succ = curry (succ · add)

⇔ { exponentials }{
curry add · zero = id
curry add · succ = (succ ·) · (curry add)

⇔ { }

curry add · inN0 = [id , (succ ·) · (curry add)]

⇔ { }

curry add = 〈|[id , (succ ·) · ()]|〉

(Higher order solution.)

Context Algebras Mendler Monads Annex References References

References

Context Algebras Mendler Monads Annex References References

Ralf Hinze. Adjoint folds and unfolds-an extended study. Science
of Computer Programming, 78(11):2108–2159, 2013. ISSN
0167-6423. doi: http://dx.doi.org/10.1016/j.scico.2012.07.011.
URL http://www.sciencedirect.com/science/article/
pii/S0167642312001396.

J.N. Oliveira. Towards a linear algebra of programming. Formal
Aspects of Computing, 24(4-6):433–458, 2012. doi:
10.1007/s00165-012-0240-9.

View publication statsView publication stats

http://www.sciencedirect.com/science/article/pii/S0167642312001396
http://www.sciencedirect.com/science/article/pii/S0167642312001396
https://www.researchgate.net/publication/282868977

	Context
	Algebras
	Mendler
	Monads
	Annex
	References
	References

