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Abstract

Since the early days of LISP, functional programming (FP) has
evolved into a solid paradigm for producing software.

How did this happen? A look into the past shows how FP has
been inspired by category theory.

The use of monads in main-stream FP surely is one of the
“turning points”, admitted even by category-theory non
aficionados.

This tutorial talk addresses recent interest in adjunctions as a
generic device for structuring and reasoning about FP code.
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Algebras

Functional programming is a data driven style of programming —
programs react to input data by delivering output data.

Clearly, one needs to know

• how to generate the output data.

• how to inspect the input data (i.e. how it is built).

Invariably, data are generated in an algebraic manner, i.e. using
operators of some algebra:

A F A
aoo

Example: the Peano algebra

N0 1 + N0
[zero,succ]oo

builds natural numbers, for zero = 0 and succ n = n + 1.
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Functors

F is an (endo)functor in some category, typically S (our name for
the category of sets and functions between sets).

Quite often functional programs arise as homomorphisms between
input and output F-algebras:

a

h
��

A

h
��

F A
aoo

F h
��

b B F B
b

oo

As is well known, such F-homomorphisms form a category CF

whose objects are the algebras themselves.
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Homomorphisms

Example: the function (n×) which multiplies a natural number by
some given n is the following (1+)-homomorphism:

[zero, succ]

(n×)
��

N0

(n×)

��

1 + N0
[zero,succ]oo

id+(n×)

��
[zero, (n+)] B 1 + B

[zero,(n+)]
oo

Multiplication happens because the output algebra is n-times
faster than the input one — it runs (n+) while the input runs
(1+):

n × 0 = 0
n × (1 + m) = n + n ×m

Another way to write the same is the for-loop:

(n×) = for (n+) 0
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Initial algebras

For many F the category CF has initial objects µF F µF
ioo .

Example: Peano algebra inN0 = [zero, succ] is initial for F = (1+)
(µF = N0).

The unique F-homomorphism from the initial µF F µF
ioo to

any other algebra A F A
aoo is written (|a|):

k =

i

(|a|)
��
a

⇔

µF

k
��

F µF
ioo

F k
��

A F Aa
oo

It is termed catamorphism of a or fold over a.
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Catamorphisms

Another example:

F X = 1 + A× X for some fixed set A
µF = A? (finite sequences of A s)
in = [nil , cons]

where

nil = [ ] (empty sequence)
cons (a, x) = a : x (sequence construction).

Catamorphism length = (|[zero, succ · π2]|) computes the length of
a sequence, for π2 (a, x) = x .

Algebra [zero, succ · π2] is the composition of the Peano algebra
[zero, succ] with natural transformation α = id + π2 between the
two functors.
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Not yet there

However, many programs fall outside these schemas, for instance:

add (0, y) = y
add (1 + x , y) = 1 + add (x , y)

— not a catamorphism because it has two inputs;

sq 0 = 0
sq (1 + x) = 2 x + 1 + sq x

— not a catamorphism because [zero, (2 x + 1+)] is not a
(1+)-algebra (it depends on x);

msq 0 = return 0
msq (1 + x) = do {y ← msq x ; print x ; return (2 x + 1 + y)}

— what ???
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Not yet there

The following problems can be identified:

• In N0 N0 × N0
addoo there is extra context information in

the input, that is, instead of A µF
foo one has

A L (µF)
foo for some functor L.

• In N0 N0
sqoo the output algebra needs to access the input

x (catamorphisms lose the input too quickly!)

• In IO (N0) N0
msqoo there is a monadic effect on the output

(printing + calculating the output), that is, instead of

A µF
foo one has M A µF

foo for some monad M.
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Mendler style

The second observation suggests the so-called Mendler-style for
catamorphisms:

µF

x

��

F µF
inoo

F x
���
�
�

Ψ x

wwoooooooooooooo

A F Aa
oo_ _ _ _ _ _ _

x · in = Ψ x

under the requirement that Ψ is a natural transformation. In

general, given category C and endofunctor C CFoo , we shall

assume some C (F X ,A) C (X ,A)
Ψoo such that

(Ψ f ) · F h = Ψ (f · h)

holds (naturality of Ψ on X ).
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Mendler style

Can we be sure that equation

x · in = Ψ x (1)

for any Ψ as above has a unique solution?

The answer is yes, noting that there is an isomorphism between

algebras A F A
aoo and natural transformations

C (F X ,A) C (X ,A)
Ψoo : from A F A

aoo we derive

Ψa x = a · F x

and from some given Ψ derive F-algebra (Ψ id) — recall

(Ψ f ) · F h = Ψ (f · h)
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Mendler style

Let us denote such a solution to x · in = Ψ x by 〈|Ψ|〉 and get
re-assured of its uniqueness:

x · in = Ψ x

⇔ { naturality: Ψ x = (Ψ id) · F x }

x · in = (Ψ id) · F x

⇔ { catamorphism }

x = (|Ψ id |)

⇔ { choice of notation above }

x = 〈|Ψ|〉
�

Example: for b i = 〈|λf → [i , b · f ]|〉 where i x = i for every x .
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Calculational properties

FP has a long tradition of relying on calculational rules. From

x = 〈|Ψ|〉 ⇔ x · in = Ψ x (2)

we infer rules such as the cancellation rule,

〈|Ψ|〉 · in = Ψ 〈|Ψ|〉

the reflexion rule,

id = 〈|Ψ|〉 ⇔ Ψ id = in

the fusion rule,

h · 〈|Φ|〉 = 〈|Ψ|〉 ⇐ h · (Φ f ) = Ψ (h · f )

etc., all useful in FP transformation, optimization and so on.
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Mendler style with context

Recall “counter-example”

add (0, y) = y
add (1 + x , y) = 1 + add (x , y)

We can write the same as

add · [zero × id , succ × id ] = [π2, succ · add ]

that is

add · (inN0 × id) = [π2, succ · add ] · distl

where inN0 = [zero, succ] and A× C + B × C (A + B)× C
distloo

is the obvious isomorphism.
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Mendler style with context

Clearly:

add · inN0 × id︸ ︷︷ ︸
L inN0

= [π2, succ · add ] · distl︸ ︷︷ ︸
Φ add

In general, let functor L X = X × C be given, where object C
captures the context which surrounds the input in

L µF

x

��

L µF

x

��

L (F µF)
L inoo

Φ x
yytttttttttt

B B

Does x · (L in) = Φ x have a unique solution?
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L in for left adjoint

Adjunctions:

C

L

��
a

D

R

[[

D (L A,B)

λ

33
∼= C (A,R B)

λ◦
ss

In the example:

S

(×C)

��
a

S

( C )

[[

S (A× C ,B)

curry

33
∼= S(A,BC )

uncurry
rr
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Mendler style + adjunction

B L (F µF)
x ·(L in)oo = B L (F µF)

Φ xoo

⇔ { isomorphism λ }

R B F µF
λ (x ·(L in))oo = R B F µF

λ (Φ x)oo

⇔ { L a R — λ naturality }

R B F µF
(λ x)·inoo = R B F µF

(λ·Φ) xoo

⇔ { λ is injective (λ◦ · λ = id) }

R B F µF
(λ x)·inoo = R B F µF

(λ·Φ·λ◦) (λ x)oo

→ overleaf
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Mendler style + adjunction

R B F µF
(λ x)·inoo = R B F µF

(λ·Φ·λ◦) (λ x)oo

⇔ { (2) for x := λ x , Ψ = λ · Φ · λ◦ }

R B µF
λ xoo = R B µF

〈|λ·Φ·λ◦|〉oo

⇔ { isomorphism λ◦ }

B L µF
xoo = B L µF

λ◦ 〈|λ·Φ·λ◦|〉oo

Altogether:

x · (L in) = Φ x ⇔ x = 〈|Φ|〉λ ⇔ λ x = 〈|λ · Φ · λ◦|〉 (3)

where 〈|Φ|〉λ abbreviates λ◦ 〈|λ · Φ · λ◦|〉.
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Calculation properties (extended)

From

x · (L in) = Φ x ⇔ x = 〈|Φ|〉λ (4)

we infer extended rules such as the cancellation rule,

〈|Φ|〉λ · (L in) = Φ 〈|Φ|〉λ

the reflexion rule,

L in = Φ id ⇔ id = 〈|Φ|〉λ

the fusion rule,

h · 〈|Φ|〉λ = 〈|Ψ|〉λ ⇐ h · (Φ f ) = Ψ (h · f )

and others, which generalize what we had before (cf. Id a Id,
λ = id .)
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Two examples

From

add · inN0 × id︸ ︷︷ ︸
L inN0

= [π2, succ · add ] · distl︸ ︷︷ ︸
Φ add

adjunction

S

(×C)

��
a

S

( C )

[[

S (A× C ,B)

λ=curry

33
∼= S(A,BC )

λ◦=uncurry
rr

grants unique solution add such that λ add is function1{
λ add · zero = id
λ add · succ = (succ ·) · (λ add)

1Details in the annex.
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More interesting example

By primitive recursion,

sq 0 = 0
sq (1 + x) = 2 x + 1 + sq x

rewrites to

sq 0 = 0
sq (1 + n) = odd n + sq n

odd 0 = 1
odd (1 + n) = 2 + odd n

leading to mutual recursion. Can we calculate unique solutions to
mutually recursive systems of equations?
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Adjunction ∆ a (×)
S

∆

��
a

S× S

(×)

ZZ

(S× S) (∆ A, (B,C ))

λ (f ,g)=〈f ,g〉
22

∼= S (A,B × C )

λ◦ f =(π1·f ,π2·f )
rr

where ∆ A = (A,A) and ∆ f = (f , f ) enables us to pair the two
equations,

(sq, odd) · (∆ inN0) = ([zero, add · 〈sq, odd〉] , [one, (2+) · odd ])︸ ︷︷ ︸
Φ (sq,odd)

and therefore, naming sqodd = λ (sq, odd)

sqodd · inN0 = 〈|λ · Φ · λ◦︸ ︷︷ ︸
Ψ

|〉

Then (next slide):
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Adjunction ∆ a (×)

sqodd · inN0 = (Ψ id) · (id + 〈sq, odd〉)

We just have to calculate Ψ id :

Ψ id

= { }

λ (Φ (λ◦ id))

= { λ◦ f = (π1 · f , π2 · f ) }

λ (Φ (π1, π2))

= { definition of Φ }

λ ([zero, add · 〈π1, π2〉] , [one, (2+) · π2])

= { λ (f , g) = 〈f , g〉 }

〈[zero, add ] , [one, (2+) · π2]〉
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Adjunction ∆ a (×)

This leads to the adjoint solution

sqodd 0 = (0, 1)
sqodd (1 + n) = (s + o, 2 + o) where (s, o) = 〈sq, odd〉 n

which can also be written (functionally) as

sqodd = for loop (0, 1) where loop (s, o) = (s + o, 2 + o)

interestingly very close to the same program written in C:

int sqodd (int a) {
int s = 0; int o = 1; int j ;
for (j = 1; j < a + 1; j++) {s + = o; o + = 2; }
return s;
};
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More adjunctions

For a comprehensive account and many more examples see the
main reference in the field:

Ralf Hinze. Adjoint folds and unfolds-an extended study.
Science of Computer Programming, 78(11):2108–2159,
2013. ISSN 0167-6423. URL
http: // www. sciencedirect. com/ science/

article/ pii/ S0167642312001396 .

This also covers the dual case — final algebras and corresponding
morphisms (‘unfolds’).

http://www.sciencedirect.com/science/article/pii/S0167642312001396
http://www.sciencedirect.com/science/article/pii/S0167642312001396
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Monads

Note the FP-pragmatic view of an adjunction: a too complex
input gets simpler by “complicating” the output.

Also recall that adjunctions

C

L

��
a

D

R

[[ R C L (R C )
λ◦ id // C

A

k=λ f

OO

L A

L k

OO

f

;;xxxxxxxxx

define monads in a natural way — M = R · L is a monad:

M (M X )
µ=R (λ◦ id) // M X X

η=λ idoo
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Monads

Monads are very important in functional programming — they

help in handling too complex outputs, e.g. M A µF
foo for

some monad M — as we have identified above.

Examples are M X = P X (non-deterministic programs),
M X = D X (distributions with finite support in probabilistic
programs), M X = (X × C )C (state monad arising from
(×C ) a ( C ), for programs with internal state), etc etc

However, the concept still bewilders the programming community
(next slide).
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The monadic “curse” :-)

“Monads [...] come with a
curse. The monadic curse is
that once someone learns
what monads are and how to
use them, they lose the ability
to explain it to other people”

(Douglas Crockford: Google
Tech Talk on how to express
monads in JavaScript, 2013)

Douglas Crockford (2013)
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Kleisli categories

It has become practical to reason about monadic programs not in
the original category C but rather in the associated Kleisli
category CM arising from adjunction{

L X = X
L f = η · f a

{
R X = M X
R f = µ ·M f

where M (M X )
µ // M X X

ηoo is the monad of interest:

C

L

��
a

CM

R

[[

CM (A,B)

λ

22
∼= C (A,M B)

λ◦
ss

By the way —“folk” FP notation for R f is (in Haskell syntax):

R f x = do {a← x ; f a}
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Kleisli categories

(Enriched) Kleisli categories offer powerful frameworks for
reasoning about FPs, namely:

• Category of binary relations — cf. powerset monad —
homsets = Boolean algebras

• Category of stochastic matrices — cf. distribution monad
— cf. (typed) linear algebra.

Currently studying calculational properties offered by Kleisli
categories concerning our starting point, but now extended with a
monad on the output:

L µF

x

��

L µF

x

��

L (F µF)
L inoo

Φ xyyttttttttt

M B M B
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Epilogue

FP relies on a few ingredients which put the paradigm at the
forefront of program development:

• higher order functions (i.e. exponentials)

• polymorphic functions (i.e. natural transformations)

• parametric types, that is, functors

• effect-full types, that is, monads.

Its categorial basis makes possible — and this is rare in the
software sciences — an Algebra of Programming.
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Epilogue

Galois connections first and adjunctions now are improving our
understanding of the theory behind FP.

What looked different in the past is being unified in a beautiful
piece of engineering mathematics.

Can these mathematics be scaled up to large-scale software
production?

A long way to go, still...
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Annex
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Running example

Solving

add · inN0 × id︸ ︷︷ ︸
L inN0

= [π2, succ · add ] · distl︸ ︷︷ ︸
Φ add

for add :

(curry add) · inN0 = curry ([π2, succ · add ] · distl)

⇔ { exponencials: ex f g = f · g }

(curry add) · inN0 = ex [π2, succ · add ] · (curry distl)

⇔ { curry distl = [curry i1, curry i2] }{
curry add · zero = ex [π2, succ · add ] · (curry i1)
curry add · succ = ex [π2, succ · add ] · (curry i2)
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Running example

⇔ { coproducts }{
curry add · zero = curry π2

curry add · succ = curry (succ · add)

⇔ { exponentials }{
curry add · zero = id
curry add · succ = (succ ·) · (curry add)

⇔ { }

curry add · inN0 = [id , (succ ·) · (curry add)]

⇔ { }

curry add = 〈|[id , (succ ·) · ( )]|〉

(Higher order solution.)
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