
A Time-Driven Scheduling Model for Real-Time Operating Systems

E. Douglas Jensen, C. Douglass Locke, Hideyuki Tokuda

Computer Science Department
Carnegie-Me//on University, Pittsburgh, PA 15213

Abstract

Process scheduling in real-time systems has almost invariably
used one or more of three algorithms: fixed priority, FIFO, or
round robin. The reasons for these choices are simplicity and
speed in the operating system, but the cost to the system in
terms of reliability and maintainability have not generally been
assessed.

This paper originates from the notion that the primary
distinguishing characteristic of a real-time system is the concept
that completion of a process or a set of processes has a value to
the system which can be expressed as a function of time. This
notion is described in terms of a time-driven scheduling model
for real-time operating systems and provides a tool for
measuring the effectiveness of most of the currently used
process schedulers in real-time systems. Applying this model,
we have constructed a multiprocessor real-time system
simulator with which we measure a number of well-known
scheduling algorithms such as Shortest Process Time (SPT),
Deadline, Shortest Slack Time, FIFO, and a fixed priority
scheduler, with respect to the resulting total system values. This
approach to measuring the process scheduling effectiveness is
a first step in our longer term effort to produce a scheduler
which will explicitly schedule real-time processes in such a way
that their execution times maximize their collective value to the
system, either in a shared memory multiprocessing environment
or in multiple nodes of a distributed processing environment.

1. introduction
Process scheduling in a computer operating system is merely an
instance of an extensively studied problem from Operations
Research (OR), in which it takes the form of producing a
sequence of jobs which must utilize a common resource (e.g., a
lathe in a machine shop) such that some metric (e.g., number of
parts made in a day) is optimized (maximized or minimized). In

This work was supported in part by the USAF Rome Air
Development Center under contract number F306024H -C-0297,
the U.S. Naval Ocean Systems Center under contract number
N66001 -81 -C-0464, the U.S. Navy Office of Naval Research
under contract number N51 160-84-C-0484, and the IBM
Corporation, Federal Systems Division. The views and

conclusions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of RADC, NOSC, ONR,
IBM, or the U.S. Government.

the real-time operating system as well, the choice of process
scheduling algorithms to allocate CPUresources can have a very
important impact on the system performance as well as on the
reliability and maintainability of the system.

This paper is written from the context of the Archons project,

currently under way at Carnegie-Mellon University. Archons is
undertaking to create new resource management paradigms
which are as intrinsically decentralized as possible, then
applying them es the foundation of an experimental
decentralized real-time operating system which will then be
used in the design and construction of a “decentralized
computer”l’2’ 3, The process scheduler for this system

constitutes one of the critical research interests of the Archons

project, which will be expected to manage time resources to
ensure that the most important processes meet their time
constraints, even in the event of an overload cond ition4.

In the remainder of this section, we discuss real-time systems
and the current state of real-time process scheduling, while in
Section 2 we define our time-driven scheduling computational
model. In Section 3 we describe our experimental simulation
results, summarizing our results in Section 5.

1.1. The Scheduling Problem
Scheduling a set of processes consists of sequencing them on

one or more processors such that the utilization of resources
optimizes some scheduling criterion, Criteria which have
historically been used to generate process schedules include
maximizing process flow (i.e., minimizing the elapsed time for
the entire sequence), or minimizing the maximum lateness
(lateness is defined to be the difference between the time a
process is completed and its deadline). It has long been known5
that there are simple algorithms which will optimize certain such
criteria under certain conditions, but algorithms optimizing most
of the interesting scheduling criteria are known to be

6 indicating that there is no known efficientNP-complete ,
algorithm which can produce an optimum sequence. Clearly,
the choice of metric is crucial to the generation of a processing
sequence which will meet the goals of the system for which the
schedule is being prepared,

There are a number of significant differences between
scheduling as it is practiced in most applications of OR and
process scheduling in an operating system. In OR, scheduling
is traditionally performed statically, off-line, while in an operating
system, the information from which scheduling decisions must
be made is dynamic, suggesting that the best scheduling

112

CH2220-2/85/OOOO/011 2$01.0001985 IEEE

decisions should be made dynamically. In addition, classic OR

scheduling problems assume (for the sake of computational

simplicity, not particularly for realism) that all the jobs to be

scheduled and their processing time requirements, are available
at the beginmng of the sequence (t= O), and that new jobs will
not suddenly appear during processing, If a change in any data
involved in the scheduling decision (such as the arrival of a new

job) should occur, the previously computed sequence is
invalidated, and scheduling must be started over if optimality is
to be maintained. On the other hand, in the real-time operating
system environment, processes frequently arrive and depart

(i.e., are completed or terminated) at irregular intervals and have
stochastic processing times.

Real-time processes can be partitioned into two categories:

periodic and aperiodic. Periodic processes arrive at regular
intervals, while aperiodic processes arrive irregularly, but even

periodic processes can be terminated or undergo changes in
period due to application dependencies, resulting in a
constantly changing set of schedulable processes.

1.2. Real-Time Systems
Although many real-time systems have been constructed, the
fundamental differences between a real-bme system and other
computer systems have not always been clearly understood. It
is our thesis that the most Important difference between the real-
time operating system and other computer systems is that in a
real-hme system, the completion of a process has a value to the

system wh~ch varies with tirne7, Although the time to complete a
process is of some importance in all computer systems, in a
real-time system the response time is viewed as a crucial part of
the correctness of the app/~caflon soffware; a computation
which is late is very frequently no better, or perhaps even worse,
than one producing an incorrect result.

This time value is usually described in terms of deadlines by
which computations must be completed, and the deadlines are
generally traceable to the physical environment with which the
system must interact; for example, a reaction temperature
measurement must be completed in time to apply a correction in
a manufacturing system. Stated another way, the value to the
system for completing a process with a deadline is some high
constant value which abruptly drops to zero after the deadline.

Real-time systems have been divided into two classes: hard
8 Hard real-timereal -time systems and soft real -time systems .

systems are those whose deadlines must absolutely be met or
the system will be considered to have failed (and whose failure
might be catastrophic), while soft real-time systems allow for

some deadlines, at least occasionally, to be missed with only a
degradation m performance but not a complete failure.

Many existing real-time systems are being used in a number of
such diverse enwronments as space or airborne platform
management, factory process control, and robotics. These
involve several levels of real-time, characterized by the tightness
of their deadlines, and range from closed-loop sensor/actuator
systems (frequently implemented on microprocessors dedicated
to a small number of devices) to supervisory systems involving
human interaction to manage a complex command and control
environment.

1.3. Scheduling in Existing Real-Time Systems
In observing a number of existing real-time systems, we note the

characteristics found in the operating systems used managing
their manage resources in support of their real-time operation

(such operating systems are usually called executives since a

full operating system is not usually implemented in a real-time
system). Two primary characteristics of these operating

systems can be de$cribed:

● These operating systems are kept simple, with

minimal overhead, but also with minimal function.
Virtual storage is almost never provided; file systems
are usually either extremely limited or non-existent.
1/0 support is kept to an absolute minimum.
Scheduling is almost always provided by some
combination of FIFO (for message handling), fixed
priority ordering, or round. robin, with the choice
made by the operating system designer,

QSimple support for management of a hardware real-
time clock is provided, with facilities for periodic
process scheduling based on the clock, and timed

delay primitives.

Conspicuously missing from these systems at the operating
system level is any support for explicitly managing user-defined
deadlines, even though meeting such deadlines is the primary
characterisbc of the real-time application requirements.
Instead, these systems are designed to meet their deadlines by

attemptmg to ensure that the available resources exceed the
expected worst-case user requirements, and their
implementation is followed by an extensive testing period in an

attempt to verify that these requirements can be met under these
expected loads.

In fixed priority scheduler systems, deadline management is
attempted by assigning a high fixed priority to processes with
“important+’ deadlines, disregarding the resulting impact to less
“important” deadlines. During the testing period, these
priorities are (usually manually) adjusted until the system
implementer is convinced’ that the system “works”. This

approach can work only for relatwely simple systems, since the
fixed priorities do not reflect any time-varying value of the
computations with respect to the problem being solved, nor do
they reflect the fact that there are many schedulable sets of
process deadlines which cannot be met with fixed priorities. In
addition, implementers of such systems find that it is extremely
difficult to determine reasonable priorities, since, typically, each
individual subsystem implementer feels that his or her module is
of high Importance to the system. This problem is usually
“solved” by deferring final priority determination to the system
test phase of implementation, so the resulting performance
problems remam hidden until it is too late to consider the most
effective design solutions. This approach results not only in
real-time systems with frequently marginal performance, but
also in extremely fragile systems in the presence of changing
requirements.

A scheduling algorithm which is seldom used in pracbce has
some interesting properties, but also presents a serious pitfall.
A deadhne scheduler (i.e., a scheduler which schedules the
process with the closest deadline firstg) solves the problem of
missing otherwise schedulable deadlines due to the imposition
of fixed prionbes, but leaves other problems, most notably
transient overloads. Transient overloads occur not only as a
result of application and operating system design decisions, but
also as a consequence of normal system activity, including

113

interrupt processing, DMA cycle stealing, or blocking on

semaphoreslO. The deadline scheduler provides no reasonable
control over the choice of which deadlines must be delayed in
an overload, leading to unpredictable failures and resulting in an
impact on reliability and maintainability.

The value of a real process completion is well modeled by a step
function only in those few cases in which in which there is no
longer any value in completing the process after its deadline,

such as computing”a control parameter for a manufacturing step
which has already been completed. In many actual systems, the
value of completing a computation after its deadline may rapidly
decay but remain positive (e.g., being late on an aircraft
navigation update may result in a loss of positional accuracy,
while missing it altogether would merely exacerbate the loss
unless it became so late that it impacted making the next
update), or completing a computation before its deadline maybe
more or less desirable than completing it exactly at its deadline

(e.g., a satellite orbital insertion burn computation, which must
occur within a small time “window” around an optimal time). As
we show experimentally, process scheduling in the presence of

a (possibly transient) overload shows particularly well the
difficulty in producing a reasonable schedule with respect to
different process’ value functions. Determining an appropriate
value for a given process consists not only of simply assigning a
priority, but rather of defining the system value of completing it
at any time. This value is normally defined by the physical
application environment which the system must serve.

1.4. Evaluating a Real.Time Scheduler
Given that the primary characteristic of a~eal-time system is that
correctness is determined not only by what is done, but when it
is done, we propose to use a representation of a process

completion value to measure the algorithms commonly used or
considered for use in a real-time system. In particular, we will
simulate a real-time system in which each process has a value
expressed as a function of time which defines the value to the

system of completing that process at any time, and we will
“reward” the system with the value determined by that function

when the process terminates. A set of processes which arrive at
stochastically determined intervals (regular intervals for periodic
processes and Poisson arrivals for aperiodic processes) and

compete for a processing resource in a symmetric
multiprocessor will then be executed for a given period of time.

The sum of the resulting process values for all processes
requested during the execution period will then provide our
metric for determining the performance of each scheduling
algorithm under several conditions of loads, and with several
different value functions. This metric measures the long-term
(relative to the individual process computation times)
performance of the system with respect to its support of the
application-defined value of meeting time constraints, a direct
measure of the application real-time support provided.

2. Time-driven Scheduling Model
We define a computational model consisting of a set of
preemptible processes P resident in a computer with a single
shared memory and one or more processing elements. Each
process pi has a request time Ri, an estimated computation
interval Ci, and a value function Vi(t), where f is a time for which
the value is to be determined’. Figure 2-1 illustrates these
process attributes for a hypothetical process whose value

function is linearly decreasing prior to a critical time Di with an
exponential value decay. following Di. The process illustrated
depicts a process which has been dispatched shortly after its
request time and which has completed prior to its critical time
without being preempted.

h-----l

Ri Di

Figure 2-1: Process Model Attributes for Process i

Vi(t) defines the value to the system for completing Pi at time t.
The nature of Vi is determined by the range of scheduling
policies supported by the operating system, particularly with
respect to the handling of a processor overload in which some

critical times cannot be met. The value function could come
from either or both of two sources: the process implementer
who understands the requirements of the internal environment
as it affects that process, and the system architect who is aware

of the relationship between that process and the overall system,
including its external environment. For the purposes of this
paper, we assume that all sources of value information are
reflected in the value functions used.

We note that the existence and importance of a deadline for fli is

dependent on nature of its value function. The value function
can be said to define a critical time (also called a deadline if the
function is a step function) only if it has a discontinuity in the
function or its first or second derivative. Functions of this type
are characterized by a’ relatively rapid change in value with
respect to time, with the deadline case only an extreme example.

For example, the process illustrated in Figure 2-1, has a critical
time defined by the discontinuity in its first derivative at Dr For
convenience in the discussion of the simulator, we will actually
refer to a critical time as the time axis origin relative to which the
value function for a process will be computed, even if the
function has no discontinuity as described above.

The use of value functions as described in this model allows us
to describe both hard and soft real-time environments, and, in
particular, allows us to evaluate systems which mix deadlines of
both types in a single system. Since the value functions used in
this model may or may not explicitly define either a critical time
or a deadline, and the critical time may not actually constitute a
deadline, in the remainder of this paper we will avoid the use of
the word “deadline”, which implies the step value function.
Hence, we will refer to the time of the value function
discontinuity, if any, as its critical time.

The request time ~i has been defined in our simulation (see
Section 3) as an arbtrary time at which Pi has been requested to
be executed. The significance to the scheduler as we have
defined it is that the process is not schedulable prior to Pr
Following Pi, itremains schedulable until one of the following
conditions has occurred:

114

● It has com~leted,

● Its value function has become zero or negative.

We note that the value function maybe negative at Ri, not rising

above zero until a later time (see Section 3 for an example of
such a function).

Thus, as viewed by the process scheduler, the request time Ri
for a process may be either a future or a past time. If Ri is a
future time, the process is not currently schedulable, but its
attributes may be considered in the current computations of

load from which current scheduling decisions are made.

The computation time Cj is a random variable representing the
expected execution time to process Pi (estimated time remaining

if Pi has already begun processing), not including system
overhead or preemptions. The source of this value and its

distribution for a real operating system would be either the
programmer or an actual measurement by the system itself (see
Section 4), but here we will simply assume that it is available to
the scheduler. Clearly, the value function can be seen as a
definition of application scheduling policy, and although in a
real system not every policy would be subsumed in a single set

of value functions, in this paper, we will assume that the value
function completely defines the policies to be implemented by
the scheduler. The relationship between our value functions
and the global scheduling policy is a subject of continuing
research in this effort.

Given the potentially diverse set of value functions which could
be produced in a given system, we will show that none of the
normally used scheduling algorithms can consistently produce a
good schedule as the processing resources approach
saturation (see Section 3). As an example, see Figure 2.2 for an
example of four processes in a single processor with value
functions, for which the best choice of an execution sequence is
non-trivial. The figure shows the four value functions, and a

potential scheduling sequence such that each completes with a
high value. We will describe later the significance of such value
functions in the discussion of the experiments conducted.

Figure 2-2: Four “Typical” Processes with Value Functions

This model encompasses both periodic and aperiodic processes
in that any single execution of a periodic process can be
described as shown above in exactly the same way as for a
non-periodic process. The only difference is that the future

request times for a periodic process are known in advance. We
allow overlapping executions by allowing multiple instances of a
process to be simultaneously schedulable (we assume that

processes are reentrant).

It should be noted that precedence and consistency (e.g.,

processes involved in mutual exclusion) relations are not

addressed in this model at this time, since it has been assumed

that the scheduling algorithm will consider only processes which
are ready to be executed and for which a request time has been
determined, If one process is dependent upon completion of
another, the second process’ request time will not have been
determined until the first process has been completed.

3. Simulation Results

3.1. Real-Time Scheduling Simulator
To provide an environment in which various scheduling
algorithms can be evaluated with respect to their performance in

generating a high total system value, a simulator has been
constructed which provides an operating system environment in
which each of the scheduling algorithms can be executed and
evaluated.

The value functions to be used by the simulator are not
competely general forms, but rather are limited to a specific form
possessing characteristics making the expressiveness of the
value very flexible while allowing the analysis of the resulting
functions to be as tractable as possible. We define the value
function in two parts; the value prior to the critical time and the
value after the critical time, providing for a discontinuity at the
critical time if desired by the application designer. For each of
these two parts, five constants are used to define the value
function relative to the critical time using the expression:

V\[)= K1-t Kzi- KB~+ KAe-K5[

The simulator first uses a statistical model of a “typical” real-
time processor load to generate a set of processes, including
both periodic and aperiodic processes. The statistical model
defines a real-time workload based on experience with several
actual realtime systems with which this author is familiar. The
processor load generated can be varied to simulate both heavily
loaded systems and relatively lightly loaded systems. The nature
of this statistical load, including the process characteristics, the
simulated hardware characteristics, and the value functions, can
be easily modified during the experimentation allowing us to
evaluate a number of systems with different characteristics. It is
also possible to impose an additional “spike” load in which the
aperiodic arrival rate dramatically increases at certain periods
during the simulation, allowing us to determine scheduler
performance during transient overloads. Our test process
sequences will emphasize the overloaded condition, since that
is the condition of primary interest,

Once a set of processes has been constructed, the simulator
“executes” the processes, applying a statistical model to
generate the actual request times and computation times for
each process. Execution consists of iteratively calling the
selected scheduler for its decisions, “executing” the selected
process, updating the clock to the next important time (e.g., time
of arrival of a new process), then asking the scheduler for its
next decision.

3.1.1. A Set of Classical Algorithms
The simulator has the ability to make multiple runs sequentially
using an identical set of processes with identical values and
request times, using various “classical” algorithms. These

115

“classical” algorithms include

1. SPT. At each decision point, the process with the
shortest estimated completion time is executed.

2. Deadline. At each decision point, the process with
the earliest critical time (interpreted by this
algorithm as a deadline) is executed.

3. Slack. At each decision point, the process with the
smallest estimated slack time (elapsed time to the
critical time minus its estimated completion time) is
executed.

4. FIFO. At each decision point, the process which
has been in the request set longest is executed.

5. Random. At each decision point, a process is
chosen (with uniform probability) from the request

set and executed.

6. RandPRTY. At each decision point, the process
with the highest fixed priority is executed. In the
runs reported, this fixed priority was chosen to be
the same as the highest value reached by the
corresponding value function.

The simulator keeps a large number of statistics on each run,
including such parameters as the number of tardy processes,

the maximum lateness, the average lateness, and the total value
accumulated. This data is saved and reported for each real-time
run made in a simulation sequence, and is reported in a

statistical summary at the end of the simulation, resulting in the
data provided below.

3.1.2. A Pair of Interesting New Algorithms
In addition to these algorithms, two experimental algorithms
have been implemented, and have produced some initially
promising results which we include in the experiments
demonstrated here. An important part of our research effort

consists of the further development of algorithms such as these,
and the concepts behind them, as they apply to a real-time

system.

In these initial algorithms, we take advantage of three observed
value function and scheduling characteristics:

1. Given a set of processes (ignoring deadlines) with
known values for completing them, it can be shown
that a schedule in which the process with the
highest value density (V/C, in which V is its value
and C is its processing time) is processed first (i.e.,
a Value Density Schedule) will produce a total value
at every point in time at least as high as any other
schedule.

2. Given a set of processes with deadlines which can
all be met (based on the sequence of the deadlines
and the computation times of the processes), it can
be shown that a schedule in which the process with
the earliest deadline is scheduled first (i.e., a
Deadline schedule) will always result in meeting all
deadlines.

value occurring immediately prior to the critical
time.

Some of the implications of the:se observations are

c If no overload occurs, the deadline schedule will
have all deadlines met, and no higher total value will

be possible.

● If an overload occurs, and some processes must

miss their deadlines, tho Value Density Schedule
would produce a high value, but might miss some
deadlines which could otherwise have been met.

Our first algorithm (called the BEValuel algorithm in the
experimentation description, section 3.2) exclusively uses

observation 1 above, and is therefore a simple greedy algorithm
scheduling first the process with the highest expected value
density. This algorithm actually performs reasonably well in

many cases in which the value function is a step function or
rapidly decreasing following the critical time, in spite of the fact

that it makes no explicit use of the critical time itself. The critical
time does, of course, enter the algorithm through the expected
value computation, which uses the value function and the
assumed computation time distribution to compute the expected
value. This algorithm fails most notably in step function
situations in which no overload is present and a number of
processes with close deadlines are in the request set. In this
case, the processes with high value density will be run, quite
possibly preventing other processes from meeting their
deadlines even though all deadlines could have been met.

Our second algorithm is a modification of the simple deadline
algorithm, attempting to remove its most important failing; in an

overload the deadline scheduler will give priority to processes
whose deadlines cannot possibly be met, delaying other
processes which could still meet their deadlines. Therefore,
after computing the probability of an overload, we choose
processes with low value density as candidates for being
removed from an overloaded deadline schedule until a deadline

schedule is produced which has an acceptably low probability of
producing an overload.

This algorithm (called the BEValue2 algorithm in the
experimentation description, section 3.2), starts with a deadline-
ordered sequence of the available processes, which is then
sequentially checked for its probability of overload. At any point
in the sequence in which the overload probability passes a
preset threshold, the process prior to the overload with the
lowest value density will be removed from the sequence,
repeating until the overload probability is acceptable. This
algorithm seems generally to outperform BEValuel, since it
always meets deadlines as lonl~ as no overload occurs, and
transitions gradually into the same performance as BEValuel as
an overload condition worsens. In this algorithm, modifications
to the overload probability threshold can significantly affect its
overload performance; at extremes, a threshold of 100% results

in a pure deadline schedule, while a probability threshold of O%
results in a BEValuel schedule. For the experiments described
here, a threshold of 40% is used. Optimizing this threshold as
well and the other critical values used in the heuristics from
which BEValue2 is constructed are goals of our continuing
research in this area.

3. Most value functions of interest (at least among
those investigated at this time) have their highest

116

3.2. Experiments Executed

To test our hypothesis that the efficacy of a scheduling
algorithm in a real-time system can be measured with respect to
the key distinguishing characteristic of such systems, namely
that completing a process has a time-varying value to the

system, we have generated a set of simulation experiments
using several well-known scheduling algorithms. As with any

such set of measurements, this set”is necessarily incomplete,
but is intended to illustrate some of the characteristics which
would be observable with systems under several potential
conditions.

Each experiment described here was run on a simulated,

symmetric, shared-memory multiprocessor, with the number of
processing elements varying from one to four (thus testing the

schedulers under four load levels). All processes were
considered to be fully preemptible and the effects of context
switching and scheduling overhead were neglected. Thirty six
processes were selected, each with an individually determined
stochastic load assumed to be normally distributed and
characterized by its mean and standard deviation, The mean
loads of these processes were themselves approximately
normally distributed across the 36 processes, with a mean of
500 ms. and a standard deviation of 300 ins,, with the limitation
that the minimum process load was 1 ms. Figure 3-1 lists the
actual set of processes, showing for each its process ID, its
period (if it is periodic), its load charact&istics, and its critical
time.

As each simulation progressed, each process from this list was
requested at either the periodic rate, if it was a periodic process,
or using an exponential interarrival time with a mean of 10
seconds. In addition to these requests, additional aperiodic
processes arrived as a “spike” load with a mean interarrival time

of 1 second, exponentially distributed, every 10 seconds, with

the “spike” lasting 200 ms. This simulated set of requests
continued for 60 seconds of elapsed time, at the end of which
the requests ended and the unfinished processes in the request
set, if any, were completed by the multiprocessor, terminating
the simulation when the queue was empty. At the completion of
each process, its value was computed and the values from all
completed processes are summed, producing a final total value
over the 60 second request interval. No value was accrued for
processes not competed (i.e., aborted). As the list in Figure 3-1
shows, four of the processes were periodic; the total system
load from these four processes represented about 42% of the
total process load. This simulation resulted in the arrival of
abcmt 305 processes, including both periodic and aperiodic
processes.

Four value functions, illustrated in Figure 3-2, were used in
separate executions to compute the total value generated by
each of the scheduling algorithms under differing conditions of
perceived system value.

The first (VI), showing a constant value prior to the critical time
followed by an exponential decay after the deadline, represents

a case such as a vehicle navigation problem in which a position
update must be completed by a given time each cycle to provide

a specified precision, but if late, the resulting error can be
minimized by making up the computation, assuming the next
navigation cycle is not overrun. As the next cycle approaches,

the value of running the previous one becomes negligibly small.
The second (V2) represents a hard deadline process, in which
there is value to the system for completing it only if it precedes a

ID

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Period Mean
Load

0.474
0.045
0.580
0.516
0.492
0.133
0.627
0.251
0.859
0.520
0.574
0.217
0,920
0.737

1.731 0.247
0.515
0.748
0.696

5.762 0.782
0,555
0.805
0.051
0.684

11.119 0.827
0.408
0.001
0.894
0.754
0.387
0.658
0.249
0.459
0.650
0.498

3.663 0.245
0.130

Load Critical
u Tinre

0.058
0.009
0,159
0.141
0.132
0.034
0.129
0.044
0.271
0.181
0.080
0.027
0.166
0,135
0.069
0.067
0,345
0.248
0.229
0.088
0.197
0.003
0.166
0.215
0,133
0,000
0.185
0.166
0.099
0.141
0.103
0.112
0.100
0.152
0.045
0.041

0.683
0.128
1.746
1.267
1.069
0.193
1.402
0.444
1.894
0.762
1.405
0.674
2,752
1.749
0,618
1.159
2.160
1.390
1,260
1.422
2.490
0.148
1.583
1,932
1,254
0,002
2.126
2,119
1.166
1.606
0,562
1.409
1.788
0.714
0.618
0.322

Figure 3.1: Simulation Experiment Process List

i

V1

V3

\

“1---L2&
R D

Figure 3-2: Example Value Functions

fixed deadline, such as for certain sensor inputs, in which the
value to be read is no longer present if a fixed time interval is

exceeded. The third value function (V3) is constant prior to the
deadline, but drops off parabolically after the deadline,
representing a process similar to the hard deadline above, but

117

with a softer deadline as long as the process is not excessively

late (in this experiment, the value function drops past zero at
about 516 MS. following the critical time), The fourth function
(V4) is parabolic both before and after the critical time,
representing a process whose completion should be delayed
until after some arbitrary time, such as a satellite launch, in
which the desired orbit cannot be reached prior to a given time
or after a later time (in this experiment, these functions pass
zero approximately 516 ms. before and after the critical time).

In an actual system, it would be expected that each process in a
given application would have a distinct value function, but we
have used identically shaped value functions for every process
in the run to isolate the effects of multiple value function shapes
on scheduling quality, For each of the four value functions
chosen, four experiments were cortducted, with 1, 2, 3, and 4
processing elements each, representing average process loads

of 2460A, 123~o,82%, and 61Y., respectively, and each simulation
was repeated 15 times, averaging the computed parameters.
For each algorithm in each experiment, several parameters were

computed:

● Tots/ Va/ue(V7, v2, v3, v4) -- The sum of each of the

four value functions for each process computed at
its completion time, averaged over the 15 runs.

● Mean Preemptions -- The number of times a

running process is preempted by a more critical
process.

● Mean Lateness(ML)* -- The difference between the

actual process completion time and its critical time,
averaged over the 15 runs. This value is negative if
the process completes prior to its critical time, and

positive after the critical time.

● Maximum Lateness(MaxL) -. The largest lateness
value of the entire 60 second run, averaged over the
15 runs for which each simulation was repeated.

● Mean Tardiness(MT) -- The average of the nofl.

negative Iatenesses over the 15 runs.

● Number of Tardy Processes(NTP) -- The total
number of processes completing after their critical
times, averaged over the 15 runs.

and the results of this measurement for the standard algorithms
are graphically represented in Figure 3-3, while the more
specialized BEValuel and BEValue2 algorithms are represented
in figure 3-4. In these figures, each circle represents a particular
scheduling algorithm executing under a particular load. Within
each circle, each line represents one of the measurements
described above, with a longer line indicating that the

corresponding i,ieasurement was one of the best for that load
value, while a short line indicates that the corresponding
measurement was relatively poor. Although these measures are
all reported for each set of runs, the most important measures
from our perspective are the four value function results, V1, V2,
V3, and V4.

‘Value functions resulting in aborting proceaaes (i.e., all the value functions

used in the experiments reported here except the exponential decay function

[W]) produce meaningless values for the lateness and tardiness, so the reported

measurements for these are included only for runs which result in no abortions.

Processes whose value has passed below zero are aborted, and
the resulting system value is zero, reflecting the fact that they
produce no contribution to the system performance, This
abortion occurs for all algorithms tested,

3.3. Experimental Results from Standard Scheduling
Algorithms

There are a few observations which can be made from these
measurements across all runs. It should be noted that in no
case did the FIFO scheduler or the random scheduler generate
the best schedule, althoughl they produced acceptable

schedules when the system was sufficiently underloaded; it is
clear that neither of these would be the algorithm of choice
unless we were guaranteed that an overload condition could not

occur. Both of these algorithms are used extensively in certain
types of actual systems; FIFO is used for many message passing
schedulers, and random scheduling is effectively used for some
contention bus communications links (e.g., Ethernet). Similarly,
the fixed priority scheduler performed inconsistently, particularly
as the overload condition became more pronounced. Thus, of
these algorithms, the choice wouid be between the SPT and
Deadline scheduling algorithms, neither of which are widely
used in existing real-time system:s.

With respect to the observed value variations among the
different processor loads, the fir:;t observation is that, except for
the fourth value function (V4) runs (parabolic value functions
both prior to and following the critical time), the scheduling
function makes little or no difference when the system is lightly
loaded. Although in the u“m~erloaded case the deadline
scheduler generally shows the best performance in most of the
relevant measured parameters, the difference between the best
and worst among the six algorithms with respect to total value is
within about 5’%. on value functions VI, V2, and V3. As
expected, we note that the inserllsitivityto the algorithm is most
pronounced at the average load of 61%, and less so at 82%,
where the preference for the deadline and slack time schedulers
are more pronounced (and the difference between the best and
worst total values) is about 121’OA.This result confirms our
intuition that the scheduling algorithm used for a suitably
underloaded system is not usually an extremely critical factor.
The case with value function (V4) is radically different in that the
value functions indicated that the processes should have had
their executions delayed to achieve acceptable values, but none
of these algorithms took this effect into account. Such an effect
is typically overcome in existing real-time systems by the
application processes themselves introducing delays in their
processing, and relying on priori{ly to force the delayed process
to execute properly in its value function “window”.

The picture becomes more complex as the load increases to an
overload condition. At 123% overload, the deadline scheduler is
beginning to have considerable difficulty with VI, V2, and V3,
and the SPT scheduler seems to be performing somewhat
better. Even the ffxed priority scheduler is doing better than the

deadline scheduler. This effect, while perhaps not intuitive, can
be explained by noting that the SPT algorithm is designed to
complete the largest possible number of processes in a given
time interval, increasing the likelihood that the short processes
will complete prior to their deadhnes and resulting in a greater
number of processes doing so, therefore producing a higher
total value. The deadhne scheduler, while ensuring that
deadlines will be met if there is :wfficient processing capacity,
fails to satisfactorily handle an overload due to its propensity for

118

I -3A 9ACOL 19CW. Imw. fl’lw.
,_”u. L-T” ,. , co ,“ “. /0 Ll, ,o

“T“i!!?l:“f!!!!:“&:‘?$!3:
V2 V3 V2 V3

Deadline

“@: ‘Q!!: “#!!!?!: “&:

V2 V3 V2 V3 V2 V3

“ack “B: ‘;@: ‘G!.!!Kl ‘:&:

V2 V3 V2 V3 V2 V3

“F” “IS!: “E!: “&: ‘4!?!:

Random

“B: “@: “B “B:

RandPRTY

‘;!?!! ‘;!?!2! “B: “B!

Figure 3-3: Standard Algorithm Experiment Results

giving priority to processes which are about to miss their others tested, ithadsome difficulties with the V4function, since

deadlines over those whose deadlines are still to come,

3.4. Experimental Results from Value Function
Algorithms

Of the two experimental value function algorithms described
above, it is clear that the BEValue2 scheduler is a clear winner
as shown in Figure 3-4, plotted with identical scales as Figure
3-3, using the identical value functions and loads.

It outperforms all other tested algorithms in all the overload runs
by significant margins, and shows a consistency of performance
which none of the other algorithms can approach. Like the

it, too, takes little account of the fact that the processes needed
to be delayed to achieve a high value, and this is one of the
critical areas in which further research will be performed. These

results should be viewed as preliminary at best, but it is certainly
clear that it has some important characteristics which would be
needed in a value function scheduler.

The BEValuel scheduler performance was, like many of the
other algorithms, much more variable, depending on the value
function and load. Because it is a “greedy” algorithm,

preferring to pick up value early rather than wait to get a higher
value, it misses many opportunities to meet time constraints.

119

Load 246% 123%

XN&

V2 V3 V4
VI

@

NTP Ml

BEValuel ~p

MT axL

V2 V3 V4
VI

@!!9

NTP Ml

NP

MT axL

82%

V2 V3
VI V4

@!!!?

NTP ML

NP

MT axL

Figure 3-4: Value Function Experiment Results

3.5. Experimentation Summary
It is clear that the shape of the value function and “the
processing load level has a great effect on which algorithm is
better for the iotal system performance when the system is
overloaded. This experimentation seems to indicate that, with
improvements, a scheduler which overtly uses the application-

defined system value to handle scheduling should, at least in
principle, provide a consistently better schedule. In fact, such
improved performance, particu Iarl y in overload conditions, does

result from our two experimental scheduling algorithms,
although our analysis on them is by no means complete at this
time.

4. Real-Time Operating Systems
Interface

There are many potential approaches to utilizing a time-driven
scheduling model in a real-time operating system. Although
traditional real-time operating systems provide a simple set of
time control primitives (e.g., GetTime, Schedule, Timeout), no
system primitives are available to explicitly express request ffr

critical Di, estimated computation times Cr or a value function
Vi(t) for each process. Furthermore, a real-time operating
system should be able to supoort a primitive to modify the value
function for a process or a set of processes during run time, as
well as primitives to specify a system-wide scheduling policy. In
this way, an application designer can set up and modify a
suitable scheduling policy under various system conditions.

For the purpose of describing these operating system primitives,
we assume that primitives to create and kill processes already
exist. We express each primitive aa if it were implemented aa a
procedure in a high-order language such as C or Pascal.

4.1. Time Control Primitives
The arguments to these operating system primitives
communicate the information needed to implement this model,
but an important issue is the structure of the information to be
passed to the operating system. In the following primitives, the
structure of the passed information has been designed to
encourage internal consistency. Using a single primitive to
define each parameter would be extremely flexible, but a user
might inadvertently set mutually inconsistent parameters. Thus,

61%

V2 V3
VI V4

@

NTP Ml

NP

MT axL

V2 V3
VI V4

@

NTP Ml

NP

MT axL

the system should provide a simple way to define a consistent
set of parameters.

The Delay primitive

DateTime = Delay(DelayTime, CriticalTime,
CompTime, SetFlag)

blocks the requesting process a specified length of time (e.g., in
microseconds), then returns the current date and time when the
delay is completed and execution has resumed. This primitive
would also be used to specify the critical time Di (see Section 2)

and an estimate of the amount of processing time that will be
required to reach the critical time** Ci, as well as to mark the
arrival of the process at the critical event for which the critical
time was established (while optionally defining the next critical
time) by setting “SetFlag” value. If a value of “DelayTime” is not
positive, the system would not block the process, and similarly
the estimated execution time and critical time would not be
changed if its value were not positive.

For instance, a simple command to alter the critical time can be

defined by using the Delay primitive:

Delay(O, CriticalTime, O, TRUE)

4.2. Periodic Processes
While the De/ay primitive provides time dependent processing
control at runtime, periodic repetitive processing can be
specified at process creation time.

one way to describe a periodic process is by using optional
arguments in a CreateProcess primitive

pid = CreateProcess(ProcessName, lnitialMsg,
PERIODIC, DelayTime, Period)

The “CreateProcess” primitive would create a new instsnce of a
process at a specified node. “lnitiaIMsg” indicates an initial
message to be immediately sent to the new process and
“PERIODIC” specifies that the new process will be periodic.
“Delaymme” sets the first request time for the new process and

“Periodq’ is the indicated period.

*“A system may also estimate this processing time based on observations of

earlier executions.

120

4.3. Scheduling Policies

For a practical real-time operating system, it is necessary to

provide a mechanism to express the application-defined
scheduling pohcies needed to implement our scheduling model,
The system should be able to modify these policies at runtime in
order to take advantage of the flexibility of the model. The value
function of the time-driven model could be provided as an
executable function by the user, or the user could express
various scheduling policies by defining a dynamic set of values
Kf, K2, K,. (see Section 3), so that a client need only pass
these values to define a new value function V~t):

SetValueFunction(Kl, K2, K,.), or

SetValueFunction(Vi)

The first primitive is acceptable as long as the application does
not require new value function which cannot be expressed by
the fixed value function. The second primitive has greater
flexibility in terms of passing an arbitrary value function from a
client to the system, but, since the actual code of the value
function would then be provided by the client, the scheduler

would be required to compute its value in user’s address space
every time it is needed. Thus, this scheme may introduce a
significant overhead to the scheduler and, in addition, such
flexibility would make it very difficult to develop a future

scheduler able to use a value function explicitly to make
scheduling decisions.

Our approach is to use the notion of “policy/mechanism”

separationll, to increase the flexibility and reduce scheduling

overhead. The basic idea is to create a user-definable system

module, called pohcy definition modu/e which consists of a
policy body and a set of policy attributes. A policy definition can
be placed in a kernel, a system process or a client process as
needed to control the system overhead. A policy definition

descriptor would indicate the location of the policy definition
and the information related to the policy body and attribute set.

For instance, a policy definition module could be defined and

the policy attribute for a specific policy could be set using the
following primitives

SetPolicy(PolicyName, PolicyDefinitionDescriptor)

SetAttribute(PolicyName, AttributeName,
AttributeValue)

The SetPolicy primitive would bind a user-defined policy
definition module to the operating system. “PolicyName”

indicates a symbolic name of policy definition module and
“l>olicydefinitionDescriptor” points to a data structure which
describes the policy definition module’s location and its
properties. The SetAttribute primitive sets the value of a

specified attribute for the specific policy module.

For example, the following calls could be used to replace the the
SetVa/ueFuncfion primitive above.

SetPolicy(SCHEDULE, MyPDD)

SetAttribute(SCHEDULE, “VALUEFUNCTION”,
K,, K2, K,.)

This SefPo/icy primitive would bind a scheduling policy module
described by “MYPDD” to the operating system. In the case of
the scheduling policy module, we would place the proposed
value function at the kernel level. The SefAtfribufe primitive then

defines a shape of the value function by gwing the values K,, K2,

““’ Klo’ We believe that such a proposed vaiue function is rich

enough to express a powerful set of scheduling policies and we
have reduced the scheduling overhead while increasing
scheduling flexibility by not attempting to pass the arbitrary
function V,(t) itself.

5. Summary
Process scheduling is a frequently overlooked determinant of
real-time performance. It is our contention that time value of
process completion, even though it IS the primary characteristic

of a real time system, has been negIected in measuring realtime
performance. We have illustrated some of the effects of varying
the scheduling algorithms, particularly in the presence of an
overload condition, relative to several value function

characteristics.

This use of value functions to describe the performance of
existing scheduling algorithms represents a first step in our goal
of eventually producing a scheduler along the lines of BEValue2
which will explicitly use such value functions to make

scheduling decisions. Such a scheduler would attempt to

enhance the overall system value by ensuring that processes
providing the highest value to the system are favored in the

event that some processes must be delayed or aborted due to a
(possibly transient) overload. This would provide a level of
predictability to overload processing in a real-time system which
is not generally available at present, and should therefore allow
more effective use of the available resources, lowering system
cost.

This paper has presented a preliminary overview into a
significant research effort recently initiated within the Archons
project. The goals of this work include further understanding
the scheduling problem in the presence of user-defined value
functions, determining the heuristics necessary to create a

tractable value function scheduler, understanding the sensitivity
of such a scheduler to the parameters defined by its heuristics,
and analyzing the decisions made by those heuristics.
Additional measurements with modifications to the scheduling
algorithms could be made providing for such capabilities as
defined lower bounds for use in process abortion when the
value function drops below zero, as well as studies of the effects
of varying the heights and shapes of the value functions among
the processes. The methods for determining which value

function to use for specific types of devices and algorithms need
to be studied, the implications of value function scheduling on
the specification of scheduling policy, methods of decomposing
value functions for a number of processes cooperating to
perform a single application function need to be determined,
and the use of value functions in the presence of process. to-
process dependencies and mutual exclusion must be
investigated. Following the initial effort, this research will be
extended by the Archons project for process scheduling on a
distributed system.

Acknowledgements

Professor Jensen created the initial concepts and development
of continuous time, valued scheduling for real-time systems. Mr.
Locke, in his Ph.D, thesis research, is further developing the
model, defining the required heuristics, and evaluating them
through simulation. Dr. Tokuda is responsible for the
incorporation of these ideas ~nto a scheduling facility for the
Archons project’s ArchOS operating system.

121

The authors are greatly indebted to the many members of the
Archons project, especially Professor John Lehoczky and Dr.
Lui Sha, who provided considerable assistance in the definition
of these concepts, as well to the Archons sponsora.

References

1. Jensen, E. Cl, Distributed Control, Springer-Verlag, 1981,
pp. 175-1904

2. Jensen, E. D., “Decentralized Executive Control of

Computers”, Proceedings of the Third International
Conference on Distributed Computing Systems, IEEE,
October 1982, pp. 31-35.

3. Jensen, E. D., “ArchOS: A Physically Dispersed
Operating System”, IEEE Distributed Processing

Technical Committee Newsletter, June 1964.

4. Locke, C. D., “Best-Effort Decision Making for Real-Time
Scheduling”, Ph.D. Thesis Proposal, Carnegie-Mellon
University, Computer Science Department

6. Garey, M. R.; Johnson, D. S., Computers and

Intractability: A Guide to the Theory of NP-Completeness,

W. H. Freeman, San Francisco, 1979.

7. Jensen, E. D., Private Communication based on his
Honeywell Systems and Research Center technical
report on this topic for the U.S. Army Ballistic Missile
Defense Advanced Technology Center.

8. Mok, A. K., Fundamental Design Problems of Distributed

Systems for the Hard-Real-Time Environment, PhD
dissertation, Massachusetts Institute of Technology, May
1963.

9. Liu, C. L.; Layland, J. W., “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment”,
Journal of the Association for Computing Machinery, Vol.
20, No. 1, January 1973, pp. 46-61.

10. Lehoczky, J. P.; Sha, L., publication to appear.

11. Wulf, W. A.; Levin, R.; Harbison, S. P., HYDRA/C. romp:

An Experimental Computer System, McGraw-Hill, Inc.,
1981.

5. Conway, Maxwell, and Miller, Theory of Scheduling,

Addison-Wesley, 1967.

122

