
In Design and Evolution of C++ (Addi-
son Wesley, 1994), Bjarne Stroustrup
argued that “a programming language
is really a very tiny part of the world,
and as such, it ought not be taken too
seriously. Keep a sense of proportion
and most importantly keep a sense of
humor. Among major programming
languages, C++ is the richest source of
puns and jokes. That is no accident.” 

For the past few months, a hoax
interview between Stroustrup and
Computer has been making the rounds
in cyberspace. While we regret the inci-
dent, it offers us a welcome oppor-
tunity to have the father of C++ share
his insights on Standard C++ and soft-
ware development in general. We can
also attest to his continued sense of
proportion and humor—he suggests
that the fictitious interview would have
been a much funnier parody had he
written it himself.

—Scott Hamilton, Computer 

STANDARD C++
Computer: ISO approved the Standard
C++ in November 1997, and you pub-
lished a third edition of your The C++
Programming Language (Addison Wes-
ley, 1997). How has C++ evolved over the
past few years and what does the ISO
standard mean for the C++ community? 
Stroustrup: It is great to finally have a
complete, detailed, and stable definition
of C++. This will be a great help to the

C++ community in myriad direct and
not-so-direct ways. Obviously, we will
get better implementations as compiler
providers start shifting attention from
catching up with the standards commit-
tee to quality-of-implementation issues.
This is already happening. 

Standards-conforming implementa-
tions will prove a boon to tools and
library suppliers by providing a larger
common platform to build for. 

The standard gives the programmer an
opportunity to be more adventurous
with new techniques. Programming
styles that used to be unrealistic in pro-
duction code are becoming realistic
propositions. Thus, more flexible, gen-
eral, faster, and more maintainable code
can be written. 

Naturally, we should keep cool and
not indulge in orgies of “advanced” tech-
niques. There are still no miracles, and
the best code is still the code that most

directly matches a sound design. How-
ever, now is the time to experiment and
see which techniques will suit particular
people, organizations, and projects.
Much of The C++ Programming
Language is devoted to these techniques
and the trade-offs they  represent. 

The most visible aspects of what
makes this progress feasible are the
“new” major language facilities—tem-
plates, exceptions, runtime type infor-
mation, and namespaces—and the new
standard library. The minor improve-
ments to language details  are also impor-
tant. We have had most of the facilities
available for years now, but haven’t been
able to rely on them where we needed
portability and production quality. This
has forced us to take suboptimal
approaches to design and implementa-
tion of our libraries and applications.
However, soon (this year) all major
implementations will provide solid sup-
port for Standard C++. 

From a language and programming-
techniques perspective, the most signifi-
cant change to C++ is the continuing
increase in emphasis on statically verifi-
able type safety and the increased flexi-
bility of templates. Flexible templates are
necessary to make the emphasis on type
safety pay off in terms of elegance and
efficiency.

Feasibility of new techniques
Computer: You say that “often what an
experienced C++ programmer has failed
to notice over the years is not the intro-
duction of new features as such, but
rather the changes in relationships
between features that make fundamental
new programming techniques feasible.”
Could you give some examples of how
this might be applicable to Standard C++? 
Stroustrup: It is easy to study the rules of
overloading and of templates without
noticing that together they are one of the
keys to elegant and efficient type-safe
containers. This connection becomes
obvious only when you look into the fun-
damental algorithms that are common to
most uses of containers.  Consider the
program segment in Figure 1a. The first
call of count() counts the number of
occurrences of the value 7 in a vector of
integers. The second call of count()
counts the number of occurrences of the

The Real
Stroustrup

Interview

110 Computer

Op
en

 C
ha

nn
el

Editor: Will Tracz, Lockheed Martin Federal
Systems, MD 0210, Owego, NY 13827-3998;
will.tracz@lmco.com

“Any clod can have the facts, but having opinions is an art.”
Charles McCabe, San Francisco Chronicle 

The father of C++
explains why Standard
C++ isn’t just an object-

oriented language.  

.



June 1998 111

value “seven” in a list of strings. 
There are ways of achieving this in

every language that allows overloading.
Given templates, we can write a single
function that handles both calls, as
shown in Figure 1b. This template will
expand into optimal code for the two
calls. This count() is roughly equiva-
lent to the standard-library count() so
a user will not have to write it. The
count() function itself relies on over-
loading: Obviously, the equality opera-
tor == is overloaded for integers and
strings (with the obvious meaning). In
addition, * and ++ are overloaded to
mean “dereference” and “refer to next
element” for the iterator types for vec-
tors and lists; that is, * and ++ are given
the meaning they have for pointers. 

This definition of count() illustrates
a couple of the key techniques used in the
containers and algorithms part of the C++
standard library. These techniques are
useful, and they are not trivially discov-
ered given only the basic language rules. 

Consider a slightly more advanced
variation of the count() example
shown in Figure 2a. Instead of counting
occurrences of a value, count_if()
counts the number of elements that ful-
fill a predicate. For example, we can
count the number of elements with a
value less than 7 as shown in Figure 2b. 

Generalizing this technique to handle
comparisons with any value of any type
requires us to define a function object—
that is, a class whose objects can be
invoked like functions, as shown in
Figure 3a. The constructor stores a ref-
erence to the value we want to compare
against, as in Figure 3b, and the applica-
tion operator (operator()) does the
comparison. In other words, count the
number of elements in vi that have a
value less than the integer 7, and count
the number of elements in ls that have
a value less than the string “seven.” 

It may be worth mentioning that the
code generated is very efficient and in
particular does not use function calls—or
similar relatively slow operations—to
implement comparisons, fetching the
next element, and so forth. 

Undoubtedly, this code will look
strange to someone who is not a C++ pro-
grammer and even to C++ programmers
who have not yet internalized the latest

techniques for using templates and over-
loading—and that, of course, is part of
the purpose of presenting the examples
here. However, the bottom line is that
these techniques allow you to write effi-
cient, type-safe, and generic code. People
familiar with functional languages will
note that these techniques are similar to
techniques pioneered in those languages. 

Language features are fundamentally
boring in isolation and they can distract
from good system building—only in the
context of programming techniques do
they come alive.

The Standard Library 
Computer: How was the Standard
Library defined and what impact will it

void f(vector<int>& vi, list<string>& ls)
{ 
int n1 = count(vi.begin(),vi.end(),7); 
int n2 = count(ls.begin(),ls.end(),”seven”); 
// ... 
} 

(a)

template<class Iter, class T> 
int count(Iter first, Iter last, T value) 
{ 
int c = 0; 
while (first!=last) { 

if (*first == value) c++; 
++first; 

} 
return c; 
} 

(b)

Figure 1. Changes in relationships between features can make fundamental new programming
techniques feasible: (a) A count algorithm for counting the number of occurrences of the value
7 in a vector of integers, as well as the number of occurrences of the value “seven” in a list of
strings  becomes (b) a single function that handles both calls using a template.

template<class Iter, class Predicate> 
int count_if(Iter first, Iter last, Predicate pred) 
{ 
int c = 0; 
while (first!=last) { 

if (pred(*first)) c++; 
++first; 

} 
return c; 
} 

(a)

bool less_than_7(int i) { return i<7; }  

void f2(vector<int>& vi, list<int>& li) 
{ 
int n1 = count_if(vi.begin(),vi.end(),less_than_7); 
int n2 = count_if(li.begin(),li.end(),less_than_7); 
// ... 
} 

(b)

Figure 2. More advanced variation of the count example that (a) counts the number of elements
that meet a predicate—for example, (b) the number of elements with a value less than 7.

.



112 Computer

have on the C++ community? 
Stroustrup: The most novel and interest-
ing part of the standard library is the gen-
eral and extensible framework for
containers and algorithms. It is often
called the STL and is primarily the work
of Alex Stepanov (then at Hewlett-
Packard Labs, now at Silicon Graphics). 

Alex worked on providing uncompro-
misingly general and uncompromisingly
efficient fundamental algorithms which,
for example, find an element in a data
structure, sort a container, or count the
occurrences of a value in a data structure.
Such algorithms are fundamental to
much computing. 

Alex worked with a variety of languages
and had several collaborators over the
years—notably David Musser (Rensselaer
Polytechnic Institute), Meng Lee (HP
Labs), and Andrew Koenig (AT&T Labs).
My contribution to the STL was small, but
I think important: I designed an adapter
called mem_fun(). It allows standard
algorithms to be used for containers of
polymorphic objects, thus tying object-ori-
ented programming techniques neatly into
the generic programming framework of
the standard library. 

Somewhat to my surprise, the STL
matched the set of criteria for a good set
of standard containers for C++ that I had
developed over the years. After a year or
so of discussing and polishing the STL,
the ISO C++ committee accepted the STL
as a key part of the standard C++ library.
My criteria included 

• uncompromising efficiency of sim-
ple basic operations (for example,
array subscripting should not incur
the cost of a function call); 

• type-safety (an object from a con-
tainer should be usable without
explicit or implicit type conver-
sion); 

• generality (the library should pro-
vide several containers, such as vec-
tors, lists, and maps); and

• extensibility (if the standard library
didn’t provide some container that
I needed, I should be able to create
one and use it just as I would a stan-
dard container). 

By adopting STL with only minor mod-
ifications and additions, we avoided the
dreaded design by committee. 

Clearly, a group of part-time volunteers
(the C++ standards committee) can’t pro-
vide every library facility that a program-
mer would find useful. Consequently, a
key issue was what to include in the stan-
dard library and what to leave to the
industry and individuals to provide. 

We decided to use “what is needed for
the communication between separately
developed libraries” as a guide to what to
include. Thus, I/O, strings, and containers
became the major focus. We included the
C standard library and some facilities for
numeric computation for historical rea-
sons, but left out lots of potentially use-
ful facilities such as better facilities for
dates and currency, regular expression

matching, and graphics. Fortunately, these
facilities are available commercially and/or
in the public domain. 

The standard library saves program-
mers from having to reinvent the wheel.
In particular, standard containers allow
both novices and experts to program at
a higher level. Consider the simple pro-
gram in Figure 4, which performs a sim-
ple task simply. It does so without
macros, without explicit memory man-
agement or other low-level language
facilities, and without resource limita-
tions. In particular, if some joker presents
the program with a 30,000 character
“first name” the program will faithfully
print it back at him without overflow or
other errors. 

Using the standard library can and
should revolutionize the way C++ is
taught. It is now possible to learn C++ as
a higher level language. Students deal
with the facilities for low-level program-
ming only when needed and only after
they’ve mastered enough of the language
to provide a suitable context for dis-
cussing low-level facilities. 

Thus, the standard library will serve as
both a tool and as a teacher.

COMPLEXITY, C++, AND OOP
Computer: In The C++ Programming
Language, you say “Ordinary practical
programmers have achieved significant
improvements in productivity, maintain-
ability, flexibility, and quality in projects
of just about any kind and scale.” Yet
some critics maintain that C++, and OO
in general, are overly complex and give
rise to corrective-maintenance and main-
tenance problems in large systems. Do
these criticisms in any way correspond to
your own experiences as a developer of
large systems in C++? 
Stroustrup: In my personal experience,
OO design and OO programming lead to
better code than you get from more tra-
ditional procedural approaches—code
that is more flexible, more extensible, and
more maintainable without imposing sig-
nificant performance overheads. There is
not as much hard evidence—as opposed
to personal observations—as I would
like, but several studies within AT&T
and elsewhere support this opinion. 

Two factors confound the issue: There
is no general agreement on what “object-

template <class T> class Less_than { 
const T v; 
public: 
Less_than(const T& vv) :v(vv) {} // constructor 
bool operator()(const T& e) { return e<v; } 
}; 

(a)

void f3(vector<int>& vi, list<string>& ls) 
{
int n1 = count_if(vi.begin(),vi.end(),

Less_than<int>(7));
int n2 = count_if(ls.begin(),ls.end(),

Less_than<string>(“seven”)); 
// ... 
}

(b)

Figure 3. To handle comparisons with any value of any type, we define (a) a class whose objects
can be invoked like functions (function object), with the constructor storing (b) a reference to
the value we want to compare against.

.



oriented” really is, and discussions rarely
account for experience sufficiently. Much
of “the trouble with OO” comes from
people with no significant OO experience
approaching an ambitious project with
some partially understood—yet dog-
matic and typically limited—notion of
what OO code must look like.

So what is OO? Certainly not every
good program is object-oriented, and not
every object-oriented program is good. If
this were so, “object-oriented” would
simply be a synonym for “good,” and the
concept would be a vacuous buzzword
of little help when you need to make
practical decisions. I tend to equate OOP
with heavy use of class hierarchies and
virtual functions (called methods in some
languages). This definition is historically
accurate because class hierarchies and
virtual functions together with their
accompanying design philosophy were
what distinguished Simula from the other
languages of its time. In fact, it is this
aspect of Simula’s legacy that Smalltalk
has most heavily emphasized. 

Defining OO as based on the use of
class hierarchies and virtual functions is
also practical in that it provides some
guidance as to where OO is likely to be
successful. You look for concepts that
have a hierarchical ordering, for variants
of a concept that can share an imple-
mentation, and for objects that can be
manipulated through a common inter-
face without being of exactly the same
type. Given a few examples and a bit of
experience, this can be the basis for a very
powerful approach to design. 

However, not every concept naturally
and usefully fits into a hierarchy, not every
relationship among concepts is hierarchi-
cal, and not every problem is best
approached with a primary focus on
objects. For example, some problems really
are primarily algorithmic. Consequently, a
general-purpose programming language
should support a variety of ways of think-
ing and a variety of programming styles.
This variety results from the diversity of
problems to be solved and the many ways
of solving them. C++ supports a variety of
programming styles and is therefore more
appropriately called a multiparadigm,
rather than an object-oriented, language
(assuming you need a fancy label). 

Examples of designs that meet most of

the criteria for “goodness” (easy to
understand, flexible, efficient) are a
recursive descent parser, which is tradi-
tional procedural code. Another exam-
ple is the STL, which is a generic library
of containers and algorithms depending
crucially on both traditional procedural
code and on parametric polymorphism. 

I find languages that support just one
programming paradigm constraining.
They buy their simplicity (whether real
or imagined) by putting programmers
into an intellectual straitjacket or by
pushing complexity from the language
into the applications. This is appropriate
for special-purpose languages, but not
for general-purpose languages. 

I have often characterized C++ as a gen-
eral-purpose programming language with
a bias toward systems programming.
Think of it as “a better C” that supports

• data abstraction,
• object-oriented programming, and 
• generic programming. 

Naturally, this support for more than
one approach to programming causes
more complexity than supporting only
one approach. I have noticed that this
view that there are design and pro-
gramming approaches with domains in
which they are the best offends some
people. Clearly, I reject the view that there
is one way that is right for everyone and
for every problem. People who passion-
ately want to believe that the world is
basically simple react to this with a fury
that goes beyond what I consider appro-
priate for discussing a programming lan-
guage. After all, a programming language
is just one tool among many that we use
to construct our systems. 

The ideal way of resolving the two
views would be to have a language that
provides a set of simple primitives from
which all good programming styles can
be efficiently supported. This has been
repeatedly tried but not—in my opin-
ion—achieved.

JAVA AND C++
Computer: That same argument for sim-
plicity could conceivably be extended to
Java, which might explain the 700,000
Java programmers that Sun claims (com-
pared to 1.5 million C++ programmers).
You maintain that Java is not the language
you would have designed even if C++
needn’t be compatible with C. What else
do you have to say after having been asked
this question for the thousandth time? 
Stroustrup: These days, I’m always asked
about Java, and it is very hard for me to
respond. If I say something negative, I
sound ungracious; if I say something pos-
itive, I feed into the commercial hype that
surrounds Java and the unfortunate anti-
C++ propaganda that emanates from
parts of the Java community. 

I encourage people to consider the two
languages according to their design crite-
ria and not just in the context of com-
mercial rivalries. I outlined the design
criteria for C++ in detail in The Design
and Evolution of C++, and Java doesn’t
even start to meet those criteria. That’s
fine as long as programmers consider Java
as a programming language among oth-
ers and not a panacea. After all, C++ isn’t
a perfect match for Java’s design aims
either. However, when Java is promoted
as the sole programming language, its
flaws and limitations become serious. 

Here are a few examples where the cri-
teria applied to developing C++ led to
significant differences. Unlike Java, C++
supports

• the ability to effectively compose a
program out of parts written in dif-
ferent languages,

• a variety of design and program-
ming styles, 

• user-defined types with efficiencies
that approach built-in types, 

• uniform treatment of built-in and
user-defined types, and

• the ability to use generic containers
without runtime overhead (for
example, the STL). 

June 1998 113

int main() 
{ 
cout << “Please enter your first name:\n”; 
string name; 
cin >> name; // read into name cout 
<< “Hello“ << name << “!\n”; 
} 

Figure 4. Simple “Hello” program using Standard Library features to perform its task simply.

.



114 Computer

Given C++’s relative maturity at this
point, how would you rate the available
C++ development tools and what still
needs to be done to improve?
Stroustrup: First, I’d like to see the basic
tools such as compilers, debuggers, pro-
filers, database interfaces, GUI builders,
CAD tools, and so forth fully support the
ISO standard. For example, I’d like to get
a database query result as an STL con-
tainer or an istream of appropriately
typed objects. Tool vendors have made a
good start, but have much work to do in
tools that depend on compilers and other
source code analyzers. 

My list of basic tools is a partial answer

to the question about what has changed:
Over the past few years, large numbers
of programmers have come to depend on
elaborate tools to interface code with sys-
tems facilities. These tools are essential to
relieving programmers of tedious and
error-prone tasks, but come at a risk of
the programmers (and their employers)
becoming captives of their tool suppliers.
Often, these tools are far more complex
than a traditional programming lan-
guage, and there are few standards.

I would encourage nonproprietary
standards for tools and libraries. In the
short term, say 10 years, many such stan-
dards will be industry standards rather
than formal ISO or IEEE standards, but
it is essential for the software industry’s
health that key interfaces be well-specified
and publicly available. With the increasing
importance of standards for system-level
objects such as COM and CORBA, it is
particularly important that the C++ bind-
ings to those be clean, well documented,
and simple to use. Unfortunately, such
“standards work” which is beneficial to
everybody is neglected because it pro-
vides short-term competitive advantages
to nobody. 

I designed C++ so programmers could
write code that is both elegant and efficient.
For many applications, C++ is still the best
choice when you don’t want to compro-
mise between elegance and efficiency. 

I wonder how people count “pro-
grammers.” Is a student a programmer?
Is every compiler shipped counted as a
programmer? I understand the number
quoted for C++; it is conservative and
plausible. It is a good approximation of
the number of C++ implementations sold
for real money last year. I wonder if Sun’s
Java number is as solid. Incidentally,
based on the few hard numbers I have
found—such as compiler sales, book
sales, and C++ course attendance—I esti-
mate that the C++ user population is
growing at 10 to 20 percent a year. 

And no, I’m not a Java fan. I dislike
hype, I dislike marketing of program-
ming tools to nonprogrammers, I dislike
proprietary languages, and I like lots of
programming languages. On the techni-
cal side, Java never gave me the “Wow,
that’s neat!” reaction that I have had
with many other languages. It provides
popular language features in a form that
I consider limiting. 

Java has borrowed much from C++,
but not as much as is often claimed and
not with as much taste and understand-
ing as one could have wished for. To
deliver on some of the key promises
made for it, Java must grow. This evo-
lution may compromise Java’s claim of
being simpler than C++, but my guess is
that the effort will make Java a better
language than it is today. Currently, Java
seems to be accumulating language fea-
tures and “standard” libraries at quite
a pace. I’m looking forward to seeing
what the Java version of templates will
look like; as far as I know Sun hasn’t yet
blessed any of the dozen or so dialects. 

As Java and its community matures, it
will hopefully adopt a sensible live-and-
let-live philosophy. This would allow
Java to take its place as one language
among many in the tool chest of profes-
sional programmers.

TOOLS
Computer: In what ways have systems
changed over the past few years, and
what still needs to be done in the C++
arena and in systems design in general?

I’d rather not specifically “rate” the
available C++ tools. They are better than
they were, and most often as good or bet-
ter than any tools for any other language.
However, as a programmer, I am natu-
rally impatient for more and better qual-
ity tools. Personally, I look forward to
better tools for analyzing C++ source
code. I also hope that C++ implementa-
tion vendors will spend a slightly larger
fraction of their budgets on improving
the quality and performance of their
compilers rather than concentrating too
heavily on novelties. Real improvements
in compilers are relatively cheap com-
pared to what is spent on a new release
of a complete C++ implementation.
However, I fear that unless major users
start demanding conformance testing
and benchmarking, vendors will spend
resources on what looks better in an
advertisement.

THE FUTURE 
Computer: I know you’ve been heavily
involved in the C++ standards process,
but what other projects are you involved
in currently and how will you continue
working to evolve C++? 
Stroustrup: I’m suffering from having
successfully completed a very large pro-
ject. The ISO C++ standard is done. The
third edition of The C++ Programming
Language is there to acquaint serious
programmers with what Standard C++
has to offer and how best to use it. And
Design and Evolution documents the
design decisions that shaped C++. There
is more to be done, but nothing that
requires a full-time language designer.
Now is the time to enjoy the flexibility
and power of C++ by writing code,
rather than focusing on possible changes. 

Apart from that, I’m taking the oppor-
tunity to learn a few things—a couple of
new languages and something about how
software is used in a large business—and
planning some experiments in distributed
computing. ❖

Bjarne Stroustrup is head of the large-
scale programming research department
at AT&T; bs@research.att.com;http://
www.research.att.com/~bs/

Open Channel

Java has borrowed 
much from C++, but not

as much as is often
claimed and not with as

much taste and
understanding as one
could have wished for.

.


