
ar
X

iv
:1

70
8.

03
48

6v
1

 [
cs

.C
C

]
 1

1
A

ug
 2

01
7

A Solution of the P versus NP Problem

Norbert Blum

Institut für Informatik, Universität Bonn

Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany

email: blum@cs.uni-bonn.de

August 14, 2017

Abstract

Berg and Ulfberg [4] and Amano and Maruoka [2] have used CNF-
DNF-approximators to prove exponential lower bounds for the mono-
tone network complexity of the clique function and of Andreev’s func-
tion. We show that these approximators can be used to prove the same
lower bound for their non-monotone network complexity. This implies
P 6= NP.

1 Introduction and Preliminaries

Understanding the power of negations is one of the most challenging prob-
lems in complexity theory. With respect to monotone Boolean functions,
Razborov [12] was the first who could shown that the gain, if using nega-
tions, can be super-polynomial in comparision to monotone Boolean net-
works. Tardos [16] has improved this to exponential. For the characteristic
function of an NP-complete problem like the clique function, it is widely
believed that negations cannot help enough to improve the Boolean com-
plexity from exponential to polynomial. Since the computation of an one-
tape Turing machine can be simulated by a non-monotone Boolean network
of size at most the square of the number of steps [15, Ch. 3.9], a super-
polynomial lower bound for the non-monotone network complexity of such
a function would imply P 6= NP. For the monotone complexity of such a
function, exponential lower bounds are known [11, 3, 1, 10, 6, 8, 4, 2, 7].
But until now, no one could prove a non-linear lower bound for the non-
monotone complexity of any Boolean function in NP. An obvious attempt
to get a super-polynomial lower bound for the non-monotone complexity of

1

http://arxiv.org/abs/1708.03486v1

the clique function could be the extension of the method which has led to
the proof of an exponential lower bound of its monotone complexity. This
is the so-called “method of approximation” developed by Razborov [11].
Razborov [13] has shown that his approximation method cannot be used to
prove better than quadratic lower bounds for the non-monotone complexity
of a Boolean function. But Razborov uses a very strong distance measure
in his proof for the inability of the approximation method. As elaborated in
[5], one can use the approximation method with a weaker distance measure
to prove a super-polynomial lower bound for the non-monotone complexity
of a Boolean function.

Our goal is to extend approximators developed for proving a super-
polynomial lower bound for the monotone complexity of a monotone Boolean
function such that these can be used to prove a super-polynomial lower
bound for the non-monotone complexity of the same Boolean function. Note
that not every approximator can be suitable for doing this. In [12], Razborov
has constructed approximators to prove an mΩ(logm) lower bound for the
monotone network complexity of the perfect matching function PMm. This
is a monotone Boolean function of m2 variables which correspond to the
edge set of a bipartite G = (A,B,E) where |A| = |B| = m. PMm(x) = 1
iff the corresponding graph G contains a perfect matching. Since a perfect
matching in a given bipartite graph can be computed in polynomial time,
the non-monotone complexity of PMm is also polynomial. Therefore, it is
impossible to extend Razborov’s approximator developed for PMm to prove
a super-polynomial lower bound for the non-monotone complexity of PMm.

Before describing approximators which seem to be suitable for the ex-
tension to non-monotone networks, we shall give some basic definitions.
Bn := {f | f : {0, 1}n → {0, 1}} is the set of all n-ary Boolean functions.
The ith variable is denoted by xi : {0, 1}n → {0, 1}, 1 ≤ i ≤ n. Let
Vn := {xi | 1 ≤ i ≤ n}. Variables and negated variables are called literals.
A function m : {0, 1}n → {0, 1} which is the conjunction of some literals is
called a monomial. If we delete some literals from a monomial m then we
obtain a submonomial of m. The empty monomial is the constant function
1. The disjunction of monomials is a formula in disjunctive normal form
(DNF). The disjunction of some literals is called a clause. If we delete some
literals from a clause d then we obtain a subclause of d. The empty clause
is the constant function 0. The conjunction of clauses is a formula in con-
junctive normal form (CNF). A monomial m is called an implicant of the
function f if for all a ∈ {0, 1}n, m(a) = 1 implies f(a) = 1. An implicant
m is a prime implicant of f if no proper submonomial of m is an implicant
of f . A clause d is called an f -clause if for all a ∈ {0, 1}n, d(a) = 0 implies

2

f(a) = 0. A prime clause d of f is an f -clause where no proper subclause
of d is an f -clause. Let a := (a1, a2, . . . , an), b := (b1, b2, . . . , bn) ∈ {0, 1}n.
We write a ≤ b iff ai ≤ bi for 1 ≤ i ≤ n. A function f ∈ Bn is monotone iff
for all a, b ∈ {0, 1}n there hold a ≤ b implies f(a) ≤ f(b). Obviously, both
constant functions are monotone. Let Ω0 := {∧,∨,¬} and Ωm := {∧,∨}.
For Ω ∈ {Ω0,Ωm}, an Ω-network β is a directed, acyclic graph such that
each node has indegree at most two. The nodes g with indegree zero are
input nodes and are labelled with op(g) ∈ Vn. The nodes g with indegree
larger than zero are the gates of β. Each gate g is labelled with an opera-
tor op(g) ∈ Ω where the indegree of g is equal the number of operands of
op(g). A node with outdegree zero is an output node. For a node g in β let
pred(g) := {h | h → g is an edge in β} be the set of its direct predecessors.
With each node g, we associate a function resβ(g) : {0, 1}n → {0, 1} which
is defined as follows:

resβ(g) :=







op(g) g is an input node,
¬resβ(h1) op(g) = ¬, pred(g) = {h1},
resβ(h1) op(g) resβ(h2) op(g) ∈ {∧,∨}, pred(g) = {h1, h2}.

The functions resβ(g) with g is a node in β are computed by β. Let
f ∈ Bn. The minimum number of gates in an Ω0-network which computes
f where negations are not counted is the non-monotone complexity C(f)
of f . An Ωm-network is called a monotone network. Note that exactly the
non-constant monotone Boolean functions can be computed by a monotone
network. The minimum number of gates in a monotone network which
computes the monotone function f is the monotone complexity Cm(f) of f .

Given any Ω0-network β, we can convert β to an equivalent Ω0-network
β′ where all negations occur only at the input nodes. Moreover, the size
of β is at most doubled. For doing this, we start at the output nodes and
apply De Morgan rules for bringing the negations to the input nodes. Since
gates can be simultaneously negated and non-negated, some gates have to be
doubled. The resulting network is a so-called standard network where only
input variables are negated. We consider a negated variable ¬xi as an input
node g with op(g) = ¬xi. The standard complexity Cst(f) of a function
f ∈ Bn is the size of a smallest standard network which computes f . Note
that the standard and the non-monotone complexity of a function f differs
at most by the factor two. Hence, for proving a super-linear lower bound
for the non-monotone complexity of a Boolean function, we can restrict us
to the consideration of standard networks.

Which approximators seems to be suitable for the extention to standard
networks? CNF-DNF-approximators are introduced implicitly by Haken [6]

3

and explicitly by Berg and Ulfberg [4] and by Amano and Maruoka [2]. To
prove a lower bound for the monotone complexity of a monotone Boolean
function f , they approximate for each node g in the monotone network
β the function resβ(g) by two approximators, a CNF formula and a DNF
formula. To describe the effect of the approximators, they use a set of
positive test inputs T1 ⊆ f−1(1) and a set of negative test inputs T0 ⊆
f−1(0). They assume that the monotone network β under consideration
computes the value f(c) for each test input c ∈ T0 ∪ T1 correctly. An
approximator of a gate g introduces an error for a test input c if, at the
output node g0, f(c) is computed correctly before the approximation but
incorrectly after the approximation of resβ(g). They show that at any gate
of the monotone network, an error for only “few” test inputs is introduced,
but the approximators for the output node compute the value incorrectly
for “many” test inputs. Since before the definition of any approximator, the
network β computes the value of each test input correctly, the network β
must contain “many” gates. Let us summarize the properties used in the
lower bound proof.

1. For each test input c ∈ T0∪T1, the monotone network β computes the
value f(c) correctly at its output node g0.

2. The structure of the approximators allows the proof that the approx-
imation of resβ(g) for a gate g introduce an error for only “few” test
inputs.

3. The structure of the approximators allows the proof that the approx-
imators for the output node g0 compute the values of “many” test
inputs incorrectly.

Our goal is to treat the negated variables in a standard network which
computes a given non-constant monotone Boolean function f at its output
node g0 in such a way that we can use the approximators developed for f
with respect to monotone networks on standard networks.

In [14], Razborov and Rudich have introduced the notion of “natural
proof”. They have shown that natural proofs cannot be used for separating
P and NP unless hard pseudorandom generators do not exist. They also
mention: “Another exception to our scheme is the list of strong lower bounds
proofs againstmonotone circuit models. Here the issue is not constructivity–
the properties used in these proofs are all feasible–but that there appears to
be no good formal analogue of the largeness condition. In particular, no one
has formulated a workable definition of a “random monotone function”.”
Our method will only apply to monotone Boolean functions.

4

In the next section, we shall prove some basic properties of monotone and
standard networks. In Section 3, we shall specify CNF-DNF-approximators
for monotone Boolean functions from a point of view needed for their use
on standard networks. Since the knowledge of the lower bound proof for
the monotone complexity of the clique function would be useful to under-
stand the approach, we shall describe Berg and Ulfberg’s proof [4] in Section
4. Given any standard network β for any non-constant monotone Boolean
function f ∈ Bn, we shall outline the processing of the negated variables
in β leading to “reduced” CNF and DNF formulas in Section 5. The use
of CNF-DNF-approximators on standard networks is described in Section
6. In Section 7, we apply CNF-DNF-approximators to prove an exponential
lower bound for the standard complexity of the clique function and of An-
dreev’s function leading to the proof that P 6= NP. We shall discuss briefly
negations in Boolean networks in Section 8.

2 Some Basic Properties of Monotone and Stan-

dard Networks

First we shall describe the DNF and CNF formulas constructed by a mono-
tone or by a standard network. Let β be a monotone or a standard network.
Consider any node g in β. The function resβ(g) can be written as a DNF
formula; i.e., resβ(g) =

∨r
j=1mj where each mj is a monomial. We denote

this formula the DNF representation DNFβ(g) of resβ(g). Starting at the
input nodes, the network β constructs these DNF formulas in the following
way:

1. If g is an input node with op(g) = xi or op(g) = ¬xi then

DNFβ(g) := op(g).

2. If g is an ∨-gate with pred(g) = {h1, h2} then

DNFβ(g) := DNFβ(h1) ∨DNFβ(h2).

3. If g is an ∧-gate with pred(g) = {h1, h2}, DNFβ(h1) =
∨t1

i=1mi and
DNFβ(h2) =

∨t2
j=1m

′
j then

DNFβ(g) :=

t1
∨

i=1

t2
∨

j=1

(mi ∧m′
j).

5

Each input a ∈ resβ(g)
−1(1) satisfies a monomial mj of DNFβ(g). Each

input b ∈ resβ(g)
−1(0) does not satisfy any monomial in DNFβ(g). Hence,

each monomial in DNFβ(g) contains a variable xi with bi = 0 or a negated
variable ¬xj with bj = 1.

The function resβ(g) can be written as a CNF formula as well; i.e.,
resβ(g) =

∧s
j=1 dj where each dj is a clause. We denote this formula the

CNF representation CNFβ(g) of resβ(g). Starting at the input nodes, the
network β constructs these CNF formulas in the following way:

1. If g is an input node with op(g) = xi or op(g) = ¬xi then

CNFβ(g) := op(g).

2. If g is an ∧-gate with pred(g) = {h1, h2} then

CNFβ(g) := CNFβ(h1) ∧ CNFβ(h2).

3. If g is an ∨-gate with pred(g) = {h1, h2}, CNFβ(h1) =
∧t1

i=1 di and
CNFβ(h2) =

∧t2
j=1 d

′
j then

CNFβ(g) :=

t1
∧

i=1

t2
∧

j=1

(di ∨ d′j).

Each input b ∈ resβ(g)
−1(0) falsifies a clause dj of CNFβ(g). Each input

a ∈ resβ(g)
−1(1) does not falsify any clause in CNFβ(g). Hence, each clause

in CNFβ(g) contains a variable xi with ai = 1 or a negated variable ¬xj
with aj = 0.

A monomial or a clause is trivial if it contains both literals with respect
to at least one variable and non-trivial otherwise. Independently from the
concrete values of the variables, such a monomial would always have the
value zero and such a clause would always have the value one. By construc-
tion, CNFβ(g) can contain trivial clauses and DNFβ(g) can contain trivial
monomials. We say that the monomials in DNFβ(g) and the clauses in
CNFβ(g) are constructed at the node g by the network β.

The following theorem characterizes exactly the DNF and the CNF rep-
resentations of resβ(g0) with respect to a monotone or a standard network
which computes a Boolean function f ∈ Bn at its output node g0.

Theorem 1 Let β be a monotone or a standard network which computes a
Boolean function f ∈ Bn at its output node g0. Then the following hold:

6

a) Besides trivial monomials, DNFβ(g0) contains only implicants of the
function f . Furthermore, for each a ∈ f−1(1), DNFβ(g0) contains an
implicant ma of f such that ma(a) = 1.

b) Besides trivial clauses, CNFβ(g0) contains only f -clauses. Further-
more, for each b ∈ f−1(0), CNFβ(g0) contains an f -clause db such
that db(b) = 0.

Proof: Assume that DNFβ(g0) contains a non-trivial monomial m which is
not an implicant of f . Then, by the definition of an implicant of f , there
exists b ∈ {0, 1}n such that m(b) = 1 but f(b) = 0. This contradicts the
assumption that β computes f at its output node g0. Hence, all non-trivial
monomials of DNFβ(g0) are implicants of f .

Assume that there is a ∈ f−1(1) such that m(a) = 0 for all implicants
m in DNFβ(g0). Then resβ(g0)(a) = 0 but f(a) = 1. This contradicts
the assumption that β computes f at its output node g0. Hence, for each
a ∈ f−1(1), DNFβ(g0) contains an implicant ma of f such that ma(a) = 1.

This proves part a) of the theorem. Analogously, we can prove part b)
of the theorem. �

Note that each implicant of a Boolean function f contains a submonomial
which is a prime implicant of f . Furthermore, each f -clause contains a
subclause which is a prime clause of f .

Every DNF formula can be transformed into an equivalent CNF formula.
To see this let α =

∨t
i=1 mi be a DNF formula which computes a Boolean

function f ∈ Bn. To obtain an equivalent CNF formula γ, we pick from each
monomial mi, 1 ≤ i ≤ t one literal and perform the disjunction of all chosen
literals. Then the conjunction of all clauses which can be constructed in this
way is a CNF formula γ =

∧s
j=1 dj which corresponds to the DNF formula

α. The following lemma shows that γ computes the function f .

Lemma 1 Let α =
∨t

i=1mi be a DNF formula which computes a Boolean
function f ∈ Bn. Let γ =

∧s
j=1 dj be the CNF formula constructed from α

as described above. Then γ computes f .

Proof: Consider a ∈ f−1(1). Then there is a monomial ml in α such that
ml(a) = 1. Since each clause of γ contains a literal of ml, the input a satisfies
all clauses in γ. Hence γ(a) = 1.

Let b ∈ f−1(0). Then each monomial in α contains a literal which is not
satisfied by b. Consider a clause dl of γ which picks from each monomial a
literal which is not satisfied by b. Obviously, dl(b) = 0. Hence, γ(b) = 0.

Altogether, we have shown that γ computes f . �

7

We call such a transformation of a DNF formula to an equivalent CNF
formula a DNF/CNF-switch. A DNF/CNF-switch can be organized as the
construction of a tree T in the following way:

1. Each edge in T is labelled by a literal. With each node w in T we
associate the clause d(w) which is obtained by the disjunction of the
variables on the unique path from the root of T to w. T is constructed
while expanding the monomials m0,m1,m2, . . . ,mt where m0 is the
empty monomial.

2. While expanding m0, the root T is created. The associated clause is
the empty clause.

3. Suppose that w is a leaf that was created while expanding mi. Then
the monomial mi+1 is expanded at the leaf w in the following way:
The leaf w obtains for each literal in mi+1 a new son w′. The edge
(w,w′) is labelled with the corresponding literal.

After the construction of the tree T , the clauses corresponding to the paths
from the root of T to the leaves are the clauses contained in the CNF formula
γ obtained from α =

∨t
i=1mi by performing a DNF/CNF-switch.

Analogously, every CNF formula can be transformed into an equivalent
DNF formula. To see this let γ =

∧t
i=1 di be a CNF formula which computes

a Boolean function f ∈ Bn. To obtain an equivalent DNF formula α, we
pick from each clause di, 1 ≤ i ≤ t one literal and perform the conjunction
of all chosen literals. Then the disjunction of all monomials which can be
constructed in this way is a DNF formula α =

∨s
j=1mj which corresponds

to the CNF formula γ. The following lemma shows that α computes the
function f .

Lemma 2 Let γ =
∧t

i=1 di be a CNF formula which computes a Boolean
function f ∈ Bn. Let α =

∨s
j=1mj be the DNF formula constructed from γ

as described above. Then α computes f .

Proof: Consider b ∈ f−1(0). Then there is a clause dl in γ such that
dl(b) = 0. Since each monomial of α contains a literal of dl, the input b
falsifies all monomials in α. Hence, α(b) = 0.

Let a ∈ f−1(1). Then each clause in γ contains a literal which is satisfied
by a. Consider a monomial ml of α which picks from each clause a literal
which is satisfied by a. Obviously, ml(a) = 1. Hence, α(a) = 1.

Altogether, we have shown that α computes f . �

8

We call such a transformation of a CNF formula to an equivalent DNF
formula a CNF/DNF-switch. A CNF/DNF-switch can be organized as the
construction of a tree analogously to a DNF/CNF-switch.

If m is a monomial in a DNF formula α then we say that α contains
m. If d is a clause in a CNF formula γ then we say that γ contains d. We
say that a DNF formula α contains a clause d if the CNF formula γ which
is obtained by applying a DNF/CNF-switch to α contains d. We say that
a CNF formula γ contains a monomial m if the DNF formula α which is
obtained by applying a CNF/DNF-switch to γ contains m.

Let f be a Boolean function. By the definition of an f -clause and of a
prime implicant of f , an input which falsifies an f -clause must also falsify
each prime implicant of f . Hence, an f -clause contains at least one literal
of each prime implicant of f . By the definition of a prime clause of f , the
removal of any literal yields a clause which is not an f -clause. Therefore,
for each literal in a prime clause c of f there is a prime implicant p of f
such that this literal is the only literal of p contained in c. Similarly, an
implicant of f contains at least one literal of each prime clause of f and for
each literal in a prime implicant of f there is at least one prime clause c of
f such that this literal is the only literal of c contained in p.

Now we shall consider inputs corresponding exactly to a prime impli-
cant or exactly to a prime clause. Let f ∈ Bn be a non-constant mono-
tone Boolean function with prime implicants p1, p2, . . . , pt and prime clauses
c1, c2, . . . , cs. For each prime implicant pl, a ∈ {0, 1}n such that ai = 1 iff
xi is a variable in pl is called the pl-input of f . PI(f) denotes the set of
all pl-inputs of f . For each prime clause cl, b ∈ {0, 1}n such that bi = 0 iff
xi is a variable in cl is called the cl-input of f . PC(f) denotes the set of
all cl-inputs of f . The following theorem shows that for any non-constant
monotone Boolean function f ∈ Bn, a monotone network β which computes
at its output node g0 the values for all inputs in PI(f) and for all inputs in
PC(f) correctly has to compute the function f .

Theorem 2 Let f ∈ Bn be any non-constant monotone Boolean function.
Let β be any monotone network with output node g0. If resβ(g0)(a) = 1 for
all a ∈ PI(f) and resβ(g0)(b) = 0 for all b ∈ PC(f) then resβ(g0) = f .

Proof: Since β is a monotone network and all prime implicants of f are
implicants of resβ(g0), all implicants of f are also implicants of resβ(g0).
To prove that all implicants of resβ(g0) are also implicants of f , assume
that the monomial m is an implicant of resβ(g0) but not an implicant of f .
Then each prime implicant pi of f must contain a variable xj which is not
a variable of the monomial m. Otherwise, the monomial m would contain

9

a prime implicant of f as a submonomial and hence, would be an implicant
of f . Our goal is to construct a prime clause cl of f which does not contain
any variable of m.

Let p1, p2, . . . , pt be the prime implicants of f . We consider the prime
implicants of f one after another and choose an appropriate variable xj of
pi to be a variable of the prime clause cl under construction. Let pi be the
currently considered prime implicant. If no variable of pi is already chosen
to be a variable of cl then choose any variable of pi which is not also a
variable of m. Obviously, cl is an f -clause. By construction, no variable can
be removed from cl without destroying this property. Hence, cl is a prime
clause of f . Furthermore, cl does not contain any variable of m.

Consider the cl-input b ∈ PC(f). Since bj = 1 for all j with xj is not
a variable in cl, there holds m(b) = 1. This contradicts the assumption
resβ(g0)(b) = 0. �

Note that a standard network has not this property. To see this consider
the characteristic function of the set PI(f). A standard network β which
computes this characteristic function at its output node g0, computes the
values for all inputs in PI(f) and all inputs in PC(f) correctly but resβ(g0) 6=
f . Hence, we have obtained the following theorem.

Theorem 3 Let f ∈ Bn be any non-constant monotone Boolean function.
Then there is a standard network β with output node g0 such that resβ(g0)(a)
= 1 for all a ∈ PI(f) and resβ(g0)(b) = 0 for all b ∈ PC(f) but resβ(g0) 6= f .

Assume that given any monotone or standard network β which computes
a Boolean function f ∈ Bn at its output node g0 and an input c ∈ {0, 1}n,
we wish to evaluate β with input c. For a given input c, there are different
methods for the computation of the value computed at the output node g0.
The different methods originate from different points of view.

Method 1:

Starting at the input nodes, the nodes of β are considered in any topo-
logical order and evaluated with respect to the input c; i.e., when a gate g
is considered then resβ(h1)(c) and resβ(h2)(c) of both direct predecessors h1
and h2 are known. Hence, resβ(g)(c) can be computed. After the consider-
ation of the output node g0, the value f(c) = resβ(g0)(c) is known.

Method 2:

DNFβ(g0) is constructed first. Then it is checked if DNFβ(g0) contains
an implicant m with m(c) = 1. If DNFβ(g0) contains such an implicant then
f(c) = 1. Otherwise, f(c) = 0.

10

Method 3:

CNFβ(g0) is constructed first. Then it is checked if CNFβ(g0) contains
an f -clause d with d(c) = 0. If CNFβ(g0) contains such an f -clause then
f(c) = 0. Otherwise, f(c) = 1.

Obviously, all three methods result in the same value f(c). Haken [6]
considers for inputs a ∈ f−1(1) the flow through those gates g in a monotone
network with resβ(g)(a) = 1 and for inputs b ∈ f−1(0) the flow through those
gates g with resβ(g)(b) = 0. This means that he has used Method 1 for his
considerations. Berg and Ulfberg [4] and also Amano and Maruoka [2] have
turned Haken’s approach into an approximation argument by using CNF-
DNF-approximators. For the extension of these approximators such that
they can be used on standard networks, it would be more suitable to use the
other two methods for the considerations. This means that it would be useful
to investigate the effect of the approximations to the construction of certain
monomials in the DNF representation of resβ(g0) and to the construction of
certain clauses in the CNF representation of resβ(g0). Hence, for a ∈ f−1(1)
and b ∈ f−1(0), we shall investigate subnetworks βa and βb of the network
β which contructs an implicant ma with ma(a) = 1 and an f -clause db with
db(b) = 0 at the output node g0 of β. By Theorem 1, for each a ∈ f−1(1)
and each b ∈ f−1(0), at least one such a subnetwork βa and at least one
such a subnetwork βb exist. It is possible that β contains more than one
such a subnetwork.

To get a subnetwork βa, we start at the output node g0 and run back-
wards through β. For each visited node g, DNFβ(g) contains a monomial
ma(g) which is used for the construction of the monomial ma at the output
node g0. For the output node g0, there holds ma(g0) = ma. Both direct
predecessors h1 and h2 of g are contained in βa iff g is an ∧-gate. If g is
an ∨-gate then exactly one of its both directed predecessors is contained
in βa. In dependence of the type of g, the predecessors of g in βa and the
corresponding monomials are determined in the following way:

Case 1: g is an ∧-gate.
By construction, DNFβ(h1) contains a monomial m1 and DNFβ(h2) con-

tains a monomial m2 such that ma(g) = m1 ∧m2. Therefore, ma(h1) = m1

and ma(h2) = m2.

Case 2: g is an ∨-gate.
Note that from exactly one of DNFβ(h1) and DNFβ(h2), a monomialm is

used for the construction of ma(g). By construction, there holdsm = ma(g).
Then hi such that a monomial m in DNFβ(hi) is used for the construction of

11

ma(g) is that direct predecessor of g which is contained in βa. Furthermore,
ma(hi) = m = ma(g).

By construction, for each node g in βa, ma(g) is defined and there holds
ma(g)(a) = 1. For each node g which is not contained in βa, ma(g) is
undefined. Analogously, we can construct the subnetwork βb for the input
b ∈ f−1(0).

3 CNF-DNF-Approximators for Monotone Boole-

an Networks

We shall specify CNF-DNF-approximators as needed for their extension to
standard networks. The aim of a CNF-DNF-approximator applied to a
given monotone network β is the approximation of the CNF or the DNF
representations of the functions resβ(g) computed at the nodes g of the
network β. Approximation means that the size of the monomials and the
size of the clauses in the DNF and CNF formulas associated with the nodes
of β are bounded. The main tools of a CNF-DNF-approximator designed for
a given monotone Boolean function are the CNF/DNF- and the DNF/CNF-
switches which maintain the size bounds of the monomials and of the clauses
contained in the constructed formulas. Although the only intention is the
approximation of either the CNF or the DNF formulas associated with the
nodes of β, an approximation of the other formulas is needed as well such
that CNF/DNF- or DNF/CNF-switches can be applied suitably. Assume
that we intend the approximation of the Φ formulas, Φ ∈ {CNF,DNF}
associated with the nodes in a monotone Boolean network β which computes
a non-constant monotone Boolean function f ∈ Bn at its output node g0.

The idea is to consider the network β in any topological order and to
define the approximators corresponding to the considered node g. This
means that in the case that g is a gate, the approximators of both direct
predecessors h1 and h2 are already defined. We approximate the function
resβ(g) by two approximators, a DNF formula Dr

g and a CNF formula Ck
g

where the size of a monomial in Dr
g is always smaller than r and the size

of a clause in Ck
g is always smaller than k. The size of a monomial or of

a clause is its number of distinct variables or another measure. We do not
restrict the number of monomials in Dr

g or the number of clauses in Ck
g . For

the construction of Ck
g and of Dr

g, we use the approximators of the direct
predecessors of g.

To describe the effect of the approximators, sets T1 ⊆ f−1(1) and T0 ⊆
f−1(0) are used. The elements of T1 and T0 are called positive and negative

12

test inputs. Let us consider the moment when a node g is considered for the
definition of its approximators. The nodes v of the network β fulfilling the
following properties define the current front of the network:

1. The approximators with respect to the node v are defined.

2. There is a direct successor w of v such that the approximators for
resβ(w) are not defined.

In dependence of the approximators defined for the nodes at the cur-
rent front, we can compute the DNF and the CNF representations of the
current function computed at the output node g0. Let Φ(β) denote the Φ
representation of the current function computed at g0.

Consider any input a ∈ T1. We say that the approximators for g intro-
duce an error for the input a if before the approximation of resβ(g), Φ(β)
contains a monomial ma which is satisfied by the input a but after the
approximation, none such a monomial in Φ(β) exists. Consider any input
b ∈ T0. We say that the approximators for g introduce an error for the input
b if before the approximation of resβ(g), Φ(β) contains a clause db which is
falsified by the input b but after the approximation, none such a clause in
Φ(β) exists.

CNF-DNF-approximators switch between CNF and DNF formulas. There
is an essential difference between the approach of Amano and Maruoka [2]
and the approach of Berg and Ulfberg [4]. Amano and Maruoka first per-
form a CNF/DNF-switch to construct from a CNF formula γ which contains
only clauses of size less than k an equivalent DNF formula α and then they
delete from the obtained DNF formula α the monomials of size larger than
r− 1. This means that the monomials of larger size than r− 1 are replaced
by zero. The transformation of a DNF formula to a CNF formula is per-
formed analogously. First, a DNF/CNF-switch is performed to construct
from a DNF formula α which contains only monomials of size less than r
an equivalent CNF formula γ and then they delete from the obtained CNF
formula γ the clauses of size larger than k− 1. This means that the clauses
of larger size than k − 1 are replaced by one.

Berg and Ulfberg have used the fact that it would be sufficient to con-
struct from a CNF formula γ which contains only clauses of size less than k a
DNF formula α which computes with respect to all test inputs the same value
as γ and then to delete from the obtained DNF formula α the monomials of
size larger than r − 1. More precisely, they use only an appropriate subset
of the monomials which would be constructed by the CNF/DNF-switch of γ
for the construction of the DNF formula α. The other monomials obtained

13

by the CNF/DNF-switch of γ are replaced by zero. The transformation of a
DNF formula to a CNF formula is performed analogously. A DNF formula
α and a CNF formula γ are ti-equivalent iff for all test inputs c ∈ T1 ∪ T0,
α(c) = γ(c). Note that the equivalence of a CNF formula and a DNF formula
implies their ti-equivalence but not vice versa.

We call a switch which maintains the size bounds from a DNF formula to
a CNF formula a DNF/CNF-approximator switch and from a CNF formula
to a DNF formula a CNF/DNF-approximator switch.

The proofs of the upper and lower bounds depend only on the size bounds
k and r. The size bounds k and r are used to get an upper bound for the
number of monomials of size larger than r − 1 which are replaced by zero
during a CNF/DNF-approximator switch and also to get an upper bound
for the number of clauses of size larger than k−1 which are replaced by one
during a DNF/CNF-approximator switch. The size bound r of the monomi-
als is used to get an upper bound for the number of positive test inputs for
which an error could be introduced by the replacement of one monomial by
zero. The size bound k of the clauses is used to get an upper bound for the
number of negative test inputs for which an error could be introduced by the
replacement of one clause by one. The product of both upper bounds ob-
tained with respect to a CNF/DNF-approximator switch gives us an upper
bound for the number of positive test inputs for which an error could be in-
troduced by a CNF/DNF-approximator switch. The product of both upper
bounds obtained with respect to a DNF/CNF-approximator switch gives us
an upper bound for the number of negative test inputs for which an error
could be introduced by a DNF/CNF-approximator switch. No error with
respect to a negative test input is introduced by a CNF/DNF-approximator
switch and no error with respect to a positive test input is introduced by a
DNF/CNF-approximator switch.

If the CNF representations are approximated then k is used to prove a
lower bound for the number of test inputs for which Ck

g0 does not compute
their values correctly. In the case that the DNF representations are approx-
imated, r is used to prove a lower bound for the number of test inputs for
which Dr

g0 does not compute their values correctly.
Now we are prepared to give a formal definition of a CNF-DNF-approxi-

mator for a monotone Boolean function.
A CNF-DNF-approximator A is a seven-tuple (f,Φ, (T1, T0), (S, k, r),R,

(e1, e0), (d1, d0)) such that:

a) f is the considered monotone Boolean function.

b) Φ ∈ {CNF, DNF} is the spezification which representation of the func-

14

tions computed at the nodes of the network is approximated.

c) T1 ⊆ f−1(1) and T0 ⊆ f−1(0) are the sets of positive and negative test
inputs.

d) S defines the sizes of the clauses and the monomials. k and r are the
bounds for the sizes of the clauses and the monomials.

e) R defines the CNF/DNF-approximator switch and the DNF/CNF-
approximator switch used by A.

f) e1 is an upper bound for the number of positive test inputs for which
an error could be introduced by a CNF/DNF-approximator switch. e0
is an upper bound for the number of negative test inputs for which an
error could be introduced by a DNF/CNF-approximator switch.

g) Ck
g0 if Φ = CNF and Dr

g0 if Φ = DNF, respectively contains for at
least d1|T1| positive test inputs a no monomial ma with ma(a) = 1
or contains for at least d0|T0| negative test inputs b no clause db with
db(b) = 0 where 0 < d1, d0 ≤ 1 are constants.

Given a CNF-DNF-approximator A = (f,Φ, (T1, T0), (S, k, r),R, (e1, e0),
(d1, d0)) for a non-constant monotone Boolean function f and a monotone
network β which computes at its output node g0 the values f(c) correctly
for all test inputs c ∈ T1∪T0, we need a scheme for the use of A to construct
the approximators corresponding to the nodes of β. Now we shall design
such a scheme.

For an input node xi, we define Dr
xi

:= xi and Ck
xi

:= xi. For the
definition of the approximators with respect to the gates, we consider the
nodes in β in any topological order; i.e., when a gate g is considered then
the approximators with respect to both direct predecessors h1 and h2 are
defined. First, we shall consider the case that Φ = CNF. According to the
type of the gate g, we distinguish two cases:

Case 1: g is an ∨-gate.
Then we define

Dr
g := Dr

h1
∨ Dr

h2
.

Since each monomial in Dr
h1

and in Dr
h2

has size less than r, all monomials in
Dr

g have still size less than r. Moreover, since Dr
g is the same DNF formula

as constructed by the network for the gate g before the approximation of
the gate g, no error is introduced by the approximator Dr

g.

15

We perform a DNF/CNF-approximator switch of Dr
g to obtain the ap-

proximator Ck
g . If for an input b ∈ T0, db(g) is replaced by one then, instead

of the clause db, the constant one is constructed at the output node g0 by
the subnetwork βb such that an error with respect to b could be introduced
by the approximator Ck

g .

By construction, each clause in Ck
g contains a literal of every monomial

in Dr
g. Hence, each input which falsifies Ck

g falsifies Dr
g as well. Hence, no

error with respect to a positive test input is introduced by Ck
g .

Case 2: g is an ∧-gate.
Then we define

Ck
g := Ck

h1
∧ Ck

h2
.

Since each clause in Ck
h1

and in Ck
h2

has size less than k, all clauses in Ck
g

have still size less than k. Moreover, since Ck
g is the same CNF formula as

constructed by the network for the gate g before the approximation of the
gate g, no error would be introduced by the approximator Ck

g .
For the eventual performance of a DNF/CNF-approximator switch with

respect to a direct successor of the gate g, the approximator Dr
g is needed

as well. We perform a CNF/DNF-approximator switch of Ck
g to obtain the

approximator Dr
g. If for an input a ∈ T1, ma(g) is replaced by zero then,

instead of the monomial ma, the constant zero is constructed at the output
node g0 by the subnetwork βa such that an error with respect to a could be
introduced by the approximator Dr

g.
By construction, each monomial in Dr

g contains a literal of every clause

in Ck
g . Hence, each input which satisfies Dr

g satisfies Ck
g as well. Hence, no

error with respect to a negative test input is introduced by Dr
g.

The scheme for the use of A in the case that Φ = DNF is the same as in
the case that Φ = CNF.

Before the definition of any approximator, β computes the value for
each test input correctly. Hence, by Theorem 1, at the beginning, Φ(β)
contains for each a ∈ T1 a monomial ma with ma(a) = 1 and for each
b ∈ T0 a clause db with db(b) = 0. It is shown that after the definition of
the approximators for the output node g0, Φ(β) fails to contain a mono-
mial ma with ma(a) = 1 for at least d1|T1| positive test inputs a or fails to
contain a clause db with db(b) = 0 for at least d0|T0| negative test inputs
b. At an ∧-gate, exactly one CNF/DNF and no DNF/CNF-approximator
switches and at an ∨-gate, exactly one DNF/CNF and no CNF/DNF-
approximator switches are performed. For each gate in the monotone net-
work β, the approximation introduces an error for at most e0 test inputs

16

in T0 and for at most e1 test inputs in T1. A CNF-DNF-approximator

A = (f,Φ, (T1, T0), (S, k, r),R, (e1 , e0), (d1, d0)) proves a min
{

d1|T1|
e1

, d0|T0|
e0

}

lower bound for Cm(f).

4 Berg and Ulfberg’s CNF-DNF-approximator for

the clique function

For the understanding of the difficulties which occur if we intend the use of
CNF-DNF-approximators for monotone Boolean functions on standard net-
works, the knowledge of a CNF-DNF-approximator for the clique function
would be useful. Hence, we shall repeat the CNF-DNF-approximator for
the clique function developed by Berg and Ulfberg [4]. Let CLIQUE(m, s)
be the Boolean function of n :=

(m
2

)

variables representing the edges of an
undirected graph G = (V,E) on m nodes. CLIQUE(m, s)(x) = 1 iff the
corresponding graph G contains a clique of size s. In this section, f denotes
the Boolean function CLIQUE(m, s).

The sets T1 and T0 of positive and negative test inputs should be defined
in a way such that they are easily to analyze. Let V ′ ⊂ V be a node set of size
s. The graph consisting of the s-clique on the nodes in V ′ and m−s isolated
nodes in V \ V ′ corresponds exactly to the prime implicant which contains
the variables xuv with u, v ∈ V ′. A natural set T1 of positive test inputs is the
set of inputs corresponding exactly to the prime implicants of the function
f ; i.e., T1 := PI(f). Analogously, a natural set T0 of negative test inputs
could be the set of inputs corresponding exactly to the prime clauses of f ;
i.e., PC(f). The exact description of the set of graphs corresponding to the
set PC(f) is more difficult than for PI(f). Hence, another subset of f−1(0)
is more suitable for the definition of T0. Let h : V → {1, 2, . . . , s − 1} be a
colouring of the nodes in V by s − 1 colours. The graph G(h) = (V,E(h))
corresponding to the colouring h contains all edges between two nodes in
different colour classes and no edge between two nodes in the same colour
class. The clause d(h) corresponding to the colouring h contains exactly
those variables xuv with both nodes u and v are coloured with the same
colour; i.e., h(u) = h(v). Since each s-clique must contain at least two
nodes which are in the same colour class, the clause d(h) is an f -clause.
For each clause d(h) corresponding to a colouring h, the input b ∈ {0, 1}n
such that buv = 0 iff xuv is a variable in d(h) is called the d(h)-input of
f . Note that exactly in the case that h uses all s − 1 colours; i.e., G(h)
is a complete (s − 1)-partite graph, the clause d(h) is a prime clause of
f . GC(f) denotes the set of all d(h)-inputs with respect to the colourings

17

of V by s − 1 colours. Different colourings can yield the same f -clause.
Hence, GC(f) contains inputs corresponding to more than one colouring.
To simplify the calculations, we shall consider such inputs as different. This
means that the size of GC(f) is exactly the number (s − 1)m of different
colourings of m nodes by s − 1 colours. We shall use the sets T1 := PI(f)
and T0 := GC(f) of positive and negative test inputs.

The CNF-DNF-approximator of Berg and Ulfberg approximates the
CNF formulas associated with the nodes in β. Now we shall spezify the
size of a monomial and the size of a clause. We say that a monomial m
or a clause d touchs a node v ∈ V iff there is at least one variable in m
or in d which corresponds to an edge in E with end node v. The size of
the monomial m is the number of different nodes in V which are touched
by m. For the definition of the size of a clause d, we consider the graph
G(d) = (V,E(d)) where E(d) contains exactly those edges which correspond
to the variables in d. The size of the clause d is m minus the number of
connected components in G(d).

For the approximators Dr
g and Ck

g , we use the values

r := ⌊
√
s⌋ and k :=

⌊m

8s

⌋

.

Since r = ⌊√s⌋, less than ⌊√s⌋ different nodes in G can be touched by a
monomial. Hence, the number of variables in such a monomial is bounded by
r2

2 ≤ s
2 . Moreover, k = ⌊m

8s⌋ implies that a graph corresponding to a clause
has more thanm−⌊m

8s⌋ connected components. If we mark in each connected
component one node then less than m

8s nodes remain unmarked. The number
of different end nodes of the edges in such a graph is maximized if the number
of connected components with exactly two nodes is maximized. Therefore,
we obtain the maximum number of different end nodes if the unmarked
nodes are distributed to pairwise different connected components. Hence,
the number of different end nodes of the edges in such a graph is less than
2k ≤ m

4s . Therefore, a clause d touchs less than m
4s nodes in V .

Next we shall describe the CNF/DNF-approximator switch developed
by Berg and Ulfberg. Let C be a CNF formula which contains only clauses
of size less than k. Our goal is to switch to a DNF formula D which contains
only monomials of size less than r. First, a ti-equivalent DNF formula D′ is
constructed from C. D is obtained from D′ by the replacing of all monomials
of size larger than r − 1 by zero. D′ will be constructed in a way such that
at least one of the monomials in D′ is satisfied by a ∈ T1 iff all clauses in C
are satisfied by a.

Let d1, d2, . . . , dt be the clauses in C given in any fixed order and let d0

18

be the empty clause. The construction of D′ is organized by building a tree
T as follows:

1. Each edge in T is labelled by a variable xuv or has no label. With each
node w in T we associate the monomial m(w) which is obtained by
the conjunction of the variables which are labels on the unique path
from the root of T to w. T is constructed while expanding the clauses
d0, d1, d2, . . . , dt.

2. While expanding d0, the root of T is created. The associated monomial
is the empty monomial.

3. Suppose that w is a leaf which was created while expanding di.

Now we shall treat the clause di+1 with respect to the leaf w. We call a
variable xuv tight for a monomial m iff both end nodes u and v are touched
by m. We distinguish two cases:

Case 1: There is a variable xuv in di+1 which is tight for m(w).

For each positive test input a ∈ T1 which satisfies m(w), both nodes u
and v have to be contained in the clique which corresponds to the test input
a. Hence, each such a test input satisfies the variable xuv as well. We create
only one son w′ for w and label the edge (w,w′) with xuv.

Case 2: There is no variable in di+1 which is tight for m(w).

Then the variables in di+1 separates into the following two sets:

V ar0 := {xuv | both end nodes u and v are not touched by m(w)},
V ar1 := {xuv | exactly one of u and v is touched by m(w)}.

First we shall consider the variables in V ar1. Let

V ′ := {u ∈ V | u is not touched by m(w) but there is xuv ∈ V ar1}

and for each u ∈ V ′ let

N(u) := {v ∈ V | xuv ∈ V ar1}.

For each u ∈ V ′ we choose any v ∈ N(u) and create a son wu of the node
w. The edge (w,wu) is labelled with the variable xuv and we define that the
edge (w,wu) is touched by the node u. This suffices since two monomials
touching the same nodes are submonomials of the same prime implicants of
the function. Since the clause di+1 touchs less than 2k nodes, less than

2k ≤ m

4s

19

sons are created.
Now we shall consider the variables in V ar0. As long as there is an edge

corresponding to a variable in V ar0 such that none of its two end nodes is
chosen, we choose an end node u of such an edge and create a son w′

u for w.
The corresponding edge (w,w′

u) obtains no label. We define that the edge
(w,w′

u) is touched by the node u. Since di+1 touchs less than 2k nodes, less
than

2k ≤ m

4s

sons are created. Let

V ′′ := {u ∈ V | w′
u is created}

and for each u ∈ V ′′ let

N ′(u) := {v ∈ V | xuv ∈ V ar0}.

For each u ∈ V ′′ for each v ∈ N ′(u), we create a son w′′
v of the node w′

u

and label the edge (w′
u, w

′′
v) with the variable xuv. We define that the node

v touchs the edge (w′
u, w

′′
v). Again, since di+1 touchs less than 2k nodes, less

than
2k ≤ m

4s

sons for w′
u are created.

After the construction of T , the monomials corresponding to the paths
from the root of T to the leaves are the monomials in D′. We obtain D
from D′ by the replacing of all monomials of size larger than r − 1 by zero.
The following lemma bounds the number of positive test inputs for which
an error could be introduced by a CNF/DNF-approximator switch.

Lemma 3 Let C be a CNF formula which contains only clauses of size less
than k. Let D be the DNF formula obtained by a CNF/DNF-approximator
switch from C. Then the number of test inputs in T1 for which the approxi-
mator D could introduce an error is bounded by

(m−r
s−r

)

(m4s)
r.

Proof: By the construction of T there hold:

1. No node in T has more than 2k ≤ m
4s sons.

2. When descending on an edge to a son from a node with more than one
son, the number of nodes which are touched by the associated path
increases by one. Hence, there are at most

(m

4s

)r

20

nodes in T such that the corresponding path from the root to the node
touchs exactly r nodes in V .

Each path in T from the root to a leaf corresponding to a monomial in
D′ of size larger than r − 1 contains a node w such that the path from the
root to w touchs exactly r nodes in V . Note that r nodes are contained in
(

m−r
s−r

)

s-cliques. Hence, the deletion of all monomials corresponding to a
path from the root to a leaf which contains the node w could introduce an
error for at most

(

m− r

s− r

)

positive test inputs a ∈ T1.
Altogether, after the deletion of all monomials touching more than r− 1

nodes, an error for at most

(

m− r

s− r

)

(m

4s

)r

positive test inputs is introduced. �

Next we shall describe the DNF/CNF-approximator switch developed by
Berg and Ulfberg. Let D be a DNF formula which contains only monomials
of size less than r. Our goal is to switch to a CNF formula C which contains
only clauses of size less than k. First, a ti-equivalent CNF formula C′ is
constructed from D. C is obtained from C′ by the replacing of all clauses of
size larger than k − 1 by one. C′ will be constructed in a way such that at
least one of the clauses in C′ is falsified by b ∈ T0 iff all monomials in D are
falsified by b.

Let m1,m2, . . . ,mt be the monomials in D given in any fixed order and
let m0 be the empty monomial. The construction of C′ is organized by
building a tree T as follows:

1. Each edge in T is labelled by a variable xuv . With each node w in T we
associate the clause d(w) which is obtained by the disjunction of the
variables which are labels on the unique path from the root of T to w.
T is constructed while expanding the monomials m0,m1,m2, . . . ,mt.

2. While expanding m0, the root of T is created. The associated clause
is the empty clause.

3. Suppose that w is a leaf which was created while expanding mi.

21

Now we shall treat the monomial mi+1 with respect to the leaf w. A
variable xuv in mi+1 is called good iff both end nodes of the edge (u, v)
are contained in the same connected component of the graph G(d(w)) =
(V,E(d(w)). By construction, each d(h)-input b which falsifies d(w) has
the property that each connected component of G(d(w)) is contained in one
colour class with respect to the colouring h. Hence, the d(h)-input b must
falsify each good variable as well. We distinguish two cases:

Case 1: mi+1 contains a good variable xuv.

Then a G(h)-input b which falsifies d(w) also falsifies the variable xuv.
This implies buv = 0. Hence, it suffices to create one son w′ of w and to
label the edge (w,w′) with the variable xuv.

Case 2: mi+1 contains no good variable.

Then each variable xuv in mi+1 connects two connected components of
the graph G(d(w)). The leaf w obtains for each variable xuv in mi+1 a new
son w′. The edge (w,w′) is labelled with the variable xuv.

By construction, when decending on an edge to a son from a node with
more than one son, the number of connected components of the associated
graph decreases by one. Therefore, the size of the corresponding clause
increases by one. Hence, there are at most k such nodes on a path from the
root to a node with the property that the corresponding clause has exactly
size k. Since each monomial in D contains at most s

2 variables, each node
in T has at most degree s

2 . Hence, there are at most

(s

2

)k

nodes in T such that the corresponding clause has exactly size k.
After the construction of T , the clauses corresponding to the paths from

the root of T to the leaves are the clauses in C′. We obtain C from C′ by
the replacing of all clauses of size larger than k − 1 by one. The following
lemma bounds the number of negative test inputs for which an error could
be introduced by a DNF/CNF-approximator switch.

Lemma 4 Let D be a DNF formula which contains only monomials of
size less than r. Let C be the CNF formula obtained by a DNF/CNF-
approximator switch from D. Then the number of test inputs in T0 for which

the approximator C could introduce an error is bounded by
(

s
2

)k
(s− 1)m−k.

Proof: Each clause in C′ of size larger than k− 1 contains a subclause d(w)
which has exactly the size k where w is a node in T . This means that the
corresponding graph G(d(w)) has exactly m− k connected components.

22

Since each test input in T0 is a d(h)-input for an appropriate colouring h
of the node set V by s− 1 colours, we need an upper bound for the number
d(h)-inputs for which an error could be introduced by the approximator C.
Each d(h)-input which falsifies a clause in C′ of size larger than k − 1 must
also falsify a subclause d(w) of size k where w is a node in T . A d(h)-input
b falsifies such a subclause d(w) iff all nodes within the same connected
component of G(d(w)) are coloured with the same colour. The number
of different colourings of m − k connected components by s − 1 colours is
(s− 1)m−k. Hence, there are at most

(s− 1)m−k

such d(h)-inputs. Since T contains at most
(

s
2

)k
nodes such that the corre-

sponding clause has exactly the size k, an error for at most

(s

2

)k
(s− 1)m−k

negative test inputs could be introduced by the approximator C. �
Berg and Ulfberg [4] consider a monotone Boolean network β which

computes the values for all test inputs in T1 ∪ T0 correctly. They consider
the approximator Ck

g0 of the output node g0 of β and show that either Ck
g0

computes the value of all negative test inputs incorrectly or Ck
g0 computes

the value of at least half of the positive test inputs incorrectly. For doing
this, assume that there is b ∈ T0 such that Ck

go(b) = 0. Then Ck
g0 contains

a clause d which is falsified by b. By construction, this clause d touchs less
than m

4s nodes of the graph. For each positive test input which satisfies Ck
g0 ,

the corresponding prime implicant must touch one of these nodes. Every
given node is part of the fraction s

m of the possible s-cliques of a graph with
m nodes. Hence, less than m

4s nodes have a nonempty intersection with at
most a fourth of the possible s-cliques. Therefore, the fraction of positive
test inputs for which Ck

g0 computes the correct value is less than 1
4 . Since

3
4 > 1

2 , we have proved the following lemma.

Lemma 5 Let β be a monotone Boolean network which computes the values
for all test inputs in T1 ∪ T0 correctly at its output node g0. Then either Ck

go

computes the value of all test inputs in T0 incorrectly or Ck
go computes the

value of at least half of the test inputs in T1 incorrectly.

Altogether, Berg and Ulfberg have constructed an approximator A =
(f,Φ, (T1, T0), (S, k, r),R, (e1 , e0), (d1, d0)) where

23

a) f = CLIQUE(m, s),

b) Φ = CNF,

c) T1 = PI(f) and T0 = GC(f),

d) S is the definition of the sizes as described above, r := ⌊√s⌋ and k :=
⌊

m
8s

⌋

,

e) R are the rules for the CNF/DNF- and DNF/CNF-approximator switches
as described above,

f) e1 =
(m−r
s−r

)

(m4s)
r and e0 =

(

s
2

)k
(s− 1)m−k, and

g) d1 =
1
2 and d0 = 1.

Using Lemmas 3, 4 and 5, Berg and Ulfberg [4] have proved the following
theorem.

Theorem 4 Let s ≤ m
2

3 . Then Cm(CLIQUE(m, s)) ≥ 2Ω(
√
s).

Proof: We distinguish two cases:

Case 1 : Ck
g0 computes the value of half of the positive test inputs incorrectly.

Because of Lemma 3, we obtain

Cm(CLIQUE(m, s)) ≥ (ms)
2(m−r

s−r)(
m
4s

)r

= 1
2
m!(s−r)!(m−r−(s−r))!(4s)r

s!(m−s)!(m−r)!mr

= 1
2
m!(s−r)!(4s)r

s!(m−r)!mr

≥ 1
22

(r+1) (m−r)rsr

srmr

= (2− 2r
m)r

> 2Ω(r)

= 2Ω(
√
s).

Case 2 : Ck
g0 computes the value of all negative test inputs incorrectly.

Because of Lemma 4, we obtain

Cm(CLIQUE(m, s)) ≥ (s−1)m

(s−1)m−k(s
2
)k

= 2k(s−1
s)k

= 2k(1− 1
s)

k

= 2Ω(m
s
).

Since m
s ≥ m

1

3 for s ≤ m
2

3 , the assertion follows. �

24

5 Reduced CNF and DNF formulas

First we shall investigate the difficulties which occur if we intend the use of
CNF-DNF-approximators defined for monotone Boolean functions on stan-
dard networks. For doing this, we shall use the function f := CLIQUE(m, s).
The characteristic function of the set T1 := PI(f) of positive test inputs can
be computed in polynomial time. It suffices to check if m − s nodes have
degree zero and the other s nodes have degree s − 1. Hence, there exits a
standard network of polynomial size for the characteristic function of T1.
Although this standard network does not compute the clique function, it
computes the value of all test inputs in T1∪T0 correctly. Therefore, a CNF-
DNF-approximator must use the fact that the approximator is used on a
standard network which computes the clique function f at its output node.

In contrast to monotone Boolean networks, the monomials in the DNF
representation and the clauses in the CNF representation of a function com-
puted by a standard network contain negated variables. To elaborate the
problems which arise because of the negated variables, we try to use Berg
and Ulfberg’s CNF-DNF-approximator for f on a standard network β which
computes f at its output node g0. This means that the sizes of the mono-
mials and of the clauses only depend on their non-negated variables. What
is the effect of the presence of negated variables on Berg and Ulfberg’s anal-
ysis? For the development of the CNF/DNF-approximator switch and also
of the DNF/CNF-approximator switch, a tree is constructed. If this would
be done for the approximation of a standard network in an analogous man-
ner, some edges in the tree must be labelled with a negated variable. A
main argument in the proofs of Lemma 3 and Lemma 4 is that always when
descending on an edge to a son from a node with more than one son, the
size of the corresponding monomial or clause increases by one. But now,
if the edge is labelled by a negated variable, this would not be the case.
Hence, the proofs of Lemma 3 and Lemma 4 collapse. Moreover, the proof
of Lemma 5 collapses as well. The clause d in Ck

g0 which falsifies the test
input b ∈ T0 can contain any number of negated variables. Each positive
test input which satisfies Ck

g0 must satisfy one of the literals in d. But this
can also be one of the negated variables in d. Hence, no positive test input
can be excluded to be computed correctly by the approximator Ck

g0 .
It seems that a CNF-DNF-approximator has also to approximate the

negated variables. This would be a very difficult task. But Theorem 1 opens
another way. For each positive test input a, DNFβ(g0) and also CNFβ(g0)
contain an implicant ma such that ma(a) = 1. Moreover, for each negative
test input b, they contain an f -clause db such that db(b) = 0. Since the

25

clique function is monotone, after the removal of the negated variables in
ma and in db, we obtain a monomial m′

a which is still an implicant of f and
a clause d′b which is still an f -clause. Obviously, m′

a(a) = 1 and d′b(b) = 0.
This suggests the following approach:

Apply a transformation which eliminates the negated variables in the
monomials of the DNF representation and in the clauses of the CNF rep-
resentation of the functions computed at the nodes of the given standard
network first and then approximate the resulting reduced CNF representa-
tions or the resulting reduced DNF representations.

To get such a transformation, we also introduce some additional rules
for the construction of reduced DNF and reduced CNF formulas. To elim-
inate the negated variables from the monomials, during the construction
of a reduced DNF formula, a non-empty monomial m which contains only
non-negated variables always absorbs the negated variables. To eliminate
the negated variables from the clauses, during the construction of a reduced
CNF formula, a non-empty clause d which contains only non-negated vari-
ables always absorbs the negated variables. This means that during the
construction of a reduced DNF formula, the rule

m ∧m′ = m,

where m is non-empty and contains only non-negated variables and m′ con-
tains only negated variables, is applied. During the construction of a reduced
CNF formula, the rule

d ∨ d′ = d

where d is non-empty and contains only non-negated variables and d′ con-
tains only negated variables is applied.

By construction, the DNF and CNF representations of the functions
computed at the nodes of a standard network can also contain trivial mono-
mials or trivial clauses. Because of the absorbtion of the negated variables,
a trivial monomial or a trivial clause would be transformed into a non-trivial
monomial or a non-trivial clause. Since a trivial monomial or a trivial clause
contains for at least one variable both literals, a trivial monomial or a trivial
clause contains for each positive test input a a literal which is fulfilled by a
and for each negative test input b a literal which is falsified by b. After the
tranformation, the resulting non-trivial clause can lose this property such
that the transformation would have a disturbing side effect. To remove this
side effect, we define a further operator R, which, applied to a DNF formula,
replaces all monomials which originate from a trivial monomial by zero. Ap-
plied to a CNF formula, R replaces all clauses which originate from a trivial
clause by one.

26

By construction, each non-empty monomial in a reduced DNF formula
and each non-empty clause in a reduced CNF formula contains only non-
negated variables or only negated variables. The term for a monomial or a
clause is overlined iff it contains only negated variables. Hence, each reduced
DNF formula α and each reduced CNF formula γ can be represented in the
following way:

α =
t
∨

i=1

mi ∨
t′
∨

j=1

mj and γ =
t
∧

i=1

di ∧
t′
∧

j=1

dj ,

where t = 0 or t′ = 0 if the corresponding subformula is empty.
Now we are prepared to describe the reduced DNF and CNF formulas

constructed by a standard network. Starting at the input nodes, the stan-
dard network β constructs the reduced DNF representations DNF’β(g) of
the functions resβ(g) in the following way:

1. If g is an input node with op(g) = xi or op(g) = ¬xi then

DNF’β(g) := op(g).

2. If g is an ∨-gate with pred(g) = {h1, h2} then

DNF’β(g) := DNF’β(h1) ∨DNF’β(h2).

3. If g is an ∧-gate with pred(g) = {h1, h2}, DNF’β(h1) =
∨t1

i=1mi ∨
∨t′

1

k=1mk and DNF’β(h2) =
∨t2

j=1m
′
j ∨ ∨t′

2

l=1m
′
l then we distinguish

four subcases:

a) t′1 = 0 and t′2 = 0. Then

α :=

t1
∨

i=1

t2
∨

j=1

(mi ∧m′
j).

b) t′1 > 0 and t′2 = 0. Then

α :=

t2
∨

j=1

m′
j ∨

t1
∨

i=1

t2
∨

j=1

(mi ∧m′
j).

c) t′1 = 0 and t′2 > 0. Then

α :=

t1
∨

i=1

mi ∨
t1
∨

i=1

t2
∨

j=1

(mi ∧m′
j).

27

d) t′1 > 0 and t′2 > 0. Then

α :=

t1
∨

i=1

mi ∨
t2
∨

j=1

m′
j ∨

t1
∨

i=1

t2
∨

j=1

(mi ∧m′
j) ∨

t′
1

∨

k=1

t′
2
∨

l=1

(mk ∧m′
l).

In all subcases, we apply the operator R to α to obtain DNF’β(g); i.e.,

DNF’β(g) := R(α).

Starting at the input nodes, the standard network β constructs the re-
duced CNF representations CNF’β(g) of the functions resβ(g) in the follow-
ing way:

1. If g is an input node with op(g) = xi or op(g) = ¬xi then

CNF’β(g) := op(g).

2. If g is an ∧-gate with pred(g) = {h1, h2} then

CNF’β(g) := CNF’β(h1) ∧ CNF’β(h2).

3. If g is an ∨-gate with pred(g) = {h1, h2}, CNF’β(h1) =
∧t1

i=1 di ∧
∧t′

1

k=1 dk and CNF’β(h2) =
∧t2

j=1 d
′
j ∧

∧t′
2

l=1 d
′
l then we distinguish four

subcases:

a) t′1 = 0 and t′2 = 0. Then

γ :=

t1
∧

i=1

t2
∧

j=1

(di ∨ d′j).

b) t′1 > 0 and t′2 = 0. Then

γ :=

t2
∧

j=1

d′j ∧
t1
∧

i=1

t2
∧

j=1

(di ∨ d′j).

c) t′1 = 0 and t′2 > 0. Then

γ :=

t1
∧

i=1

di ∧
t1
∧

i=1

t2
∧

j=1

(di ∨ d′j).

28

d) t′1 > 0 and t′2 > 0. Then

γ :=

t1
∧

i=1

di ∧
t2
∧

j=1

d′j ∧
t1
∧

i=1

t2
∧

j=1

(di ∨ d′j) ∧
t′
1
∧

k=1

t′
2

∧

l=1

(dk ∨ d′l).

In all subcases, we apply the operator R to γ to obtain CNF’β(g); i.e.,

CNF’β(g) := R(γ).

Alternatively, we can obtain the reduced CNF and DNF formulas of the
standard network β in the following way: The CNF and DNF representations
of the functions computed at the nodes of β are constructed first. Then all
trivial monomials are replaced by zero and all trivial clauses are replaced by
one. Finally, the absorbtion rules are applied to these formulas obtaining
for each node g of β the reduced formulas CNF’β(g) and DNF’β(g).

Obviously, we obtain the same reduced CNF and DNF representations
of the functions computed at the nodes of the standard network β if we
construct the CNF and DNF representations first and then applying the
removing and absorbtion rules or if we construct the reduced CNF and DNF
representations as described above directly. This can be proved by induction.
The following theorem characterizes the reduced CNF and DNF formulas
constructed at the output node of a standard network which computes a
non-constant monotone Boolean function.

Theorem 5 Let f ∈ Bn be a non-constant monotone Boolean function. Let
β be a standard network which computes f at the output node g0. Then for
DNF’β(g0) and for CNF’β(g0), the following hold:

a) All monomials contained in DNF’β(g0) are implicants of f . For each
a ∈ f−1(1), DNF’β(g0) contains an implicant m′

a of f such that
m′

a(a) = 1. For each b ∈ f−1(0), DNF’β(g0) contains an f -clause
d′b such that d′b(g) = 0.

b) All clauses contained in CNF’β(g0) are f -clauses. For each b ∈ f−1(0),
CNF’β(g0) contains an f -clause d′b such that d′b(b) = 0. For each a ∈
f−1(1), CNF’β(g0) contains an implicant m′

a of f such that m′
a(a) = 1.

Proof: By the removing rules, each trivial monomial in DNFβ(g0) is re-
placed by zero. Hence, each monomial m′ in DNF’β(g0) is obtained by an
application of the absorbtion rule to an implicant m = m′m′′ of f . Since m′

is still an implicant of f , all monomials in DNF’β(g0) are implicants of f .

29

By Theorem 1a, DNFβ(g0) contains for each a ∈ f−1(1) an implicant ma

of f such thatma(a) = 1. We can writema = m′
am

′′
a wherem

′
a contains only

non-negated variables and m′′
a is empty or contains only negated variables.

Hence, by the absorbtion rule, DNF’β(g0) contains the monomial m′
a. Since

f is monotone, the monomial m′
a is still an implicant of f .

This shows also that DNF’β(g0) computes f . Note that all monomials
in DNF’β(g0) contain only non-negated variables. By definition, DNF’β(g0)
contains exactly those clauses which are contained in that CNF formula
γ which results by a DNF/CNF-switch of DNF’β(g0). By Lemma 1, γ
computes f as well. Hence, by Theorem 1, γ contains for each b ∈ f−1(0)
an f -clause d′b such that d′b(b) = 0.

This proves part a) of the theorem. Analogously, we can prove part b)
of the theorem. �

In contrast to monotone networks, we need that the standard network β
computes the monotone function under consideration. Otherwise, we cannot
ensure that the reduced CNF and DNF representations of resβ(g0) computes
the values for all test inputs correctly.

6 CNF-DNF-Approximators for Monotone Boole-

an Functions used on Standard Networks

Given a a standard network β which computes a non-constant monotone
Boolean function f at its output node g0 and a CNF-DNF-approximator A =
(f,Φ, (T1, T0), (S, k, r), R, (e1, e0), (d1, d0)), we wish to use A on β. More
precisely, we wish to approximate the reduced Φ formulas of the functions
computed at the nodes of β. For doing this, we define the current front in the
same way as for monotone networks. Analogously to monotone networks,
we specify when an error is introduced by an approximator. The size of a
monomial or a clause consisting of only negated variables is defined to be
zero. We need a scheme for the use of A to construct the approximators
corresponding to the nodes of β. Our goal is to design such a scheme.

For an input node g with op(g) = xi or op(g) = ¬xi, we define Dr
xi

:=
op(g) and Ck

xi
:= op(g). For the definition of the approximators for the

gates, we consider the nodes in β in a topological order; i.e., when a gate g
is considered then the approximators of both direct predecessors h1 and h2
are defined. First we shall consider the case that Φ = CNF. According to
the type of g, we distinguish two cases.

30

Case 1: g is an ∨-gate.
Let

Ck
h1

= γ1 ∧ γ′1 where γ1 =

t1
∧

i=1

di and γ′1 =

t′
1
∧

k=1

dk,

Ck
h2

= γ2 ∧ γ′2 where γ2 =

t2
∧

j=1

d′j and γ′2 =

t′
2
∧

l=1

d′l,

γ =

t1
∧

i=1

t2
∧

j=1

(di ∨ d′j) and γ′ =

t′
1

∧

k=1

t′
2
∧

l=1

(dk ∨ d′l).

Before the approximation of the gate g, a clause d in CNF’β(g) can use
a clause in γ′1 or in γ′2 or no clause in γ′1 or in γ′2. Since these situations have
to be treated differently, the construction of the approximator separates
into two steps. During the first step, a CNF formula C′

g containing exactly
those clauses in CNF’β(g) which use at least one clause in γ′1 or in γ′2 is
constructed. In the second step, a CNF formula C′′

g containing the clauses
which use no clause in γ′1 or in γ′2 is constructed. During the construction
of the approximators, we have to apply the operator R for the removal of
clauses which stem from trivial clauses. Finally, the approximator Ck

g is
obtained by the conjunction of both constructed CNF formulas C′

g and C′′
g .

Step 1:

We define

C′
g :=















R(γ2) t′1 > 0 and t′2 = 0,
R(γ1) t′1 = 0 and t′2 > 0,
R(γ1 ∧ γ2 ∧ γ′) t′1 > 0 and t′2 > 0,
undefined otherwise.

Obviously, all clauses in C′
g have size less than k. Furthermore, C′

g con-
tains still all clauses contained in CNF’β(g) before the approximation of the
gate g which use a clause in γ′1 or in γ′2.

Step 2:

We have to realize R(γ). Instead of doing this directly, we shall per-
form a DNF/CNF-approximator switch using an appropriate DNF formula
which contains only monomials of size less than r. Assume that we have an
approximator Dr

h1
for γ1 and an approximator Dr

h2
for γ2. Then we define

D′
g := Dr

h1
∨ Dr

h2
.

31

By construction, D′
g is a DNF formula where all monomials have size less

than r. Then C′′
g is obtained by performing a DNF/CNF-approximator

switch using the DNF formula D′
g and applying the operator R to the re-

sulting CNF formula.

Now we obtain the approximator Ck
g by

Ck
g :=







C′
g ∧ C′′

g if C′
g and C′′

g are defined,

C′
g if only C′

g is defined,

C′′
g if only C′′

g is defined.

By construction, all clauses in Ck
g have size less than k. Let

Ck
g = γ ∧ γ′ where γ =

t
∧

i=1

di and γ′ =
t′
∧

k=1

dk.

For defining the approximators of the direct successors of the gate g, we
need an approximator Dr

g for γ as well. The approximator Dr
g is obtained

by performing a CNF/DNF-approximator switch using the CNF formula γ.

During the construction of the approximators Ck
g andDr

g, one DNF/CNF-
approximator switch and one CNF/DNF-approximator switch are performed.
By the structure of the approximator A, an error is introduced for at most
e0 negative and at most e1 positive test inputs.

Case 2: g is an ∧-gate.
Then we define

Ck
g := Ck

h1
∧ Ck

h2
.

By construction, all clauses in Ck
g have size less than k. Let

Ck
g = γ ∧ γ′ where γ =

t
∧

i=1

di and γ′ =
t′
∧

k=1

dk.

For defining the approximators of the direct successors of the gate g, we
need an approximator Dr

g for γ as well. The approximator Dr
g is obtained

by performing a CNF/DNF-approximator switch using the CNF formula γ.

During the construction of the approximators Ck
g andDr

g, one CNF/DNF-
approximator switch and no DNF/CNF-approximator switch is performed.
By the structure of the approximator A, an error is introduced for no neg-
ative and at most e1 positive test inputs.

It remains to consider the case that Φ = DNF. Remember that for
monotone Boolean networks, both schemes for Φ = CNF and for Φ = DNF

32

formulas are identically. This is not the case for standard networks. But the
constructions of both schemes are dual. Although the construction of the
scheme for Φ = DNF is straightforward, we shall present the scheme now.
According to the type of g, we distinguish two cases.

Case 1: g is an ∧-gate.
Let

Dr
h1

= α1 ∨ α′
1 where α1 =

t1
∨

i=1

mi and α′
1 =

t′
1

∨

k=1

mk,

Dr
h2

= α2 ∨ α′
2 where α2 =

t2
∨

j=1

m′
j and α′

2 =

t′
2

∨

l=1

m′
l,

α =

t1
∨

i=1

t2
∨

j=1

(mi ∧m′
j) and α′ =

t′
1

∨

k=1

t′
2
∨

l=1

(mk ∧m′
l).

Again, the construction of the approximator separates into two steps.
During the first step, a DNF formula D′

g containing exactly those monomials
in DNF’β(g) which use at least one monomial in α′

1 or in α′
2 is constructed.

In the second step, a DNF formula D′′
g containing the monomials which use

no monomial in α′
1 or in α′

2 is constructed. Again, we have to apply the
operator R. Finally, the approximator Dr

g is obtained by the disjunction of
both constructed DNF formulas D′

g and D′′
g .

Step 1:

We define

D′
g :=















R(α2) t′1 > 0 and t′2 = 0,
R(α1) t′1 = 0 and t′2 > 0,
R(α1 ∨ α2 ∨ α′) t′1 > 0 and t′2 > 0,
undefined otherwise.

Obviously, all monomials in D′
g have size less than r. Furthermore, D′

g

contains still all monomials contained in DNF’β(g) before the approximation
of the gate g which use a monomial in α′

1 or in α′
2.

Step 2:

We have to realize R(α). Instead of doing this directly, we shall per-
form a CNF/DNF-approximator switch using an appropriate CNF formula

33

which contains only clauses of size less than k. Assume that we have an
approximator Ck

h1
for α1 and an approximator Ck

h2
for α2. Then we define

C′
g := Ck

h1
∧ Ck

h2
.

By construction, C′
g is a CNF formula where all clauses have size less than

k. Then D′′
g is obtained by performing a CNF/DNF-approximator switch

using the CNF formula C′
g and applying the operator R to the resulting DNF

formula.
Now we obtain the approximator Dr

g by

Dr
g :=







D′
g ∨ D′′

g if D′
g and D′′

g are defined,

D′
g if only D′

g is defined,

D′′
g if only D′′

g is defined.

By construction, all monomials in Dr
g have size less than r. Let

Dr
g = α ∨ α′ where α =

t
∨

i=1

mi and α′
1 =

t′
∨

k=1

mk.

For defining the approximators of the direct successors of the gate g, we
need an approximator Ck

g for α as well. The approximator Ck
g is obtained by

performing a DNF/CNF-approximator switch using the DNF formula α.

During the construction of the approximators, one CNF/DNF- and one
DNF/CNF-approximator switch are performed. By the structure of the
approximator A, an error is introduced for at most e1 positive and at most
e0 negative test inputs.

Case 2: g is an ∨-gate.
Then we define

Dr
g := Dr

h1
∨ Dr

h2
.

By construction, all monomials in Dr
g have size less than r. Let

Dr
g = α ∨ α′ where α =

t
∨

i=1

mi and α′
1 =

t′
∨

k=1

mk.

For defining the approximators of the direct successors of the gate g, we
need an approximator Ck

g for α as well. The approximator Ck
g is obtained by

performing a DNF/CNF-approximator switch using the DNF formula α.

34

During the construction of the approximators Dr
g and Ck

g , one DNF/CNF-
and no CNF/DNF-approximator switch are performed. By the structure of
the approximator A, an error is introduced for no positive and at most e0
negative test inputs.

By Theorem 5, before the definition of any approximator, Φ(β) contains
for each a ∈ T1 a monomial ma with ma(a) = 1 and for each input b ∈ T0

a clause db with db(b) = 0. By construction and Theorem 5, the approxi-
mators Ck

g0 and Dr
g0 do not contain any negated variable. Furthermore, all

monomials in Dr
g0 have size less than r and all clauses in Ck

g0 have size less
than k. Hence, by the definition of the approximators and the structure of
A, the approximator Φ(β) contains for at least d1|T1| positive test inputs a
no monomial ma with ma(a) = 1 or contains for at least d0|T0| negative test
inputs b no clause db with db(b) = 0. Since for each gate in the standard
network β, the approximation introduces an error for at most e0 test inputs

in T0 and for at most e1 test inputs in T1, a min
{

d1|T1|
e1

, d0|T0|
e0

}

lower bound

for Cst(f) is proved.

Altogether, we have proved the following theorem.

Theorem 6 Let f ∈ Bn be any monotone Boolean function. Assume that
there is a CNF-DNF-approximator A which can be used to prove a lower
bound for Cm(f). Then A can also be used to prove the same lower bound
for Cst(f).

7 Applications

Improving the lower bound of Razborov [11], Alon and Boppana [1] have
proved for s ≤ m2/3 a 2Ω(

√
s) lower bound for the monotone complexity

of CLIQUE(m, s). Using a CNF-DNF-approximator, Berg and Ulfberg [4]
have proved the same lower bound. By an application of Theorem 6, we
obtain the following theorem.

Theorem 7 Let s ≤ m
2

3 . Then Cst(CLIQUE(m, s)) ≥ 2Ω(
√
s).

Andreev [3] was the first who could prove an exponential lower bound for
the monotone complexity of a Boolean function in NP . Andreev’s function
is the characteristic function POLY(q, s) of the following problem:

For a prime power q ≥ 2 let GF (q) denote the finite field with q elements.
Let G = (A,B,E) be a bipartite graph where A := GF (q) and B := GF (q).
For given q and s, the problem is to decide whether there exists a polynomial

35

p over GF (q) of degree at most s − 1 such that for all i ∈ A there hold
(i, p(i)) ∈ E.

POLY(q, s) is a monotone Boolean function of n := q2 variables. For s =
1
2n

1/8/
√
lnn− 1, Andreev has obtained a 2Ω(n1/8/

√
lnn) lower bound for the

monotone complexity of POLY(q, s). Alon and Boppana [1] have improved
this for s ≤ 1

2

√

q/ ln q to qΩ(s). Therefore, after setting s := 1
2

√

q/ ln q, we

obtain a 2Ω(n1/4/
√
lnn) lower bound. Using a CNF-DNF-approximator, Berg

and Ulfberg [4] have proved the same lower bound. By an application of
Theorem 6, we obtain the following theorem.

Theorem 8 Let s ≤ 1
2

√

q/ ln q. Then Cst(POLY(q, s)) ≥ qΩ(s). For s :=
1
2

√

q/ ln q there holds Cst(POLY(q, s)) ≥ 2Ω(n1/4/
√
lnn).

Since the languages corresponding to both functions are contained in
NP , we obtain the following corollary.

Corollary 1 Let P be the set of languages accepted in polynomial time by
a deterministic Turing machine and let NP be the set of languages accepted
in polynomial time by a nondeterministic Turing machine. Then P 6= NP .

8 Negations in Boolean Networks

We have shown that every CNF-DNF-approximator developed to prove a
certain lower bound for the monotone complexity of a considered monotone
function can be used to prove the same lower bound for its standard com-
plexity. This explains why Berg and Ulfberg [4] could not find a CNF-DNF-
approximator for proving Razborov’s lower bound for the perfect matching
function. This means that CNF-DNF-approximators filter out anything
what can be done with help of negations. For the perfect matching func-
tion, it would be interesting to get CNF-DNF-approximators yielding a lower
bound for its non-monotone complexity which would exclude the existence
of for example an O(m2 log2m) algorithm. But yet, Boolean networks are
related to Turing machine computations and not to computations of a RAM.
How large must be such a lower bound to exclude an algorithm of certain
complexity on a RAM?

Further questions with respect to fundamental functions remain to be
open. Can we multiply two integers in linear time or can we prove an
Ω(n log n) lower bound for the non-monotone complexity of the multiplica-
tion of two n-bit numbers? Is FFT the best what we can do with respect to

36

polynomial multiplication? What is the complexity of the Boolean matrix
multiplication? It is my opinion that the explore of the power of nega-
tions remains to be one of the greatest challenges in Theoretical Computer
Science.

References

[1] Alon, N., Boppana, R. B.: The monotone circuit complexity of Boolean
functions, Combinatorica 7 (1987), 1–22.

[2] Amano, K., Maruoka, A.: The potential of the approximation method,
SIAM J. Comput. 33 (2004), 433–447.

[3] Andreev, A. E.: On a method for obtaining lower bounds for the com-
plexity of individual monotone functions, Soviet Math. Dokl. 31 (1985),
530–534.

[4] Berg, C., Ulfberg, S.: Symmetric approximation arguments for mono-
tone lower bounds without sunflowers, Comput. Complex. 8 (1999),
1–20.

[5] Blum, N.: On negations in Boolean networks, in Albers, S., Alt,
H., Näher, S. (eds.): Efficient Algorithms: Essays Dedicated to Kurt
Mehlhorn on the Occasion of His 60th Birthday, LNCS 5760 (2009),
18–29.

[6] Haken, A.: Counting bottlenecks to show monotone P 6= NP , Proc.
36th FOCS (1995), 36–40.

[7] Harnik, D., Raz, R.: Higher lower bounds on monotone size, Proc. 32nd
STOC (2000), 191–201.

[8] Jukna, S.: Combinatorics of monotone computations, Combinatorica
19 (1999), 65–85.

[9] Jukna, S.: Boolean Function Complexity: Advances and Frontiers,
Springer 2012.

[10] Karchmer, M.: On proving lower bounds for circuit size, Proc. 8th
Structure in Complexity Theory (1993), 112–118.

[11] Razborov, A. A.: Lower bounds on the monotone complexity of some
Boolean functions, Soviet Math. Dokl. 31 (1985), 354–357.

37

[12] Razborov, A. A.: A lower bound on the monotone network complexity
of the logical permanent, Math. Notes Acad. Sci. USSR 37 (1985),
485–493.

[13] Razborov, A. A.: On the method of approximation, Proc. 21st STOC
(1989), 167–176.

[14] Razborov A.A., Rudich, S.: Natural proofs, JCSS 55 (1997), 24–35.

[15] Savage, J. E.: Models of Computation: Exploring the Power of Com-
puting , Addison-Wesley 1998.

[16] Tardos, É., The gap between monotone and non-monotone circuit com-
plexity is exponential, Combinatorica 8, 141–142.

38

	1 Introduction and Preliminaries
	2 Some Basic Properties of Monotone and Standard Networks
	3 CNF-DNF-Approximators for Monotone Boolean Networks
	4 Berg and Ulfberg's CNF-DNF-approximator for the clique function
	5 Reduced CNF and DNF formulas
	6 CNF-DNF-Approximators for Monotone Boolean Functions used on Standard Networks
	7 Applications
	8 Negations in Boolean Networks

