
A Gentle Introduction to Multi-stage
Programming?

Walid Taha

Department of Computer Science, Rice University, Houston, TX, USA
taha@rice.edu

Abstract. Multi-stage programming (MSP) is a paradigm for develop-
ing generic software that does not pay a runtime penalty for this gener-
ality. This is achieved through concise, carefully-designed language ex-
tensions that support runtime code generation and program execution.
Additionally, type systems for MSP languages are designed to statically
ensure that dynamically generated programs are type-safe, and therefore
require no type checking after they are generated.
This hands-on tutorial is aimed at the reader interested in learning the
basics of MSP practice. The tutorial uses a freely available MSP exten-
sion of OCaml called MetaOCaml, and presents a detailed analysis of
the issues that arise in staging an interpreter for a small programming
language. The tutorial concludes with pointers to various resources that
can be used to probe further into related topics.

1 Introduction

Although program generation has been shown to improve code reuse, product
reliability and maintainability, performance and resource utilization, and devel-
oper productivity, there is little support for writing generators in mainstream
languages such as C or Java. Yet a host of basic problems inherent in program
generation can be addressed effectively by a programming language designed
specifically to support writing generators.

1.1 Problems in Building Program Generators

One of the simplest approaches to writing program generators is to represent
the program fragments we want to generate as either strings or data types (“ab-
stract syntax trees”). Unfortunately, both representations have disadvantages.
With the string encoding, we represent the code fragment f (x,y) simply as
"f (x,y)". Constructing and combining fragments represented by strings can be
done concisely. But there is no automatically verifiable guarantee that programs
constructed in this manner are syntactically correct. For example, "f (,y)" can
have the static type string, but this string is clearly not a syntactically correct
program.
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With the data type encoding the situation is improved, but the best we can
do is ensure that any generated program is syntactically correct. We cannot
use data types to ensure that generated programs are well-typed. The reason
is that data types can represent context-free sets accurately, but usually not
context sensitive sets. Type systems generally define context sensitive sets (of
programs). Constructing data type values that represent trees can be a bit more
verbose, but a quasi-quotation mechanism [1] can alleviate this problem and
make the notation as concise as that of strings.

In contrast to the strings encoding, MSP languages statically ensure that
any generator only produces syntactically well-formed programs. Additionally,
statically typed MSP languages statically ensure that any generated program is
also well-typed.

Finally, with both string and data type representations, ensuring that there
are no name clashes or inadvertent variable captures in the generated program
is the responsibility of the programmer. This is essentially the same problem
that one encounters with the C macro system. MSP languages ensure that such
inadvertent capture is not possible. We will return to this issue when we have
seen one example of MSP.

1.2 The Three Basic MSP Constructs

We can illustrate how MSP addresses the above problems using MetaOCaml
[2], an MSP extension of OCaml [9]. In addition to providing traditional im-
perative, object-oriented, and functional constructs, MetaOCaml provides three
constructs for staging. The constructs are called Brackets, Escape, and Run.
Using these constructs, the programmer can change the order of evaluation of
terms. This capability can be used to reduce the overall cost of a computation.

Brackets (written .<...>.) can be inserted around any expression to delay its
execution. MetaOCaml implements delayed expressions by dynamically gener-
ating source code at runtime. While using the source code representation is not
the only way of implementing MSP languages, it is the simplest. The following
short interactive MetaOCaml session illustrates the behavior of Brackets1:

# let a = 1+2;;

val a : int = 3

# let a = .<1+2>.;;

val a : int code = .<1+2>.

Lines that start with # are what is entered by the user, and the following line(s)
are what is printed back by the system. Without the Brackets around 1+2, the
addition is performed right away. With the Brackets, the result is a piece of code
representing the program 1+2. This code fragment can either be used as part of
another, bigger program, or it can be compiled and executed.
1 Some versions of MetaOCaml developed after December 2003 support environment

classifiers [21]. For these systems, the type int code is printed as (’a,int) code.
To follow the examples in this tutorial, the extra parameter ’a can be ignored.
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In addition to delaying the computation, Brackets are also reflected in the
type. The type in the last declaration is int code. The type of a code fragment
reflects the type of the value that such code should produce when it is executed.
Statically determining the type of the generated code allows us to avoid writing
generators that produce code that cannot be typed. The code type construc-
tor distinguishes delayed values from other values and prevents the user from
accidentally attempting unsafe operations (such as 1 + .<5>.).

Escape (written .~...) allows the combination of smaller delayed values to con-
struct larger ones. This combination is achieved by “splicing-in” the argument
of the Escape in the context of the surrounding Brackets:

# let b = .<.~a * .~a >. ;;

val b : int code = .<(1 + 2) * (1 + 2)>.

This declaration binds b to a new delayed computation (1+2)*(1+2).

Run (written .!...) allows us to compile and execute the dynamically generated
code without going outside the language:

# let c = .! b;;

val c : int = 9

Having these three constructs as part of the programming language makes it
possible to use runtime code generation and compilation as part of any library
subroutine. In addition to not having to worry about generating temporary files,
static type systems for MSP languages can assure us that no runtime errors will
occur in these subroutines (c.f. [17]). Not only can these type systems exclude
generation-time errors, but they can also ensure that generated programs are
both syntactically well-formed and well-typed. Thus, the ability to statically
type-check the safety of a computation is not lost by staging.

1.3 Basic Notions of Equivalence

As an aside, there are two basic equivalences that hold for the three MSP con-
structs [18]:

.~ .<e>. = e

.! .<e>. = e

Here, a value v can include usual values such as integers, booleans, and lambdas,
as well as Bracketed terms of the form .<e>.. In the presentation above, we
use e for an expression where all Escapes are enclosed by a matching set of
Brackets. The rules for Escape and Run are identical. The distinction between
the two constructs is in the notion of values: the expression in the value .<e>.
cannot contain Escapes that are not locally surrounded by their own Brackets.
An expression e is unconstrained as to where Run can occur.
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Avoiding accidental name capture. Consider the following staged function:

# let rec h n z = if n=0 then z

else .<(fun x -> .~(h (n-1) .<x+ .~z>.)) n>.;;

val h : int -> int code -> int code = <fun>

If we erase the annotations (to get the “unstaged” version of this function) and
apply it to 3 and 1, we get 7 as the answer. If we apply the staged function
above to 3 and .<1>., we get the following term:

.<(fun x_1 -> (fun x_2 -> (fun x_3 -> x_3 + (x_2 + (x_1 + 1))) 1) 2) 3>.

Whereas the source code only had fun x -> ... inside Brackets, this code
fragment was generated three times, and each time it produced a different
fun x_i -> ... where i is a different number each time. If we run the gen-
erated code above, we get 7 as the answer. We view it as a highly desirable
property that the results generated by staged programs are related to the re-
sults generated by the unstaged program. The reader can verify for herself that
if the xs were not renamed and we allowed variable capture, the answer of run-
ning the staged program would be different from 7. Thus, automatic renaming
of bound variables is not so much a feature; rather, it is the absence of renaming
that seems like a bug.

1.4 Organization of This Paper

The goal of this tutorial is to familiarize the reader with the basics of MSP. To
this end, we present a detailed example of how MSP can be used to build staged
interpreters. The practical appeal of staged interpreters lies in that they can
be almost as simple as interpreter-based language implementations and at the
same time be as efficient as compiler-based ones. To this end, Section 2 briefly
describes an idealized method for developing staged programs in a program-
ming language that provides MSP constructs. The method captures a process
that a programmer iteratively applies while developing a staged program. This
method will be used repeatedly in examples in the rest of the paper. Section 3
constitutes the technical payload of the paper, and presents a series of more so-
phisticated interpreters and staged interpreters for a toy programming language.
This section serves both to introduce key issues that arise in the development
of a staged interpreter (such as error handling and binding-time improvements),
and to present a realistic example of a series of iterative refinements that arise
in developing a satisfactory staged interpreter. Section 4 concludes with a brief
overview of additional resources for learning more about MSP.

2 How Do We Write MSP Programs?

Good abstraction mechanisms can help the programmer write more concise and
maintainable programs. But if these abstraction mechanisms degrade perfor-
mance, they will not be used. The primary goal of MSP is to help the program-
mer reduce the runtime overhead of sophisticated abstraction mechanisms. Our

4



hope is that having such support will allow programmers to write higher-level
and more reusable programs.

2.1 A Basic Method for Building MSP Programs

An idealized method for building MSP programs can be described as follows:

1. A single-stage program is developed, implemented, and tested.
2. The organization and data-structures of the program are studied to ensure

that they can be used in a staged manner. This analysis may indicate a need
for “factoring” some parts of the program and its data structures. This step
can be critical step toward effective MSP. Fortunately, it has been thoroughly
investigated in the context of partial evaluation where it is known as binding-
time engineering [7].

3. Staging annotations are introduced to explicitly specify the evaluation order
of the various computations of the program. The staged program may then
be tested to ensure that it achieves the desired performance.

The method described above, called multi-stage programming with explicit
annotations [22], can be summarized by the slogan:

A Staged Program = A Conventional Program + Staging Annotations

We consider the method above to be idealized because, in practice, it is useful to
iterate through steps 1-3 in order to determine the program that is most suitable
for staging. This iterative process will be illustrated in the rest of this paper. But
first, we consider a simpler example where the method can be applied directly.

2.2 A Classic Example

A common source of performance overhead in generic programs is the presence of
parameters that do not change very often, but nevertheless cause our programs
to repeatedly perform the work associated with these inputs. To illustrate, we
consider the following classic function in MetaOCaml: [7]

let rec power (n, x) =

match n with

0 -> 1 | n -> x * (power (n-1, x));;

This function is generic in that it can be used to compute x raised to any
nonnegative exponent n. While it is convenient to use generic functions like
power, we often find that we have to pay a price for their generality. Developing
a good understanding of the source of this performance penalty is important,
because it is exactly what MSP will help us eliminate. For example, if we need
to compute the second power often, it is convenient to define a special function:

let power2 (x) = power (2,x);;

In a functional language, we can also write it as follows:
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let power2 = fun x -> power (2,x);;

Here, we have taken away the formal parameter x from the left-hand side of the
equality and replaced it by the equivalent “fun x ->” on the right-hand side.
To use the function power2, all we have to do is to apply it as follows:

let answer = power2 (3);;

The result of this computation is 9. But notice that every time we apply power2
to some value x it calls the power function with parameters (2,x). And even
though the first argument will always be 2, evaluating power (2,x) will always
involve calling the function recursively two times. This is an undesirable over-
head, because we know that the result can be more efficiently computed by
multiplying x by itself. Using only unfolding and the definition of power, we
know that the answer can be computed more efficiently by:

let power2 = fun x -> 1*x*x;;

We also do not want to write this by hand, as there may be many other special-
ized power functions that we wish to use. So, can we automatically build such a
program?

In an MSP language such as MetaOCaml, all we need to do is to stage the
power function by annotating it:

let rec power (n, x) =

match n with

0 -> .<1>. | n -> .<.~x * .~(power (n-1, x))>.;;

This function still takes two arguments. The second argument is no longer an
integer, but rather, a code of type integer. The return type is also changed.
Instead of returning an integer, this function will return a code of type integer.
To match this return type, we insert Brackets around 1 in the first branch on
the third line. By inserting Brackets around the multiplication expression, we
now return a code of integer instead of just an integer. The Escape around the
recursive call to power means that it is performed immediately.

The staging constructs can be viewed as “annotations” on the original pro-
gram, and are fairly unobtrusive. Also, we are able to type check the code both
outside and inside the Brackets in essentially the same way that we did before.
If we were using strings instead of Brackets, we would have to sacrifice static
type checking of delayed computations.

After annotating power, we have to annotate the uses of power. The decla-
ration of power2 is annotated as follows:

let power2 = .! .<fun x -> .~(power (2,.<x>.))>.;;

Evaluating the application of the Run construct will compile and if execute its
argument. Notice that this declaration is essentially the same as what we used
to define power2 before, except for the staging annotations. The annotations
say that we wish to construct the code for a function that takes one argument
(fun x ->). We also do not spell out what the function itself should do; rather ,
we use the Escape construct (.~) to make a call to the staged power. The result
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of evaluating this declaration behaves exactly as if we had defined it “by hand”
to be fun x -> 1*x*x. Thus, it will behave exactly like the first declaration of
power2, but it will run as though we had written the specialized function by
hand. The staging constructs allowed us to eliminate the runtime overhead of
using the generic power function.

3 Implementing DSLs Using Staged Interpreters

An important application for MSP is the implementation of domain-specific
languages (DSLs) [4]. Languages can be implemented in a variety of ways. For
example, a language can be implemented by an interpreter or by a compiler.
Compiled implementations are often orders of magnitude faster than interpreted
ones, but compilers have traditionally required significant expertise and took
orders of magnitude more time to implement than interpreters. Using the method
outlined in Section 2, we can start by first writing an interpreter for a language,
and then stage it to get a staged interpreter. Such staged interpreters can be as
simple as the interpreter we started with and at the same time have performance
comparable to that of a compiler. This is possible because the staged interpreter
becomes effectively a translator from the DSL to the host language (in this case
OCaml). Then, by using MetaOCaml’s Run construct, the total effect is in fact
a function that takes DSL programs and produces machine code2.

To illustrate this approach, this section investigates the implementation of
a toy programming language that we call lint. This language supports integer
arithmetic, conditionals, and recursive functions. A series of increasingly more
sophisticated interpreters and staged interpreters are used to give the reader
a hands-on introduction to MSP. The complete code for the implementations
described in this section is available online [10].

3.1 Syntax

The syntax of expressions in this language can be represented in OCaml using
the following data type:

type exp = Int of int | Var of string | App of string * exp

| Add of exp * exp | Sub of exp * exp

| Mul of exp * exp | Div of exp * exp | Ifz of exp * exp * exp

type def = Declaration of string * string * exp

type prog = Program of def list * exp

Using the above data types, a small program that defines the factorial function
and then applies it to 10 can be concisely represented as follows:

2 If we are using the MetaOCaml native code compiler. If we are using the bytecode
compiler, the composition produces bytecode.
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Program ([Declaration

("fact","x", Ifz(Var "x",

Int 1,

Mul(Var"x",

(App ("fact", Sub(Var "x",Int 1))))))

],

App ("fact", Int 10))

OCaml lex and yacc can be used to build parsers that take textual representa-
tions of such programs and produce abstract syntax trees such as the above. In
the rest of this section, we focus on what happens after such an abstract syntax
tree has been generated.

3.2 Environments

To associate variable and function names with their values, an interpreter for
this language will need a notion of an environment. Such an environment can be
conveniently implemented as a function from names to values. If we look up a
variable and it is not in the environment, we will raise an exception (let’s call it
Yikes). If we want to extend the environment (which is just a function) with an
association from the name x to a value v, we simply return a new environment
(a function) which first tests to see if its argument is the same as x. If so, it
returns v. Otherwise, it looks up its argument in the original environment. All
we need to implement such environments is the following:

exception Yikes

(* env0, fenv : ’a -> ’b *)

let env0 = fun x -> raise Yikes let fenv0 = env0

(* ext : (’a -> ’b) -> ’a -> ’b -> ’a -> ’b *)

let ext env x v = fun y -> if x=y then v else env y

The types of all three functions are polymorphic. Type variables such as ’a
and ’b are implicitly universally quantified. This means that they can be later
instantiated to more specific types. Polymorphism allows us, for example, to
define the initial function environment fenv0 as being exactly the same as the
initial variable environment env0. It will also allow us to use the same function
ext to extend both kinds of environments, even when their types are instantiated
to the more specific types such as:

env0 : string -> int fenv0 : string -> (int -> int)

3.3 A Simple Interpreter

Given an environment binding variable names to their runtime values and func-
tion names to values (these will be the formal parameters env and fenv, respec-
tively), an interpreter for an expression e can be defined as follows:
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(* eval1 : exp -> (string -> int) -> (string -> int -> int) -> int *)

let rec eval1 e env fenv =

match e with

Int i -> i

| Var s -> env s

| App (s,e2) -> (fenv s)(eval1 e2 env fenv)

| Add (e1,e2) -> (eval1 e1 env fenv)+(eval1 e2 env fenv)

| Sub (e1,e2) -> (eval1 e1 env fenv)-(eval1 e2 env fenv)

| Mul (e1,e2) -> (eval1 e1 env fenv)*(eval1 e2 env fenv)

| Div (e1,e2) -> (eval1 e1 env fenv)/(eval1 e2 env fenv)

| Ifz (e1,e2,e3) -> if (eval1 e1 env fenv)=0

then (eval1 e2 env fenv)

else (eval1 e3 env fenv)

This interpreter can now be used to define the interpreter for declarations and
programs as follows:

(* peval1 : prog -> (string -> int) -> (string -> int -> int) -> int *)

let rec peval1 p env fenv=

match p with

Program ([],e) -> eval1 e env fenv

|Program (Declaration (s1,s2,e1)::tl,e) ->

let rec f x = eval1 e1 (ext env s2 x) (ext fenv s1 f)

in peval1 (Program(tl,e)) env (ext fenv s1 f)

In this function, when the list of declarations is empty ([]), we simply use eval1
to evaluate the body of the program. Otherwise, we recursively interpret the list
of declarations. Note that we also use eval1 to interpret the body of function
declarations. It is also instructive to note the three places where we use the
environment extension function ext on both variable and function environments.

The above interpreter is a complete and concise specification of what pro-
grams in this language should produce when they are executed. Additionally,
this style of writing interpreters follows quite closely what is called the denota-
tional style of specifying semantics, which can be used to specify a wide range
of programming languages. It is reasonable to expect that a software engineer
can develop such implementations in a short amount of time.

Problem: The cost of abstraction. If we evaluate the factorial example given
above, we will find that it runs about 20 times slower than if we had written
this example directly in OCaml. The main reason for this is that the interpreter
repeatedly traverses the abstract syntax tree during evaluation. Additionally,
environment lookups in our implementation are not constant-time.

3.4 The Simple Interpreter Staged

MSP allows us to keep the conciseness and clarity of the implementation given
above and also eliminate the performance overhead that traditionally we would
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have had to pay for using such an implementation. The overhead is avoided by
staging the above function as follows:

(* eval2 : exp -> (string -> int code) -> (string -> (int -> int) code)

-> int code *)

let rec eval2 e env fenv =

match e with

Int i -> .<i>.

| Var s -> env s

| App (s,e2) -> .<.~(fenv s).~(eval2 e2 env fenv)>.

...

| Div (e1,e2)-> .<.~(eval2 e1 env fenv)/ .~(eval2 e2 env fenv)>.

| Ifz (e1,e2,e3) -> .<if .~(eval2 e1 env fenv)=0

then .~(eval2 e2 env fenv)

else .~(eval2 e3 env fenv)>.

(* peval2 : prog -> (string -> int code) -> (string -> (int -> int) code)

-> int code *)

let rec peval2 p env fenv=

match p with

Program ([],e) -> eval2 e env fenv

|Program (Declaration (s1,s2,e1)::tl,e) ->

.<let rec f x = .~(eval2 e1 (ext env s2 .<x>.)

(ext fenv s1 .<f>.))

in .~(peval2 (Program(tl,e)) env (ext fenv s1 .<f>.))>.

If we apply peval2 to the abstract syntax tree of the factorial example (given
above) and the empty environments env0 and fenv0, we get back the following
code fragment:

.<let rec f = fun x -> if x = 0 then 1 else x * (f (x - 1)) in (f 10)>.

This is exactly the same code that we would have written by hand for that
specific program. Running this program has exactly the same performance as if
we had written the program directly in OCaml.

The staged interpreter is a function that takes abstract syntax trees and
produces MetaOCaml programs. This gives rise to a simple but often overlooked
fact [19,20]:

A staged interpreter is a translator.

It is important to keep in mind that the above example is quite simplistic,
and that further research is need to show that we can apply MSP to realistic
programming languages. Characterizing what MSP cannot do is difficult, because
of the need for technical expressivity arguments. We take the more practical
approach of explaining what MSP can do, and hope that this gives the reader a
working understanding of the scope of this technology.
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3.5 Error Handling

Returning to our example language, we will now show how direct staging of
an interpreter does not always yield satisfactory results. Then, we will give an
example of the wide range of techniques that can be used in such situations.

A generally desirable feature of programming languages is error handling. The
original implementation of the interpreter uses the division operation, which can
raise a divide-by-zero exception. If the interpreter is part of a bigger system, we
probably want to have finer control over error handling. In this case, we would
modify our original interpreter to perform a check before a division, and return
a special value None if the division could not be performed. Regular values that
used to be simply v will now be represented by Some v. To do this, we will use
the following standard datatype:

type ’a option = None | Just of ’a;;

Now, such values will have to be propagated and dealt with everywhere in the
interpreter:

(* eval3 : exp -> (string -> int) -> (string -> int -> int option)

-> int option *)

let rec eval3 e env fenv =

match e with

Int i -> Some i

| Var s -> Some (env s)

| App (s,e2) -> (match (eval3 e2 env fenv) with

Some x -> (fenv s) x

| None -> None)

| Add (e1,e2) -> (match (eval3 e1 env fenv, eval3 e2 env fenv)

with (Some x, Some y) -> Some (x+y)

| _ -> None) ...

| Div (e1,e2) -> (match (eval3 e1 env fenv, eval3 e2 env fenv)

with (Some x, Some y) ->

if y=0 then None

else Some (x/y)

| _ -> None)

| Ifz (e1,e2,e3) -> (match (eval3 e1 env fenv) with

Some x -> if x=0 then (eval3 e2 env fenv)

else (eval3 e3 env fenv)

| None -> None)

Compared to the unstaged interpreter, the performance overhead of adding such
checks is marginal. But what we really care about is the staged setting. Staging
eval3 yields:

(* eval4 : exp -> (string -> int code)

-> (string -> (int -> int option) code)

-> (int option) code *)

let rec eval4 e env fenv =
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match e with

Int i -> .<Some i>.

| Var s -> .<Some .~(env s)>.

| App (s,e2) -> .<(match .~(eval4 e2 env fenv) with

Some x -> .~(fenv s) x

| None -> None)>.

| Add (e1,e2) -> .<(match (.~(eval4 e1 env fenv),

.~(eval4 e2 env fenv)) with

(Some x, Some y) -> Some (x+y)

| _ -> None)>. ...

| Div (e1,e2) -> .<(match (.~(eval4 e1 env fenv),

.~(eval4 e2 env fenv)) with

(Some x, Some y) ->

if y=0 then None

else Some (x/y)

| _ -> None)>.

| Ifz (e1,e2,e3) -> .<(match .~(eval4 e1 env fenv) with

Some x -> if x=0 then

.~(eval4 e2 env fenv)

else

.~(eval4 e3 env fenv)

| None -> None)>.

Problem: The cost of error handling. Unfortunately, the performance of
code generated by this staged interpreter is typically 4 times slower than the
first staged interpreter that had no error handling. The source of the runtime
cost becomes apparent when we look at the generated code:

.<let rec f =

fun x ->

(match (Some (x)) with

Some (x) ->

if (x = 0) then (Some (1))

else

(match

((Some (x)),

(match

(match ((Some (x)), (Some (1))) with

(Some (x), Some (y)) ->

(Some ((x - y)))

| _ -> (None)) with

Some (x) -> (f x)

| None -> (None))) with

(Some (x), Some (y)) ->

(Some ((x * y)))

| _ -> (None))

| None -> (None)) in

(match (Some (10)) with

Some (x) -> (f x)

| None -> (None))>.
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The generated code is doing much more work than before, because at every
operation we are checking to see if the values we are operating with are proper
values or not. Which branch we take in every match is determined by the explicit
form of the value being matched.

Half-solutions. One solution to such a problem is certainly adding a pre-
processing analysis. But if we can avoid generating such inefficient code in the
first place it would save the time wasted both in generating these unnecessary
checks and in performing the analysis. More importantly, with an analysis, we
may never be certain that all unnecessary computation is eliminated from the
generated code.

3.6 Binding-time Improvements

The source of the problem is the if statement that appears in the interpretation
of Div. In particular, because y is bound inside Brackets, we cannot perform
the test y=0 while we are building for these Brackets. As a result, we cannot
immediately determine if the function should return a None or a Some value.
This affects the type of the whole staged interpreter, and effects the way we
interpret all programs even if they do not contain a use of the Div construct.

The problem can be avoided by what is called a binding-time improvement
in the partial evaluation literature [7]. It is essentially a transformation of the
program that we are staging. The goal of this transformation is to allow better
staging. In the case of the above example, one effective binding time improve-
ment is to rewrite the interpreter in continuation-passing style (CPS) [5], which
produces the following code:

(* eval5 : exp -> (string -> int) -> (string -> int -> int)

-> (int option -> ’a) -> ’a *)

let rec eval5 e env fenv k =

match e with

Int i -> k (Some i)

| Var s -> k (Some (env s))

| App (s,e2) -> eval5 e2 env fenv

(fun r -> match r with

Some x -> k (Some ((fenv s) x))

| None -> k None)

| Add (e1,e2) -> eval5 e1 env fenv

(fun r ->

eval5 e2 env fenv

(fun s -> match (r,s) with

(Some x, Some y) -> k (Some (x+y))

| _ -> k None)) ...

| Div (e1,e2) -> eval5 e1 env fenv

(fun r ->

eval5 e2 env fenv
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(fun s -> match (r,s) with

(Some x, Some y) ->

if y=0 then k None

else k (Some (x/y))

| _ -> k None)) ...

(* pevalK5 : prog -> (string -> int) -> (string -> int -> int)

-> (int option -> int) -> int *)

let rec pevalK5 p env fenv k =

match p with

Program ([],e) -> eval5 e env fenv k

|Program (Declaration (s1,s2,e1)::tl,e) ->

let rec f x = eval5 e1 (ext env s2 x) (ext fenv s1 f) k

in pevalK5 (Program(tl,e)) env (ext fenv s1 f) k

exception Div_by_zero;;

(* peval5 : prog -> (string -> int) -> (string -> int -> int) -> int *)

let peval5 p env fenv =

pevalK5 p env fenv (function Some x -> x

| None -> raise Div_by_zero)

In the unstaged setting, we can use the CPS implementation to get the same
functionality as the direct-style implementation. But note that the two algo-
rithms are not the same. For example, performance of the CPS interpreter is
in fact worse than the previous one. But when we try to stage the new inter-
preter, we find that we can do something that we could not do in the direct-style
interpreter. In particular, the CPS interpreter can be staged as follows:

(* eval6 : exp -> (string -> int code) -> (string -> (int -> int) code)

-> (int code option -> ’b code) -> ’b code *)

let rec eval6 e env fenv k =

match e with

Int i -> k (Some .<i>.)

| Var s -> k (Some (env s))

| App (s,e2) -> eval6 e2 env fenv

(fun r -> match r with

Some x -> k (Some .<.~(fenv s) .~x>.)

| None -> k None)

| Add (e1,e2) -> eval6 e1 env fenv

(fun r ->

eval6 e2 env fenv

(fun s -> match (r,s) with

(Some x, Some y) ->

k (Some .<.~x + .~y>.)

| _ -> k None)) ...

| Div (e1,e2) -> eval6 e1 env fenv
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(fun r ->

eval6 e2 env fenv

(fun s -> match (r,s) with

(Some x, Some y) ->

.<if .~y=0 then .~(k None)

else .~(k (Some .<.~x / .~y>.))>.

| _ -> k None))

| Ifz (e1,e2,e3) -> eval6 e1 env fenv

(fun r -> match r with

Some x -> .<if .~x=0 then

.~(eval6 e2 env fenv k)

else

.~(eval6 e3 env fenv k)>.

| None -> k None)

(* peval6 : prog -> (string -> int code) -> (string -> (int -> int) code)

-> int code *)

let peval6 p env fenv =

pevalK6 p env fenv (function Some x -> x

| None -> .<raise Div_by_zero>.)

The improvement can be seen at the level of the type of eval6: the option type
occurs outside the code type, which suggests that it can be eliminated in the
first stage. What we could not do before is to Escape the application of the
continuation to the branches of the if statement in the Div case. The extra ad-
vantage that we have when staging a CPS program is that we are applying the
continuation multiple times, which is essential for performing the computation
in the branches of an if statement. In the unstaged CPS interpreter, the contin-
uation is always applied exactly once. Note that this is the case even in the if
statement used to interpret Div: The continuation does occur twice (once in each
branch), but only one branch is ever taken when we evaluate this statement. But
in the the staged interpreter, the continuation is indeed duplicated and applied
multiple times.3

The staged CPS interpreter generates code that is exactly the same as what
we got from the first interpreter as long as the program we are interpreting
does not use the division operation. When we use division operations (say, if we
replace the code in the body of the fact example with fact (20/2)) we get the
following code:

.<let rec f =

fun x -> if (x = 0) then 1 else (x * (f (x - 1)))

in if (2 = 0) then (raise (Div_by_zero)) else (f (20 / 2))>.

3 This means that converting a program into CPS can have disadvantages (such as
a computationally expensive first stage, and possibly code duplication). Thus, CPS
conversion must be used judiciously [8].
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3.7 Controlled Inlining

So far we have focused on eliminating unnecessary work from generated pro-
grams. Can we do better? One way in which MSP can help us do better is by
allowing us to unfold function declarations for a fixed number of times. This is
easy to incorporate into the first staged interpreter as follows:

(* eval7 : exp -> (string -> int code)

-> (string -> int code -> int code) -> int code *)

let rec eval7 e env fenv =

match e with

... most cases the same as eval2, except

| App (s,e2) -> fenv s (eval7 e2 env fenv)

(* repeat : int -> (’a -> ’a) -> ’a -> ’a *)

let rec repeat n f =

if n=0 then f else fun x -> f (repeat (n-1) f x)

(* peval7 : prog -> (string -> int code)

-> (string -> int code -> int code) -> int code *)

let rec peval7 p env fenv=

match p with

Program ([],e) -> eval7 e env fenv

|Program (Declaration (s1,s2,e1)::tl,e) ->

.<let rec f x =

.~(let body cf x =

eval7 e1 (ext env s2 x) (ext fenv s1 cf) in

repeat 1 body (fun y -> .<f .~y>.) .<x>.)

in .~(peval7 (Program(tl,e)) env

(ext fenv s1 (fun y -> .<f .~y>.)))>.

The code generated for the factorial example is as follows:

.<let rec f =

fun x ->

if (x = 0) then 1

else

(x*(if ((x-1)=0) then 1 else (x-1)*(f ((x-1)-1)))))

in (f 10)>.

This code can be expected to be faster than that produced by the first staged
interpreter, because only one function call is needed for every two iterations.

Avoiding Code Duplication The last interpreter also points out an important
issue that the multi-stage programmer must pay attention to: code duplication.
Notice that the term x-1 occurs three times in the generated code. In the result of
the first staged interpreter, the subtraction only occurred once. The duplication
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of this term is a result of the inlining that we perform on the body of the function.
If the argument to a recursive call was even bigger, then code duplication would
have a more dramatic effect both on the time needed to compile the program
and the time needed to run it.

A simple solution to this problem comes from the partial evaluation com-
munity: we can generate let statements that replace the expression about to
be duplicated by a simple variable. This is only a small change to the staged
interpreter presented above:

let rec eval8 e env fenv =

match e with

... same as eval7 except for

| App (s,e2) -> .<let x= .~(eval8 e2 env fenv)

in .~(fenv s .<x>.)>. ...

Unfortunately, in the current implementation of MetaOCaml this change does
not lead to a performance improvement. The most likely reason is that the
bytecode compiler does not seem to perform let-floating. In the native code
compiler for MetaOCaml (currently under development) we expect this change
to be an improvement.

Finally, both error handling and inlining can be combined into the same
implementation:

(* eval9: exp -> (string -> int code) -> (string -> int code -> int code)

-> (int code option -> ’b code) -> ’b code *)

let rec eval9 e env fenv k =

match e with

... same as eval6, except

| App (s,e2) -> eval9 e2 env fenv

(fun r -> match r with

Some x -> k (Some ((fenv s) x))

| None -> k None)

(* pevalK9 : prog -> (string -> int code)

-> (string -> int code -> int code)

-> (int code option -> int code) -> int code *)

let rec pevalK9 p env fenv k =

match p with

Program ([],e) -> eval9 e env fenv k

|Program (Declaration (s1,s2,e1)::tl,e) ->

.<let rec f x =

.~(let body cf x =

eval9 e1 (ext env s2 x) (ext fenv s1 cf) k in

repeat 1 body (fun y -> .<f .~y>.) .<x>.)

in .~(pevalK9 (Program(tl,e)) env

(ext fenv s1 (fun y -> .<f .~y>.)) k)>.
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3.8 Measuring Performance in MetaOCaml

MetaOCaml provides support for collecting performance data, so that we can
empirically verify that staging does yield the expected performance improve-
ments. This is done using three simple functions. The first function must be
called before we start collecting timings. It is called as follows:

Trx.init_times ();;

The second function is invoked when we want to gather timings. Here we call it
twice on both power2 (3) and power2’(3) where power2’ is the staged version:

Trx.timenew "Normal" (fun () ->(power2 (3)));;

Trx.timenew "Staged" (fun () ->(power2’ (3)));;

Each call to Trx.timenew causes the argument passed last to be run as many
times as this system needs to gather a reliable timing. The quoted strings simply
provide hints that will be printed when we decide to print the summary of the
timings. The third function prints a summary of timings:

Trx.print_times ();;

The following table summarizes timings for the various functions considered in
the previous section:4

Program Description of Interpreter Fact10 Fib20
(none) OCaml implementations 100% 100%
eval1 Simple 1,570% 1,736%
eval2 Simple staged 100% 100%
eval3 Error handling (EH) 1,903% 2,138%
eval4 EH staged 417% 482%
eval5 CPS, EH 2,470% 2,814%
eval6 CPS, EH, staged 100% 100%
eval7 Inlining, staged 87% 85%
eval8 Inlining, no duplication, staged 97% 97%
eval9 Inlining, CPS, EH, staged 90% 85%

Timings are normalized relative to handwritten OCaml versions of the DSL
programs that we are interpreting (Fact10 and Fib20). Lower percentages mean
faster execution. This kind of normalization does not seem to be commonly used
in the literature, but we believe that it has an important benefit. In particular,
it serves to emphasize the fact that the performance of the resulting specialized
programs should really be compared to specialized hand-written programs. The
fact that eval9 is more than 20 times faster than eval3 is often irrelevant to
a programmer who rightly considers eval3 to be an impractically inefficient
implementation. As we mentioned earlier in this paper, the goal of MSP is to
remove unnecessary runtime costs associated with abstractions, and identifying
the right reference point is essential for knowing when we have succeeded.
4 System specifications: MetaOCaml bytecode interpreter for OCaml 3.07+2 running

under Cygwin on a Pentium III machine, Mobile CPU, 1133MHz clock, 175 MHz
bus, 640 MB RAM. Numbers vary when Linux is used, and when the native code
compiler is used.
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4 To Probe Further

The sequence of interpreters presented here is intended to illustrate the iterative
nature of the process of exploring how to stage an interpreter for a DSL so that
it can be turned into a satisfactory translator, which when composed with the
Run construct of MetaOCaml, gives a compiler for the DSL.

A simplifying feature of the language studied here is that it is a first-order lan-
guage with only one type, int. For richer languages we must define a datatype for
values, and interpreters will return values of this datatype. Using such a datatype
has an associated runtime overhead. Eliminating the overhead for such datatypes
can be achieved using either a post-processing transformation called tag elimi-
nation [20] or MSP languages with richer static type systems [14]. MetaOCaml
supports an experimental implementation of tag elimination [2].

The extent to which MSP is effective is often dictated by the surrounding
environment in which an algorithm, program, or system is to be used. There are
three important examples of situations where staging can be beneficial:

– We want to minimize total cost of all stages for most inputs. This model ap-
plies, for example, to implementations of programming languages. The cost
of a simple compilation followed by execution is usually lower than the cost
of interpretation. For example, the program being executed usually contains
loops, which typically incur large overhead in an interpreted implementation.

– We want to minimize a weighted average of the cost of all stages. The weights
reflect the relative frequency at which the result of a stage can be reused.
This situation is relevant in many applications of symbolic computation.
Often, solving a problem symbolically, and then graphing the solution at
a thousand points can be cheaper than numerically solving the problem a
thousand times. This cost model can make a symbolic approach worthwhile
even when it is 100 times more expensive than a direct numerical one. (By
symbolic computation we simply mean computation where free variables are
values that will only become available at a later stage.)

– We want to minimize the cost of the last stage. Consider an embedded sys-
tem where the sin function may be implemented as a large look-up table.
The cost of constructing the table is not relevant. Only the cost of comput-
ing the function at run-time is. The same applies to optimizing compilers,
which may spend an unusual amount of time to generate a high-performance
computational library. The cost of optimization is often not relevant to the
users of such libraries.

The last model seems to be the most commonly referenced one in the lit-
erature, and is often described as “there is ample time between the arrival of
different inputs”, “there is a significant difference between the frequency at which
the various inputs to a program change”, and “the performance of the program
matters only after the arrival of its last input”.

Detailed examples of MSP can be found in the literature, including term-
rewriting systems [17] and graph algorithms [12]. The most relevant example to
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domain-specific program generation is on implementing a small imperative lan-
guage [16]. The present tutorial should serve as good preparation for approaching
the latter example.

An implicit goal of this tutorial is to prepare the reader to approach introduc-
tions to partial evaluation [3] and partial evaluation of interpreters in particular
[6]. While these two works can be read without reading this tutorial, developing
a full appreciation of the ideas they discuss requires either an understanding of
the internals of partial evaluators or a basic grasp of multi-stage computation.
This tutorial tries to provide the latter.

Multi-stage languages are both a special case of meta-programming languages
and a generalization of multi-level and two-level languages. Taha [17] gives def-
initions and a basic classification for these notions. Sheard [15] gives a recent
account of accomplishments and challenges in meta-programming. While multi-
stage languages are “only” a special case of meta-programming languages, their
specialized nature has its advantages. For example, it is possible to formally
prove that they admit strong algebraic properties even in the untyped setting,
but this is not the case for more general notions of meta-programming [18]. Ad-
ditionally, significant advances have been made over the last six years in static
typing for these languages (c.f. [21]). It will be interesting to see if such results
can be attained for more general notions of meta-programming.

Finally, the MetaOCaml web site will be continually updated with new re-
search results and academic materials relating to MSP [11].

Acknowledgments: Stephan Jorg Ellner, John Garvin, Christoph Her-
mann, Samah Mahmeed, and Kedar Swadi read and gave valuable comments
on this tutorial. Thanks are also due to the reviewers, whose detailed comments
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