
Stroustrup D-R-A-F-T Concepts

Page 1 of 23
12/11/2016

Concepts: The Future of Generic Programming
or

How to design good concepts and use them well

Bjarne Stroustrup
Morgan Stanley and Columbia University

www.stroustrup.com

Abstract
I briefly describe concepts (requirements of a template on its template arguments) as defined by
the ISO Technical Specification [C++16] and shipped as part of GCC [GCC16]. I aim for an
understanding of the aims of concepts and of the basic uses of concepts. I also mention some of
the language design principles relied on:

§1. The background of the concept design
§2. Concepts as a foundation for generic programming
§3. The basic use of concepts as requirements on template arguments
§4. The definition of concepts as Boolean values (predicates)
§5. How to design a useful concept
§6. The use of concepts to resolve overloads
§7. A few commonly asked language-design questions

The use of concepts implies no run-time costs compared to traditional unconstrained templates.
They are purely a selection mechanism and after selection, the code generated is identical to
traditional template code. §5 is the heart of this paper. You can find technical details and more
exhaustive tutorial material in the references.

1. A bit of background
In about 1987, I tried to design templates with proper interfaces [Str94]. I failed. I wanted three
properties for templates:

• Full generality/expressiveness
• Zero overhead compared to hand coding
• Well-specified interfaces

Then, nobody could figure out how to get all three, so we got

• Turing completeness
• Better than hand-coding performance
• Lousy interfaces (basically compile-time duck typing)

Stroustrup D-R-A-F-T Concepts

Page 2 of 23
12/11/2016

The lack of well-specified interfaces led to the spectacularly bad error messages we saw over the
years. The other two properties made templates a run-away success.

The lack of well-specified interfaces bothered me and many others over the years. It bothered me
a lot because templates fail to meet the fundamental design criteria of C++ [Str14]. Many tried to
find a solution, notably members of the C++ standards committee aiming for C++0x [C++09,
Str09], but until recently nobody came up with something that met all three original aims, fitted
into C++, and compiled reasonably fast.

Note that the design aims for templates is an example of the general C++ design aims [BS94]:

• Generality
• Zero overhead
• Well-defined interfaces

The solution to the interface specification problem was named “concepts” by Alex Stepanov. A
concept is a set of requirements on a set of template arguments. The question is how to craft a set
of language features to support that idea.

Together with Gabriel Dos Reis and Andrew Sutton, I started to design concepts from scratch in
2009 [Sut11]. In 2011, Alex Stepanov called a meeting in Palo Alto, where a largish group,
including Sean Parent and Andrew Lumsdaine, attacked the problem from the user’s perspective:
What would a properly constrained STL ideally look like? Then, we went home to invent
language mechanisms to approximate that ideal. That re-booted the standards effort based on a
new, fundamentally different, and better approach than the C++0x effort. We now have a ISO TS
(“Technical Specification”) for concepts [C++16]. Andrew Sutton’s implementation has been
used for over three years now and is shipping as part of GCC [GCC16].

2. Generic Programming
We need to simplify generic programming in C++. The way we write generic code today is
simply too different from the way we write other code. Consider

// Traditional code:
double sqrt(double d); // C++84: accept any d that is a double

double d = 7;
double d2 = sqrt(d); // fine: d is a double

vector<string> vs = { "Good", "old", “templates" };
double d3 = sqrt(vs); // error: vs is not a double

This is the kind of code we became acquainted with on the first day or so of learning to program.
We have a function sqrt specified to require a double. If we give it a double (as in sqrt(d)) all is
well, and if we give it something that is not a double (as in sqrt(vs)) we promptly get a helpful
error message, such as “a vector<string> is not a double.”

Stroustrup D-R-A-F-T Concepts

Page 3 of 23
12/11/2016

In contrast:

// 1990s style generic code:
template<class T> void sort(T& c) // C++98: accept a c of any type T
{
 // code for sorting (depending on various properties of T,

// such as having [] and a value type with <
}

vector<string> vs = { "Good", "old", “templates" };
sort(vs); // fine: vs happens to have all the syntactic properties required by sort

double d = 7;
sort(d); // error: d doesn’t have a [] operator

We have problems:

• As you probably know, the error message we get from sort(d) is verbose and nowhere
near as precise and helpful as my comment might suggest.

• To use sort, we need to provide its definition, rather than just its declaration, this differs
from ordinary code and changes the model of how we organize code.

• The requirements of sort on its argument type are implicit (“hidden”) in its function body.
• The error message for sort(d) will appear only when the template is instantiated, and that

may be long after the point of call.
• The template<typename T> notation is unique, verbose, repetitive, and widely disliked.

Using a concept, we can get to the root of the problem by properly specifying a template’s
requirements on its arguments:

// Generic code using a concept (Sortable):
void sort(Sortable& c); // Concepts: accept any c that is Sortable

vector<string> vs = { "Hello", "new", "World" };
sort(vs); // fine: vs is a Sortable container

double d = 7;
sort(d); // error: d is not Sortable (double does not provide [], etc.)

This code is analogous to the sqrt example. The only real difference is that

• for double, a language designer (Dennis Ritchie) built it into the compiler as a specific
type with its meaning specified in documentation.

• for Sortable, a user specified what it means in code (briefly, a type is Sortable if it has
begin() and end() providing random access to a sequence with elements that can be
compared using <; §5).

Now we get an error message much as indicated in the comment. That message is generated
immediately at the point where the compiler sees the erroneous call (sort(d)).

Stroustrup D-R-A-F-T Concepts

Page 4 of 23
12/11/2016

My aim is to make simple generic code as simple as non-generic code, and more advanced
generic code not that much more difficult to write and use.

Concepts by themselves do not address the code organization difference; we still need to put
templates into headers. However, that is addressed by modules [Rei16]. In a module, a template
is represented as a typed abstract graph and to check a call of a template function using concepts
only its interface (declaration) as provide by the module is needed.

3. Concepts are predicates
A concept is a compile-time predicate (that is, something that yields a Boolean value). For
example, a template type argument, T, could be required to be

• an iterator: Iterator<T>
• a random access iterator: Random_access_iterator<T>
• a number: Number<T>

The notation C<T> where C is a concept and T is a type is an expression meaning “true if T meets
all the requirements of C and false otherwise.”

Similarly, we can specify that a set of template arguments must meet a predicate, for example
Mergeable<In1, In2, Out>. Such multi-type predicates are necessary to describe the STL and most
other application domains. They are very expressive and nicely cheap to compile (cheaper than
template metaprogramming workarounds). Students can use this after a lecture or two. You can,
of course, define your own concepts (§5) and we can have libraries of concepts. Concepts enable
overloading (§6) and eliminate the need for a lot of ad-hoc metaprogramming and much
metaprogramming scaffolding code, thus significantly simplifying metaprogramming as well as
generic programming.

3.1 Specifying template interfaces
Let’s first see how we can use concepts to specify algorithms. Consider a variant of std::find()
that takes a sequence instead of a pair of iterators.

template <typename S, typename T>
 requires Sequence<S> && Equality_comparable<Value_type<S>, T>
Iterator_of<S> find(S& seq, const T& value);

Let’s look at it line for line:

• This is a template that takes two template type arguments (nothing new here).
• The first template argument must be a sequence (Sequence<S>) and we have to be able to

compare elements of the sequence to value using the == operator
(Equality_comparable<Value_type<S>, T>).

• This find() takes its sequence by reference and the value to be found as a const reference.
It returns an iterator (nothing new here).

Stroustrup D-R-A-F-T Concepts

Page 5 of 23
12/11/2016

A sequence is something with a begin() and end() (§5), but to understand the declaration of find()
that’s immaterial.

I have used alias templates to be able to say Value_type<S> and Iterator_of<S>. The simplest
definitions would be:

template<typename X> using Value_type<X> = X::value_type;
template<typename X> using Iterator_of<X> = X::iterator;

Alias templates have nothing particularly to do with concepts. They are just useful to express
generic code. Expect to find such aliases in libraries.

The concept Equality_comparable is proposed as a standard-library concept. It requires that its
argument supplies == and !=. Note that Equality_comparable takes two arguments. Many concepts
take more than one argument: concepts can describe not just types, but also relationships among
types. This is essential for much of the STL (for which those relationships are described in the
standard) and most other libraries. A concept is not just “the type of a type.”

We can try to use this find():

void use(vector<string>& vs, list<double>& lstd)
{
 auto p0 = find(vs,"Waldo"); // OK
 auto p1 = find(vs,0.5772); // error: can’t compare a string and a double
 auto p2 = find(lstd,0.5772); // OK
 auto p3 = find(lstd, "Waldo"); // error: can’t compare a double and a string

If (p0!=vs.end()) { /* found Waldo */ }
// …

}

This is just one example, and quite a simple one, but using only the techniques from that
example, we described all the STL algorithms in what is known as “The Palo Alto TM” [Str12].
You can find many more examples of the use of concepts in the Ranges TS [Nie15] (that we
expect to evolve into STL2) and [Sut15, Sut16, Sut17]. The Palo Alto TM was just a design
document, but the Ranges TS is compiled and tested code.

3.2 A shorthand notation
When requiring a template argument to be a sequence, we can say

template<typename Seq>
 requires Sequence<Seq>
void algo(Seq& s);

That is, we need an argument of type Seq that must be a Sequence. I did that by saying “The
template takes a type argument; that type argument must be a Sequence.” That’s a bit verbose.

Stroustrup D-R-A-F-T Concepts

Page 6 of 23
12/11/2016

That’s not what we actually say when we talk about such code. We say “The template takes a
Sequence argument” and we can actually write that:

template<Sequence Seq>
void algo(Seq& s);

That means exactly the same as the longer version above, but it’s shorter and matches our
thinking better. Similarly, we don’t say “There is an animal and it’s a chicken” we say “There is
a chicken.” The rewrite rule is simple and general, for a concept C

template<C T>

means

template<typename T>
 requires C<T>

We use this simple shorthand for concepts of a single argument. That is, when we are requiring
something of a single type. For example, we can simplify

template <typename S, typename T>
 requires Sequence<S> && Equality_comparable<Value_type<S>, T>
Iterator_of<S> find(S& seq, const T& value);

to

template <Sequence S, typename T>
 requires Equality_comparable<Value_type<S>, T>
Iterator_of<S> find(S& seq, const T& value);

I consider this shorter form a significant improvement in clarity over the longer version. I use
explicit requires-clauses primarily for multi-type concepts. This addresses the frequent and
persistent user complaints that the C++ template syntax is verbose and ugly. I agreed with those
criticisms. Making the verbose syntax redundant for simple and frequent examples follows the
general design aim of making simple things simple.

4. Concept definition
Often, you’ll find useful concepts, such as Equality_comparable in libraries (e.g., the Ranges TS
[Nie15]) and we hope to see a set of standard-library concepts, but to see how concepts can be
defined consider:

template<typename T>
concept bool Equality_comparable =

requires (T a, T b) {
 { a == b } -> bool; // compare Ts with ==
 { a != b } -> bool; // compare Ts with !=

Stroustrup D-R-A-F-T Concepts

Page 7 of 23
12/11/2016

 };

The Equality_comparable concept is defined as a variable template. To be Equality_comparable, a
type T must provide == and != operations that each must return a bool (technically, “something
convertible to bool”). The requires expression allows us to directly express how a type can be
used:

• { a == b } says that two Ts should be comparable using ==.
• { a == b } -> bool says that the result of such a comparison must be a bool (technically,

“something convertible to bool”).

A requires expression is never actually executed. Instead, the compiler looks at the requirements
listed and returns true if they would compile and false if not. This is obviously a very powerful
facility. To learn the details, I recommend Andrew Sutton’s paper [Sut16]. Here, I’ll just show
examples:

template<typename T>
concept bool Sequence =
 requires(T t) {
 typename Value_type<T>; // must have a value type
 typename Iterator_of<T>; // must have an iterator type

 { begin(t) } -> Iterator_of<T>; // must have begin() and end()
 { end(t) } -> Iterator_of<T>;

 requires Input_iterator<Iterator_of<T>>;
 requires Same_type<Value_type<T>,Value_type<Iterator_of<T>>>;
 };

That is, to be a Sequence

• a type T must have two associated types Value_type<T> and Iterator_of<T>. Value_type<T>
and Iterator_of<T> are just ordinary alias templates. Listing those types in the requires
expression indicates that a type T must have them to be a Sequence.

• a type T must have begin() and end() operations that each return an appropriate iterator.
• by “appropriate iterator” we mean that T’s iterator type must be an Input_iterator and T’s

value type must be the same as its iterator’s value type. Input_iterator and Same_type are
concepts from a library, but you could easily write them yourself.

Now, finally, we can do Sortable from §2. To be sortable, a type must be a sequence offering
random access and with a value type that supports < comparisons:

template<typename T>
concept bool Sortable =
 Sequence<T> &&

Random_access_iterator<Iterator_of<T>> &&

Stroustrup D-R-A-F-T Concepts

Page 8 of 23
12/11/2016

Less_than_comparable<Value_type<T>>;

Random_access_iterator and Less_than_comparable are defined analogously to
Equality_comparable, so I leave those for the reader write or look up in a library, say, the Range
library [Nie15].

5. Designing with concepts
What makes a good concept? Ideally, a concept represents a fundamental concept in some
domain, hence the name “concept.” A concept has semantics; it means something; it is not just a
set of unrelated operations and types. Without an idea of what operations mean and how they
relate to each other we cannot write generic code that works for all appropriate types.
Unfortunately, we cannot (yet) state the semantics of a concept in code (see the Palo Alto TM
[Str12] for some ideas). It follows that a guarantee that all types accepted by concept checking
will work correctly is impossible: they may have exactly the syntactic properties required, but
have the wrong semantics. This is nothing new: Similarly, a function taking a double can
interpret it differently from what the caller expects. Consider, set_speed(4.5). What does this
mean? Is 4.5 supposed to be in m/s or maybe miles/hour? Is 4.5 an absolute value, a delta to the
current speed, or possibly a factor of change?

I suspect that perfect checking for all code will forever elude us; as we get better tools,
developers will create more subtle bugs, but there are techniques to make bugs less likely to
escape our notice.

5.1 Type/concept accidental match
First, let me make a common design mistake. It will make it easier to illustrate good design. I
recently saw a concept version of an old OO problem:

template<typename T>
concept bool Drawable = requires(T t) { t.draw(); } ;

class Shape {
 // …
 void draw(); // light up selected pixels on the screen
};

class Cowboy {
 // …
 void draw(); // pull deadly weapon from holster
};

template<Drawable D>
void draw_all(vector<D*>& v) // ye olde draw all shapes example
{
 for (auto& x : v) v->draw();
}

Stroustrup D-R-A-F-T Concepts

Page 9 of 23
12/11/2016

This draw_all would, like its OO counterpart, accept a vector<Cowboy*> with surprising and
potential damaging effects. This problem of “accidental match” (in overloading and class
hierarchies) is widely feared, rare in real-world code, and easily avoided for concepts.

Ask yourself: What fundamental concept does “has a draw member function taking no
argument” represent? There is no good answer. A cowboy might make a good concept in a
games context and a drawable shape a good concept in a graphics context, but we would never
confuse them. A shape has several more essential properties that just “can be drawn” (e.g. “has
location”, “can be moved” and “can be hidden”) and so has a cowboy (e.g., “can ride a horse”,
“likes booze”, and “can die”). A concept that requires the full set of carefully specified essential
properties is unlikely to be mistaken for another.

My rule of thumb is to avoid “single property concepts.” For that reason, Drawable is instantly
suspicious. It is a good example of something that should not be exposed to application builders.
To be more realistic, people sometimes get into trouble defining something like this:

template<typename T>
concept bool Addable = requires(T a, T b) { { a+b } -> T; } ;

They are then often surprised to find that std::string is Addable (std::string provides a +, but that +
concatenates, rather than adding). Addable is not a suitable concept for general use, it does not
represent a fundamental user-level concept. If Addable, why not Subtractable? (std::string is not
Subtractable, but int* is). Surprises are common for “simple, single property concepts.” Instead,
define something like Number:

template<typename T>
concept bool Number = requires(T a, T b) {

{ a+b } -> T;
{ a-b } -> T;
{ a*b } -> T;
{ a/b } -> T;
{ -a } -> T;

{ a+=b } -> T&;
{ a-=b } -> T&;
{ a*=b } -> T&;
{ a/=b } -> T&;

{ T{0} }; // can construct a T from a zero

// …

} ;

This is extremely unlikely to be matched unintentionally.

Stroustrup D-R-A-F-T Concepts

Page 10 of 23
12/11/2016

A good useful concept supports a fundamental concept (pun intended) by supplying the set of
properties – such as operations and member types – that a domain expert would expect. The
mistake made for Drawable and Addable was to use the language features naively without regard
to design principles.

5.2 Semantics
How do we find such a useful set of properties to design a useful concept? Most application
areas already have them. Examples are

• C/C++ built-in type concepts: arithmetic, integral, and floating (yes, C has concepts!)
• STL concepts like iterators and containers
• Mathematical concepts like monad, group, ring, and field
• Graph concepts like edges and vertices; graph, DAG, etc.

Note that these pre-existing concepts all have semantics associated with them (Alex Stepanov
once said “concepts are all about semantics”). We have found that trying to specify semantics for
a new concept is an invaluable help in designing useful concepts and stable interfaces [Sut11].
Often asking “can we state an axiom?” leads to significant improvements of a draft concept.

The first step to design a good concept is to consider what is a complete (necessary and
sufficient) set of properties (operations, types, etc.) to match the domain concept, taking into
account the semantics of that domain concept.

5.3 Ideals for concept design
What makes one concept better than another? Fundamentally, concepts are there to allow us to
state fairly abstract ideas in code, so that we can write better generic code. One way to look at
this is that concepts help us to make algorithms and types “plug compatible”:

• we want to write algorithms that can be used for a wide variety of types, and
• we want to define types that can be used with a wide variety of algorithms.

For example: we want to define number types that can be used for our numeric algorithms and
algorithms that can be used with all our containers.

This has an important implication on what has become a standard generic-programming
technique: We often try to specify the requirements of an algorithm to be the absolute minimum.
This is not what we do to design the most useful concepts. As an example, consider a simplified
version of std::accumulate:

template<typename Iter, typename Val>
Val sum(Iter first, Iter last, Val acc)
{

while (first!=last) {
acc += *first;
++first;

 }

Stroustrup D-R-A-F-T Concepts

Page 11 of 23
12/11/2016

return acc;
}

“Classical GP design” would tempt us to constrain sum minimally like this

template<Forward_iterator Iter, typename Val>
 requires Incrementable<Val,Value_type<Iter>>
Val sum(Iter first, Iter last, Val acc)
{

while (first!=last) {
acc += *first;
++first;

 }
return acc;

}

Incrementable would be a concept that simply required the += operator to be present. This would
(apparently) minimize the work needed by someone designing types that might be used as sum
arguments and maximize the usefulness of the sum algorithm. However,

• We “forgot” to say that Val had to be copyable and/or movable
• We cannot use this sum for a Val that provides + and = but no +=
• We cannot modify this sum to use + and = instead of +=

This is not very “plug compatible” and rather ad hoc. That kind of design leads to programs
where

• Every algorithm has its own requirements (a variety that we cannot easily remember).
• Every type must be designed to match an unspecified and changing set of requirements.
• When we improve the implementation of an algorithm, we must change its requirements

(part of its interface), potentially breaking code.

In this direction lies chaos. Thus, the ideal is not “minimal requirements” but “requirements
expressed in terms of fundamental and complete concepts.” This puts a burden on the designers
of types (to match concepts), but that leads to better types and to more flexible code. For
example, a better sum would be

template<Forward_iterator Iter, Number Val>
Val sum(Iter first, Iter last, Val acc)
{

while (first!=last) {
acc += *first;
++first;

 }
return acc;

}

Stroustrup D-R-A-F-T Concepts

Page 12 of 23
12/11/2016

Note that by requiring a Number we gained flexibility. We also “lost” the accidental ability to
use sum to concatenate std::strings and to sum a vector<int> into a char*:

void poor_use(vector<string>& vs, vector<int>& vi)
{

std::string s;
s = sum(vs.begin(),vs.end(),s); // error: a string is not a number
char* p = nullptr;
p = sum(vi.begin(),vi.end(),p); // error: a pointer is not a number
// …

}

Good! Strings and pointers are not numbers. If we really wanted that functionality, we could
easily write it deliberately.

To design good concepts and to use concepts well, we must remember that an implementation
isn’t a specification – someday, someone is likely to want to improve the implementation and
ideally that is done without affecting the interface. Often, we cannot change an interface because
doing so would break user code. To write maintainable and widely usable code we aim for
semantic coherence, rather than minimalism for each concept and algorithm in isolation.

5.4 Constraints
The view of concepts described here is somewhat idealistic and aimed at producing “final”
concepts to be used by application builders in mature application domains. However, incomplete
concepts can be very useful, especially during earlier stages of development. For example, the
Number concept above is incomplete because I “forgot” to require Numbers to be copyable
and/or movable. Mature libraries provide precedence and supporting concepts to avoid such
incompleteness.

Even as it is, the use of Number saves us from many errors. It catches all errors related to missing
arithmetic operations. But the specification of sum using Number does not save us from an error
if a user calls sum with a type that provides the requires arithmetic operations, but cannot be
copied or moved. However, we still get an error: we just get one of the traditional late and messy
error messages we have been used to for decades. The system is still type safe. I see “incomplete
concepts” as an important aid to development and to gradual introduction of concepts.

Concepts that are too simple for general use and/or lack a clear semantics can also be used as
building blocks for more complete concepts. They can be important for allowing gradual
upgrade of traditional template code to use concepts (§8.2).

Sometimes, we call such overly simple or incomplete concepts “constraints” to distinguish them
from the “real concepts.”

Stroustrup D-R-A-F-T Concepts

Page 13 of 23
12/11/2016

5.5 Matching types to concepts
How can a writer of a new type be sure it matches a concept? That’s (surprisingly?) easy: We
simply static_assert the desired concept matches. For example:

class My_number { /* … */ };
static_assert(Number<My_number>);
static_assert(Group<My_number>);
static_assert(Someone_elses_number<My_number>);

class My_container { /* … */ };
static_assert(Random_access_iterator<My_container::iterator>);

After all, concepts are simply predicates, so we can test them. They are compile-time predicates,
so we can test them at compile time. Note that we do not have to build the set of concepts to be
matched into the definition of a type. This is not some kind of hierarchy design that requires
perfect foresight or refactoring each time a new use is discovered. This is critical to preserve the
compositional benefits of generic code as compared to object-oriented hierarchies. The
static_asserts don’t even have to be in the type designer’s code. A user might like to add such
tests to catch mismatches early and in specific places in the code. If done, doing so without
modifying library code is essential.

6. Concept overloading

Consider a simplified version of the standard-library advance algorithm:

template<typename Iter> void advance(Iter p, int n);

We need different versions of advance, including

• A simple one for forward iterators, stepping through the sequence one step at a time.
• A fast one for random-access iterators to take advantage of the ability to advance the

iterator to an arbitrary position in the sequence in one operation.

Traditionally, we have implemented that using helper functions and tag dispatch [Str94], but
with concepts the solution is simple and obvious:

void advance(Forward_iterator p, int n) { while(n--) ++p; }

void advance(Random_access_iterator p, int n) { p+=n; }

void use(vector<string>& vs, list<string>& ls)
{
 auto pvs = find(vs,"foo");
 advance(pvs,2); // use fast advance

 auto pls = find(ls,"foo");

Stroustrup D-R-A-F-T Concepts

Page 14 of 23
12/11/2016

 advance(pls,2); // use slow advance
}

How does the compiler figure out how to invoke the right advance? We didn’t tell it directly.
There is no defined hierarchy of iterators and we did not define any traits to use for tag dispatch.

Overload resolution based on concepts is fundamentally simple:

• If a function matches the requirements of one concept only, call it
• If a function matches the requirements of no concept, the call is an error
• If the function matches the requirements of two concepts, see if the requirements of one

of those concepts is a subset of the requirements of the other.
o If so, call the function with the most requirements (the strictest requirements).
o If not, the call is an error (ambiguous).

In the use example, a Random_access_iterator has more requirements than Forward_iterator
(“Random_access_iterator is stricter than Forward_iterator”) so we pick the fast advance for
vector’s iterator. For list’s iterator, only Forward_iterator matches, so we use the slow advance.

Random_access_iterator is stricter than Forward_iterator because it requires everything
Forward_iterator does plus additional operators such as [] and +.

There are a few technicalities related to the exact comparison of concepts for strictness, but we
don’t need to go into those to use concept overloading. What is important is that we don’t have
to explicitly specify an “inheritance hierarchy” among concepts, define traits classes, or add tag
dispatch helper functions. The compiler computes the real hierarchies for us. This is far simpler
and more flexible.

Concept-based overloading eliminates a significant amount of boiler-plate from generic code and
metaprogramming code (most uses of enable_if). The general principle here is that we should not
force a programmer to do what the compiler can do better. Concept-based overloading ensures
that the code follows general and widely-used resolution rules, rather than differing and
potentially subtle implementation details (such as remembering to use both the positive and
negative forms of enable_if when expressing overloading based on a property of a type).

One obvious question: How do we distinguish types that are syntactically identical, but differ in
their semantics? The standard example of that is Input_iterator and Forward_iterator that
differ only in that repeated traversal is allowed for Forward_iterator. The simplest answer is
“don’t do that; add an operation to one of the types to make them distinguishable.” A more
conventional and complicated answer is “use a traits class.” The latter is what we do when we
can’t modify either type. In the Input_iterator and Forward_iterator case, we could
actually distinguish because an Input_iterator is only moveable and not copyable (use the
is_copy_constructible<T> trait), but that’s subtle.

Stroustrup D-R-A-F-T Concepts

Page 15 of 23
12/11/2016

7. The short-form notation

One of my design aims for C++ is to make simple things simple. Thus, we have the shorthand
notation (§3.1) to avoid annoying repetition and more succinctly state our requirements. For
example:

template<typename Seq>
 requires Sortable<Seq>
void sort(Seq& s);

We can shorten that to:

template<Sortable Seq>
void sort(Seq& s);

However, that still doesn’t get us to the ideal equivalence to “ordinary non-generic” code as
articulated in §2:

void sort(Sortable& s);

To get there, we have a further “rewrite rule.” The short form and the shorthand forms are simply
equivalent to the long, very explicit form above. We use the shortest form for the simplest cases,
and the other two forms – often in combination – when we need to express more complicated
requirements, especially for requirements involving more than one template argument. For
example:

template <Sequence S, typename T>
 requires Equality_comparable<Value_type<S>, T>
Iterator_of<S> find(S& seq, const T& value);

Why bother? The long form is unpleasantly verbose for most code and since the introduction of
templates the verbosity (“heaviness”) of the template syntax has been a source of constant
complaints from users. However, we need the long form expressing complex requirements: to
keep it short, the shortest form is deliberately not perfectly general.

This design follows “the onion principle.” The default is short and simple. Whenever you need to
do something that cannot be expressed that simply, you peel one layer off the onion. Each layer
gives you more flexibility, and make you cry more (because of the added work and the added
opportunities for mistakes). The presence of both old-style (perfectly general) for loops and
(simpler and less error-prone) range-for loops is another example of that principle.

The three forms match the way we speak about functions:

 // the template argument must be a type, and
 // that type must be a sequence, and
 // s must be a reference to that type:

Stroustrup D-R-A-F-T Concepts

Page 16 of 23
12/11/2016

template<typename Seq>
 requires Sequence<Seq>
void algo(Seq& s);

 // the template argument must be a sequence, and
 // s must be a reference to that sequence:
template<Sequence Seq>
void algo(Seq& s);

 // s must be a reference to a sequence:
void algo(Sequence& s);

We use the shorter forms unless we have reason not to.

7.1 auto arguments

The short form also offers an unconstrained variant

void f(auto x); // take argument of any type

That is, auto is the least constrained concept. First proposed in 2002 [Jar02] and first introduced
into C++14 for lambdas.

We could also define something like that using a trivial constraint

concept bool Any = true;
void g(Any x); // take argument of any type

These two ways of specifying unconstrained arguments differ in one small useful way:

void ff(auto x, auto y); // x and y can be of different type
void gg(Any x, Any y); // x and y must take the same type

That is, gg represents the STL iterator pair style and many other “sets of arguments of the same type”
styles, whereas ff represents completely unrelated template arguments. Both styles are useful and
common. For example:

void user(vector<string>& vs, list<double>ld)
{
 ff(&vs,&ld); // keep a list of containers (of arbitrary types)
 gg(vs.begin(),vs.end()); // OK: two iterators of the same type
 gg(vs.begin(),ld.end()); // error: two iterators to different types
}

Stroustrup D-R-A-F-T Concepts

Page 17 of 23
12/11/2016

8. Language design questions

Over the years, many issues have been raised, often repeatedly, by various people. This article is
not a language design document, so the discussion here is brief. I added it because people ask
about these issues and – incredibly – often assume that the designers of concepts (after 5+ years
of discussion, design, implementation, and use of this design) haven’t thought of them and/or
haven’t considered alternatives.

8.1 Do we really need concepts?
From very early in the design and use of templates, I and others realized that some forms of
interface checking could be expressed using templates themselves without added language
support [Str94]. Boost concept check is an example. Today, with static_assert, constexpr
functions, constexpr if [Vut16], a plethora of standard-library type traits, and mature template
metaprogramming techniques, I hear many variants of this argument. Typically, what is achieved
leads to instantiation-time checking, which is less than ideal. More fundamentally, it lowers the
level of programming making the foundation of generic programming depend on a variety of ad
hoc metaprogramming libraries. Claiming that relying on low-level primitives is sufficient is like
(correctly) pointing out that we don’t absolutely need for statements, while statements, and range-
for statements when we have if and goto. However, C++ is not meant to be merely assembly code
for (template) metaprogramming. “Concepts” is not some advanced feature for experts bolted on
top of compile-time duck typing. “Concepts” is a foundational feature that in the ideal world
would have been present in the very first version of templates and the basis for all use.

Note that in template argument declarations typename is simply the least demanding concept: it
just requires the template argument to be a type (and not a non-type value). Thus, the old pre-
concept templates integrate smoothly with concepts.

8.2 Definition checking
Concepts currently do not check that a template does not use operations not specified in the
requirements. Consider:

template<Number N>
void algo(vector<N>& v)
{
 for (auto& x : v) x%=2;
}

Our Number concept does not require %=, so whether a call of algo succeeds will depend not just
on what is checked by the concept, but on the actual properties of the argument type: does the
argument type have %=? If not, we get a late (instantiation time) error.

Some consider this a serious error. I don’t: not checking template definitions against the
template’s concepts was a deliberate design choice. We (Gabriel Dos Reis, Andrew Sutton, and
I) know how to do definition checking with the concepts as currently specified. We have done

Stroustrup D-R-A-F-T Concepts

Page 18 of 23
12/11/2016

analysis and experiment (e.g., [Rei12]), but we very deliberately decided not to include such a
feature in the initial concept design:

• We didn’t want to delay and complicate the initial design (that would delay getting
essential feedback and delay library building).

• We estimate that something like 90% of the benefits of concepts are in the value of
improved specification and point-of-use checking.

• The template implementer can compensate through normal testing techniques.
• As ever, type errors are always caught, only uncomfortably late.
• By checking definitions, we would complicate transition from older, unconstrained code,

to concept-based templates.
• By checking definitions, we would be unable to insert debug aids, logging code,

telemetry code, performance counters, and other “scaffolding code” into a template
without affecting its interface.

The last two points are crucial:

• A typical template calls other templates in its implementation. Unless a template using
concepts can call a template from a library that does not, a library with the concepts
cannot use an older library before that library has been modernized. That’s a serious
problem, especially when the two libraries are developed, maintained, and used by more
than one organization. Gradual adoption of concepts is essential in many code bases.

• Scaffolding code is very common, and it changes during the lifetime of a library. If the
interface must change to accommodate, say, logging, we have a maintenance issue of the
first order.

So, we know how to do “definition checking,” but we won’t do it until those two problems are
solved. There are obvious possible solutions, such as an indicator in a template function body
(not its definition) that it will use facilities not guaranteed by the concepts, but any such
mechanism would have to be seriously analyzed and tested. It might very well not be worth the
effort. It is also worth remembering one of the fundamental rules that guided the C++ design: It
is more important to allow a useful feature than to prevent every misuse [Str94]. That is one of
the rules that distinguishes C++ from many other languages. There are ways to prevent bad
programming beyond language rules, but gradual adoption and scaffolding code must somehow
be enabled by the language.

8.3 Separate compilation of templates
Complete separate compilation of template presupposes definition checking and the most
obvious implementation involves lots of indirect function calls, which would kill performance.

The obvious alternative is a semi-compiled form of templates as part of a module system
[Rei16].

8.4 Multiple notations
Concepts provide multiple ways of saying things. I’m fine with that. In fact, I consider it ideal
(§7), but there are people devoted to “only one way.” That notion of simplicity, inevitably leads

Stroustrup D-R-A-F-T Concepts

Page 19 of 23
12/11/2016

to either limitation of expressiveness (e.g., only the short form of concept use) or systematic
verbosity (e.g., only the long form of concept use).

Concepts can be defined as template variables or as template functions. For example:

template<typename T>
concept bool Eq1 =

requires (T a, T b) {
 { a == b } -> bool; // compare Ts with ==
 { a != b } -> bool; // compare Ts with !=

};

and

template<typename T>
concept bool Eq2() {

return requires (T a, T b) {
 { a == b } -> bool; // compare Ts with ==
 { a != b } -> bool; // compare Ts with !=

};
}

Unfortunately, the syntax for using a variable template and the syntax for calling a template
function differ. This has nothing to do with concepts, but it leads to curiosities like this:

template<typename T> requires Eq1<T> void f(T&);
template<typename T> requires Eq2<T>() void g(T&);

Having to remember whether to add () or not is a nuisance. However, calling a function in C++
requires () and getting the value of a variable does not. The reason for allowing both variables
and functions is generality. It follows from the way expressions are defined in C++.

8.5 Opt in
The concept design follows the principle that we should not force the programmer to say things
that the compiler already knows (and often knows better than the programmer). This leads to
shorter, cleaner code, and fewer errors.

• You don’t opt into using concept-based overloading, just as you don’t opt into using
ordinary overloading. This is right, proper, consistent, and in the spirit of C++. Some
people have become used to opting into facilities by adding to traits. That has its charms,
but it is basically a workaround and a spurious difference between generic programming
and “ordinary programming.” It’s added work for the applications programmer and an
opportunity to make mistakes.

• You don’t opt into or explicitly define a hierarchy of relations among concepts. The
compiler computes the proper relations among concepts and applies the very simple
resolution mechanisms (§6) to uses.

Stroustrup D-R-A-F-T Concepts

Page 20 of 23
12/11/2016

• You don’t opt into having a type match a concept: If a type has the syntactic properties
required by the concept, it matches. That is, you don’t have to litter your code with
“modeling declarations” such as “vector<T> models Container” or “List<T>::iterator isa
Bidirectional_iterator”. Requiring that would complicate library use and unless checked
by the compiler could be a source of errors.

In the rare case where two concepts are identical syntactically but differ semantically (e.g.,
Input_iterator and Forward_Iterator are almost indistinguishable), we need to do something to
disambiguate: we either disambiguate them by adding an operation or a member type or use a
traits class in the implementation of operations on them (§6).

If you want to guarantee that a type meets a concept, use a static_assert (§5.5).

8.6 Can’t spot the templates
Consider

void sort(Sortable&);

Some experienced C++ programmers worry that there is no syntactic clue that this is a template.
Others, like me, say “cool!” finally generic function can be dealt with just like other functions.
Note that we have had that property for operators “forever.” I have taught concepts to dozens of
students. Students don’t worry. They either say “cool!” or (more often) just take it for granted.
They don’t get confused or write particularly bad code using this notation. The big problems and
confusions are elsewhere – in areas that have been established C++ for decades. The newer
features, such as concepts, are simpler to use than their more established workarounds.

Initially, I also worried about the potential for confusion, and wondered if we needed a naming
convention, like Sortable_c similar to the way some (C style) code use foo_t to distinguish a type
foo from a variable foo. I tried, but after a while that became tedious and it was always ugly – a
kind of reverse Hungarian notation. It didn’t make the code easier to deal with. Furthermore, we
already introduced the equivalent “erasure” of the notational distinction between type names and
template names when we (finally!) decided to allow template arguments to be deduced from
constructor arguments. We can now say

pair p { 9.2,4};

Rather than

pair<double,int> p {9.2,4};

Interestingly, I did not hear suggestions to rename pair (and equivalent) to something like
pair_tmpl to increase readability.

Note that in C++, we say

void f(Node*);

Stroustrup D-R-A-F-T Concepts

Page 21 of 23
12/11/2016

rather than

void f(struct Node*);

This rarely causes confusion and I have not heard complaints about that since the earliest days of
C++ (say 1982) when a few people considered the added struct helpful, as it was familiar from
C. When dealing with real code, people know whether a name refers to a variable, a type, a
template, or a concept.

I suspect that text coloring will offer further help to human readers to distinguish types,
templates, and concepts, but basically, this is a non-problem. I ascribe the worries about notation
and about possible “confusion between types and templates” to the well know phenomenon of
people imagining problems with new language features and wondering if heavy handed syntax or
notational conventions are needed to address the imagined problems. As time goes by and the
novel facilities become familiar, concise notation invariably becomes preferred. The initial
template design did not have the prefix template<typename T> syntax. It was introduced primarily
to assure “worriers.” It is now widely disliked and often ridiculed as an example of poor design.

8.7 Concepts like classes
Based on experience with other languages and experimentation with C++0x concepts, some
people are convinced that concepts should be defined like classes. That is, as a list of
declarations. Obviously, we disagree. The use patterns we use are more flexible, shorter to write
for real cases, and handle overloading and implicit conversions better. However, since use
patterns are more general than concepts based on declarations, we can actually define concepts in
terms of signatures. We don’t recommend this technique, but here is how you can define a
concept of a type required to be derived from Base, have a member function int f(double), and a
member int m:

template<class T>
concept bool Hack =
 requires(T t, Base* p, int(T::*pp)(double), int* ppp) {
 { &t==std:addressof(t) }; // make sure operator & isn’t overloaded in a nasty way
 { p = &t }; // T is derived from Base
 { pp = &T::f }; // T has a member int f(double)
 { ppp = &t.m}; // T has a member int m
 };

This does not address overloaded functions, but many languages based on signatures don’t
handle overloading well, and, after all, this is not a use we recommend.

Conclusions
Concepts are quite simple to use and define. They are surprisingly helpful in improving the
quality of generic code, but their principles – and not just their technical details – need to be
understood for effective use. In that, concepts are similar to other fundamental constructs, such
as functions. Compared to unconstrained template, there is no run-time overheads incurred by
using concepts. Don’t confuse familiarity and simplicity. Don’t confuse verbosity with “easy to

Stroustrup D-R-A-F-T Concepts

Page 22 of 23
12/11/2016

understand.” Try concepts! They will dramatically improve your generic programming and make
the current workarounds (e.g., traits classes) and low-level techniques (e.g., enable_if -based
overloading) feel like error-prone and tedious assembly programming.

Concepts are carefully designed to fit into C++ and to follow C++’s design principles:

• Provide good interfaces
• Look for semantic coherence
• Don’t force the user to do what a machine does better
• Keep simple things simple
• Zero-overhead

Acknowledgements

Similarities to the writings of Andrew Sutton are not accidental. We have worked together on
concepts for many years and share some favorite examples that we have used in the design of
concepts and to explain concepts. Thanks Andrew!

Also thanks to Andrew, Gleb Dolgich, Howard Hinnant, Peter Juhl. Herb Sutter, Benedek
Thaler, J.C. van Winkel, Sergey Zubkov, and for constructive comments on drafts of this paper.

References

• [Str94] B. Stroustrup: The Design and Evolution of C++. Addison Wesley, ISBN 0-201-
54330-3. 1994.

• [Jar02] J. Jarvi, B. Stroustrup, D. Gregor, J. Siek: Decltype and auto. N1478/03-0061.
• [Rei06] Gabriel Dos Reis and Bjarne Stroustrup: Specifying C++ Concepts. POPL’06.

[Gre06] D. Gregor, J. Jarvi, J. Siek, B. Stroustrup, G. Dos Reis, and A. Lumsdaine:
Concepts: Linguistic Support for Generic Programming in C++. OOPSLA’06.

• [C++09] C++0x working paper containing C++0x concepts. June 2009.
• [Str09] Bjarne Stroustrup: The C++0x “Remove Concepts” Decision. Dr.Dobb’s Journal.

July 2009.
• [Sut11] Andrew Sutton and Bjarne Stroustrup: Design of Concept Libraries for C++.

Proc. SLE 2011 (International Conference on Software Language Engineering).
• [Rei12] Gabriel Dos Reis. A System for Axiomatic Programming. ICM’12.
• [Str12] B. Stroustrup and A. Sutton (editors): A Concept Design for the STL. WG21

N3351. January 2012.
• [Nie15] Erik Niebler: Ranges TS. WG21 N4569. 2015.
• [Sut15] A. Sutton: Introducing concepts. ACCU Overload 2015.
• [Sut16] A. Sutton: Defining concepts. ACCU Overload 2016.
• [C++16] A final draft of the Concepts TS.
• [GCC16] GCC 6.0 supports concepts.
• [Vou16] Ville Voutilainen and Daveed Vandevoorde: constexpr if. WG21 P0128R1.

2016.

http://www.stroustrup.com/dne.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1478.pdf
http://www.stroustrup.com/popl06.pdf
http://www.stroustrup.com/oopsla06.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2914.pdf
http://www.ddj.com/cpp/218600111?pgno=1
http://www.stroustrup.com/sle2011-concepts.pdf
http://www.axiomatics.org/%7Egdr/liz/cicm-2012.pdf
http://www.stroustrup.com/WG21.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4569.pdf
http://accu.org/index.php/journals/2157
http://accu.org/index.php/journals/2198
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4549.pdf
https://gcc.gnu.org/gcc-6/changes.html

Stroustrup D-R-A-F-T Concepts

Page 23 of 23
12/11/2016

• [Rei16] Gabriel Dos Reis: A Module System for C++ (Revision 4). WG21 P0142R0.
2016.

• [Sut17] A. Sutton: Overloading concepts. ACCU Overload 2017.

	Concepts: The Future of Generic Programming
	or
	How to design good concepts and use them well

	Bjarne Stroustrup
	Morgan Stanley and Columbia University
	www.stroustrup.com

	Abstract
	1. A bit of background
	2. Generic Programming
	3. Concepts are predicates
	3.1 Specifying template interfaces
	3.2 A shorthand notation

	4. Concept definition
	5. Designing with concepts
	5.1 Type/concept accidental match
	5.2 Semantics
	5.3 Ideals for concept design
	5.4 Constraints
	5.5 Matching types to concepts

	6. Concept overloading
	7. The short-form notation
	7.1 auto arguments

	8. Language design questions
	8.1 Do we really need concepts?
	8.2 Definition checking
	8.3 Separate compilation of templates
	8.4 Multiple notations
	8.5 Opt in
	8.6 Can’t spot the templates
	8.7 Concepts like classes

	Conclusions
	Acknowledgements
	References

