Game Engine Learning from Video

Matthew Guzdial, Boyang Li, Mark O. Riedl
School of Interactive Computing, Georgia Institute of Technology
mguzdial3 @gatech.edu, boyangli @ gatech.edu, riedl @cc.gatech.edu

Abstract

Intelligent agents need to be able to make predic-
tions about their environment. In this work we
present a novel approach to learn a forward simula-
tion model via simple search over pixel input. We
make use of a video game, Super Mario Bros., as an
initial test of our approach as it represents a physics
system that is significantly less complex than real-
ity. We demonstrate the significant improvement of
our approach in predicting future states compared
with a baseline CNN and apply the learned model
to train a game playing agent. Thus we evaluate the
algorithm in terms of the accuracy and value of its
output model.

1 Introduction

Automated Game Understanding represents the field of work
devoted to applying artificial intelligence to derive knowledge
about video game systems for the purposes of game play, de-
sign, or critique. We define Automatic Game Understanding
as the problem of developing formalized, complete models of
the underlying processes in games. To this point its great-
est success has been in the field of automated game playing.
From retro Atari games with Deep Mind [Mnih et al., 2013]
to board games such as Go [Churchland and Sejnowski, 2016]
there is an understanding that playing games represents fun-
damental Al research. However we contend that games can
offer a testbed to fundamental research beyond game playing.

Outside of the mass of work on automated game playing
and some work on automated game critique [Zook et al.,
2015; Canossa and Smith, 2015; Guzdial et al., 2016] there
has been little effort to automatically understand the systems
that power games. However, this is an important area for re-
search as it represents the problem of learning a model of a
game’s simplified physics, which could then scale up to more
realistic domains to parallel work in automated game playing.

In this paper, we describe a Game Engine Search algorithm
capable of learning a game engine from gameplay data. We
define a game mechanic as discrete rule that maps a cause
to an effect (e.g. if the player is falling and hits the ground
then the player stops falling). We define a game engine as the
backend set of a game’s mechanics. The algorithm functions

by scanning through the output of the game engine, repre-
sented as video, and iteratively improving a hypothesized en-
gine to minimize errors through greedy search. To our knowl-
edge this represents the first approach capable of deriving a
game engine (a simulator of a specific game) only from out-
put from another game engine (gameplay video). We test our
technique with gameplay video from Super Mario Bros., a
classic platformer, and present evidence that our technique
outputs a learned engine very similar to the true game engine.
We anticipate this technique to aide in applications for auto-
mated game playing, explainable Al, gameplay transfer, and
game design tasks such as automated game design.

The remainder of this paper is organized as follows. We
start by providing some background on automated game play-
ing and understanding. Section 3 presents the proposed algo-
rithm Game Engine Search and Section 4 presents our exper-
imental evaluations and their results.

2 Background

2.1 Automated Game Playing

Automated game playing stands as a goal for artificial intelli-
gence from its earliest days [Brooks, 1999], and has had great
success in classic games like chess and go. Most closely re-
lated to this work are approaches to utilize pixel input to learn
to play retro video games. For example, Mnih et al. [Mnih
et al., 2013] used deep convolutional networks to learn how
to the play Atari games from pixel input. Later work has
brought automated game playing to Doom [Hafner, 2016],
and even for more modern games such as Minecraft [Oh et
al., 2016]. Although these systems and our own process pix-
els to learn models of a game, our system focuses on deriving
game rules instead of learning to play the game. The end
models differ: Mnih et al.’s extracted model will recognize
the action for the player to activate in each state, and will ig-
nore any elements that do not impact reward (score) and those
not currently visible. On the other hand, our system includes
decorative elements and can reason about the off-screen ef-
fects of actions (for example, killing an enemy offscreen by
recognizing when an enemy does not appear when expected).

2.2 Automated Understanding

Automated understanding, also known as common sense
learning [Singh er al., 2002] or hypothesis generation [Get-
tys and Fisher, 1979], is the problem of taking a sequence of

events, building some model that explains the events, and us-
ing the model to predict future events. A common modern
approach to this problem relies on convolutional neural nets,
learning from sequences of images [Ranzato et al., 2014;
Vukoti¢ et al., 2017]. These techniques take in a frame and
predict the next frame in a sequence, without modeling the
underlying effects. Perhaps closest to our own work Selvaraju
et al. [Selvaraju et al., 2016] derive an explanation for a con-
volutional neural net’s prediction, without learning a general
model of the physics at play in the frames.

An alternate approach to automated understanding com-
mon to reinforcement learning techniques is forward model
learning [Kober et al., 2013]. In forward model learning a
transition function is learned that allows an agent to make
predictions in a simplified state space from sequences of state
changes. This approach has been applied to navigation con-
trol [Ng et al., 2006], video games such as Starcraft [Uri-
arte and Ontanén, 2015] and arcade-like games [Braylan and
Miikkulainen, 2016]. Closest to our work, Ersen and Sariel
[2015] derive a model of the environment for a puzzle game
composed of formal logic rules based on hand-authored se-
quences of events. Our work differs from typical forward
model techniques as it learns from and makes predictions in
a pixel-level state space.

2.3 Automated Game Understanding

The field of automated game understanding is much more re-
cent than automated game playing. Martens et al. [Martens
et al., 2016] made use of case based reasoning to derive pos-
sible meanings from specially constructed representations of
games. Most closely related to this work Sumerville et al.
[2017a] demonstrated the ability to automatically derive ob-
ject characteristics (e.g. “hurts player”, “is killed by player)
from gameplay logs. We differ from this work by learning
an entire game engine, capable of forward simulation and by
deriving these models from video rather than gameplay logs.
Despite this work being the first to attempt to learn game en-
gines in this manner both Gow and Corneli [2015] and Sum-
merville et al. [2017b] propose this problem and suggest pos-
sible solutions to it.

There is a significant body of prior work at generating
game rules, with the majority of prior work relying on a
human-authored game engine or space of possible game rules
upon which an optimization process runs [Nelson et al.,
2016]. Togelius [Togelius, 2011] presents an iterative devel-
opment paradigm for a human player to create a game en-
gine during play, as an intelligent system attempts to learn
the “causes” behind user-specified effects to create rulesets.
Both Cook et al. [2013], and Zook and Riedl [2014] make
use of approaches that generate player-character game rules
within human-authored game engines, and verify these rules
with forward simulation.

3 System Overview

The goal of our work is to develop a computational system ca-
pable of learning a game engine, the backend set of rules that
runs a game, from input video. First, our system scans each
input video frame to determine the set of objects present per

_—
Facts:

Animation: questionbl

:l ‘Animation: cloud1, 52,

Animation: bush3, 104

Animation: smario1, 2

Animation: ground1 2¢

- Spatial: questionblock

@ i =] Spatial: cloud1, 171. 6

Spatial: bush, 248, 2¢

22 ‘Spatial: mario1, 153, 2

o T A ‘ nnnnnerinnnnfll SRR

Spatial: ground1, 31, 3

& $ERE Spatial: groundi, 57, 3
Edfancs -

Figure 1: Visualization of the frame parsing process in the Infinite
Mario engine . A frame is parsed to locate spritesheet elements in a
frame, which then is translated into a list of facts.

frame. Second, we run a greedy matching algorithm across
pairs of adjacent frames to determine how objects change be-
tween frames. Lastly we parse each frame and run an engine
search algorithm when the second frame differs from the pre-
dicted next frame by more than some set threshold.

3.1 Parsing Frames

We begin by supplying our system with two things: a set of
videos to learn from and a sprite palette as seen on the left
of Figure 1. By sprite palette we indicate the set of sprites
or individual images used to build levels of a 2D game. For
this proof-of-concept we make use of a fan-authored sprite
sheet for the game Super Mario Bros. and longplay video that
represents a single player playing through the entirety of the
game. With these elements the system makes use of OpenCV
[Pulli ef al., 2012], an open-source machine vision toolkit, to
determine the number and placement of sprites in each frame
of the video. All together we transform the initial pixel input
into a set of sprites and their spatial positions in each frame.

Given a sequence of frames, where each frame is defined
as the set of sprites and their locations, we can run a simple
greedy matching algorithm to match each sprite to its closest
neighbor (both visually and spatially) in each adjacent frame.
In the case where there are an unequal number of sprites we
create “empty” sprites to match the remainders. This will oc-
cur in the cases where a sprite is created or destroyed (e.g.
when Mario shoots a fireball a sprite is created and when
Mario jumps on an enemy a sprite is destroyed).

The final step of parsing each frame alters the representa-
tion from sprites to a set of facts or percepts. Each “type”
of fact requires a hand-authored function to derive it from an
input frame. We list the set of fact types and the means by
which they are derived below.

e Animation: The animation fact is simply a list of each
sprite image according to its original filename, width,
and height (e.g. if an image “mariol.png” of size [26px,
26px] was found at position 0,0 that would create the
Animation fact (mariol, 26, 26)).

e Spatial: The spatial fact is the sprite’s location in the
frame, listed as the sprite’s filename and it’s x and y po-
sition in the frame.

o RelationshipX: The relationship in the x-dimension of
each pair of sprites in the initial frame, of the form
(spritel’s filename, spritel’s closest edge to sprite2, dis-
tance in pixels, sprite 2’s filename, sprite 2’s closest edge

to spritel). This condition allows the system to learn col-
lision rules. For example, Mario’s x-velocity changes
from positive to zero when Mario’s right side hits some
other sprite’s left side.

e RelationshipY: The exact same as the above condition
but for the y-dimension. This allows the system to learn
collision rules in the y-dimension. Such as Mario stops
falling when his feet (bottom of his sprite) hit the top of
some other sprite.

e VelocityX: This fact captures information about a
sprite’s velocity in the x-dimension and is derived ac-
cording to the greedy matching to the next frame’s sprite.
For example if Mario is at position [0,0] in frame 1 and
[10,0] in frame 2, then frame 1 will include the fact Ve-
locityX: (mario, 10).

e VelocityY: This fact type captures the same information
as the prior type but for the y-dimension.

e CameraX: This is a unique fact type that simply stores
a value representing how far along the camera is in the
level. We included this as original attempts at this tech-
nique had the issue that when the camera moved one
direction, all stationary objects would appear (according
to the other facts) to move in the opposite direction. We
derive this fact by looking at the average shift in pixels
of each sprite from frame to frame, therefore avoiding
the issue of sliding in the opposite direction.

Notably each fact can be linked back to the characteristics
of a sprite that it arose from. In other words if the spatial fact
(mariol, 0,0) changes to (mariol, 100, 100) the system can
move the sprite mariol to position [100, 100]. This concept is
the primary method by which rules (represented in our system
by changes in facts) act upon a frame.

3.2 Engine Learning

Our engine learning approach seeks to derive a game engine
that can predict the changes observed in the set of parsed
frames derived in the prior section. A game engine, as de-
fined in this approach is a set of rules where each rule is a
single IF-THEN production with the If represented by a set
of conditional facts and the Then representing a change as
a pair of facts. For example, a rule might change a Veloci-
tyX fact from (mariol, 0) to {(mariol,5) for a given frame
(THEN) given the set of facts that make up its conditions are
present in that frame (IF).

At a high level, the game engine learning approach scans
through the sequence of parsed frames and begins a search for
a set of rules that explains any sufficient difference between
the predicted and actual frame. If a game engine is found that
reduces the difference to some threshold, then the scan begins
again to ensure that this new engine has not lost the ability to
accurately predict prior frames. We express the algorithm to
scan through the frames in Algorithm 1 and the engine search
algorithm in Algorithm 2.

Algorithm 1 gives the simple algorithm that scans through
the sequence of frames to identify opportunities to learn for
the engine search algorithm, Algorithm 2. The distance func-
tion on line five represents a pixel-by-pixel distance function

Algorithm 1: frame scan

input : A sequence of parsed frames of size f, and
threshold 6
output: A game engine

€ < new Engine();
cF «<frames [0];
while ¢ < 1 to f do
Check if this engine predicts within the threshold,
frameDist +~Distance (e, cF, i +1);
if frameDist < 6 then
L cF «Predict (e,cF, i+ 1);

® N A M A W N =

continue;

9 Update engine and start parse over,

10 € < EngineSearch (e, cF, i+ 1);
1 1+ 1;

12 cF «<frames [0];

between a ground truth frame (¢ + 1) and a predicted frame
(derived from running the current frame cF' through the cur-
rent engine e) and counts the number of pixels that do not
match (0 if a perfect match, 1 otherwise). We choose to use
pixel distance rather than a difference in terms of each frame’s
set of facts as we ultimately care about the final engine being
able to produce the same set of frames, not a list of facts. The
Predict function on line seven returns the closest frame to
the ground truth frame (¢ 4 1) given the current frame cF' and
engine e. Multiple frames can be produced by a given engine
for a given frame due to the possibility of “input” rules (e.g.
the player choosing to press left, right, etc), which we dis-
cuss in more detail below. We make use of a predicted frame
rather than setting the current frame to the previous ground
truth frame in order to build a more general game engine,
rather than one that only explains frame-to-frame changes.

Algorithm 2 gives the engine search algorithm, represent-
ing the bulk of this approach. It can be understood as a greedy
search to find a set of rules that creates a predicted frame
within some threshold of the actual ground truth frame. The
primary means of accomplishing this is in the generation of
neighbors for a given engine (as seen in line ten). Neighbors
are generated via (1) adding rules, (2) modifying a rule’s set
of condition facts, (3) modifying a rule to cover an additional
sprite, and (4) modifying a rule into a control rule.

Adding a rule to a game engine requires picking out a pair
of facts of the same type, one from the current frame and
one from the goal frame, which differ in some way (e.g. one
VelocityX fact with values (mariol,0) and one with values
(mariol,5)). This pair of facts represents the change that
the rule handles. All other facts from the current frame make
up the initial condition set for this rule, which ensures it’ll be
activated on this current frame. This is initially a very specific
set of facts, and will include facts that are not truly necessary
to activate the rule. For example, Mario can move right as
long as he is not blocked to the right but an initial rule that
moves Mario right might include the condition that he has a
cloud above him, a bush to his left, etc.

The set of conditions in an initial rule can later be mini-

Algorithm 2: Engine Search

input : An initial engine engine, the current frame
cF, and goal frame g
output: A new engine final Engine

closed «[J;
open <PriorityQueue();
open.push (/,engine) ;
while open is not empty do
node <open.pop () ;
if node [0] < 6 then

L return node [1];

N B W N -

®

engine <—node;
9 closed.add (engine) ;
10 for Neighbor n of engine do

1 if n in closed then

12 L continue;

13 d +Distance (engine, cF, g);

14 open.push (d +engine.rules.length,n) ;

mized by the second type of neighbor, modifying a rule’s set
of condition facts. In this case, the intersection of an existing
rule’s condition facts and the current set of condition facts is
taken, and set as the set of a condition facts for a modified rule
in a neighboring engine. If this neighbor decreases the pixel
distance of the predicted frame from the goal frame, it will be
more likely to be chosen above a neighbor that simply adds a
new rule as engines are placed into the PriorityQueue (open)
according to their pixel distance and the number of rules in
the engine. This preferences smaller, more general engines.
The third type of neighbor works in much the same way, ex-
cept that it expands the set of changes it can make. For exam-
ple, many types of enemies “disappear” when Mario jumps
on them (in the language of the engine, go from an Anima-
tion fact with values to one without), and therefore a single
rule can handle all of these cases.

The final type of neighbor that the system handles, changes
a rule from being handled normally to being considered a
“control” rule. This handles the case of rules that the player
makes decisions upon. For example, the input that controls
the player character (moving Mario left, right, and jumping).
When Predict is called (either in the algorithms presented
or within Distance), this leads to a branch of two possible
frames for each control rule (the player chooses to move right
or doesn’t). This can lead to a large number of final predicted
frames as an engine can contain many control rules that each
can be either active or not. The current goal frame is therefore
used in Predict to select from this final set the frame that is
closest to the ground truth. Notably, these rules still contain a
set of condition facts that must be present for the rule to fire at
all, meaning not all condition facts can be active every frame
(e.g. Mario cannot jump once already in the air).

The frame scan, breaking into occasional engine search
tasks, continues until it reaches the end of the sequence of
parsed frames. At this point we can guarantee that we have
an engine that can predict the entire sequence of frames from

the initial frame. Notably this means that the engine can only
reflect changes that actually occur in the input sequence of
parsed frames. In addition, the choice of threshold 8 has sig-
nificant impact on the final engine. A 6 that is too large will
lead to an engine that does not represent smaller changes,
since the engine search algorithm gives preference to engines
that decrease the pixel distance by large amounts. Therefore,
a final engine might miss the instances that cause a sprite to
begin to move or alter its position. But the smaller the value
of 6 the longer the algorithms will run for, which we explain
further in the next section.

3.3 Limitations

The algorithm presented above has a number of clear draw-
backs. First, it is comparatively slow depending on the thresh-
old 6 provided. While this is an offline process, meant to only
run once, the running time can still be prohibitive with lower
values of # (running for up to two weeks for a single game
level on a 2013 iMac). We have begun to explore the ability
to parallelize this process and “merge” the learned engines ac-
cording to the merge criteria discussed above and have found
success. We hope to explore this in future work.

This algorithm requires that each instance of a sequence of
input data be represented as a series of facts. This requires
authoring to determine the space of possible facts as we dis-
cussed in Section 3.1. This makes the algorithm less appli-
cable to more complex domains (e.g. real video). However,
we anticipate that with a sufficient space of possible facts our
technique could model any environment (whether video game
or otherwise) where the majority of action occurs on screen.
We identify the ability to automatically derive the space of
possible facts as an important avenue for future work.

We note that the current technique only takes as training a
single sequence of video, but that it can be extended to addi-
tional videos by treating the start of each new video as a new
point to start over at when the algorithm has reached the end
of one video. Further, we anticipate that this would only im-
prove the end model as a single sequence of video cannot be
expected to contain all gameplay events.

4 Evaluation

In this section we present results from two distinct evalua-
tions meant to demonstrate the utility of our system. Given
the novelty of this system we had no clear baseline to com-
pare against. Instead we make use of two baselines to demon-
strate two important characteristics of the learned engine: (1)
its ability to accurately forward simulate and predict upcom-
ing states and (2) the quality of those predictions to a game-
playing task. For the first evaluation we compare the frames
predicted by our learned engine against a naive baseline and
a Convolutional Neural Net (CNN) constructed for frame-
to-frame prediction [Ranzato er al., 2014]. For the second
evaluation we evaluate the application of the learned engine’s
knowledge to training a game playing agent, compared to
agents with access to no game engine or the true game en-
gine.

For both evaluations we make use of a game engine trained
on gameplay video of a single level, Level 1-1 of Super Mario

eﬂﬁ&ﬂ@ﬁ

Figure 2: A section of Level 1-1 of Super Mario Bros. represented in the Infinite Mario engine.

Frame Prediction Comparison

-1 o] [¢]

Pixel Error
1000 2000 3000 4000 5000 6000 7000
1

e S—

0
1

T T T
PriorFrame Engine CNN

Figure 3: Comparison of the pixel error between the previous frame,
engine’s prediction, and the CNN

Bros.. We chose to do this in order to demonstrate the ap-
proach’s ability to learn from a single example. In addition
we set 6 to zero, to ensure the best possible output engine.

4.1 Frame Accuracy Evaluation

In our first evaluation we made use of a common train and
test procedure. Notably we selected two examples of game-
play footage of two distinct players playing Level 1-1 of Su-
per Mario Bros. We made use of gameplay footage that had
been evaluated in prior work by Summerville et al. [2016].
In particular we drew on the two most different players and
their respective gameplay videos which Summerville et al.
describe as the “speedrunner” and “explorer”. In this way
we could be sure that the two gameplay videos represented
significantly different approaches to the same level. In par-
ticular, we trained on the “speedrunner” video, video of the
player who took the least time in Level 1-1, thus making the
training problem as difficult as possible.

We drew on prior work in predicting frame transitions with
convolutional neural networks (CNN) for a baseline, specif-
ically work by Ranzato et al. [2014]. We also implemented
the non-time-dependent network from Vukotié¢ et al. [2014]
but found it performed strictly worse, and so do not include it
in our results. We made use of the same convolutional neural
network architecture described in the Ranzato et al. paper, a
network with four convolutional layers with 128 filters each,
each making use of relu activation. For further details on the

network please see the original paper. To accommodate our
input to this convolutional neural net, we had to shrink all our
frames and map all pixels to grayscale values. Thus we went
from 416x364 pixel RGB images to 104x91 pixel grayscale
images, which brought the images more into line with the in-
put of the original work. We trained this CNN on the same
training data as the engine learning approach to better demon-
strate their relative performance, meaning that the CNN was
trained on only 1569 frames. We trained until the CNN’s per-
formance on the test set converged to avoid overfitting.

Given that we could not directly compare the convolu-
tional neural network error with the pixel distance function
described above we instead converted all predicted frames
from the learned engine to the same dimensions as the CNN
frames and converted them to grayscale. We then defined a
simple matrix subtraction function to compare two grayscale
frames of size 104x91 pixels (varying from O to 9,464). We
can then compare the output of the maximally likely CNN
output with the output of the learned engine.

We present the results of this evaluation in Figure 3. No-
tably we also include the naive approach of predicting the pre-
vious frame, as an “empty” engine would simply return the
prior frame. While the CNN is much more consistent than
either of the other two predictions, we find that our learned
engine predicts frames significantly more similar to the true
frame (Wilxocon paired test, p < 2.2e~'6). Further our en-
gines predicted frames were significantly more similar to the
true frame than the “naive” assumption of predicting the prior
frame (Wilxocon paired test, p < 1.247e~5)). This provides
strong evidence that our engine derives an accurate, general
model of Level 1-1 of Super Mario Bros. from a single ex-
ample of parsed input frames.

4.2 Gameplay Learning Evaluation

Our second evaluation seeks to address the extent to which the
learned game engine represents procedural knowledge valu-
able to other tasks besides predicting frames. While we an-
ticipate that the learned game engine could be utilized for a
variety of tasks, we identify game playing as an obvious ap-
plication. However, there is no direct means of measuring
whether two game engines can support the same gameplay.
Directly comparing the rules of two distinct game engines
does not answer this question as the same gameplay “effect”
could be represented by several different rules (e.g. changing
the velocity of a sprite versus removing a sprite and causing
it to reappear somewhere else). Therefore, we instead settled
on indirectly measuring the learned engine’s ability to afford
accurate gameplay by comparing its performance in training

Gameplay Learning Comparison

(=]
S
~ a
o :
o _| '
(=] '
v ¥ .
o '
&) _| 1
£ .
w
o (=]
o (=]
— (=]
fl_ﬂ (o)
2
(=] i
o _| '
(=) '
o é —_—
| T |
Truth Naive Engine

Figure 4: Comparison of the iterations required to reach the goal
across the three agents.

a game playing agent.

For a baseline we drew on the “Infinite Mario” engine used
for the Mario level playing AT competition [Togelius er al.,
2010] and constructed a simple reinforcement learning agent
for the engine utilizing the value iteration algorithm. We fur-
ther constructed two variations on this agent. The first made
use of the native forward simulation available in the “Infinite
Mario” engine to construct an initial policy rather than re-
lying on the typical approach of a uniformly random initial
policy. In particular we set the initial value for each state s
to V[s] = maz, Y, R(s,a,s’) according to a reward func-
tion that gave infinite reward for reaching the end of the level
and negative infinite reward for deaths. This can be under-
stood as changing the value iteration problem into a simple
greedy agent, and represents a theoretical “lower bound” for
predicting the quality of the next state. In comparison, we
constructed an agent that instead made use of forward simu-
lation according to the learned game engine (with numerical
values and names converted to the appropriate equivalent in
the “Infinite Mario” engine). For each agent we defined the
current state as the size of a screen and Mario’s current x and
y velocity. Since each of these agents in essence made use of
slightly different reward functions we compare the number of
iterations required for each agent to reach the goal state.

We ran 100 agents of each type over a Infinite Mario ver-
sion of Super Mario Bros Level 1-1. (Figure 2) and compare
the iteration where each first reached the goal state in Figure
4. As anticipated, both the true engine and learned engine
out-performed the basic RL agent. Notably, in comparing the
true and learned engines in terms of their impact on their re-
spective agents, we were unable to reject the null hypothesis
that the values came from the same distribution (Wilcoxon

paired test p = 0.5783). This represents evidence that the
true and learned engines represent similar enough gameplay
knowledge that they are indistinguishable, at least for this
task. However, given that the learned engine is only trained
on Level 1-1 of Super Mario Bros. we would not anticipate
the same similarity in performance in a level that drew on
mechanics not present in Level 1-1.

5 Future Work and Conclusions

Our technique has drawbacks, notably we do not represent
player death or level transitions, which makes these key types
of mechanics impossible to learn. We hope to address these
shortcomings in future work. In addition, we are interested in
possible applications of this approach to procedural content
generation and full game generation.

In this paper we present a novel technique to derive a game
engine from input gameplay video. We ran two evaluations,
which provide strong evidence that the learned engine repre-
sents an accurate, general model of the video game engine
responsible for producing the input gameplay video. Our
technique relies on a relatively simple search algorithm that
searches through possible sets of rules that can best predict
a set of frame transitions. To our knowledge this represents
the first technique to learn a game engine, a set of rules capa-
ble of simulating a game world. This represents a major step
forward in the field of automatic game understanding.

Acknowledgments

We gratefully acknowledge the NSF for supporting this re-
search under NSF award 1525967. Special thanks to Brent
Harrison for advice and draft comments. This paper contains
images generated by the Infinite Mario Bros. game.

References

[Braylan and Miikkulainen, 2016] Alexander Eric Braylan
and Risto Miikkulainen. Object-model transfer in the gen-
eral video game domain. In The 12th Artificial Intelligence
and Interactive Digital Entertainment Conference, 2016.

[Brooks, 19991 Rodney Allen Brooks. Cambrian intelli-
gence: The early history of the new Al, volume 44. Mit
Press Cambridge, MA, 1999.

[Canossa and Smith, 2015] Alessandro Canossa and Gillian
Smith. Towards a procedural evaluation technique: Met-
rics for level design. The 10th International Conference
on the Foundations of Digital Games, page 8, 2015.

[Churchland and Sejnowski, 2016] Patricia S Churchland
and Terrence J Sejnowski. The computational brain. MIT
press, 2016.

[Cook et al., 2013] Michael Cook, Simon Colton, Azalea
Raad, and Jeremy Gow. Mechanic miner: Reflection-
driven game mechanic discovery and level design. In Eu-
ropean Conference on the Applications of Evolutionary
Computation, pages 284-293. Springer, 2013.

[Ersen and Sariel, 2015] Mustafa Ersen and Sanem Sariel.
Learning behaviors of and interactions among objects
through spatio—temporal reasoning. IEEE Transactions on

Computational Intelligence and Al in Games, 7(1):75-87,
2015.

[Gettys and Fisher, 1979] Charles F Gettys and Stanley D
Fisher. Hypothesis plausibility and hypothesis genera-
tion. Organizational behavior and human performance,

24(1):93-110, 1979.

[Gow and Corneli, 2015] Jeremy Gow and Joseph Corneli.
Towards generating novel games using conceptual blend-
ing. In 11th Artificial Intelligence and Interactive Digital
Entertainment Conference, 2015.

[Guzdial ef al., 2016] Matthew Guzdial, Nathan Sturtevant,
and Boyang Li. Deep static and dynamic level analysis: A
study on infinite mario. In 3rd Experimental Al in Games
Workshop, 2016.

[Hafner, 2016] Danijar Hafner. Deep reinforcement learn-
ing from raw pixels in doom. arXiv preprint
arXiv:1610.02164, 2016.

[Kober e al., 2013] Jens Kober, J Andrew Bagnell, and Jan
Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238—
1274, 2013.

[Martens et al., 2016] Chris Martens, Adam Summerville,
Michael Mateas, Joseph Osborn, Sarah Harmon, Noah
Wardrip-Fruin, and Arnav Jhala. Proceduralist readings,
procedurally. In [2th Artificial Intelligence and Interac-
tive Digital Entertainment Conference, 2016.

[Mnih et al., 2013] V. Mnih, K. Kavukcuoglu, D. Silver,
A. Graves, 1. Antonoglou, D. Wierstra, and Martin Ried-
miller. Playing Atari with deep reinforcement learn-
ing. Technical report, Deepmind Technologies, 2013.
arXiv:1312.5602.

[Nelson ef al., 2016] Mark J Nelson, Julian Togelius,
Cameron B Browne, and Michael Cook. Rules and
mechanics. In Procedural Content Generation in Games

(Computational Synthesis and Creative Systems), pages
99-121. Springer, 2016.

[Ng et al., 2006] Andrew Ng, Adam Coates, Mark Diel,
Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger,
and Eric Liang. Autonomous inverted helicopter flight via
reinforcement learning. Experimental Robotics IX, pages
363-372, 2006.

[Oh et al., 2016] Junhyuk Oh, Valliappa Chockalingam,
Satinder Singh, and Honglak Lee. Control of memory,
active perception, and action in minecraft. arXiv preprint
arXiv:1605.09128, 2016.

[Pulli ef al., 2012] Kari Pulli, Anatoly Baksheev, Kirill Ko-
rnyakov, and Victor Eruhimov. Real-time computer vision
with OpenCV. Commun. ACM, 55(6):61-69, June 2012.

[Ranzato et al., 2014] MarcAurelio Ranzato, Arthur Szlam,
Joan Bruna, Michael Mathieu, Ronan Collobert, and
Sumit Chopra. Video (language) modeling: a baseline
for generative models of natural videos. arXiv preprint
arXiv:1412.6604, 2014.

[Selvaraju ef al., 2016] Ramprasaath R Selvaraju, Abhishek
Das, Ramakrishna Vedantam, Michael Cogswell, Devi

Parikh, and Dhruv Batra. Grad-cam: Why did you say
that? visual explanations from deep networks via gradient-
based localization. arXiv preprint arXiv:1610.02391,
2016.

[Singh er al., 2002] Push Singh, Thomas Lin, Erik T
Mueller, Grace Lim, Travell Perkins, and Wan Li Zhu.
Open mind common sense: Knowledge acquisition from
the general public. In OTM Confederated International
Conferences” On the Move to Meaningful Internet Sys-
tems”, pages 1223-1237. Springer, 2002.

[Summerville ef al., 2016] Adam Summerville, Matthew
Guzdial, Michael Mateas, and Mark Riedl. Learning
player tailored content from observation: Platformer level
generation from video traces using Istms. In The 12th Ar-
tificial Intelligence and Interactive Digital Entertainment
Conference, 2016.

[Summerville ef al., 2017a] Adam Summerville, Morteza
Behrooz, Michael Mateas, and Arnav Jhala. What does
that ?-block do? learning latent causal affordances from
mario play traces. In Ist AAAI Workshop on what’s next
for Al in games, 2017.

[Summerville et al., 2017b] Adam Summerville, Sam Snod-
grass, Matthew Guzdial, Christoffer Holmgard, Amy K
Hoover, Aaron Isaksen, Andy Nealen, and Julian To-
gelius. Procedural content generation via machine learning
(pcgml). arXiv preprint arXiv:1702.00539, 2017.

[Togelius er al., 2010] Julian Togelius, Sergey Karakovskiy,
and Robin Baumgarten. The 2009 mario ai competition. In
IEEE Congress on Evolutionary Computation, pages 1-8,
2010.

[Togelius, 2011] Julian Togelius. A procedural critique of
deontological reasoning. In Proceedings of DiGRA, 2011.

[Uriarte and Ontandn, 2015] Alberto Uriarte and Santiago
Ontanén. Automatic learning of combat models for rts
games. In 11th Artificial Intelligence and Interactive Dig-
ital Entertainment Conference, 2015.

[Vukotié et al., 2017] Vedran Vukoti¢, Silvia-Laura Pin-
tea, Christian Raymond, Guillaume Gravier, and Jan
Van Gemert. One-step time-dependent future video frame
prediction with a convolutional encoder-decoder neural
network. arXiv preprint arXiv:1702.04125, 2017.

[Zook and Riedl, 2014] Alexander Zook and Mark O Riedl.
Automatic game design via mechanic generation. In AAAI,
pages 530-537, 2014.

[Zook et al., 2015] Alexander Zook, Brent Harrison, and
Mark O Riedl. Monte-carlo tree search for simulation-
based strategy analysis. In Proceedings of the 10th Con-
ference on the Foundations of Digital Games, 2015.

