Dynamic Witnesses for Static Type Errors

(or, ill-typed programs usually go wrong)

Eric L. Seidel =~ Ranjit Jhala

UC San Diego
{eseidel,rjhala}@cs.ucsd.edu

Abstract

Static type errors are a common stumbling block for newcomers
to typed functional languages. We present a dynamic approach
to explaining type errors by generating counterexample witness
inputs that illustrate sow an ill-typed program goes wrong. First,
given an ill-typed function, we symbolically execute the body to
dynamically synthesize witness values that can make the program go
wrong. We prove that our procedure synthesizes general witnesses
in that if a witness is found, then for all inhabited input types,
there exist values that can make the function go wrong. Second, we
show how to extend the above procedure to produce a reduction
graph that can be used to interactively visualize and debug witness
executions. Third, we evaluate the coverage of our approach on two
data sets comprising over 4,500 ill-typed student programs. Our
technique is able to generate witnesses for 88% of the programs,
and our reduction graph yields small counterexamples for 81% of
the witnesses. Finally, we evaluate the utility of our witnesses in
helping students understand and fix type errors, and find that students
presented with our witnesses show a greater understanding of type
errors than those presented with a standard error message.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) lan-
guages; D.3.4 [Programming Languages]: Processors—Debuggers;
F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs—Type structure

General Terms Languages

Keywords debugging, testing, type errors

1. Introduction

Type errors are a common stumbling block for students trying
to learn typed functional languages like OCAML and HASKELL.
Consider the ill-typed fac function on the left in Figure 1. The
function returns true in the base case (instead of 1), and so
OCAML responds with the error message:

File "fac.ml", line 5, characters 8-17:
Error: This expression has type bool but an
expression was expected of type int.

[Copyright notice will appear here once *preprint’ option is removed.]

Westley Weimer
University of Virginia
weimer@viginia.edu

let rec fac n =
if n <= 0 then
true
else
n x fac (n-1)

fac 2

\2 * fac IJ

\

(2 * (1 * fac 0)}

(1 * true)/

Figure 1. (top-left) An ill-typed fac function; (bottom-left) Dy-
namically witnessing the type error in fac, showing only function
calls; (right) The same trace, fully expanded.

This message makes perfect sense to an expert who is familiar with
the language and has a good mental model of how the type system
works. However, it may perplex a novice who has yet to develop
such a mental model. To make matters worse, unification-based
type inference algorithms often report errors far removed from their
source. This further increases the novice’s confusion and can actively
mislead them to focus their investigation on an irrelevant piece
of code. Much recent work has focused on analyzing unification
constraints to properly localize a type error [3, 19, 27, 37], but an
accurate source location does not explain why the program is wrong.
In this paper we propose a new approach that explains static type
errors by dynamically witnessing how an ill-typed program goes
wrong. We have developed NANOMALY, an interactive tool that
uses the source of the ill-typed function to automatically synthesize
the result on the bottom-left in Figure 1, which shows how the
recursive calls reduce to a configuration where the program “goes
wrong” — i.e. the int value 1 is to be multiplied with the bool
value t rue. We achieve this via three concrete contributions.

1. Finding Witnesses Our first contribution is an algorithm for
searching for witnesses to type errors, i.e. inputs that cause a program
to go wrong (§ 3). This problem is surprisingly tricky when we
cannot rely on static type information. In particular, we must avoid
the trap of spurious inputs that cause irrelevant problems that would

2016/6/19

be avoided by picking values of a different, relevant type. We
solve this problem by developing a novel operational semantics that
combines evaluation and type inference. We execute the program
with holes — values whose type is unknown — as the inputs. A hole
remains abstract until the evaluation context tells us what type it
must have, for example the parameters to an addition operation must
both be integers. Our semantics conservatively instantiates holes
with concrete values, dynamically inferring the type of the input until
the program goes wrong. We prove that our procedure synthesizes
general witnesses, which means, intuitively, that if a witness is found
for a given ill-typed function, then, for all (inhabited) input types,
there exist values that can make the function go wrong.

Given a witness to a type error, the novice may still be at a
loss. The standard OCAML interpreter and debugging infrastructure
expect well-typed programs, so they cannot be used to investigate
how the witness causes the program to crash. More importantly,
the execution itself may be quite long and may contain details not
relevant to the actual error.

2. Visualizing Witnesses Our second contribution is an interactive
visualization of the execution of purely functional OCAML pro-
grams, well-typed or not (§ 4). We extend the semantics to also
build a reduction graph which records all of the small-step reduc-
tions and the context in which they occur. The graph lets us visualize
the sequence of steps from the source witness to the stuck term. The
user can interactively expand the computation to expose intermedi-
ate steps by selecting an expression and choosing a traversal strategy.
The strategies include many of the standard debugging moves, e.g.
stepping forward or into or over calls, as well stepping or jumping
backward to understand how a particular value was created, while
preserving a context of the intermediate steps that allow the user to
keep track of a term’s provenance.

We introduce a notion of jump-compressed traces to abstract
away the irrelevant details of a computation. A jump-compressed
trace includes only function calls and returns, for example the
trace in the bottom-left of Figure 1 is jump-compressed. Jump-
compressed traces are similar to stack traces, both show a sequence
of function calls that lead to a crash, but the jump-compressed trace
also shows the return values of successful calls, which can be useful
in understanding why a particular path was taken.

3. Evaluating Witnesses Of course, the problem of finding wit-
nesses is undecidable in general. In fact, due to the necessarily
conservative nature of static typing, there may not even exist any
witnesses for a given ill-typed program. Thus, our approach is a
heuristic that is only useful if it can find compact witnesses for real-
world programs. Our third contribution is an extensive evaluation of
our approach on two different sets of ill-typed programs obtained
by instrumenting compilers used in beginner’s classes (§ 5). The
first is the UW data set [19] comprising 284 ill-typed programs.
The second is a new UCSD data set, comprising 4,407 ill-typed
programs. We show that for both data sets, our technique is able
to generate witnesses for nearly 90% of the programs, in under a
second in the vast majority of cases. Furthermore, we show that a
simple interactive strategy yields compact counterexample traces
with at most 5 steps for 57% of the programs, and at most 10 steps
for 81% of the programs.

Witness Utility Even if we can find small witnesses for the majority
of type errors, it may be that the witnesses do not actually help
developers understand the errors. In other words, perhaps the static
error message is sufficient to diagnose and fix the error, or perhaps
the witness simply does not add enough information to make a
difference. Thus, our final contribution is a user study that compares
the utility of our witnesses with that of the error messages provided
by the OCAML compiler (§ 5.4). We show that students given one
of our witnesses are consistently more likely to correctly explain

and fix a type error than those given the standard error message
produced by the OCAML compiler.

Our results show that in the vast majority of cases, (novices’) ill-
typed programs do go wrong, and that the witnesses to these errors
can be helpful in understanding the source of the error. This, in turn,
opens the door to a novel dynamic way to explain, understand, and
appreciate the benefits of static typing.

2. Overview

We start with an overview of our approach to explaining (static) type
errors using witnesses that (dynamically) show how the program
goes wrong. We illustrate why generating suitable inputs to functions
is tricky in the absence of type information. Then we describe
our solution to the problem and highlight the similarity to static
type inference, Finally, we demonstrate our visualization of the
synthesized witnesses.

2.1 Generating Witnesses

Our goal is to find concrete values that demonstrate how a program
“goes wrong”.

Problem: Which inputs are bad? One approach is to randomly
generate input values and use them to execute the program until we
find one that causes the program to go wrong. Unfortunately, this
approach quickly runs aground. Recall the erroneous fac function
from Figure 1. What fypes of inputs should we test fac with?
Values of type int are fair game, but values of type, say, string
or int 1list will cause the program to go wrong in an irrelevant
manner. Concretely, we want to avoid testing fac with any type
other than int because any other type would cause fac to get stuck
immediately in the n <= 0 test.

Solution: Don’t generate inputs until forced. Our solution is to
avoid generating a concrete value for the input at all, until we can
be sure of its type. The intuition is that we want to be as lenient as
possible in our tests, so we make no assumptions about types until it
becomes clear from the context what type an input must have. This
is actually quite similar in spirit to type inference.

To defer input generation, we borrow the notion of a “hole
from SmallCheck [31]. A hole — written v[a] — is a placeholder
for a value v of some unknown type a. We leave all inputs as
uninstantiated holes until they are demanded by the program, e.g.
due to a primitive operation like the <= test.

”

Narrowing Input Types Primitive operations, data construction,
and case-analysis narrow the types of values. For concrete values
this amounts to a runtime type check, we ensure that the value has a
type compatible with the expected type. For holes, this means we
now know the type it should have (or in the case of compound data
we know more about the type) so we can instantiate the hole with
a value. The value may itself contain more holes, corresponding to
components whose type we still do not know. Consider the fst
function:

let fst p = match p with
(a, b) —> a

The case analysis tells us that p must be a pair, but it says nothing
about the contents of the pair. Thus, upon reaching the case-analysis
we would generate a pair containing fresh holes for the £st and
snd component. Notice the similarity between instantiation of type
variables and instantiation of holes. We can compute an approximate
type for £st by approximating the types of the (instantiated) input
and output, which would give us:

fst @ (a1 * a2) —>

2016/6/19

We call this type approximate because we only see a single path
through the program, and thus will miss narrowing points that only
occur in other paths.

Returning to fac, given a hole as input we will narrow the hole
to an int upon reaching the <= test. At this point we choose a
random int' for the instantiation and concrete execution takes over
entirely, leading us to the expected crash in the multiplication.

Witness Generality We show in § 3.3 that our lazy instantiation
of holes produces general witnesses. That is, we show that if
“executing” a function with a hole as input causes the function to
“go wrong”, then there is no possible type for the function. In other
words, for any types you might assign to the function’s inputs, there
exist values that will cause the function to go wrong.

Problem: How many inputs does a function take? There is an-
other wrinkle, though; how did we know that fac takes a single
argument instead of two (or none)? It is clear, syntactically, that fac
takes at least one argument, but in a higher-order language with
currying, syntax can be deceiving. Consider the following definition:

let incAllByOne = List.map (+ 1)

Is incA11ByOne a function? If so, how many arguments does it
take? The OCAML compiler deduces that incA11ByOne takes
a single argument because the fype of List .map says it takes
two arguments, and it is partially applied to (+ 1). As we are
dealing with ill-typed programs we do not have the luxury of typing
information.

Solution: Search for saturated application. We solve this prob-
lem by deducing the number of arguments via an iterative process.
‘We add arguments one-by-one until we reach a saturated applica-
tion, i.e. until evaluating the application returns a value other than a
lambda.

2.2 Visualizing Witnesses

We have described how to reliably find witnesses to type errors
in OCAML, but this does not fully address our original goal — to
explain the errors. Having identified an input vector that triggers a
crash, a common next step is to step through the program with
a debugger to observe how the program evolves. The existing
debuggers and interpreters for OCAML assume a type-correct
program, so unfortunately we cannot use them off-the-shelf. Instead
we extend our search for witnesses to produce an execution trace.

Reduction Graph Our trace takes the form of a reduction graph,
which records small-step reductions in the context in which they oc-
cur. For example, evaluating the expression 1+2+3 would produce
the graph in Figure 2. Notice that when we transition from 1+2+3
to 3+3 we collect both that edge and an edge from the sub-term
1+2 to 3. These additional edges allow us to implement two com-
mon debugging operations post-hoc: “step into” to zoom in on a
specific function call, and “step over” to skip over an uninteresting
sub-computation.

Interacting with the graph The reduction graph is useful for
formulating and executing traversals, but displaying it all at once
would quickly become overwhelming. Our interaction begins by
displaying a big-step reduction, i.e. the witness followed by the
stuck term. The user can then progressively fill in the hidden steps
of the computation by selecting a visible term and choosing one of
the applicable traversal strategies — described in § 4 — to insert
another term into the visualization.

I'With standard heuristics [5] to favor small values.

Figure 2. The reduction graph for 1+2+3. The two edges produced
by the transition from 1+2+3 to 3+3 are highlighted.

Jump-compressed Witnesses 1t is rare for the initial state of the
visualization to be informative enough to diagnose the error. Rather
than abandon the user, we provide a short-cut to expand the witness
to a jump-compressed trace, which contains every function call and
return step. The jump-compressed trace abstracts the computation as
a sequence of call-response pairs, providing a high-level overview
of steps taken to reach the crash, and a high level of compression
compared to the full trace. For example, the jump-compressed
trace in Figure 1 contains 4 nodes compared to the 19 in the fully
expanded trace. Our benchmark suite of student programs shows that
jump-compression is practical, with an average jump-compressed
trace size of 7 nodes and a median of 5.

3. Type-Error Witnesses

Next, we formalize the notion of type error witnesses as follows.
First, we define a core calculus within which we will work (§ 3.1).
Second, we develop a (non-deterministic) operational semantics
for ill-typed programs that precisely defines the notion of a witz-
ness (§ 3.2). Third, we formalize and prove a notion of generality
for witnesses, which states, intuitively, that if we find a single wit-
ness then for every possible type assignment there exist inputs that
are guaranteed to make the program “go wrong” (§ 3.3). Finally,
we refine the operational semantics into a search procedure that
returns concrete (general) witnesses for ill-typed programs § (3.4).
We have formalized and tested our semantics and generality theorem
in PLT-REDEX [8]. Detailed proofs for the theorems in this section
can be found in Appendix A.

3.1 Syntax

Figure 3 describes the syntax of A, a simple lambda calculus with
integers, booleans, pairs, and binary trees. As we are specifically
interested in programs that do go wrong, we include an explicit
stuck term in our syntax. We write e to denote terms that may be
stuck, and e to denote terms that may not be stuck.

Holes Recall that a key challenge in our setting is to find witnesses
that are meaningful and do not arise from choosing values from
irrelevant types. We solve this problem by equipping our term
language with a notion of a hole, written v[«], which represents an
unconstrained value v that may be replaced with any value of an
unknown type «. Intuitively, the type holes o can be viewed as type
variables that we will not generalize over. A normalized value is
one that is not a hole, but which may internally contain holes. For
example node[a] v[a] 1leaf[o] 1leaf[c] is a normalized value.

Substitutions Our semantics ensure the generality of witnesses by
incrementally refining holes, filling in just as much information as

2016/6/19

Expressions e := e | stuck

= v|xz|ee|ete

| if ethenecelsee

| (e,e) | caseeof (z,x) = e
| nodeeee | leaf

leaf — e
| caseeof
noderrr — €
Values v == n | b | Az.e | via] | tr
tr = node[tjvvv | leaf[t]
Integers n := 0,1,—1,...
Booleans b ::= true | false
Types t == Dbool | int | fun

txt | treet | «

& | ov[a] —)
@ | Ola—t]

o | Ce|vC
CH+e | v+C

if C'thenecelsee
(Ce) | (v,C)
case C of (z,z) — €
node C ee
nodev C e
node v v C

| caseC of {

Substitutions o

S
Il

Contexts C

leaf — e
noderxrxr — e

Figure 3. Syntax of A\

is needed locally to make progress (inspired by the manner in which
SmallCheck uses lazy evaluation [31]). We track how the holes are
incrementally filled in, by using value (resp. type) substitutions o
(resp. 0) that map value (resp. type) holes to values (resp. types).
The substitutions let us ensure that we consistently instantiate each
hole with the same (partially defined) value or type, regardless of
the multiple contexts in which the hole appears. This ensures we
can report a concrete (and general) witness for any (dynamically)
discovered type errors.

A normalized value substitution is one whose co-domain is
comprised of normalized values. In the sequel, we will assume
and ensure that all value substitutions are normalized. We ensure
additionally that the co-domain of a substitution does not refer to
any elements of its domain, i.e. when we extend a substitution with
a new binding we apply the substitution to itself.

3.2 Semantics

Recall that our goal is to synthesize a value that demonstrates why
(and how) a function goes wrong. We accomplish this by combining
evaluation with type inference, giving us a form of dynamic type
inference. Each primitive evaluation step tells us more about the
types of the program values. For example, addition tells us that the
addends must be integers, and an if-expression tells us the condition
must be a boolean. When a hole appears in such a context, we know
what type it must have in order to make progress and can fill it in
with a concrete value.

The evaluation relation is parameterized by a pair of functions:
called narrow (narrow) and generate (gen), that “dynamically”
perform type-checking and hole-filling respectively.

Narrowing Types The procedure

narrow : v X t X 0 X § — (v U stuck, o, 6)

defined in Figure 4, takes as input a value v, a type ¢, and the current
value and type substitutions, and refines v to have type ¢ by yielding
a triple of either the same value and substitutions, or yields the
stuck state if no such refinement is possible. In the case where v is
a hole, it first checks in the given o to see if the hole has already
been instantiated and, if so, returns the existing instantiation. As the
value substitution is normalized, in the first case of narrow we do
not need to narrow the result of the substitution, the sub-hole will
be narrowed when the context demands it.

Generating Values The (non-deterministic) gen(t, 6) in Figure 5
takes as input a type ¢ and returns a value of that type. For base
types the procedure returns an arbitrary value of that type. For
functions it returns a lambda with a new hole denoting the return
value. For unconstrained types (denoted by «) it yields a fresh hole
constrained to have type a (denoted by v[«]). When generating a
tree t we must take care to ensure the resulting tree is well-typed.
For a polymorphic type tree o or a1 X a2 we will place holes in
the generated value; they will be lazily filled in later, on demand.

Steps and Traces Figure 6 describes the small-step contextual
reduction semantics for A*. A configuration is a triple (e, o, §) of
an expression e or the stuck term stuck, a value substitution o, and
a type substitution 6. We write (e, 7, 0) < (€', 0’,0’) if the state
(e, 0, 0) transitions in a single step to (e’, o', 0"). A (finite) trace T
is a sequence of configurations (eq, 00, 60), . .., (€n, n, 0,) such
that V0O < 4 < n, we have (ei,ai,6i> — (ei+1,ai+1,0i+1>.
We write (e,0,0) —7 (e',0’,0") if T is a trace of the form
(e,0,0),...,(e’,0’',0"). We write (e,0,0) —* (& ,0',0) if
(e,0,0) =7 (e',0',0") for some trace T.

Primitive Reductions Primitive reduction steps — addition, if-
elimination, function application, and data construction and case
analysis — use narrow to ensure that values have the appropriate
type (and that holes are instantiated) before continuing the computa-
tion. Importantly, beta-reduction does not type-check its argument,
it only ensures that “the caller” v; is indeed a function.

Recursion Our semantics lacks a built-in £ix construct for defin-
ing recursive functions, which may surprise the reader. Fixed-point
operators often cannot be typed in static type systems, but our system
would simply approximate its type as fun, apply it, and move along
with evaluation. Thus we can use any of the standard fixed-point
operators and do not need a built-in recursion construct.

3.3 Generality

A key technical challenge in generating witnesses is that we have
no (static) type information to rely upon. Thus, we must avoid
the trap of generating spurious witnesses that arise from picking
irrelevant values, when instead there exist perfectly good values
of a different type under which the program would not have gone
wrong. We now show that our evaluation relation instantiates holes
in a general manner. That is, given a lambda-term f, if we have
(f v[a], @, @) —* (stuck, o,), then for every concrete type t,
we can find a value v of type ¢ such that f v goes wrong.

Theorem 1. [Witness Generality] For any lambda-term f, if
(fv]a), D, @) <=7 (stuck, a,0), then for every (inhabited”) type
t there exists a value v of type t such that (f v,&,J) —~*
(stuck,o’,6").

We need to develop some machinery in order to prove this
theorem. First, we show how our evaluation rules encode a dynamic
form of type inference, and then we show that the witnesses found
by evaluation are indeed maximally general.

2 All types in our formalism are inhabited, but in a larger language like
OCAML this may not be the case.

2016/6/19

narrow
(v,0,0")
(stuck, 0, 0)

narrow(v[al, t, 0, 0)

vXtxox0— (vUstuck,o,6)

ifv=o0(v[a]), 8 = unify({a,t,typeof(v)},0)
ifv=o0(v[a])

(v ov[a) = v],0) if0 = unify({a,t},0),v = gen(t,0)

narrow(n, int, o, 0) = (n,o,0)

narrow(b, bool, o, 0) = b, 0)

narrow(Az.e, fun, o,) = (Az.e,0,0)
= (

narrow(leaf[t1], tree t2, 0,0)
narrow(node[t1] v1 vz v3, tree tz,0,0) =
narrow(v, t, o, 6) =

(
(
(
(
(
(
(

(
(
(
narrow ({(v1,v2),t1 X t2,0,0)
(
(
(

stuck, o, 6)

vl,v2> 0,0"),if 0 = unify({typeof(v1),t1},0),
leaf[t1],0,0"),if 0’ = unify({t1,t2},0)
node(t1] v1 v2 v3,0,0'),if 0 = unify({t1,t2},0)

0" = unify({typeof (vs),t2},8’)

Figure 4. Narrowing values

gen D tx0—w

gen(a, 0) = gen(6(a),0) if « € dom(0)
gen(lnt 0) = n non-det.
gen(bool, §) = b non-det.
gen(tl X 12,) = <gen(t139)agen(t279)>

gen(treet,§) = tr non-det.
gen(fun, 9) = Az.vo] v, o are fresh
gen(a, 6) = vl v is fresh

Figure 5. Generating values

The Type of a Value The dynamic type of a value v is defined
as a function typeof (v) shown in Figure 7. The types of primitive
values are defined in the natural manner. The types of functions are
approximated, which is all that is needed to ensure an application
does not get stuck. For example,

typeof (Az.z + 1) = fun

instead of int — int. The types of (polymorphic) trees are
obtained from the labels on their values, and the types of tuples
directly from their values.

Dynamic Type Inference We can think of the evaluation of f v[«]
as synthesizing a partial instantiation of «, and thus dynamically
inferring a (partial) type for f’s input. We can extract this type
from an evaluation trace by applying the final type substitution to
a. Formally, we say that if (f v[a], &, @) —7 (e, o, 0), then the
partial input type of f up to T, written p-(f), is 6(c).

Compatibility A type s is compatible with a type t, written s ~ t,
if 30. 0(s) = 0(t). That is, two types are compatible if there exists
a type substitution that maps both types to the same type. A value v
is compatible with a type t, written v ~ ¢, if typeof (v) ~ ¢, that is,
if the dynamic type of v is compatible with ¢.

Type Refinement A type s is a refinement of a type t, written
s X t,if 30.s = 0(¢). In other words, s is a refinement of ¢ if there
exists a type substitution that maps ¢ directly to s. A type ¢ is a
refinement of a value v, written ¢t < v, if ¢ < typeof(v), i.e. if tis a
refinement of the dynamic type of v.

Preservation We prove two preservation lemmas. First, we show
that each evaluation step refines the partial input type of f, thus
preserving type compatibility.

Lemma 2. Ij T = (f via],,9),...,{e,0,0) and T =
T,(e,0,0) — (e',0',0") (i.e. 7' is a single-step extension of
7)and p(f) # pr (f) then ' = 0lar — t1]... [an > ty).

Proof. By case analysis on the evaluation rules. « does not change,
so if the partial input types differ then § # 6’. Note that only narrow
can change 60, via unify, which can only extend 6. |

Second, we show that at each step of evaluation, the partial input
type of f is a refinement of the instantiation of v[a].

Lemma 3. For all traces 7 = (f v|[a],9,9),...,

p=(f) 2 o(v[a]).

Proof. By induction on 7. In the base case 7 = (f v[a], &, &) and
« is trivially a refinement of v[a]. In the inductive case, consider
the single-step extension of 7, 7/ = 7,(e’,0’,0’). We show by
case analysis on the evaluation rules that if p-(f) < o(v[«]), then

|

pr(f) 2 o' (v[a]).

Incompatible Types Are Wrong For all types that are incompati-
ble with the partial input type up to 7, there exists a value that will
cause f to get stuck in at most k steps, where k is the length of 7.

Lemma 4. For all types t, if (f v|a],d,8) <=7 (e,0,0) and
t o pr(f), then there exists a v such that typeof(v) = t and
(fv,,d) —* (stuck,o’,0') in at most k steps, where k is the
length of T.

<6, g, 9>;

Proof. We can construct v from 7 as follows. Let

Ti = <f I/[Oé},@7®>7.)
be the shortest prefix of 7 such that p,, (f) ~ t. We will show that
pr;_, (f) must contain some other hole o’ that is instantiated at step
i. Furthermore, o is instantiated in such a way that p, (f) ~ t.
Finally, we will show that if we had instantiated o’ such that
pr; (f) ~ t, the current step would have gotten stuck.

By Lemma 2 we know that 6; = 6;_1[cc1 — t1] ... [an — tn].
We will assume, without loss of generality, that 0; = 0;_1[a/ — t'].
Since ;1 and 6; differ only in o' but the resolved types differ,
we have o’ € pr,_, (f) and pr,(f) = pr,_, (f) [t'/a]. Let s be
a concrete type such that p-, , (f)[s/a’] = t. We show by case
analysis on the evaluation rules that

<€i717 Ti—1, 91'71), <€i, T4, 9i>

(ei—1,0i-1,0;—1[a’ = s]) < (stuck, o, 0)

Finally, by Lemma 3 we know that p,, , (f) = 05—1(v[]) and
thus o € o1 (v[a]). Let

u = gen(s,0)
v = aia(vla]) /v [0]) s/
(fv,9,0) —* (stuck,o,0) in 7 steps.]

Proof of Theorem 1. Suppose T witnesses that f gets stuck, and let
s = p-(f). We show that all types ¢ have stuck-inducing values by
splitting cases on whether ¢ is compatible with s.

2016/6/19

Evaluation ‘ (e,0,0) = (e,0,0) ‘

(n1,0',60") = narrow(v1, int, 0, 0)
{na,0”,0") = narrow(ve, int, o’, ")

= stuck,o’,0’) = narrow(vy, int, o, 0
E-PLUS-GOOD n =t ng — E-PLUs-BADI { 7,97 (w1, —)
(Cv1 +v2],0,0) — (Cn],c"”,0") (C v 4+ v2],0,0) — (stuck,o’,0")
stuck,o’,0’) = narrow(vs, int, o, 0 true, o’,0’) = narrow(v, bool, o,
E-PLUS-BAD2 { 7,97 (v2, L) E-IF-Goopl - < 7,9 v, %) —
(Cv1 4+ v2],0,0) — (stuck,o0’,0") (C[if v then e; else e3],0,0) — (C'le1],0’,8")
false,o’,6’) = narrow(v,bool, o, 8 stuck, o’,0’) = narrow(v, bool, o, §
ooy (falsed) boodot) L (seekol) (v.0001.0.0)
(C[if v then e; else e3],0,0) — (C'les],0’,8") (C[if v then e; else €3], 0,0) < (stuck,o’,6’)
BAPP-GOOD (Az.e,0’,0") = narrow(vy, fun, o,) EAPP-BAD (stuck, o’,0') = narrow(v1, fun, o, 0)
(C'[v1v2],0,0) = (Clevz/x]], 0, 0") (C [v1 v2],0,0) — (stuck,o’,0")

t = typeof(v1)
(v, 02,02) = narrow(vs, tree t, o1, 01)

E-LEAF-GOOD ais fresh E-NODE-GOOD (v3,3,05) = narrow(vs, tree t, 03, 02)
(C [Leaf],0,0) — (C[leaf]a]],0,0) (C [node v1 v2 v3],0,0) — (C [node[t] v1 v5 v3], 03, 03)
t = typeof(v1)
t = typeof(v1) (vy,02,02) = narrow(vs, tree t, o1, 61)
E-NODE-BADI (stuck, o2, 02) = narrow(vs, tree t,o1,61) E-NODE-BAD2 (stuck, o3,03) = narrow(vs, tree t, o2, 02)
(C [node vy v3 v3],0,0) — (stuck, s, 03) (C [node vy vz v3],0,0) — (stuck, o3, b3)
« is fresh (leaf[t],01,01) = narrow(v, tree a, o, 0)
E-CAseE-GooD1
leaf — e
C £ 0) — (C 0
< casevo {node T1 T2 T3 — €2 :| "7 > < [61]7017 1>
acis fresh node(t] v1 v2 v3, 01, 601) = narrow(v, tree o, o, 0
E-CASE-GOOD2 < [] 10V27V3,01, 1> (1, y Uy)
leaf — €1
(C |case v of {node o1 o s — € :| ,0,0) — (C ez [v1 /1] [va/x2] [vs/x3]] , 01, 01)
« is fresh (stuck, o1,01) = narrow(v, tree «, 0, 0)
E-CASE-BAD
leaf —
(C |case v of { e “ :| ,0,0) — (stuck, o1,01)
node x1 T2 T3 — €2
aq, o are fresh ({(v1,v2),01,01) = narrow(v, a1 X az,0,0)

E-CASE-PAIR-GOOD

(C [case v of (w1,72) — €] ,0,0) = (Cle[vi/z1] [v2/x2]], 01, 01)

a1, ap are fresh (stuck, o1,01) = narrow(v, a1 X az,0,6)

E-CASE-PAIR-BAD
(C [case v of (z1,x2) — €], 0,0) — (stuck,o1,61)

Figure 6. Evaluation relation for A

6 2016/6/19

typeof(n) = int

typeof (b) = Dbool

typeof (A\z.e) = fun

typeof ((v1, v2)) = typeof(v1) X typeof(vz)
typeof (leaf[t]) = treet

typeof (node[t] v1 v2 v3) = treet

typeof (v[a]) = «

Figure 7. The dynamic type of a value.

Case s ~ t: Let T = (f v][a], 9, D), ..., (stuck, o, §). The value
v = o(v[a]) demonstrates that f v gets stuck.

Case s « t: By Lemma 4, we can derive a v from 7 such that
typeof(v) = t and f v gets stuck. |

3.4 Search Algorithm

So far, we have seen how a trace leading to a stuck configuration
yields a general witness demonstrating that the program is ill-typed
(i.e. goes wrong for at least one input of every type). In particular,
we have shown how to non-deterministically find a witnesses for a
function of a single argument.

In order to convert the semantics into a procedure for finding
witnesses, we must address two challenges. First, we must resolve
the non-determinism introduced by gen. Second, in the presence of
higher-order functions and currying, we must determine how many
concrete values to generate to make execution go wrong (as we
cannot rely upon static typing to provide this information.)

The witness generation procedure GenWitness is formalized in
Figure 9. Next, we describe its input and output, and how it addresses
the above challenges to search the space of possible executions for
general type error witnesses.

Inputs and Outputs The problem of generating inputs is undecid-
able in general. Our witness generation procedure takes two inputs:
(1) a search bound k which is used to define the number of traces
to explore® and (2) the target expression e that contains the type
error (which may be a curried function of multiple arguments). The
witness generation procedure returns as output a list of (general)
witness expressions, each of which is of the form e vy ... v,. The
empty list is returned when no witness can be found after exploring
k traces.

Modeling Semantics We resolve the non-determinism in the op-
erational semantics (§ 3.2) via the procedure

eval : e — (v U stuck, 0, 6)"

Due to the non-determinism introduced by gen, a call eval(e) returns
a list of possible results of the form (v U stuck, g, 0) such that
(e, &, @) —* (vU stuck, o, 0).

Currying We address the issue of currying by defining a procedure
Saturate(e), defined in Figure 8, that takes as input an expression e
and produces a saturated expression of the form e vy [a1] . . . v [ain]
that does not evaluate to a lambda. This is achieved with a simple
loop that keeps adding holes to the target application until evaluating
the term yields a non-lambda value.

Generating Witnesses Finally, Figure 9 summarizes the overall
implementation of our search for witnesses with the procedure
GenWitness(k, e), which takes as input a bound % and the target
expression e, and returns a list of witness expressions € vy . .. Un
that demonstrate how the input program gets stuck. The search
proceeds as follows.

3 We assume, without loss of generality, that all traces are finite.

Saturate T e—e

Saturate(e) case eval(e) of
(Az.e,0,0),... Saturate(e v[a])
- e

(v, o are fresh)

Ll

Figure 8. Generating a saturated application.

GenWitness Nat x e — €*
GenWitness(n, ¢) = {o(esat) | 0 € X}
where
€sat = Saturate(e) (1)
res = take(n, eval(esat)) (2)
b = {o | (stuck,o,0) € res} (3)

Figure 9. Generating witnesses.

1. We invoke Saturate(e) to produce a saturated application esqz.
2. We take the first k traces returned by eval on the target esq¢, and

3. We extract the substitutions corresponding to the stuck traces,
and use them to return the list of witnesses.

We obtain the following corollary of Theorem 1:
Corollary. [Witness Generation] If
GenWitness(k, e) = (e vy ..

then for all types t1 ...ty there exist values w; ..
(ews ... wp, T, T) —* (stuck,o’,0').

.Un,0,0),. ..

. wy, such that

Proof. For any function f of multiple arguments, we can define f’
to be the uncurried version of f that takes all of its arguments as a
single nested pair, and then apply Theorem 1 to f. |

4. Explaining Type Errors With Traces

A trace, on its own, is too detailed to be a good explanation of the
type error. One approach is to use the witness input to step through
the program with a debugger to observe how the program evolves.
This route is problematic for two reasons. First, existing debuggers
and interpreters for typed languages (e.g. OCAML) typically require
a type-correct program as input. Second, we wish to have a quicker
way to get to the essence of the error, e.g. by skipping over irrelevant
sub-computations, and focusing on the important ones.

In this section we present an interactive visualization of program
executions. First, we extend our semantics (§ 4.1) to record each
reduction step in a trace, producing a reduction graph alongside the
witness. Then we describe a set of common interactive debugging
steps that can be expressed as simple traversals over the reduction
graph (§ 4.2), yielding an interactive debugger that allows the user
to effectively visualize how the program goes (wrong).

4.1 Tracing Semantics

Reduction Graphs A steps-to edge is a pair of expressions e ~
e2, which intuitively indicates that e; reduces, in a single step, to
e2. A reduction graph is a set of steps-to edges:

Gi=e | eweG

Tracing Semantics We extend the transition relation (§ 3.2) to
collect the set of edges corresponding to the reduction graph.
Concretely, we extend the operational semantics to a relation of
the form (e, 0,0, G) — (€', 0’,0', G') where G’ collects the edges
of the transition.

2016/6/19

Step 2
Step 1 Coe il
@ Y
Lfac 1/
[1 * fac OJ
/1 * true :
[1 * true}
Step 3 Step 4
\ @
fac 1/‘ fac 0|

then true
else n * fac (n - 1)

R 2 v

@ Y
true |
oy

' if n <= 0

J

Figure 10. A sequence of interactions with the trace of fac 1.
The stuck term is red, in each node the redex is highlighted. Thick
arrows denote a multi-step transition, thin arrows denote a single-
step transition. We start in step 1. In step 2 we jump forward from the
witness to the next function call. In step 3 we step into the recursive
fac 0 call, which spawns a new “thread” of execution. In step 4
we take a single step forward from fac 0.

Collecting Edges The general recipe for collecting steps-to edges
is to record the consequent of each original rule in the trace.
That is, each original judgment (e, 0,6) — (e’,0’,0") becomes
(e,0,0,G) = (', 0’0 ;e ~ €;G).

4.2 Interactive Debugging

Next, we show how to build a visual interactive debugger from the
traced semantics, by describing the visualization state — i.e. what
the user sees at any given moment — and the set of commands
available to user and what they do.

Visualization State A visualization state is a directed graph whose
vertices are expressions and whose edges are such that each vertex
has at most one predecessor and at most one successor. In other
words, the visualization state looks like a set of linear lists of
expressions as shown in Figure 10. The initial state is the graph
containing a single edge linking the initial and final expressions.

Commands Our debugger supports the following commands, each
of which is parameterized by a single expression (vertex) selected
from the (current) visualization state:

e StepForward, StepBackward: show the result of a single step
forward or backward respectively,

e JumpForward, JumpBackward: show the result of taking mul-
tiple steps (a “big” step) up to the first function call, or return,
forward or backward respectively,

[1 *# fac (minus 1 l)j

El * true]

Figure 11. Jump-compressed trace of fac 1 with subtraction
implemented as a function call.

e Steplnto: show the result of stepping into a function call in a
sub-term, isolating it in a new thread, and

e StepOver: show the result of skipping over a function call in a
sub-term.

Jump Compression A jump compressed trace is one whose edges
are limited to forward or backward jumps. In our experience, jump
compression abstracts many details of the computation that are
often uninteresting or irrelevant to the explanation. In particular,
jump compressed traces hide low-level operations and summarize
function calls as call-return pairs, see Figure 11 for a variant of
fac that implements the subtraction as a function call instead of a
primitive. Once users have identified interesting call-return pairs,
they can step into those calls and proceed with more fine-grained
steps. Note that jump compressed traces are not quite the same as
stack-traces as they show all function calls, including those that
returned successfully.

5. Evaluation

We have implemented a prototype of our search procedure and
trace visualization for a purely functional subset of OCAML —
with polymorphic types and records, but no modules, objects, or
polymorphic variants — in a tool called NANOMALY. We treat
explicit type signatures, e.g. (x int), as primitive operations
that narrow the type of the wrapped value. In our implementation we
instantiated gen with a simple random generation of values, which
we will show suffices for the majority of type errors.

Evaluation Goals There are three questions we seek to answer
with our evaluation:

1. Witness Coverage How many ill-typed programs can we find
witnesses for?

2. Witness Complexity How complex are the traces produced by
the witnesses?

3. Witness Utility How helpful are the witnesses and traces in
debugging type errors?

Benchmarks We answer the first two questions on two sets of
ill-typed programs, i.e. programs that were rejected by the OCAML
compiler because of a type error. The first dataset comes from the
Spring 2014 undergraduate Programming Languages course at UC
San Diego. We recorded each interaction with the OCAML top-level
system over the course of the first three assignments (IRB #140608),
from which we extracted 4,407 distinct, ill-typed OCAML programs.
The second dataset — widely used in the literature — comes from

2016/6/19

a graduate-level course at the University of Washington [18], from
which we extracted 284 ill-typed programs. Both datasets contain
relatively small programs, the largest being 348 SLoC; however, they
demonstrate a variety of functional programming idioms including
(tail) recursive functions, higher-order functions, polymorphic data
types, and expression evaluators.

5.1 Witness Coverage

We ran our search algorithm on each program for 1,000 iterations,
with the entry point set to the function that OCAML had identified as
containing a type error. Due to the possibility of non-termination we
set a timeout of one minute total per program. We also added a naive
check for infinite recursion; at each recursive function call we check
whether the new arguments are identical to the current arguments.
If so, the function cannot possibly terminate and we report an error.
While not a type error, infinite recursion is still a clear bug in the
program, and thus valuable feedback for the user.

Results The results of our experiments are summarized in Fig-
ure 12. In both datasets our tool was able to find a witness for 83%
of the programs in under one second, i.e. fast enough to be inte-
grated as a compile-time check. If we extend our tolerance to a 10
second timeout, we hit a maximum of 87% coverage. Interestingly,
while the vast majority of witnesses corresponded to a type-error, as
expected, 3—4% triggered an unbound variable error (even though
OCAML reported a type error) and 2-3% triggered an infinite re-
cursion error. For the remaining 12% of programs we were unable
to provide any useful feedback as they either completed 1,000 tests
successfully, or timed out after one minute. While a more advanced
search procedure, e.g. dynamic-symbolic execution, could likely
trigger more of the type errors, our experiments suggest that type er-
rors are coarse enough (or that novice programs are simple enough)
that these techniques are not necessary.

5.2 Witness Complexity

For each of the ill-typed programs for which we could find a witness,
we measure the complexity of the generated trace according to two
metrics.

1. Single-step Metric The size of the trace after expanding all of
the single-step edges from the witness to the stuck term, and

2. Jump-compressed Metric The size of the jump-compressed
trace.

Results The results of the experiment are summarized in Figure 13.
The average number of single-step reductions per trace is 31 for the
UCSD dataset (35 for the UW dataset) with a maximum of 2,745
(986 for UW) and a median of 17 (also 17 for UW). The average
number of jumps per trace is 7 (also 7 for UW) with a maximium
of 353 (185 for UW) and a median of 4 (also 4 for UW). In both
datasets 80% or more traces have at most 10 jumps.

5.3 Witness Utility

Next, we present a qualitative evaluation that compares the expla-
nations provided by NANOMALY’s dynamic witnesses with the
static reports produced by the OCAML compiler and SHERRLOC,
a state-of-the-art fault localization approach [37]. In particular, we
illustrate, using a series of examples drawn from student programs
in the UCSD dataset, how NANOMALY’s jump-compressed traces
can get to the heart of the error. Our approach highlights the conflict-
ing values that cause the program to get stuck, rather that blaming a
single one, shows the steps necessary to reach the stuck state, and
does not assume that a function is correct just because it type-checks.
For each example we will present (1) the code, (2) the error message

returned OCAML, (3) the error locations returned by OCAML (un-
derlined) and SHERRLOC (in bold),4 and (4) the jump-compressed
trace produced by NANOMALY.

Example: Recursion with Bad Operator The recursive function
sgsum should square each element of the input list and then
compute the sum of the result.

1 let rec sgsum xs = match xs with
2 | [] -> 0
3 | h::t -> (sgsum t) @ (h % h)

Unfortunately the student has used the list-append operator @ instead
of + to compute the sum. Both OCAML and SHERRLOC blame
the wrong location, namely the recursive call sgsum t with the
message

This expression has type
int

but an expression was expected of type
"a list

NANOMALY produces the following trace showing how the evalua-
tion of sgsum [1] gets stuck:

sgsum [1]

(sqsum [] @ (h * h)J

The figure highlights the entire stuck term (not just the recursive
call), emphasizing the conflict between int and 1ist rather than
assuming one or the other is correct.

Example: Recursion with Bad Base Case The function sumList
should add up the elements of its input list.

1 let rec sumList xs = match xs with
2 [T[] > [1]
3 | y::ys —> y + sumlList vys

Unfortunately, in the base case, it returns [] instead of 0. SHER-
RLOC blames the base case, and OCAML assumes the base case is
correct and blames the recursive call on line 3:

This expression has type
"a list

but an expression was expected of type
int

Both of the above are parts of the full story, which is summarized by
NANOMALY’s trace showing how sumList [1; 2] gets stuck
at2 + [1].

4When the locations from OCAML and SHERRLOC overlap, we just
underline the relevant code.

2016/6/19

Cumulative Coverage

Distribution of Results

90 88 q
85 87 87

Uw UCSD
%
u

6.3 80.3%
T% 12.2%
2.5% 3.6%

3:5% 3.9%

(=]

0.2 1.0 10.0 60.0
Witness found in <= x seconds

Witnesses Found (% of total programs)

[- Witness 1 Unbound [Diverge [No Witness

Figure 12. Results of our coverage testing and the distribution of test outcomes. Our random search successfully finds witnesses for 79-85%
of the programs in under one second, improving to 87% in under 10 seconds. In both datasets we detect actual type errors about 82% of the
time, unbound variables or constructors 3—4% of the time, and diverging loops 2-3% of the time. For the remaining 11-12% of the programs
we are unable to provide any useful feedback.

Trace Complexity

100 100

801 80
) 3

E'E 601 é 60
0] 0
] (]
V]]

g 40| g 40

20 20

0 0

<=5 <=10 <=20 <=50 <=100 any <=5 <= 10 <= 20 <=50 <=100 any
Total Steps Total Jumps

Figure 13. Complexity of the generated traces. 81% of the combined traces have a jump complexity of at most 10, with an average complexity
of 7 and a median of 5.

Example: Bad Helper Function that Type-Checks The function
digitsOfInt is supposed to return a list of the digits of the input

integer.
1 let append X xs =
2 match xs with
3 [1 —> [x]
4 | _ -> x :: xs
5
6 let rec digitsOfInt n =
7 if n <= 0 then
8)
9 else
10 append (digitsOfInt (n / 10))
11 [n mod 10]
The trace clarifies immediately (via the third step) that the [] is
the result of the recursive call sumList [], and shows how it is Unfortunately, the student’s append function conses an element
incompatible with the subsequent + operation. onto a list instead of appending two lists. Though incorrect, append

10 2016/6/19

still type-checks and thus OCAML and SHERRLOC blame the use-
site on line 10.

This expression has type
int

but an expression was expected of type
"a list

NANOMALY, in contrast, makes no assumptions about append
and produces a trace that illustrates the true error on line 4, by
highlighting the conflict in consing a list onto a list of integers.

digitsOfInt 1

append (digitsOfInt 0)
[n mod 10]

Y

(append [1 [n mod 10]]

append [] [1]

Example: Higher-Order Functions The higher-order function
wwhile is supposed to emulate a traditional while-loop. It takes a
function £ and repeatedly calls £ on the first element of its output
pair, starting with the initial value b, until the second element is
false.

1 let rec wwhile (f,b) =

2 match f with

3 | (z, false) —> =z

4 | (z, true) -> wwhile (f, z)
5

6 let £ x =

7 let xx = x * x in

8 (xx, (xx < 100))

9

10 let _ = wwhile (£, 2)

Unfortunately, the student has forgotten to apply £ at all on line 2,
and just matches it directly against a pair. This faulty definition of
wwhile still typechecks however, and is assumed to be correct by
and both OCAML and SHERRLOC which blame the use-site on line
10.

This expression has type
int -> int * bool

but an expression was expected of type
"a * bool

NANOMALY synthesizes a trace that draws the eye to the true
error: the match expression on line 2, and highlights the conflict in
matching a function against a pair pattern.

(wwhile (£ , 2)]

wwhile (fun x ->
(let xx = x * x in
(xx , xx < 100)) , 2)

Y

fun x ->
(let xx = x * x in
(xx , xx < 100))
(z , false)

(z , true)

By highlighting conflicting values (i.e. the source and sink of the
problem) and not making assumption about function correctness,
NANOMALY focusses the user’s attention on the piece of code that
is actually relevant to the error.

5.4 Measuring Witness Utility

Finally, to test the explanatory power of our jump-compressed traces,
we ran a user study at the University of Virginia (UVA). We included
four problems in an exam in the Spring session of UVA’s undergrad-
uate Programming Languages course. We presented the students
with ill-typed OCAML programs and asked them to (1) explain the
type error, and (2) fix the type error. For each problem the student
was given the ill-typed program and either OCAML’s error message
or NANOMALY’s jump-compressed trace. The four problems as-
signed to the students were the sumList, digitsOfInt, and
wwhile programs from § 5.3, as well as the following append
program

1 let append x 1 =

2 match x with

3 [[] > 1

4 | h::t => h :: t :: 1

which triggers an occurs-check error on line 4. We then instructed
four annotators (one of whom is an author, the other three are
teaching assistants at UCSD) to classify the answers as correct
or incorrect.

We performed an inter-rater reliability (IRR) analysis to deter-
mine the degree to which the annotators consistently graded the
exams. As we had more than two annotators assigning nominal
(“correct” or “incorrect”) ratings we used Fleiss’ kappa [9] to mea-
sure IRR. Fleiss’ kappa is measured on a scale from 1, indicating
total agreement, to —1, indicating total disagreement, with 0 indi-
cating random agreement.

Threats to Validity

Construct Measuring understanding is a difficult task; we used the
correctness of the student’s explanation of, and fix for, the type error
as a proxy for her understanding, but it is possible that other metrics
would produce different results.

Internal We assigned students randomly to two groups. The first
group was given OCAML’s errors for append and digitsOfInt,
and NANOMALY'’s trace for sumList and wwhile. The second
group was given the opposite assignment of errors and traces. This
assignment ensured that (1) each student was given OCAML and
NANOMALY problems, and (2) each student was given an “easy”
and “hard” problem for both OCAML and NANOMALY. Students
without sufficient knowledge of OCAML could affect the results, as
could the time-constrained nature of an exam. For these reasons we
excluded any answers left blank from our analysis.

2016/6/19

External Our experiment is based on students in the process of
learning OCAML, and thus may not generalize to all developers.
The four programs we used were chosen manually, via a random
selection and filtering of the programs in the UCSD dataset. In some
cases we made minor simplifying edits (e.g. alpha-renaming, dead-
code removal) to the programs to make them more understandable
in the short timeframe of an exam; however, we never altered the
resulting type-error. A different selection of programs may lead to
different results.

Conclusion We collected exams from 60 students, though due
to the nature of the study not every student completed every
problem. The number of incomplete submissions ranges from 2
(for the OCAML version of sumList) to 17 (for the NANOMALY
version of wwhile). Collecting more responses per test pair was
not possible, as it would require having students answer the same
problem twice (once with OCAML and once with NANOMALY).

5.4.1 Results

Figure 14 summarizes a single annotator’s results, which show
that students given NANOMALY’s jump-compressed trace were
consistently more likely to correctly explain and fix the type error
than those given OCAML’s error message. The measured kappa
values were k = 0.72 for the explanations and x = 0.83 for
the fixes; while there is no formal notion for what consititutes
strong agreement [15], kappa values above 0.60 are often called
“substantial” agreement [16].

5.5 Discussion

To summarize, our experiments demonstrate that NANOMALY finds
witnesses to type errors: (1) with high coverage in a timespan
amenable to compile-time analysis, (2) with traces that have a low
average complexity of 7 jumps, and (3) that are more helpful to
novice programmers than traditional type error messages.

There are, of course, drawbacks to our approach. Four that
stand out are: (1) coverage limits due to random generation, (2)
the inability to handle certain instances of infinite types, (3) dealing
with an explosion in the size of generated traces, and (4) handling
ad-hoc polymorphism.

Random Generation Random test generation has difficulty gen-
erating highly constrained values, e.g. red-black trees or a pair of
equal integers. If the type error is hidden behind a complex branch
condition NANOMALY may not be able to trigger it. Exhaustive test-
ing and dynamic-symbolic execution can address this short-coming
by performing an exhaustive search for inputs (resp. paths through
the program). As our experiments show, however, novice programs
do not appear to require more advanced search techniques, likely
because the novice programs tend to be simple.

Infinite Types Our implementation does check for infinite types
inside narrow, but there are some degenerate cases where it is unable
to detect them. Consider, the following buggy replicate

let rec replicate n x =

if n <= 0 then
[]
else
replicate (n-1) [x]

This code produces a nested list (with n levels of nesting) containing
a single copy of x, instead of a list with n copies of x. OCAML
detects acyclic’a = ’“a list constraint in the recursive call
and throws a type error, whereas NANOMALY happily produces
the nested list. Strictly speaking, this function itself cannot “go
wrong”, the program would not get stuck until a client attempted to
use the result expecting a flat list. But this is not very satisfying as

replicate is clearly to blame. Furthermore, in our experience,
infinite-type errors are often difficult to debug (and to explain to
novices), so better support for this scenario would be useful.

Trace Explosion Though the average complexity of our generated
traces is low in terms of jumps, there are some extreme outliers. We
cannot reasonably expect a novice user to explore a trace containing
50+ terms and draw a conclusion about which pieces contributed to
the bug in their program. Enhancing our visualization to slice out
program paths relevant to specific values [29], would likely help
alleviate this issue, allowing users to highlight a confusing value
and ask: “Where did this come from?”

Ad-hoc Polymorphism Our approach can only support ad-hoc
polymorphism (e.g. type-classes in HASKELL or polymorphic com-
parison functions in OCAML) in limited cases where we have
enough typing information at the call-site to resolve the overloading.
For example, consider the n <= 0 test in our fac example. <=
is polymorphic in OCAML, but in this case we can make progress
because the literal 0 is not. If we parameterized fac by a lower
bound, e.g.

let rec fac n m =
if n <= m then
1
else
n » fac (n - 1) m

and called fac with two holes, we would get stuck at then <= m
test; not because of a type error, but because all we know about n
and m at that point is that they must have the same (unknown) type.

This issue is uncommon in OCAML (we did not detect a single
instance of it across all of our benchmarks), but it would surely
be exacerbated by a language like HASKELL, which makes heavy
use of overloading. We suspect that dynamic-symbolic execution
would allow us to handle ad-hoc polymorphism, but defer a proper
treatment to future work.

6. Related Work

In this section we connect our work to related efforts on type errors,
testing, and program exploration.

Localizing and Repairing Type Errors It is well known that
unification-based type inference procedures can produce poor error
messages, and in particular, can misidentify the source of the type
error. Thus, many groups have explored techniques to pinpoint the
true source of the error and recommend fixes.

The traditional Damas-Milner type inference algorithm [7] re-
ports the first program location where a type mismatch is discovered
(subject to the traversal strategy [17]). As a result the error can be
reported far away from its source [23] without enough informa-
tion to guide the user. Type-error slicing [10, 12, 25, 30, 32, 33]
recognizes this flaw and instead produces a slice of the program
containing all program locations that are connected to the type error.
Though the program slice must contain the source of the error, it can
suffer from the opposite problem of providing too much information,
motivating recent work in ranking the candidate locations. Zhang et
al. [37, 38] present an algorithm for identifying the most likely cul-
prit using Bayesian reasoning. Pavlinovic et al. [27, 28] translate
the localization problem to a MaxSMT optimization problem, using
compiler-provided weights to rank the possible sources.

In addition to localizing the error, Lerner et al. [19] attempt to
suggest a fix by replacing expressions (or removing them entirely)
with alternatives based on the surrounding program context. Chen
and Erwig [3] use a variational type system to allow for the
possibility of changing an expression’s type, and search for an
expression whose type can be changed such that type inference

2016/6/19

100 Explanation

80 | !

60 !

% Correct

20 !

[OCaml
[NanoMaly

I

| I—
sumList append digitsOfint wwhile

100 . Fix T T
80 |
=
O 60
()
_
_
o
Q
40 |
xR
201
3 OCaml
[NanoMaly
| — |
sumList append digitsOfint wwhile

Figure 14. A classification of students’ explanations and fixes for type errors, given either OCAML’s error or NANOMALY’s jump-compressed
trace. The students given NANOMALY’s jump-compressed trace consistently scored better than those given OCAML’s type error.

would succeed. In contrast to Lerner et al., who search for changes
at the value-level, Chen et al. search at the type-level and are thus
complete due the finite universe of types used in the program.

In contrast to these approaches, we do not attempt to localize
or fix the type error. Instead we try to explain it to the user using
a dynamic witness that demonstrates how the program is not just
ill-typed but truly wrong. In addition, allowing users to run their
program enables experimentation and the use of debuggers to step
through the program and investigate its evolution.

Improving Error Messages The content and quality of the error
messages themselves has also been studied extensively. Marceau
et al. [21, 22] study the effectiveness of error messages in novice
environments and present suggestions for improving their quality
and consistency. Hage and Heeren [13] identify a variety of general
heuristics to improve the quality of type error messages, based
on their teaching experience. Heeren et al. [14], Christiansen [4],
and Serrano and Hage [34] provide methods for library authors
to specialize type errors with domain-specific knowledge. The
difference with our work is more pronounced here as we do not
attempt to improve the quality of the error message, instead we
search for a witness to the error and explain it with the resulting
execution trace.

Running Ill-Typed Programs Vytiniotis et al. [36] extend the
HASKELL compiler GHC to support compiling ill-typed programs,
but their intent is rather different from ours. Their goal was to allow
programmers to incrementally test refactorings, which often cause
type errors in distant functions. They replace any expression that
fails to type check with a runtime error, but do not check types
at runtime. Bayne et al. [1] also provide a semantics for running
ill-typed (JAVA) programs, but in constrast transform the program
to perform nearly all type checking at run-time. The key difference
between Bayne et al. and our work is that we use the dynamic
semantics to automatically search for a witness to the type error,
while their focus is on incremental, programmer-driven testing.

Testing NANOMALY is at its heart a test generator, and builds on
arich line of work. Our use of holes to represent unknown values is
inspired by the work of Runciman, Naylor, and Lindblad [20, 24, 31],
who use lazy evaluation to drastically reduce the search space for
exhaustive test generation, by grouping together equivalent inputs
by the set of values they force. An exhaustive search is complete
(up to the depth bound), if a witness exists it will be found, but due

to the exponential blowup in the search space the depth bound can
be quite limited without advanced grouping and filtering techniques.
Our search is not exhaustive; instead we use random generation to
fill in holes on demand. Random test generation [5, 6, 26] is by its
nature incomplete, but is able to check larger inputs than exhaustive
testing as a result.

Instead of enumerating values, which may trigger the same
path through the program, one might enumerate paths. Dynamic-
symbolic execution [2, 11, 35] combines symbolic execution (to
track which path a given input triggers) with concrete execution (to
ensure failures are not spurious). The system collects a path condi-
tion during execution, which tracks symbolically what conditions
must be met to trigger the current path. Upon successfully com-
pleting a test run, it negates the path condition and queries a solver
for another set of inputs that satisfy the negated path condition, i.e.
inputs that will not trigger the same path. Thus, it can prune the
search space much faster than techniques based on enumerating
values, but is limited by the expressiveness of the underlying solver.

Our operational semantics is amenable to dynamic-symbolic
execution, one would just need to collect the path condition and
replace our implementation of gen by a call to the solver. We chose
to use lazy, random generation instead because it is efficient, and
the overhead of an external solver, and produces high coverage for
our domain of novice programs.

Program Exploration Perera et al. [29] present a tracing seman-
tics for functional programs that tags values with their provenance,
enabling a form of backwards program slicing from a final value to
the sequence of reductions that produced it. Notably, they allow the
user to supply a partial value — containing holes — and present a
partial slice, containing only those steps that affected the the partial
value. Perera et al. focus on backward exploration; in contrast, our
visualization supports forward and backward exploration, though
our backward steps are more limited. Specifically, we do not support
selecting a value and inserting the intermediate terms that preceded
it while ignoring unrelated computation steps.

Acknowledgments

This work was supported by NSF grants CCF-1422471, CCF-
1223850, CCF-1218344, and a generous gift from Microsoft Re-
search. We thank the anonymous reviewers for their insightful and
enthusiastic feedback.

2016/6/19

References

[1]

[2]

[4]

[5

=

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

M. Bayne, R. Cook, and M. D. Ernst. Always-available static and
dynamic feedback. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE 11, pages 521-530, New York, NY,
USA, 21 May 2011. ACM. ISBN 9781450304450. doi: 10.1145/
1985793.1985864.

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 209224, Berkeley, CA,
USA, 2008. USENIX Association.

S. Chen and M. Erwig. Counter-factual typing for debugging type
errors. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, pages 583—
594, New York, NY, USA, 2014. ACM. ISBN 9781450325448.
doi: 10.1145/2535838.2535863.

D. R. Christiansen. Reflect on your mistakes! lightweight domain-
specific error messages. In Preproceedings of the 15th Symposium on
Trends in Functional Programming, 2014.

K. Claessen and J. Hughes. QuickCheck: A lightweight tool for random
testing of haskell programs. In Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, ICFP 00, pages
268-279, New York, NY, USA, 2000. ACM. ISBN 9781581132021.
doi: 10.1145/351240.351266.

C. Csallner and Y. Smaragdakis. JCrasher: an automatic robustness
tester for java. Softw. Pract. Exp., 34(11):1025-1050, 1 Sept. 2004.
ISSN 0038-0644. doi: 10.1002/spe.602.

L. Damas and R. Milner. Principal type-schemes for functional pro-
grams. In Proceedings of the 9th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’82, pages
207-212, New York, NY, USA, 1982. ACM. ISBN 9780897910651.
doi: 10.1145/582153.582176.

M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with
PLT Redex. The MIT Press, 1st edition, 2009. ISBN 9780262062756.

J. L. Fleiss. Measuring nominal scale agreement among many raters.
Psychol. Bull., 76(5):378, Nov. 1971. ISSN 0033-2909, 1939-1455.
doi: 10.1037/h0031619.

H. Gast. Explaining ML type errors by data flows. In Implementation
and Application of Functional Languages, Lecture Notes in Computer
Science, pages 72-89. Springer Berlin Heidelberg, 8 Sept. 2004. ISBN
9783540260943, 9783540320388. doi: 10.1007/11431664_5.

P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated ran-
dom testing. In Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI *05, pages
213-223, New York, NY, USA, 2005. ACM. ISBN 9781595930569.
doi: 10.1145/1065010.1065036.

C. Haack and J. B. Wells. Type error slicing in implicitly typed
Higher-Order languages. In Programming Languages and Systems,
Lecture Notes in Computer Science, pages 284-301. Springer Berlin
Heidelberg, 7 Apr. 2003. ISBN 9783540008866, 9783540365754.
doi: 10.1007/3-540-36575-3_20.

J. Hage and B. Heeren. Heuristics for type error discovery and
recovery. In Implementation and Application of Functional Languages,
Lecture Notes in Computer Science, pages 199-216. Springer Berlin
Heidelberg, 4 Sept. 2006. ISBN 9783540741299, 9783540741305.
doi: 10.1007/978-3-540-74130-5_12.

B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference
process. In Proceedings of the eighth ACM SIGPLAN international
conference on Functional programming, volume 38, pages 3—13. ACM,
25 Aug. 2003.
944707.

K. Krippendorff. Content Analysis: An Introduction to Its Methodology.
SAGE Publications, 2012. ISBN 9781412983150.

J. R. Landis and G. G. Koch. The measurement of observer agreement
for categorical data. Biometrics, 33(1):159-174, Mar. 1977. ISSN
0006-341X.

ISBN 9781581137569. doi: 10.1145/944705.

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

O. Lee and K. Yi. Proofs about a folklore let-polymorphic type
inference algorithm. ACM Trans. Program. Lang. Syst., 20(4):707-723,
July 1998. ISSN 0164-0925. doi: 10.1145/291891.291892.

B. Lerner, D. Grossman, and C. Chambers. Seminal: Searching for
ML type-error messages. In Proceedings of the 2006 Workshop on
ML, ML 06, pages 63-73, New York, NY, USA, 2006. ACM. ISBN
9781595934833. doi: 10.1145/1159876.1159887.

B. S. Lerner, M. Flower, D. Grossman, and C. Chambers. Searching
for type-error messages. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI *07, pages 425-434, New York, NY, USA, 2007. ACM. ISBN
9781595936332. doi: 10.1145/1250734.1250783.

F. Lindblad. Property directed generation of First-Order test data. In
M. T. Morazan, editor, Proceedings of the Eighth Symposium on Trends
in Functional Programming, volume 8 of TFP 07, pages 105-123,
2007. ISBN 9781841501963.

G. Marceau, K. Fisler, and S. Krishnamurthi. Measuring the effec-
tiveness of error messages designed for novice programmers. In Pro-
ceedings of the 42Nd ACM Technical Symposium on Computer Science
Education, SIGCSE " 11, pages 499-504, New York, NY, USA, 2011.
ACM. ISBN 9781450305006. doi: 10.1145/1953163.1953308.

G. Marceau, K. Fisler, and S. Krishnamurthi. Mind your language:
On novices’ interactions with error messages. In Proceedings of
the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! 2011, pages
3-18, New York, NY, USA, 2011. ACM. ISBN 9781450309417.
doi: 10.1145/2048237.2048241.

B. J. McAdam. On the unification of substitutions in type inference.
In K. Hammond, T. Davie, and C. Clack, editors, Implementation of
Functional Languages, Lecture Notes in Computer Science, pages 137—
152. Springer Berlin Heidelberg, 9 Sept. 1998. ISBN 9783540662297,
9783540485155. doi: 10.1007/3-540-48515-5_09.

M. Naylor and C. Runciman. Finding inputs that reach a target
expression. In Seventh IEEE International Working Conference on
Source Code Analysis and Manipulation, SCAM 07, pages 133-142,
2007. doi: 10.1109/SCAM.2007.30.

M. Neubauer and P. Thiemann. Discriminative sum types locate the
source of type errors. In Proceedings of the Eighth ACM SIGPLAN
International Conference on Functional Programming, ICFP ’03, pages
15-26, New York, NY, USA, 2003. ACM. ISBN 9781581137569.
doi: 10.1145/944705.944708.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-Directed
random test generation. In 29th International Conference on Software
Engineering, ICSE 07, pages 75-84, 2007. doi: 10.1109/ICSE.
2007.37.

Z. Pavlinovic, T. King, and T. Wies. Finding minimum type error
sources. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, pages 525-542, New York, NY, USA, 2014. ACM. ISBN
9781450325851. doi: 10.1145/2660193.2660230.

Z. Pavlinovic, T. King, and T. Wies. Practical SMT-based type error
localization. In Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, pages 412—
423, New York, NY, USA, 2015. ACM. ISBN 9781450336697.
doi: 10.1145/2784731.2784765.

R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Functional programs
that explain their work. In Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, ICFP *12, pages
365-376, New York, NY, USA, 2012. ACM. ISBN 9781450310543.
doi: 10.1145/2364527.2364579.

V. Rahli, J. Wells, J. Pirie, and F. Kamareddine. Skalpel: A type error
slicer for standard ML. Electron. Notes Theor. Comput. Sci., 312:
197-213, 24 Apr. 2015. ISSN 1571-0661. doi: 10.1016/j.entcs.
2015.04.012.

C. Runciman, M. Naylor, and F. Lindblad. Smallcheck and lazy small-

check: Automatic exhaustive testing for small values. In Proceedings
of the First ACM SIGPLAN Symposium on Haskell, Haskell ’08, pages

2016/6/19

http://dx.doi.org/10.1145/1985793.1985864
http://dx.doi.org/10.1145/1985793.1985864
http://dx.doi.org/10.1145/2535838.2535863
http://dx.doi.org/10.1145/351240.351266
http://dx.doi.org/10.1002/spe.602
http://dx.doi.org/10.1145/582153.582176
http://dx.doi.org/10.1037/h0031619
http://dx.doi.org/10.1007/11431664_5
http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1007/3-540-36575-3_20
http://dx.doi.org/10.1007/978-3-540-74130-5_12
http://dx.doi.org/10.1145/944705.944707
http://dx.doi.org/10.1145/944705.944707
http://dx.doi.org/10.1145/291891.291892
http://dx.doi.org/10.1145/1159876.1159887
http://dx.doi.org/10.1145/1250734.1250783
http://dx.doi.org/10.1145/1953163.1953308
http://dx.doi.org/10.1145/2048237.2048241
http://dx.doi.org/10.1007/3-540-48515-5_9
http://dx.doi.org/10.1109/SCAM.2007.30
http://dx.doi.org/10.1145/944705.944708
http://dx.doi.org/10.1109/ICSE.2007.37
http://dx.doi.org/10.1109/ICSE.2007.37
http://dx.doi.org/10.1145/2660193.2660230
http://dx.doi.org/10.1145/2784731.2784765
http://dx.doi.org/10.1145/2364527.2364579
http://dx.doi.org/10.1016/j.entcs.2015.04.012
http://dx.doi.org/10.1016/j.entcs.2015.04.012

[32

[33

[t

[34]

[35]

37-48, New York, NY, USA, 2008. ACM. ISBN 9781605580647.
doi: 10.1145/1411286.1411292.

K. Sagonas, J. Silva, and S. Tamarit. Precise explanation of success
typing errors. In Proceedings of the ACM SIGPLAN 2013 Workshop
on Partial Evaluation and Program Manipulation, PEPM ’13, pages
33-42, New York, NY, USA, 2013. ACM. ISBN 9781450318426.
doi: 10.1145/2426890.2426897.

T. Schilling. Constraint-Free type error slicing. In Trends in Func-
tional Programming, Lecture Notes in Computer Science, pages 1-16.
Springer Berlin Heidelberg, 16 May 2011. ISBN 9783642320361,
9783642320378. doi: 10.1007/978-3-642-32037-8_1.

A. Serrano and J. Hage. Type error diagnosis for embedded DSLs
by Two-Stage specialized type rules. In Programming Languages
and Systems, Lecture Notes in Computer Science, pages 672—-698.
Springer Berlin Heidelberg, 3 Apr. 2016. ISBN 9783662494974,
9783662494981. doi: 10.1007/978-3-662-49498-1_26.

N. Tillmann and J. de Halleux. Pex—White box test generation for .NET.
In B. Beckert and R. Hihnle, editors, Tests and Proofs, Lecture Notes in

[36]

[37]

(38]

Computer Science, pages 134—153. Springer Berlin Heidelberg, 2008.
ISBN 9783540791232. doi: 10.1007/978-3-540-79124-9_
10.

D. Vytiniotis, S. Peyton Jones, and J. P. Magalhdes. Equality proofs
and deferred type errors: A compiler pearl. In Proceedings of the 17th
ACM SIGPLAN International Conference on Functional Programming,
ICFP 12, pages 341-352, New York, NY, USA, 2012. ACM. ISBN
9781450310543. doi: 10.1145/2364527.2364554.

D. Zhang and A. C. Myers. Toward general diagnosis of static
errors. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, pages 569—
581, New York, NY, USA, 2014. ACM. ISBN 9781450325448.
doi: 10.1145/2535838.2535870.

D. Zhang, A. C. Myers, D. Vytiniotis, and S. Peyton-Jones. Diagnosing
type errors with class. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2015, pages 12-21, New York, NY, USA, 2015. ACM. ISBN
9781450334686. doi: 10.1145/2737924.27380009.

2016/6/19

http://dx.doi.org/10.1145/1411286.1411292
http://dx.doi.org/10.1145/2426890.2426897
http://dx.doi.org/10.1007/978-3-642-32037-8_1
http://dx.doi.org/10.1007/978-3-662-49498-1_26
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://dx.doi.org/10.1145/2364527.2364554
http://dx.doi.org/10.1145/2535838.2535870
http://dx.doi.org/10.1145/2737924.2738009

A. Proofs for Section 3

Proof of Lemma 3. By induction on 7. In the base case 7 =
(f v]a], 2, @) and « is trivially a refinement of v[a]. In the induc-
tive case, consider the single-step extension of 7, 7’ = 7, (¢/, o', 0').
We show by case analysis on the evaluation rules that if (a) <
o(v), then §' (o) < o' (v).

We can immediately discharge all of the E-*-BAD rules (except
for E-NODE-BADI) as the calls to narrow return stuck. An
examination of narrow shows that if narrow returns stuck then
o and 6 are unchanged.

Case E-PLUS-GOOD: We narrow v; and v2 to int, so we must
consider the narrow(v[al],t,o,0) and narrow(n,int,o,0)
cases. The narrow(n, int, o, 0) case is trivial as it does not
change o or 6. In the narrow(v[a], t, 0, 0) we will either find
that v € o or we will generate a fresh int and extend o. Note
that when we extend o we also extend 6 due to the call to unify,
thus in the v[€]o we cannot actually refine either v or « and thus
the refinement is preserved. When we extend o with a binding
for v, the call to unify ensures that we add a compatible binding
for « if one was not already in 6, thus the refinement relation
must continue to hold.

Case E-IF-GooD{1,2}: Similar to E-PLUS-GOOD.

Case E-APP-GOOD: Similar to E-PLUS-GOOD.

Case E-LEAF-GOOD: This step cannot change o or 6 thus the
refinement relation continues to hold trivially.

Case E-NODE-GOOD: We narrow v2 and vs to tree t, so we
must consider three cases of narrow.
narrow(v[a], t, o, 0): Similar to E-PLUS-GOOD.
narrow(leaf[t1], tree t2, 0, 6): This case may extend 6 but

not o, so the refinement continues to hold trivially.
narrow(node[t1] v1 v2 v3, tree t2,0,0): Same as leaf[t;].

Case E-CASE-GO0OOD{1,2}: Similar to E-PLUS-GOOD.

Case E-CASE-PAIR-GOOD: Similar to E-PLUS-GOOD.

Proof of Lemma 4. We can construct v from 7 as follows. Let

Ti = <f l/[OéL a, ®>7 ceey <€1‘_1, Ti—1, 9i—1>7 <€1‘, T4, 91>
be the shortest prefix of T such that p,, (f) » t. We will show that
pr;_, (f) must contain some other hole o’ that is instantiated at step
i. Furthermore, o’ is instantiated in such a way that p,, (f) ~ t.
Finally, we will show that if we had instantiated o’ such that
o7, (f) ~ t, the current step would have gotten stuck.

Since 6;_1 and 0; differ only in o’ but the resolved types differ,
we have @’ € pr,_, (f) and p-,(f) = pr,_, (f) [t'//]. Let s be
a concrete type such that p.,_, (f)[s/a’] = t. We show by case
analysis on the evaluation rules that

<6i_1,0'7;_1,92'_1[a/ — SD — (stuck, o, 9>

Case E-PLUS-GOOD: Here we narrow v; and v3 to int, so the
first case of narrow must apply (narrow(n, int, o, 6) cannot ap-

ply as it does not change). In particular, since we extended 6;_1
with [5 ¢'] we know that o' = a-and ¢’ = int. Let s be any
concrete type that is incompatible with int and s = 6;_1 [—
s], narrow(v[al, int, 051, 6s]) = (stuck, 051, 0s).
Case E-PLUS-BAD{1,2}: These cases cannot apply as narrow
does not update when it returns stuck.
Case E-IF-GooD{1,2}: Similar to E-PLUS-GOOD.
Case E-IF-BAD: This case cannot apply as narrow does not update
0 when it returns stuck.
Case E-APP-GOOD: Similar to E-PLUS-GOOD.
Case E-APP-BAD: This case cannot apply as narrow does not
update ¢ when it returns stuck.
Case E-LEAF-GOOD: This case cannot apply as it does not update
0.
Case E-NODE-GOOD: Here we narrow vy and v3 to tree t, so
we must consider three cases of narrow.
narrow(v[al, ¢, 0,0): Similar to E-PLUS-GOOD.
narrow(leaf[t1], tree t2, 0, 6): For this case to extend 6 with
[@' > t'], either 1 or t2 must contain o’. Let s be any con-
crete type that is incompatible with ¢ and 05 = 6;_1 [o —
s], narrow(v[al, int, 05—1, 6s]) = (stuck, o5_1, 6s).
narrow(node[t1] v1 v2 v3, tree t2,0,0): Same as leaf[t;].
Case E-NODE-BAD1: This case cannot apply as narrow does not
update 6 whe it returns stuck.
Case E-NODE-BAD2: Similar to E-NODE-GOOD.
Case E-CASE-GOOD{1,2}: Here we narrow v to tree «, SO we
must consider three cases of narrow.
narrow(v|[al, t, o, 0): Similar to E-PLUS-GOOD.
narrow(leaf[t1], tree t2,0,0): This case cannot extend 6
with [@’ +— #'] as we use a fresh «, which cannot be refer-
enced by pr, , (f), in the call to narrow, and thus it cannot
apply.
narrow(node[t1] v1 v2 v, tree t2,0,0): Same as leaf[t1].
Case E-CASE-BAD: This case cannot apply as narrow does not
update 6 whe it returns stuck.
Case E-CASE-PAIR-GOOD Here we narrow v to a1 X arz, SO we
must consider two cases of narrow.
narrow(v[al, t, o, 6): Similar to E-PLUS-GOOD.
narrow((v1, v2),t1 X t2,0,0): This case cannot extend 6 with
[@' + t'] as we use a fresh a; and a2, which cannot be
referenced by p-, , (f), in the call to narrow, and thus it
cannot apply.
Case E-CASE-PAIR-BAD: This case cannot apply as narrow does
not update 6 whe it returns stuck.

Finally, by Lemma 3 we know that p,, , (f) = 0,—1(v) and thus

o € oi—1(v]a]). Letu = gen(s,0) andv = 0,1 (v) [u/V'[]] [s/],

(fv,2,9) —=* (stuck, o, 0) in ¢ steps.
|

2016/6/19

	Introduction
	Overview
	Generating Witnesses
	Visualizing Witnesses

	Type-Error Witnesses
	Syntax
	Semantics
	Generality
	Search Algorithm

	Explaining Type Errors With Traces
	Tracing Semantics
	Interactive Debugging

	Evaluation
	Witness Coverage
	Witness Complexity
	Witness Utility
	Measuring Witness Utility
	Results

	Discussion

	Related Work
	Proofs for Section 3

