
Productive Coprogramming with Guarded Recursion

Robert Atkey

bob.atkey@gmail.com

Conor McBride
University of Strathclyde

Conor.McBride@strath.ac.uk

Abstract
Total functional programming offers the beguiling vision that, just
by virtue of the compiler accepting a program, we are guaranteed
that it will always terminate. In the case of programs that are not in-
tended to terminate, e.g., servers, we are guaranteed that programs
will always be productive. Productivity means that, even if a pro-
gram generates an infinite amount of data, each piece will be gen-
erated in finite time. The theoretical underpinning for productive
programming with infinite output is provided by the category theo-
retic notion of final coalgebras. Hence, we speak of coprogramming
with non-well-founded codata, as a dual to programming with well-
founded data like finite lists and trees.

Systems that offer facilities for productive coprogramming,
such as the proof assistants Coq and Agda, currently do so through
syntactic guardedness checkers, which ensure that all self-recursive
calls are guarded by a use of a constructor. Such a check ensures
productivity. Unfortunately, these syntactic checks are not compo-
sitional, and severely complicate coprogramming.

Guarded recursion, originally due to Nakano, is tantalising as a
basis for a flexible and compositional type-based approach to co-
programming. However, as we show, guarded recursion by itself is
not suitable for coprogramming due to the fact that there is no way
to make finite observations on pieces of infinite data. In this paper,
we introduce the concept of clock variables that index Nakano’s
guarded recursion. Clock variables allow us to “close over” the
generation of infinite codata, and to make finite observations, some-
thing that is not possible with guarded recursion alone.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (functional) programming; D.2.4 [Software
Engineering]: Software/Program Verification; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Data types
and structures

General Terms Languages, Theory, Types, Recursion

Keywords coalgebras, corecursion, guarded recursion, total func-
tional programming

1. Introduction
Coprogramming refers to the practice of explicitly manipulating
codata, the non-well-founded dual of well-founded data like finite

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’13, September 25–27, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2326-0/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500365.2500597

lists and trees. Codata are useful for representing the output of
an infinite process as a never ending stream, or for representing
potentially infinite search trees of possibilities. The natural way to
express codata is as a recursively defined coprogram. However, for
recursively defined coprograms to be safely used in a total setting,
the system must ensure that all recursive definitions are productive.
The state of the art for productivity checking is currently either
awkward syntactic guardedness checkers, or more flexible sized
type systems that explicitly label everything with size information.

In this paper, we investigate the use of guarded recursion (due
to Hiroshi Nakano [20]) as a lightweight typing discipline for en-
abling productive coprogramming. As we show in this introduction,
guarded recursion by itself is not suitable for coprogramming, due
to the strict segmentation of time inherent in putting guardedness
information in types. We therefore introduce the concept of clock
variables to take us from the finite-time-sliced world of guarded
recursion to the infinite world of codata.

The contributions we make in this paper are the following:

1. We define a core type system for comfortable productive co-
programming, combining three key features: initial algebras,
Nakano’s guarded recursion and our main conceptual contribu-
tion: quantification over clock variables. We show that by com-
bining the three key features of our system, we obtain a system
for programming with final coalgebras, the category theoretic
description of codata. The combination of guarded recursion
and clock quantification allows us to dispense with the clunky
syntactic guardedness checks, and move to a flexible, composi-
tional and local type-based system for ensuring guardedness.

2. We define a domain-theoretic denotational model that effec-
tively interprets our system in the untyped lazy λ-calculus. We
use a multiply-step-indexed model of types to prove that all
well-typed programs are either terminating or productive and to
show the correctness of our reconstruction of final coalgebras.

3. A side benefit of the combination of guarded recursion and
clock quantification is that, due to the careful tracking of what
data is available when through guarded types, we are able to
accurately type, and show safe, strange circular functional pro-
grams like Bird’s replaceMin example.

Despite the large amount of recent work on guarded recursion
(we provide references throughout this introduction), this is the
first paper that formally links guarded recursion to productive co-
programming. As recently noted by Birkedal and Møgelberg [4],
“guarded recursive types can be used to [sic] as a crutch for higher-
order programming with coinductive types”. In this paper, we show
that this is indeed possible.

1.1 Guardedness checkers and guarded recursion
Several systems with support for corecursion, such as Coq (as de-
scribed by Giménez [12]) and Agda (as described by Danielsson
and Altenkirch [9]), make use of syntactic guardedness checks to

ensure productivity of programs defined using corecursion. With-
out these checks, the soundness of these systems cannot be guar-
anteed. An unfortunate aspect of these guardedness checks is their
non-compositionality. We demonstrate the problem with an exam-
ple, and see how Nakano’s guarded recursion can be used to pro-
vide a compositional type-based guardedness check.

We will use Haskell notation for each of our informal examples,
since it serves to illustrate the issues concisely. Consider the follow-
ing Haskell declaration of a type of infinite streams of integers:

data Stream = StreamCons Integer Stream

An example of a Stream is the infinite stream of 1s:

ones :: Stream
ones = StreamCons 1 ones

It is easy to see that this recursive definition is guarded; ones
is only invoked recursively within an application of the stream
constructor StreamCons. This definition of ones defines an infinite
data structure, but each piece of the data structure is delivered to us
in finite time. Hence, ones is productive.

An example of a non-guarded definition is the filter function,
extended from finite lists to infinite streams:

filter :: (Integer→ Bool)→ Stream→ Stream
filter f (StreamCons z s) =

if f z then StreamCons z (filter f s) else filter f s

This definition is not guarded: in the then-case of the conditional,
the recursive call to filter is not within an application of the stream
constructor StreamCons. A syntactic guardedness checker is right
to reject this definition: consider the case when all of the elements
of the stream are filtered out; filter will never return anything, and
so will be non-productive.

Syntactic guardedness checkers are not always so helpful. The
following higher-order function defines a general merge function
on pairs of streams:

mergef :: (Integer→ Integer→ Stream→ Stream)→
mergef ::Stream→ Stream→ Stream
mergef f (StreamCons x xs) (StreamCons y ys) =

f x y (mergef f xs ys)

Any syntactic checker looking for constructors to guard recursive
calls will reject this function: there are no constructors anywhere
in the definition! This rejection is with good reason: there are func-
tions that we could pass to mergef that would render it unproduc-
tive. For example, this function will cause mergef to hang on all
pairs of streams:

badf :: Integer→ Integer→ Stream→ Stream
badf x y s = s

On the other hand, there are plenty of good functions f that we could
use with mergef to obtain productive functions, but a syntactic
guardedness checker does not allow us to express this fact.

A possible way out of this problem is to retain the syntactic
guardedness check, and work around it by changing the type of f.
For instance, we could change the required type of f to:

f :: Integer→ Integer→ Integer

to allow for merging functions that operate element-wise. Or we
could change the type to

f :: Integer→ Integer→ (Integer, [Integer])

which would allow for the functional argument to replace each pair
of elements from the input streams with a non-empty list of values.
The general trick is to make f return “instructions” on how to
transform the stream back to mergef, which then executes them in a
way that the syntactic guardedness checker can see is guarded. This

technique has been elaborated in detail by Danielsson [8]. However,
it is difficult to see whether we could capture all the possibilities
for good fs in a single type. We could give yet another type which
would accommodate the behaviour of the following possible value
of f:

f x y s = StreamCons x (map (+y) s)
Incorporating the forms of all the possible productive definitions
into a single type seems impractical. Moreover, we complicate the
definition of mergef, which is now forced to become essentially
an implementation of a virtual machine for running little stream
transformer programs returned by its functional argument, rather
than the simple one line definition we gave above.

A more promising type-based solution is provided by Nakano
[20]. Nakano introduces a guardedness type constructor that repre-
sents values that may only be used in a guarded way. Thus Nakano
transports the guardedness checks from the syntactic level into the
type system. We write this constructor, applied to a type A, as BA
(Nakano uses the notation •A, but the BA notation has become
more common, and conveys an intuitive idea of displacement in
time). A useful way to think of BA is as a value of A that is only
available “tomorrow”, and the temporal gap between today and to-
morrow can only be bridged by the application of a constructor
such as StreamCons. The reading of BA as a value ofA tomorrow
is explicitly supported in the step-indexed semantics we present in
Section 3 by means of a clock counting down to zero.

We now alter the type of f to be:

f :: Integer→ Integer→ BStream→ Stream

This type captures the intuition that the stream argument to f must
only be used in a guarded way. To introduce guarded types into the
system, we must make some changes to the types of our primitives.
We alter the type of the constructor StreamCons as follows, and
also introduce a stream deconstructor that we previously implicitly
used via pattern matching:

StreamCons :: Integer→ BStream→ Stream
deStreamCons :: Stream→ (Integer,BStream)

The type of StreamCons shows that it takes a guarded stream
“tomorrow”, and produces a non-guarded stream “today”. This is in
line with the temporal intuition we have of the type BStream. The
inverse operation deStreamCons takes a full stream and returns the
integer and the guarded remainder of the stream.

To give the guardedness type constructor force, Nakano pro-
poses the following alternative type of the fixpoint operator for
defining recursive values:

fix :: (BA→ A)→ A

(The standard typing of the fix operator is (A → A) → A.)
Nakano’s alternative typing ensures that recursive definitions must
be guarded by only allowing access to recursively generated values
“tomorrow”.

To actually program with the guardedness constructor, we equip
it with the structure of an applicative functor [18]:

pure :: A→ BA
(~) :: B(A→ B)→ BA→ BB

Note that B is not a monad: a join operation of type B(BA)→ BA
would allow us to collapse multiple guardedness obligations.

This method for integrating Nakano’s guardedness type con-
structor into a typed λ-calculus is not the only one. Nakano uses a
system of subtyping with respect to the guardedness type construc-
tor that has a similar effect to assuming that B is an applicative
functor. We propose to treat B as an applicative functor here, due
to the greater ease with which it can be incorporated into a standard
functional programming language like Haskell. Krishnaswami and

Benton [14, 15] have presented an alternative method that anno-
tates members of the typing context with the level of guardedness
that applies to them. Severi and de Vries [22] have generalised Kr-
ishnaswami and Benton’s approach for any typed λ-calculus de-
rived from a Pure Type System (PTS), including dependently typed
systems. These calculi have nice proof theoretic properties, such as
being able to state productivity in terms of infinitary strong normal-
isation.

With the guardedness type constructor, and its applicative func-
tor structure, we can rewrite the mergef function to allow the alter-
native typing which only allows functional arguments that will lead
to productive definitions.

mergef :: (Integer→ Integer→ BStream→ Stream)→
mergef :: Stream→ Stream→ Stream
mergef f = fix (λg xs ys.

let (x, xs′) = deStreamCons xs
let (y, ys′) = deStreamCons ys
in f x y (g ~ xs′ ~ ys′))

Aside from the explicit uses of fix and deStreamCons, which
were hidden by syntactic sugar in our previous definition, the only
substantial changes to the definition are the uses of applicative
functor apply (~). These uses indicate operations that are occurring
under a guardedness type constructor.

1.2 From the infinite to the finite
The type system for guarded recursion that we described above al-
lowed us to remove the syntactic guardedness check and replace it
with a compositional type-based one. However, aside from propos-
ing applicative functor structure as a convenient way to incorporate
the guardedness type constructor into a functional language, we
have not gone much beyond Nakano’s original system. We now de-
scribe a problem with guarded recursion when attempting to com-
bine infinite and finite data. We propose a solution to this problem
in the next subsection.

Consider the take function that reads a finite prefix of an infinite
stream into a list. This function will have the following type:

take :: Natural→ Stream→ [Integer]

where we wish to regard the type [Integer] as the type of finite lists
of integers. The explicit segregation of well-founded and non-well-
founded types is important for our intended applications of total
functional programming and theorem proving.

We also assume that the type Natural of natural numbers is well-
founded, so we may attempt to write take by structural recursion on
its first argument. However, we run into a difficulty, which we have
highlighted .

take :: Natural→ Stream→ [Integer]
take 0 s = []

take (n + 1) s = x : take n s′

where (x, s′) = deStreamCons s

The problem is that the variable s′, which we have obtained
from deStreamCons, has type BStream. However, to invoke the
take function structurally recursively, we need something of type
Stream, without the guardedness restriction.

We analyse this problem in terms of our intuitive reading of
BStream as a stream that is available “tomorrow”. Nakano’s typing
discipline slices the construction of infinite data like Stream into
discrete steps. In contrast, a well-founded data type like [Integer]
lives entirely in the moment. While a stream is being constructed,
this slicing is required so that we do not get ahead of ourselves
and attempt to build things today from things that will only be
available tomorrow. But once a stream has been fully constructed,
we ought to be able to blur the distinctions between the days of its

construction. We accomplish this in our type system by means of
clock variables, and quantification over them.

1.3 Clock variables
We extend the type system with clock variables κ. A clock variable
κ represents an individual time sequence that can be used for
safe construction of infinite data like streams. In our model, clock
variables are interpreted as counters running down to zero in the
style of step-indexed models. By quantifying over all counters we
are able to accommodate all possible finite observations on an
infinite data structure.

We annotate the guardedness type constructor with a clock vari-
able to indicate which time stream we are considering: BκA. Infinite
data types such as streams are now annotated by their clock vari-
able, indicating the time stream that they are being constructed on.
We have the following new types for the constructor and decon-
structor:

StreamConsκ :: Integer→ BκStreamκ → Streamκ

deStreamConsκ :: Streamκ → (Integer,BκStreamκ)

We now regard the type Streamκ as the type of infinite streams
in the process of construction. A finished infinite stream is repre-
sented by quantifying over the relevant clock variable: ∀κ.Streamκ.
If we think of each possible downward counting counter that κ
could represent, then this universally quantified type allows for any
counter large enough to allow us any finite extraction of data from
the stream. We use the notation Λκ.e and e[κ] to indicate clock
abstraction and application respectively, in the style of explicitly
typed System F type abstraction and application.

The fixpoint operator is parameterised by the clock variable:

fix :: ∀κ.(BκA→ A)→ A

as is the applicative functor structure carried by Bκ:

pure :: ∀κ.A→ BκA
(~) :: ∀κ.Bκ(A→ B)→ BκA→ BκB

We also add an additional piece of structure to eliminate guarded
types that have been universally quantified:

force :: (∀κ. BκA)→ (∀κ. A)

Intuitively, if we have a value that, for any time stream, is one
time step away, we simply instantiate it with a time stream that
has at least one step left to run and extract the value. Note that the
universal quantification is required on the right hand side since κ
may appear free in the type A. The force operator has a similar
flavour to the runST :: (∀s.ST s a) → a for the ST monad
[16, 19]. In both cases, rank-2 quantification is used to prevent
values from “leaking” out from the context in which it is safe to
use them.

Using force we may write a deconstructor for completed
streams of type ∀κ.Streamκ.

deStreamCons :: (∀κ.Streamκ)→ (Integer,∀κ.Streamκ)
deStreamCons x =

(Λκ.fst (deStreamConsκ (x[κ])),
force (Λκ.snd (deStreamConsκ (x[κ]))))

In this definition we have made use of a feature of our type system
that states that the type equality ∀κ.A ≡ A holds whenever κ
is not free in A. Our system also includes other type equalities
that demonstrate how clock quantification interacts with other type
formers. These are presented in Section 2.2.

In the presence of clock variables, our definition of take is well-
typed and we get the function we desire: taking a finite observation

of a piece of infinite data:

take :: Natural→ (∀κ.Streamκ)→ [Integer]
take 0 s = []
take (n + 1) s = x : take n s′

where (x, s′) = deStreamCons s

Clock variables also allow us to make clear in the types fine
distinctions between functions that are extensionally equal, but dif-
fer in their productivity. In plain Haskell, the following two stream
mapping functions have the same behaviour on any completely con-
structed stream. The first map processes each element one at a time

map f s = StreamCons (f x) (map f s′)
where (x, s′) = deStreamCons s

while maap processes elements two at a time by pattern matching:

maap f (StreamCons x (StreamCons y s′′))
= StreamCons (f x) (StreamCons (f y) (maap f s′′))

If all the elements of the input are available at once, then map and
maap have the same behaviour. However, if these functions are
passed streams that are still being constructed, then their behaviour
can differ significantly. Consider these two definitions of a stream
of natural numbers, using map and maap:

nats = StreamCons 0 (map (λx. x+ 1) nats)
badnats = StreamCons 0 (maap (λx. x+ 1) badnats)

Running nats produces the infinite stream of natural numbers, as
expected, but running badnats produces nothing. The function
maap expects two elements to be available on its input stream,
while badnats has only provided one.

Even though map and maap are extensionally equal, they have
different behaviour on partially constructed streams. We can state
this different behaviour using the following types in our system:

map :: ∀κ.(Integer→ Integer)→ Streamκ → Streamκ

maap :: (Integer→ Integer)→ (∀κ.Streamκ)→ (∀κ.Streamκ)

Thus, map’s type states that the input stream and output stream run
on the same clock κ, so each element of the output will only require
one element of the input. This is exactly what nats requires, and our
type system will accept the definition of nats. In contrast, maap’s
type states that it requires a fully constructed stream as input. The
definition of badnats does not provide this, and so our type system
will reject it.

By using clock quantification to “close over” the guardedness,
our approach thus localises the discipline which makes the produc-
tivity of definitions plain, without affecting the types at which the
defined objects are used. Abel’s sized types impose a similar disci-
pline, but globally [1].

1.4 Final coalgebras from initial algebras, guards and clocks
In the previous subsection, we informally stated that the type
Stream = ∀κ.Streamκ represents exactly the type of infinite
streams of integers. We make this informal claim precise by us-
ing the category theoretic notion of final coalgebra. A key feature
of our approach is that we decompose the notion of final coalgebra
into three parts: initial algebras, Nakano-style guarded types, and
clock quantification.

Initial algebras In Section 2 we present a type system that in-
cludes a notion of strictly positive type operator. We include a least
fixpoint operator µX.F [X]. For normal strictly positive type oper-
ators F (i.e. ones that do not involve the Bκ operator), µX.F [X] is
exactly the normal least fixpoint of F . Thus we can define the nor-
mal well-founded types of natural numbers, lists, trees and so on.
Our calculus contains constructors ConsF :: F [µX.F] → µX.F
for building values of these types, and recursion combinators for

eliminating values:

primRecF,A :: (F [(µX.F)×A]→ A)→ µX.F [X]→ A

We opt to use primitive recursion instead of a fold operator (i.e.
fold :: (F [A] → A) → µX.F [X] → A) because it allows for
constant time access to the top-level of an inductive data structure.

We show in the proof of Theorem 2 that µX.F is the carrier of
the initial F -algebra in our model. Therefore, we may use stan-
dard reasoning techniques about initial algebras to reason about
programs written using the primRec combinator.

Guarded final coalgebras When we consider strictly positive
type operators of the form F [BκX], where κ does not appear in
F then, in addition to µX.F [BκX] being the least fixpoint of the
operator F [Bκ−], it is also the greatest fixpoint. This initial-final
coincidence is familiar from domain theoretic models of recursive
types (see, e.g., Smyth and Plotkin [23]), and has previously been
observed as a feature of guarded recursive types by Birkedal et
al. [6].

The unfold combinator that witnesses µX.F [BκX] as final can
be implemented in terms of the fix operator, and Cons:

unfoldF :: ∀κ.(A→ F [BκA])→ A→ µX.F [BκX]
unfoldF = Λκ.λf.fix (λg a.Cons (fmapF (λx.g ~ x) (f a)))

where fmapF :: (A → B) → (F [A] → F [B]) is the functorial
mapping combinator associated with the strictly positive type oper-
ator F . Note that without the additional Bκ in F [Bκ−], there would
be no way to define unfold, due to the typing of fix.

To make observations on elements, we define a deConsF com-
binator for every F , using the primitive recursion

deConsF :: ∀κ.(µX.F [BκX])→ F [BκµX.F [BκX]]
deConsF = Λκ.primRec (λx. fmapF [Bκ−] (λy.fst y) x)

The proof of Theorem 3 shows that these definitions of unfoldF and
deConsF exhibit µX.F [BκX] as the final F [Bκ−]-coalgebra, using
deConsF as the structure map. This means that unfoldF [κ]f is the
unique F [Bκ−]-coalgebra homomorphism from A to µX.F [Bκ−].

Final coalgebras Theorem 3 only gives us final coalgebras in
the case when the recursion in the type is guarded by the type
constructor Bκ−. So we do not yet have a dual to the least fixpoint
type constructor µX.F . However, as we hinted above in the case
of streams, we can use clock quantification to construct a final F -
coalgebra, where F need not contain an occurrence of Bκ−.

For the type ∀κ.µX.F [Bκ−] we define an unfoldνF operator,
in a similar style to the unfoldF operator above. However, this
operator takes an argument of type (A → F [A]), with no mention
of guardedness.

unfoldνF :: (A→ F [A])→ A→ ∀κ.µX.F [BκX]
unfoldνF = λf a.Λκ.

fix (λg a.ConsF (fmapF (λx.g ~ pure x) (f a))) a

We can also define the corresponding deconstructor, building on
the definition of deConsF above, but also using the force construct
in conjunction with clock quantification. This is a generalisation of
the definition of deStreamCons above.

deConsνF :: (∀κ.µX.F [BκX])→ F [∀κ.µX.F [BκX]]
deConsνF = λx. fmapF (λx.force x) (Λκ. deConsF [κ] (x[κ]))

In the application of fmapF , we make use of the type equalities
in our calculus, which allow us to treat the types ∀κ.F [X] and
F [∀κ.X] as equivalent, when κ does not appear in F . We present
the type equalities in Section 2.2, and prove them sound in Sec-
tion 3.4.

Our last main technical result, Theorem 4, states that, in the
semantics we define Section 3, ∀κ.µX.F [Bκ−] actually is the final
F -coalgebra. The use of clock quantification has allowed us to

remove mention of the guardedness type constructor, and given us
a way to safely program and reason about F -coalgebras.

1.5 Circular traversals of trees
We now present a perhaps unexpected application of the use of
clock quantification that does not relate to ensuring productivity of
recursive programs generating infinite data. An interesting use of
laziness in functional programming languages is to perform single-
pass transformations of data structures that would appear to require
at least two passes. A classic example, due to Bird [3], is the
replaceMin function that replaces each value in a binary tree with
the minimum of all the values in the tree, in a single pass. In normal
Haskell, this function is written as follows:

replaceMin :: Tree→ Tree
replaceMin t = let (t′,m) = replaceMinBody t m in t′

where
replaceMinBody (Leaf x) m = (Leaf m, x)
replaceMinBody (Br l r) m =

let (l′,ml) = replaceMinBody l m
let (r′,mr) = replaceMinBody r m
in (Br l′ r′, min ml mr)

The interesting part of this function is the first let expression. This
takes the minimum value m computed by the traversal of the tree
and passes it into the same traversal to build the new tree. This
function is a marvel of declarative programming: we have declared
that we wish the tree t′ to be labelled with the minimum value in
the tree t just by stating that they be the same, without explaining
at all why this definition makes any sense. Intuitively, the reason
that this works is that the overall minimum value is never used in
the computation of the minimum, only the construction of the new
tree. The computation of the minimum and the construction of the
new tree conceptually exist at different moments in time, and it is
only safe to treat them the same after both have finished.

Using explicit clock variables we can give a version of the
replaceMin definition that demonstrates that we have actually de-
fined a total function from trees to trees. The use of clock variables
allows us to be explicit about the time when various operations are
taking place.

Out first step is to replace the circular use of let with a feedback
combinator defined in terms of the fix operator:

feedback : ∀κ. (BκU → (B[κ], U))→ B[κ]
feedback = Λκ.λf.fst (fix (λx. f (pure (λx.snd x) ~ x)))

In the application of the fix operator, x : Bκ(B × U). The notation
B[κ] indicates that κ may appear free in the type B.

We now rewrite the replaceMinBody function so that we can
apply feedback to it. We have highlighted the changes from the
previous definition.

replaceMinBody :: Tree→ ∀κ. Bκ Integer→ (Bκ Tree, Integer)
replaceMinBody (Leaf x) m = (pure Leaf ~ m, x)

replaceMinBody (Br l r) m =
let (l′,ml) = replaceMinBody l m
let (r′,mr) = replaceMinBody r m
in (pure Br ~ l′ ~ r′, min ml mr)

The changes required are minor: we must change the type, and use
the applicative functor structure of Bκ to indicate when computa-
tions are taking place “tomorrow”.

Applying feedback to replaceMinBody, and using force to re-
move the now redundant occurrence of Bκ, we can define the full
replaceMin function in our system:

replaceMin :: Tree→ Tree
replaceMin t = force (Λκ.feedback[κ] (replaceMinBody[κ]) t)

X ∈ Θ

∆; Θ ` X : type ∆; Θ ` 1 : type

∆; Θ ` A : type ∆; Θ ` B : type

∆; Θ ` A×B : type

∆; Θ ` A : type ∆; Θ ` B : type

∆; Θ ` A+B : type

∆;− ` A : type ∆; Θ ` B : type

∆; Θ ` A→ B : type

∆; Θ, X ` A : type

∆; Θ ` µX.A : type

∆, κ; Θ ` A : type

∆; Θ ` ∀κ.A : type

∆; Θ ` A : type κ ∈ ∆

∆; Θ ` BκA : type

Figure 1. Well-formed types and type operators

By the soundness property of our system that we prove in Section 3,
we are assured that we have defined a total function from trees
to trees. The standard Haskell type system does not provide this
guarantee.

1.6 Models of guarded recursion
To substantiate the claims we have made in this introduction, in
Section 3 we construct a multiply-step-indexed model of the type
system we present in the next section. The multiple step-indexes
are required for the multiple clock variables in our system, each
representing separate time streams. Step-indexed models were in-
troduced by Appel and McAllester [2] to prove properties of recur-
sive types. The use of step-indexing serves to break the circularity
inherent in recursive types. Dreyer et al. [10] exposed the connec-
tion between Nakano’s guarded recursion and step indexed models.
More recently, Birkedal et al. [4, 6] have elaborated this connec-
tion, particularly in the direction of dependent types.

Alternative semantics for guarded recursion have involved ul-
trametric spaces, for example Birkedal et al. [5] and Krishnaswami
and Benton [15]. Hutton and Jaskelioff [13] have also used an ap-
proach based on metric spaces for identifying productive stream
generating functions.

Finally, we mention the syntactic approach of Severi and de
Vries [22], who define the notion of infinitary strong normalisa-
tion to prove productivity of dependent type systems with guarded
recursion.

2. A type system with clocks and guards
In the introduction, we presented our motivating examples in terms
of a Haskell-like language informally extended with a Nakano-style
guard modality and clock quantification. To formally state the prop-
erties of our combination of clock quantification, clock-indexed
guard modalities and inductive types, in this section we define an
extension of the simply-typed λ-calculus with these features. In the
next section, we define a semantics for our system in which we can
formally state the results that we claimed in the introduction.

2.1 Well-formed types with clock variables
The types of our system include two kinds of variable that may
occur free and bound: clock variables in the clock quantifier and the
clock-indexed guard modality, as well as type variables occurring

in strictly positive positions for the inductive types. We therefore
formally define when a type is well-formed with respect to contexts
of clock and type variables, using the rules displayed in Figure 1.

The well-formedness judgement for types (∆; Θ ` A : type)
is defined with respect to a clock context ∆ and a type variable con-
text Θ. Clock contexts are lists of clock variables, ∆ = κ1, ..., κn,
and type variable contexts are lists of type variable names, Θ =
X1, ..., Xn. Type variables are only used to manage the scope of
the nested least fixpoint type operator µ; there is no type polymor-
phism in the type system we present here. We generally use Roman
letters A, B, C to stand for types, but we also occasionally use F
and G when we wish to emphasise that types with free type vari-
ables are strictly positive type operators. For any type A, we define
fc(A) to be the set of free clock variables that appear in A.

Most of the type well-formedness rules are standard: we have
a rule for forming a type from a type variable that is in scope
and rules for forming the unit type 1, product types A × B, sum
types A + B, function types A → B and least fixpoint types
µX.A. We enforce the restriction to strictly positive type operators
by disallowing occurrences of free type variables in the domain
component of function types. In Section 2.3, we will see that each
of the standard type constructors will have the usual corresponding
term-level constructs; our system subsumes the simply typed λ-
calculus with products, sums and least fixpoint types.

The remaining two rules are for forming clock quantification
∀κ.A types and the clock-indexed Nakano-style guard modality
BκA. The type formation rule for clock quantification is very similar
to universal type quantification from standard polymorphic type
theories like System F.

As we described in the introduction in Section 1.3, we have
augmented the Nakano-style delay modality with a clock variable.
This allows us to distinguish between guardedness with respect to
multiple clocks, and hence to be able to close over all the steps
guarded by a particular clock.

2.2 Type Equality
The examples we presented in the introduction made use of several
type equalities allowing us to move clock quantification through
types. For instance, in the definition of the deStreamCons stream
deconstructor in Section 1.3, we made use of a type equality to treat
a value of type ∀κ.Integer as having the type Integer. Intuitively,
this is valid because a value of type Integer exists independently
of any clock, therefore we can remove the clock quantification.
In general, clock quantification commutes with almost all strictly
positive type formers, except for guards indexed by the same clock
variable. For those, we must use force.

The following rules are intended to be read as defining a judge-
ment ∆; Θ ` A ≡ B : type, indicating that the well-formed types
∆; Θ ` A : type and ∆; Θ ` B : type are to be considered
equal. In addition to these rules, the relation ∆ ` A ≡ B : type is
reflexive, symmetric, transitive and a congruence.

∀κ.A ≡ A (κ 6∈ fc(A))
∀κ.A+B ≡ (∀κ.A) + (∀κ.B)
∀κ.A×B ≡ (∀κ.A)× (∀κ.B)
∀κ.A→ B ≡ A→ ∀κ.B (κ 6∈ fc(A))
∀κ.∀κ′.A ≡ ∀κ′.∀κ.A (κ 6= κ′)
∀κ.Bκ′A ≡ Bκ′∀κ.A (κ 6= κ′)

∀κ.µX.F [A,X] ≡ µX.F [∀κ.A,X] (fc(F) = ∅)

In the last rule, F must be strictly positive in A as well as X .
After we define the terms of our system in the next sub-section,

it will become apparent that several of the type equality rules
could be removed, and their use replaced by terms witnessing the
conversions back and forth. In the case of product types, we could
define the following pair of terms (using the syntax and typing rules

we define below):

λx.(Λκ.fst (x[κ]),Λκ.snd (x[κ]))
: (∀κ.A×B)→ (∀κ.A)× (∀κ.B)

and
λx.Λκ.(fst x [κ], snd x [κ])

: (∀κ.A)× (∀κ.B)→ ∀κ.A×B
Indeed, the denotational semantics we present in Section 3 will
interpret both of these functions as the identity. However, not all
the type equality rules are expressible in terms of clock abstraction
and application, for instance, the ∀κ.A ≡ A rule and the rule
for sum types. Moreover, our definition of deCons in Section 1.4
is greatly simplified by having clock quantification commute with
all type formers uniformly (recall that we made crucial use of the
equality ∀κ.F [−] ≡ F [∀κ.−]). Therefore, we elect to include type
equalities for commuting clock quantification with all type formers
uniformly.

2.3 Well-typed Terms
The terms of our system are defined by the following grammar:

e, f, g ::= x | ∗ | λx. e | fe | (e1, e2) | fst e | snd e
| inl e | inr e | case e of inl x.f ; inr y.g
| ConsF e | primRecF e | Λκ.e | e[κ′]
| pure x | f ~ e | fix f | force e

The well-typed terms of our system are defined by the typing
judgement ∆; Γ ` e : A, given by the rules presented in Figure 2.
Terms are judged to be well-typed with respect to a clock variable
context ∆, and a typing context Γ consisting of a list of variable :
type pairs: x1 : A1, ..., xn : An. We only consider typing contexts
where each type is well-formed with respect to the clock variable
context ∆, and the empty type variable context. The result type A
in the typing judgement must also be well-formed with respect to
∆ and the empty type variable context.

We have split the typing rules in Figure 2 into five groups.
The first group includes the standard typing rules for the simply-
typed λ-calculus with unit, product and sum types. Apart from
the additional clock variable contexts ∆, these rules are entirely
standard. The second group contains the rules for the inductive
types µX.F . Again, apart from the appearance of clock variable
contexts, these rules are the standard constructor and primitive
recursion constructs for inductive types.

The third group of rules cover clock abstraction and application,
and the integration of the type equality rules we defined in the
previous section. In the κ-APP rule, we have used the notation
A[κ 7→ κ′] to indicate the substitution of the clock variable κ′

for κ. These rules are as one might expect for System F-style
quantification with non-trivial type equality, albeit that in the κ-APP

rule the κ′ clock variable cannot already appear in the type. This
disallows us from using the same clock variable twice, preventing
multiple “time-streams” becoming conflated.

The fourth group of rules state that the clock-indexed guard
modality supports the pure and apply (~) operations of an applica-
tive functor. When we define a denotational semantics of our calcu-
lus in the next section, these operations will be interpreted simply as
the identity function and normal function application respectively,
meaning that the applicative functor laws hold trivially.

Finally, the fifth group of rules presents the typing for Nakano’s
guarded fix combinator, now indexed by a clock variable, and
our force combinator for removing the guard modality when it is
protected by a clock quantification.

2.4 Type operators are functorial
In Section 1.4 we used a functorial mapping function fmapF :
(A → B) → F [A] → F [B], which we claimed was defined

1. Simply-typed λ-calculus with products and sums

x : A ∈ Γ

∆; Γ ` x : A
(VAR)

∆; Γ ` ∗ : 1
(UNIT)

∆; Γ, x : A ` e : B

∆; Γ ` λx. e : A→ B
(ABS)

∆; Γ ` f : A→ B ∆; Γ ` e : A

∆; Γ ` fe : B
(APP)

∆; Γ ` e1 : A ∆; Γ ` e2 : B

∆; Γ ` (e1, e2) : A×B (PAIR)
∆; Γ ` e : A×B
∆; Γ ` fst e : A

(FST)
∆; Γ ` e : A×B
∆; Γ ` snd e : B

(SND)
∆; Γ ` e : A

∆; Γ ` inl e : A+B
(INL)

∆; Γ ` e : B

∆; Γ ` inr e : A+B
(INR)

∆; Γ ` e : A+B ∆; Γ, x : A ` f : C ∆; Γ, y : B ` g : C

∆; Γ ` case e of inl x.f ; inr y.g : C
(CASE)

2. Least Fixpoint Types

∆; Γ ` e : F [µX.F [X]]

∆; Γ ` ConsF e : µX.F [X]
(CONS)

∆; Γ ` e : F [(µX.F [X])×A]→ A

∆; Γ ` primRecF e : µX.F [X]→ A
(PRIMREC)

3. Clock Abstraction and Application, and Type Equality

∆, κ; Γ ` e : A κ 6∈ fc(Γ)

∆; Γ ` Λκ.e : ∀κ.A (κ-ABS)
∆; Γ ` e : ∀κ.A κ′ ∈ ∆ κ′ 6∈ fc(A)

∆; Γ ` e[κ′] : A[κ 7→ κ′]
(κ-APP)

∆; Γ ` e : A ∆ ` A ≡ B
∆; Γ ` e : B

(TYEQ)

4. Applicative Functor Structure for Bκ−
∆; Γ ` e : A κ ∈ ∆

∆; Γ ` pure e : BκA
(DEPURE)

∆; Γ ` f : Bκ(A→ B) ∆; Γ ` e : BκA

∆; Γ ` f ~ e : BκB
(DEAPP)

5. Fix and Force
∆; Γ ` f : BκA→ A

∆; Γ ` fix f : A
(FIX)

∆; Γ ` e : ∀κ.BκA
∆; Γ ` force e : ∀κ.A (FORCE)

Figure 2. Well-typed terms

fmapF :
−−−−−−→
(A→ B)→ F [

−→
A]→ F [

−→
B]

fmapXi
~fx = fi x

fmap1
~fx = ∗

fmapF×G ~fx = (fmapF ~f (fst x), fmapG ~f (snd x))

fmapF+G
~fx = case x of inl y. inl (fmapF ~f y)

inr z.inr (fmapG ~f z)

fmapA→F ~fx = λa. fmapF ~f (x a)

fmapBκF
~fx = pure (fmapF ~f) ~ x

fmap∀κ.F ~fx = Λκ.fmapF ~f (x[κ])

fmapµX.F ~fx = primRec (λx.Cons(fmapF ~f (λx. snd x) x)) x

Figure 3. fmapF for all type operators F

for each strictly positive type operator F . We define this operator
by structural recursion on the derivation of F , using the clauses in
Figure 3. Due to the presence of nested least fixpoint types in our
calculus, we handle n-ary strictly positive type operators.

2.5 Programming with guarded types and clocks
Lists and Trees, Finite and Infinite Using the least fixpoint
type operator µX.F , we can reconstruct many of the usual in-
ductive data types used in functional programming. For example,

the OCaml declaration:

type list = NilList | ConsList of A× list

of finite lists of values of type A, can be expressed as the type
µX.1 + A × X in our system, where we have replaced the two
constructors NilList and ConsList with a use of the sum type
former. Likewise, the type of binary trees labelled with As that we
used in Section 1.5 can be written as µX.A+X ×X .

A similar data type declaration in Haskell has a different inter-
pretation. If we make the following declaration in Haskell:

data List = NilList | ConsList A List

then the type List includes both finite lists of As, and infinite
lists of As (a similar effect can be achieved in OCaml by use of
the lazy type constructor). Haskell’s type system is too weak to
distinguish the definitely finite from the possibly infinite case, and it
is often left to the documentation to warn the programmer that some
functions will be non-productive on infinite lists (for example, the
reverse function).

Making use of Nakano’s guard modality Bκ−, we are able to
express Haskell-style possibly infinite lists as the guarded inductive
type µX.1 +A×BκA. As we saw in the introduction, infinite lists
can be constructed using the guarded fix operator. For example, the
infinite repetition of a fixed value can be written in our system as:

λa.fix (λl.Cons (inr (a, l)))

If we restrict ourselves to only one clock variable, and always use
guarded recursive types, then we obtain a programming language
similar to a monomorphic Haskell, except with a guarantee that all
functions are productive.

Co-inductive Streams As we saw in Section 1.2, programming
with guarded types is productive, but they are fundamentally in-
compatible with normal inductive types. Recall that if we define
infinite streams of As as Streamκ A = µX.A×BκX , then there is
no way of defining a function tail : Streamκ A → Streamκ A; the
best we can do is tail : Streamκ A→ BκStreamκ A. The rest of the
stream only exists “tomorrow”.

Clock quantification fixes this problem. We define:

Stream A = ∀κ.µX.A×BκA

Now we can define the two deconstructors for making observations
on streams, with the right types:

head : Stream A→ A
head = λs.Λκ.primRec (λx.fst x) (s[κ])

tail : Stream A→ Stream A
tail = λs.(force (Λκ.primRec (λx.pure(λx.fst x) ~ (snd x))

(s[κ])))

In the definition of head we use the fact that κ cannot appear in A
to apply the first type equality rule from Section 2.2.

Stream Processing Ghani, Hancock and Pattinson [11] define a
type of representations of continuous functions on streams using a
least fixpoint type nested within a greatest fixpoint. A continuous
function on streams is a function that only requires a finite amount
of input for each element of the output. Ghani et al.’s type is
expressed in our system as follows:

SP I O = ∀κ.µX.µY.(I → Y) + (O ×BκX)

where SP stands for “Stream Processor” and I and O stand for input
and output respectively. In this type, the outer fixpoint permits the
production of infinitely many Os, due to the guarded occurrence
of X , while the inner fixpoint only permits a finite amount of Is
to be read from the input stream. This kind of nested fixpoint is
not expressible within Coq, but is possible with Agda’s support for
coinductive types [9].

Defining the application of an SP I O to a stream of Is serves as
an interesting example of programming with guards and clocks. We
make use of a helper function for unfolding values of type SP I O
that have already been instantiated with some clock:

step : SPκ I O → µY.(I → Y)× (O ×Bκ(SPκ I O))

where SPκ I O is SP I O instantiated with the clock κ.
The definition of stream processor application goes as follows,

where we permit ourselves a little pattern matching syntactic sugar
for pairs:

apply : SP I O → Stream I → Stream O
apply =
λsp s.Λκ.fix(λrec sp s.

primRec (λx s.case x of
inl f. f (head s)(tail s)
inr (o, sp’).
Cons(o, rec ~ sp’ ~ pure s))

(step sp))
(sp [κ]) s

This function consists of two nested loops. The outer loop, ex-
pressed using fix, generates the output stream. This loop is running
on the clock κ, introduced by the Λκ. We have instantiated the
stream processor with the same clock; this causes the steps of the

output stream to be in lockstep with the output steps of the stream
processor, exactly as we might expect. The inner loop, expressed
using primRec, recurses over the finite list of input instructions
from the stream processor, pulling items from the input stream as
needed. The input stream is not instantiated with the same clock as
the stream processor and the output stream: we need to access an
arbitrary number of elements from the input stream for each step of
the stream processor, so their clocks cannot run in lockstep.

The Partiality Monad The partiality monad is a well-known
coinductively defined monad that allows the definition of func-
tions via general recursion, even in a total language. The partiality
monad is defined as PartialA = νX.A+X . Hence, a value of type
Partial A consists of a stream of inrs, either continuing forever, or
terminating in an inl with a value of type A. Using the partiality
monad, possibly non-terminating computations can be represented,
with non-termination represented by an infinite stream that never
returns a value. Capretta [7] gives a detailed description.

To express the partiality monad in our system, we decompose it
into a guarded least fixpoint and clock quantification, just as we did
for streams and stream processors above:

Partialκ A = µX.A+ BκX
Partial A = ∀κ.Partialκ A

For convenience, we define two constructors for Partialκ A, corre-
sponding to the two components of the sum type:

nowκ : A→ Partialκ A
nowκ = λa. Cons (inl a)

laterκ : Bκ(Partialκ A)→ Partialκ A
laterκ = λp. Cons (inr p)

It is straightforward to use guarded recursion and clock quantifi-
cation to define the return and bind functions that demonstrate
that Partial is indeed a monad. For an example of a possibly non-
terminating function that can be expressed using the partiality
monad, we define the following function collatz. For each natu-
ral number n, this function only terminates if the Collatz sequence
starting from n reaches 1. Whether or not this sequence reaches 1
for all n is a famous unsolved question in number theory.

collatz : Natural→ Partial 1
collatz = λn.Λκ.fix (λrec n.if n = 1 then nowκ (∗)

else if n mod 2 = 0 then
laterκ (rec ~ (pure (n/2)))

else
laterκ (rec ~ (pure (3 ∗ n+ 1)))) n

The partiality monad is not a drop-in replacement for general
recursion. The type PartialA reveals information about the number
of steps that it takes to compute a value of type A. Therefore, it is
possible to write a timeout function that runs a partial computation
for a fixed number of steps before giving up:

timeout : Natural→ Partial A→ A+ 1

The partiality monad allows us to write possibly non-terminating
functions, but also allows us to make more observations on them.

3. A denotational semantics for clocks and guards
We have claimed that the typing discipline from the previous sec-
tion guarantees that programs will be productive. We now substan-
tiate this claim by defining a domain-theoretic model of our sys-
tem, and showing that the denotation of a well-typed closed term
is never ⊥. We accomplish this by using a multiply-step-indexed
interpretation of types, where the multiple step indexes correspond
to the multiple clock variables that may be in scope.

JxKη = η(x)

J∗Kη = Unit

Jλx. eKη = Lam (λv. JeK(η[x 7→ v]))

JfeKη =

{
df (JeKη) if JfKη = Lam df
⊥ otherwise

J(e1, e2)Kη = Pair (Je1Kη, Je2Kη)

Jfst eKη =

{
d1 if JeKη = Pair (d1, d2)
⊥ otherwise

Jsnd eKη =

{
d2 if JeKη = Pair (d1, d2)
⊥ otherwise

Jinl eKη = Inl (JeKη)

Jinr eKη = Inr (JeKη)
u

v
case e of

inl x.f
inr y.g

}

~ η =

 JfK(η[x 7→ d]) if JeKη = Inl d
JgK(η[y 7→ d]) if JeKη = Inr d
⊥ otherwise

Figure 4. Semantics for the simply-typed portion of our system

3.1 Semantics of terms
We interpret terms in (a mild extension of) the standard domain the-
oretic model of the untyped lazy λ-calculus, described by Pitts [21].
A feature of this semantics is the erasure of anything to do with the
guardedness type constructor Bκ− and the clock quantification. The
fix operator is interpreted as the domain-theoretic fixpoint, i.e., ex-
actly the usual interpretation of general recursion.

We assume a directed complete partial order with bottom
(DCPO⊥),D, satisfying the following recursive domain equation:

D ∼= (D → D)⊥ ⊕ (D ×D)⊥ ⊕D⊥ ⊕D⊥ ⊕ 1⊥

where⊕ represents the coalesced sum that identifies the⊥ element
of all the components. We are guaranteed to be able to obtain such a
D by standard results about the category DCPO⊥ (see, e.g., Smyth
and Plotkin [23]). The five components of the right hand side of this
equation will be used to carry functions, products, the left and right
injections for sum types and the unit value respectively. We use
the following symbols to represent the corresponding continuous
injective maps into D:

Lam : (D → D)→ D Pair : D ×D → D
Inl : D → D Inr : D → D
Unit : 1→ D

We will write Unit instead of Unit ∗.
Let V be the set of all possible term-level variable names.

Environments η are modelled as maps from V to elements of
D. Terms are interpreted as continuous maps from environments
to elements of D. The clauses for defining the interpretation of
parts of our system that are just the simply-typed λ-calculus are
standard, and displayed in Figure 4. It can be easily checked that
this collection of equations defines a continuous function J−K :
(V → D)→ D, since everything is built from standard parts.

The applicative functor structure for the guard modality is inter-
preted just as the identity function and normal application, as we
promised in Section 2.3:

Jpure eKη = JeKη

Jf ~ eKη =

{
df (JeKη) if JfKη = Lam df
⊥ otherwise

Our interpretation simply translates the fix operator as the usual fix-
point operator fix f =

⊔
n f

n(⊥) in DCPO⊥. The force operator

fmapX
~f x = df (x) (fX = Lam df)

fmap1
~f x = Unit

fmapF×G
~f (Pair (x, y)) = Pair (fmapF

~f x, fmapG
~f y)

fmapF+G
~f (Inl x) = Inl (fmapF

~f x)

fmapF+G
~f (Inr x) = Inr (fmapG

~f x)

fmapA→F
~f (Lam g) = Lam (λv.fmapF

~f (g v))

fmapBκF
~f x = fmapF

~f x

fmap∀κ.F ~f x = fmapF
~f x

fmapµX.F
~f x = primrec (fmapF

~f)

(fmapF
~f snd) x

where
snd (Pair (x, y)) = y

All unhandled cases are defined to be equal to ⊥.

Figure 5. Semantic fmapF for ∆; Θ ` F : type

is interpreted as a no-operation.

Jfix fKη =

{
fix df if JfKη = Lam df
⊥ otherwise

Jforce eKη = JeKη

Finally, we interpret the constructor ConsF and primitive recur-
sion eliminator primRecF for least fixpoint types. The interpreta-
tion of construction is straightforward: the constructor itself disap-
pears at runtime, so the interpretation simply ignores it:

JConsF eKη = JeKη

To define the semantic counterpart of the primRecF operator,
we first define a higher-order continuous function primrec : (D →
D → D)→ (D → D)→ D in the model. This is very similar to
how one would define a generic primRecF in Haskell using general
recursion, albeit here in an untyped fashion.

primrec fmap f =
Lam (fix (λgx. f (fmap (Lam (λx.Pair (x, g x)))) x))

The first argument to primrec is intended to specify a functorial
mapping function. For each of the syntactic types ∆; Θ ` F : type
defined in Figure 1, we define a suitable fmapF : D|Θ| → D →
D, where |Θ| is the number of type variables in Θ. This definition
is presented in Figure 5.

With these definitions we can define the interpretation of the
syntactic primRecF operator. Note that the syntactic type construc-
tor F here always has exactly one free type variable, so fmapF has
type D → D → D, as required by primrec.

JprimRecF fKη ={
primrec fmapF df if JfKη = Lam df
⊥ otherwise

This completes the interpretation of the terms of our program-
ming language in our untyped model. We now turn to the semantic
meaning of types, with the aim of showing, in Section 3.5, that each
well-typed term’s interpretation is semantically well-typed.

3.2 Interpretation of clock variables
For a clock context ∆, we define J∆K to be the set of clock envi-
ronments: mappings from the clock variables in ∆ to the natural
numbers. We use δ, δ′ etc. to range over clock environments. For
δ and δ′ in J∆K, we say that δ v δ′ (in J∆K) if for all κ ∈ ∆,

δ(κ) ≤ δ′(κ). The intended interpretation of some δ ∈ J∆K is that
δ maps each clock κ in ∆ to a natural number stating how much
time that clock has left to run. The ordering δ v δ′ indicates that
the clocks in δ have at most as much time left as the clocks in δ′.
We use the notation δ[κ 7→ n] to denote the clock environment
mapping κ to n and κ′ to δ(κ′) when κ 6= κ′.

3.3 Semantic types
We interpret types as J∆K-indexed families of partial equivalence
relations (PERs) over the semantic domainD. Recall that a PER on
D is a binary relation onD that is symmetric and transitive, but not
necessarily reflexive. Since PERs are binary relations, we will treat
them as special subsets of the cartesian product D ×D. We write
PER(D) for the set of all partial equivalence relations on D, and
>D for the PER D×D. We require that our J∆K-indexed families
of PERs contravariantly respect the partial ordering on elements of
J∆K. This ensures that, as the time left to run on clocks increases,
the semantic type becomes ever more precise. When we interpret
clock quantification as intersection over all approximations, we
capture the common core of all the approximations.

Formally, a semantic type for a clock context ∆ is a functionA :
J∆K → PER(D), satisfying contravariant Kripke monotonicity:
for all δ′ v δ,Aδ ⊆ Aδ′. We write ClkPER(∆) for the collection
of all semantic types for the clock context ∆. In Section 4, we will
formally consider morphisms between semantic types, and so turn
each ClkPER(∆) into a category. Note that we do not require that
any of our PERs are admissible. Admissible PERs always include
the pair (⊥,⊥), precisely the values we wish to exclude.

We now define semantic counterparts for each of the syntactic
type constructors we presented in Section 2.1.

Unit, Product, Coproduct and Function Types The construc-
tions for unit, product and coproduct types are straightforward. The
unit type will be interpreted by a constant family of PERs:

1δ = {(Unit,Unit)}
This trivially satisfies Kripke monotonicity.

Given semantic types A and B, their product is defined to be

(A×B)δ =

{
(Pair(x, y),Pair(x′, y′))
| (x, x′) ∈ JAKδ ∧ (y, y′) ∈ JBKδ

}
and their coproduct is

(A+B)δ =
{(Inl(x), Inl(x′)) | (x, x′) ∈ JAKδ}
∪
{(Inr(y), Inr(y′)) | (y, y′) ∈ JBKδ}

Since A and B are assumed to be semantic types, it immediately
follows that A×B and A+B are semantic types.

To interpret function types, we use the usual definition for
Kripke-indexed logical relations, by quantifying over all smaller
clock environments. Given semantic types A and B, we define:

(A→ B)δ =

{
(Lam(f), Lam(f ′))
| ∀δ′ v δ, (x, x′) ∈ Aδ′. (fx, f ′x′) ∈ Bδ′

}
It follows by the standard argument for Kripke logical relations that
this family of PERs is contravariant in clock environments.

Guarded Modality Given a semantic type A, we define the se-
mantic guard modality Bκ as follows, where κ is a member of the
clock context ∆:

(BκA)δ =

{
>D if δ(κ) = 0
A(δ[κ 7→ n]) if δ(κ) = n+ 1

The semantic type operator Bκ acts differently depending on the
time remaining on the clock κ in the current clock environment δ.
When the clock has run to zero, BκA becomes completely uninfor-
mative, equating all pairs of elements in the semantic domain D. If

there is time remaining, then BκA equates a pair iff A would with
one fewer steps remaining. For Kripke monotonicity, we want to
prove that (d, d′) ∈ (BκA)δ implies (d, d′) ∈ (BκA)δ′ when δ′ v
δ. If δ′(κ) = 0 then (BκA)δ′ = D×D 3 (d, d′). If δ′(κ) = n′+1
then δ(κ) = n+1 with n′ ≤ n. So (d, d′) ∈ A(δ[κ 7→ n]), and so
by A’s Kripke monotonicity, (d, d′) ∈ A(δ′[κ 7→ n′]) = (BκA)δ′.

Clock Quantification The semantic counterpart of clock quantifi-
cation takes us from semantic types in ClkPER(∆, κ) to semantic
types in ClkPER(∆). Given a semantic typeA in ClkPER(∆, κ),
we define

∀κA =
⋂
n∈N

A(δ[κ 7→ n])

For Kripke monotonicity, if (d, d′) ∈ (∀κ.A)δ then ∀n. (d, d′) ∈
A(δ[κ 7→ n]). SinceA is a semantic type, ∀n. (d, d′) ∈ A(δ′[κ 7→
n]), hence (d, d′) ∈ (∀κ.A)δ′.

Complete Lattice Structure In order to define the semantic coun-
terpart of the least fixpoint type operator, we make use of the lat-
tice structure of ClkPER(∆). Given A,B ∈ ClkPER(∆), we
define a partial order: A ⊆ B if ∀δ.Aδ ⊆ Bδ. It is easy to see
that ClkPER(∆) is closed under arbitrary intersections, and so is
a complete lattice.

Each of the semantic type constructors above is monotonic
with respect to the partial order on ClkPER(∆) (with the obvious
proviso that A→ B is only monotonic in its second argument).

Least Fixpoint Types We make use of the Knaster-Tarski the-
orem [24] to produce the least fixpoint of a monotone function
on ClkPER(∆). See Loader [17] for an similar usage in a set-
ting without guarded recursion. Given a monotone function F :
ClkPER(∆)→ ClkPER(∆), we define:

(µF) =
⋂
{A ∈ ClkPER(∆) | FA ⊆ A}

For any monotone F , µF is immediately a semantic type by con-
struction, since semantic types are closed under intersection. As
an initial step towards semantic type soundness for our calculus,
we demonstrate a semantic well-typedness result for the primrec
function we defined in Section 3.1.

Lemma 1. Let F : ClkPER(∆)→ ClkPER(∆) be a monotone
function. Let fmap : D → D → D be such that for all δ ∈ J∆K,
for all A,B ∈ ClkPER(∆), and for all (g, g′) ∈ (A→ B)δ and
(x, x′) ∈ FAδ, we have (fmap g x, fmap g′ x′) ∈ FBδ. Then,
for all δ ∈ J∆K and for all (f, f ′) ∈ (F (µF × C)→ C)δ, where
C is a semantic type, we have

(primrec fmap f,primrec fmap f ′) ∈ (µF → C)δ

Proof. (Sketch) By induction on the least fixpoint F (µF) = µF ,
using the Knaster-Tarski theorem.

This lemma only states that our semantic primrec recursion
operator is semantically well-typed. We will show in Theorem 2
that primrec also witnesses µF as the carrier of the initial F -
algebra, as we claimed in Section 1.4.

3.4 Interpretation of syntactic types
A well-formed type ∆; Θ ` A : type is interpreted as mono-
tonic function JAK : ClkPER(∆)|Θ| → ClkPER(∆), where |Θ|
denotes the number of type variables in Θ. The interpretation is de-
fined in the clauses in Figure 6. These clauses make use of the con-
structions of semantic types defined in the previous subsection. In
the clause for ∀κ, we make use of the “clock weakening” operator
−↑κ which takes a collection of semantic types in ClkPER(∆)|Θ|

to semantic types in ClkPER(∆, κ)|Θ| by pointwise restriction of
clock environments in J∆, κK to clock environments in J∆K.

J1Kθ = 1

JXKθ = θ(X)

JA×BKθ = JAKθ × JBKθ
JA+BKθ = JAKθ + JBKθ

JA→ BKθ = JAK∅ → JBKθ
JBκAKθ = Bκ(JAKθ)

J∀κ.AKθ = ∀κ(JAK(θ↑κ))

JµX.F Kθ = µ(λX.JF K(θ,X))

Figure 6. Interpretation of well-formed types

The next lemma states that syntactic substitution and semantic
substitution commute. The proof is a straightforward induction on
the well-formed type A. Note the side condition that κ 6∈ fc(A),
matching the side condition on the κ-APP typing rule.

Lemma 2. Assume that ∆; Θ ` A : type, κ, κ′ ∈ ∆ and κ′ 6∈
fc(A). Then for all δ ∈ J∆[κ 7→ κ′]K and θ ∈ ClkPER(∆)|Θ|,

JAKθ(δ[κ 7→ δ(κ′)]) = JA[κ 7→ κ′]K(θ[κ 7→ κ′])δ.

The syntactic type equality judgement ∆; Θ ` A ≡ B : type
that we defined in Section 2.2 is interpreted as equality of semantic
types. The following lemma states that this interpretation is sound.

Lemma 3. If ∆; Θ ` A ≡ B : type then for all θ ∈
ClkPER(∆)|Θ|, JAKθ = JBKθ.

The next lemma states that we may use the semantic fmapF

functions defined in Figure 5 with the primrec operator, by show-
ing that fmapF always satisfies the hypotheses of Lemma 1.

Lemma 4. For all ∆; Θ ` F : type, the fmapF defined in
Figure 5 are all semantically well-typed: For all δ ∈ J∆K, for
all
−−→
A,B ∈ ClkPER(∆), and for all

−−−−−−−−−−−−−→
(g, g′) ∈ (A→ B)δ and

(x, x′) ∈ FAδ, we have (fmapF
−→g x, fmapF

−→
g′ x′) ∈ FBδ.

It may seem that we could prove this lemma by using the syn-
tactic definition of fmap from Figure 3 and then applying Theorem
1. However, the semantic well-typedness of our interpretation of
primRec depends on the semantic well-typedness of fmap, so we
must prove this lemma directly in the model to break the circularity.

3.5 Semantic type soundness
We now state our first main result: the semantic type soundness
property of our system. To state this result, we define the semantic
interpretation of contexts as a clock-environment indexed collec-
tion of PERs over environments:

JΓKδ = {(η, η′) | ∀(x : A) ∈ Γ. (η(x), η′(x)) ∈ JAKδ}
Theorem 1. If ∆; Γ ` e : A, then for all δ ∈ J∆K and (η, η′) ∈
JΓKδ, (JeKη, JeKη′) ∈ JAKδ.

Proof. (Sketch) By induction on the derivation of ∆; Γ ` e : A.
The most interesting cases are for fix and primRec. In essence, the
case for fix goes through by induction on the value of the counter
assigned to the clock variable κ in the current clock environment.
The case for primRec is given by Lemma 1 and Lemma 4.

Corollary 1. If −;− ` e : A then for all η, JeKη 6= ⊥.

By this corollary, the denotation of a closed program is never
⊥, so well-typed programs always yield a proper value. When the
result type A is the stream type ∀κ.µX.B × BκX , we can deduce
that the denotation of e will always be infinite streams of elements

of B. We further elaborate this point in the next section, showing
that this type is the carrier of the final (B ×−)-coalgebra.

4. Properties of fixpoint types
Using the denotational model of the previous section, we are now in
a position to formally state and sketch the proofs of the properties of
fixpoint types that we claimed in Section 1.4. Our claimed results
are statements in category theoretic language about the initiality
and finality of various (co)algebras. Therefore, we first construct
suitable categories to work in.

Definition 1. For each clock variable context ∆, the category
ClkPER(∆) has as objects semantic types over ∆. Morphisms
f : A → B are continuous functions f : D → D such that for
all δ ∈ J∆K and (a, a′) ∈ Aδ, (fa, fa′) ∈ Bδ. Two morphisms
f ,f ′ are considered equivalent if for all δ ∈ J∆K and (a, a′) ∈ Aδ,
(fa, f ′a′) ∈ Bδ.

Each well-typed term ∆;x : A ` e : B defines a morphism
JeK : JAK→ JBK in ClkPER(∆). We can define equality between
terms in our syntactic type system in terms of the equality on mor-
phisms in this definition. Moreover, each well-formed type opera-
tor ∆;X ` F [X] : type defines a (strong) realisable endofunctor
on ClkPER(∆) that is monotonic on objects, using the semantic
fmapF defined in Figure 5 to define the action on morphisms. We
have already checked (Lemma 4) that this is well-defined, and it is
straightforward to check that the usual functor laws hold. In what
follows, whenever we refer to an endofunctor on ClkPER(∆), we
mean a realisable functor that is monotonic on objects, and we will
use fmapF to refer to the action of a functor F on morphisms.

Initial Algebras Recall that, for any functor F , an F -algebra
is a pair of an object A and a morphism k : FA → A. A
homomorphism h between (A, kA) and (B, kB) is a morphism
h : A→ B such that h◦kA = kB ◦fmapF h. An initial F -algebra
is an F -algebra (A, kA) such that for any other F -algebra (B, kB),
there is a unique homomorphism h : (A, kA)→ (B, kB).

Theorem 2. If F is an endofunctor on ClkPER(∆), then µF is
the carrier of an initial F -algebra.

Proof. (Sketch) Since µF is a fixpoint ofF , the morphismF (µF)→
µF is simply realised by the identity map. Given any other F -
algebra (B, kB), define a morphism µF → B using the primrec
operator from Lemma 1. Checking that this gives an F -algebra ho-
momorphism is straightforward, proving uniqueness uses induction
on elements of µF , by the Knaster-Tarski theorem.

Guarded Final Co-Algebras Theorem 2 applies to all functors
F , and in particular functors of the form F (Bκ−) on the category
ClkPER(∆, κ). As well as µ(F (Bκ−)) being the carrier of an
initial algebra, it is also the carrier of a final F (Bκ−)-coalgebra.

Coalgebras are the formal dual of algebras: for an endofunctor
F , an F -coalgebra is a pair of an object A and a morphism kA :
A → FA. A homomorphism h : (A, kA) → (B, kB) of coalge-
bras is a morphism h : A→ B such that fmapF h ◦ kA = kB ◦ h.
A final F -coalgebra is an F -coalgebra (B, kB) such that for any
other F -coalgebra (A, kA), there is a unique F -coalgebra homo-
morphism unfold kA : (A, kA)→ (B, kB).

Theorem 3. IfF is an endofunctor on ClkPER(∆), then µ(F (Bκ−))
is the carrier of a final F (Bκ−)-coalgebra in ClkPER(∆, κ).

Proof. (Sketch) As for Theorem 2, since µ(F (Bκ−)) is a fixpoint
of F (Bκ−), the morphism µ(F (Bκ−)) → F (Bκ(µ(F (Bκ−)))) is
simply realised by the identity map. Given any other F -coalgebra
(A, kA), define a morphism unfold kA : A → µ(F (Bκ−)) as
fix (λg a. fmapF g (kA a)). It is straightforward to prove that this

is an F -coalgebra homomorphism. Uniqueness is proved for each
possible clock environment δ by induction on δ(κ).

The syntactic counterpart of the construction we used in this
proof is exactly the term we used in Section 1.4 for the definition
of unfold. It is also easy to check that the term deCons we defined
there is semantically equivalent to the identity. Therefore, Theorem
3 substantiates the claim we made in Section 1.4 that µX.F [Bκ−] is
the syntactic description of the carrier of a final F [Bκ−]-coalgebra.

Final Co-Algebras Theorem 3 gives final coalgebras in the cate-
gories ClkPER(∆, κ), where we have a spare clock variable. By
using clock quantification, we can close over this clock variable,
and get the final F -coalgebra, not just the final F (Bκ−)-coalgebra.

Theorem 4. For an endofunctorF on ClkPER(∆), ∀κ.µ(F (Bκ−))
is the carrier of a final F -coalgebra in ClkPER(∆).

Proof. (Sketch) Almost identical to the proof for Theorem 3.

This final theorem, along with the examples we presented in
Section 2.5, substantiates our claim that the combination of clocks
and guards that we have presented in this paper is a viable and
comfortable setting in which to productively coprogram.

5. Conclusions and Further Work
We have presented a semantics for a small total calculus with
primitive recursion for inductive data and a compositional treat-
ment of corecursion, ensuring causality via the applicative struc-
ture of a local notion of time. In effect, we use time-based typing
to grow a given total language, where all computation terminates
within one ‘day’, into a larger total language, where additional
recursion is justified clearly by the advancing clock. Functions
from clocked inputs to clocked outputs enforce precise producer-
consumer contracts—today’s output must be computed only from
today’s input—documenting their utility as components of pro-
ductive processes. Quantifying clock variables localises the time
stream to a particular construction whose clients can then use it ‘in
the moment’. The method, made local, can be iterated, with inner
clocks justifying the totality of computations within one ‘day’ of
an outer clock.

At present, however, we have used local time only to justify
productive corecursion, with only primitive recursion for inductive
types. It seems pressing to ask whether local time might similarly
liberalise termination checking, with a local clock measuring time
into the past and ensuring that recursive calls receive old enough
inputs that their outputs are ready when we need them. We are
actively seeking a semantics for such a system, but it currently
seems more difficult to pin down.

In due course, we should like to grow this experimental calculus
to a full blown dependent type theory where (co)recursive construc-
tions are checked to be total within nested local time streams, then
exported to their clients without clocking. At least we have now es-
tablished what local time streams are and how to extract productive
processes from them.

Acknowledgements We would like to thank Lars Birkedal, Ras-
mus Møgelberg, and Paula Severi for extremely useful comments
and discussions.

References
[1] A. Abel. Termination checking with types. ITA, 38(4):277–319, 2004.
[2] A. W. Appel and D. A. McAllester. An indexed model of recursive

types for foundational proof-carrying code. ACM Trans. Program.
Lang. Syst., 23(5):657–683, 2001.

[3] R. S. Bird. Using Circular Programs to Eliminate Multiple Traversals
of Data. Acta Informatica, 21:239–250, 1984.

[4] L. Birkedal and R. E. Møgelberg. Intensional type theory with guarded
recursive types qua fixed points on universes. In ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS 2013), 2013.

[5] L. Birkedal, J. Schwinghammer, and K. Støvring. A metric model of
guarded recursion. In Presented at FICS 2010, 2010.

[6] L. Birkedal, R. E. Møgelberg, J. Schwinghammer, and K. Støvring.
First steps in synthetic guarded domain theory: step-indexing in the
topos of trees. Log. Meth. in Computer Science, 8(4), 2012.

[7] V. Capretta. General recursion via coinductive types. Log. Meth. in
Computer Science, 1(2), 2005.

[8] N. A. Danielsson. Beating the productivity checker using embedded
languages. In Workshop on Partiality and Recursion in Interactive
Theorem Provers (PAR 2010), volume 43 of EPTCS, pages 29–48,
2010.

[9] N. A. Danielsson and T. Altenkirch. Mixing induction and coinduc-
tion. Draft, 2009.

[10] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical
relations. Log. Meth. in Computer Science, 7(2), 2011.

[11] N. Ghani, P. Hancock, and D. Pattinson. Representations of stream
processors using nested fixed points. Log. Meth. in Computer Science,
5(3), 2009.

[12] E. Giménez. Codifying guarded definitions with recursive schemes.
In Types for Proofs and Programs, International Workshop TYPES’94,
volume 996 of Lecture Notes in Computer Science, pages 39–59, 1994.

[13] G. Hutton and M. Jaskelioff. Representing contractive functions on
streams. Submitted, 2011.

[14] N. R. Krishnaswami and N. Benton. A semantic model for graphical
user interfaces. In ACM SIGPLAN international conference on Func-
tional Programming, ICFP 2011, pages 45–57, 2011.

[15] N. R. Krishnaswami and N. Benton. Ultrametric semantics of reactive
programs. In IEEE Symposium on Logic in Computer Science, LICS
2011, pages 257–266, 2011.

[16] J. Launchbury and S. L. Peyton Jones. Lazy functional state threads.
In Proceedings of the ACM SIGPLAN’94 Conference on Programming
Language Design and Implementation (PLDI), pages 24–35, 1994.

[17] R. Loader. Equational Theories for Inductive Types. Annals of Pure
and Applied Logic, 84(2):175–217, 1997.

[18] C. McBride and R. Paterson. Applicative programming with effects.
J. Funct. Prog., 18(1):1–13, 2008.

[19] E. Moggi and A. Sabry. Monadic encapsulation of effects: a revised
approach (extended version). J. Funct. Prog., 11(6):591–627, 2001.

[20] H. Nakano. A modality for recursion. In IEEE Symposium on Logic
in Computer Science (LICS 2000), pages 255–266, 2000.

[21] A. M. Pitts. Computational adequacy via ‘mixed’ inductive defini-
tions. In Mathematical Foundations of Programming Semantics, Proc.
9th Int. Conf., volume 802 of Lecture Notes in Computer Science,
pages 72–82. Springer-Verlag, Berlin, 1994.

[22] P. Severi and F.-J. de Vries. Pure type systems with corecursion on
streams: from finite to infinitary normalisation. In ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP’12, 2012.

[23] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of
recursive domain equations. SIAM J. Comput., 11(4):761–783, 1982.

[24] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5(2):285–309, 1955.

	Introduction
	Guardedness checkers and guarded recursion
	From the infinite to the finite
	Clock variables
	Final coalgebras from initial algebras, guards and clocks
	Circular traversals of trees
	Models of guarded recursion

	A type system with clocks and guards
	Well-formed types with clock variables
	Type Equality
	Well-typed Terms
	Type operators are functorial
	Programming with guarded types and clocks

	A denotational semantics for clocks and guards
	Semantics of terms
	Interpretation of clock variables
	Semantic types
	Interpretation of syntactic types
	Semantic type soundness

	Properties of fixpoint types
	Conclusions and Further Work

