
Writing parsers like it is 2017

Pierre Chifflier
Agence Nationale de la Sécurité

des Systèmes d’Information

Geoffroy Couprie
Clever Cloud

Abstract—Despite being known since a long time, memory
violations are still a very important cause of security problems
in low-level programming languages containing data parsers. We
address this problem by proposing a pragmatic solution to fix
not only bugs, but classes of bugs. First, using a fast and safe
language such as Rust, and then using a parser combinator. We
discuss the advantages and difficulties of this solution, and we
present two cases of how to implement safe parsers and insert
them in large C projects. The implementation is provided as a
set of parsers and projects in the Rust language.

I. INTRODUCTION

In 2016, like every year for a long time, memory corruption

bugs have been one of the first causes of vulnerabilities of

compiled programs [1]. When looking at the C programming

language, many errors lead to memory corruption: buffer

overflow, use after free, double free, etc. Some of these issues

can be complicated to diagnose, and the consequence is that

a huge quantity of bugs is hidden in almost all C software.
Any software manipulating untrusted data is particularly

exposed: it needs to parse and interpret data that can be

controlled by the attacker. Unfortunately, data parsing is often

done in a very unsafe way, especially for network protocols

and file formats. For example, many bugs were discovered in

media parsing libraries in Android [2], leading to the possible

remote exploitation of all devices by a simple MMS message.

Today, many applications embed a lot of parsers that could be

targeted: web browsers like Firefox or Chrome, media players

(VLC), document viewers, etc.
Ironically, security tools such as intrusion detection systems

or network analyzers suffer from the same problems, making

the security tools a possible and interesting target for an

attacker. For example, Wireshark had 95 vulnerabilities in

2016 that could crash the application or be exploited.
As a result, most programs written in C are unsafe, es-

pecially in the parts of the code parsing data. For example,

more than 500 vulnerabilities on XML parsers are listed in the

US National Vulnerability Database (NVD). Even for simple

formats like JSON, it’s hard [3]: some parsers crash, others

have bugs, and many of them give different results because of

a different interpretation of the specifications.
The Cloudbleed [4] vulnerability, caused by a bug in a

HTML parser written in C, caused sensitive data to leak, and

is estimated to impact more than 5 million websites. This bug

was possible because of the use of an unsafe programming

language, despite using a parser generator (Ragel).
In this paper, we propose a pragmatic solution to write

robust parsers and significantly improve software security.

First, we show how changing the programming language

can solve most of the memory-related problems. Second, we

show how parser combinators both help prevent bugs and

create faster parsers. We then explain how this solution was

implemented in two different large C programs, VLC media

player and Suricata, to integrate safe parsers by changing only

a small amount of code.

II. CURRENT SOLUTIONS, AND HOW TO GO FURTHER

A. Partial and bad solutions

Many tools, like fuzzing or code audits, come too late in

the development process: bugs are already present in the code.

Instead, developers should focus on solutions allowing them

to prevent bugs during development.

Some are trying to improve quality by integrating auto-

mated tests during the development process. The devops trend

encourages pushing code into production as fast as possible,

minimizing the delay by relying on automated tests to assess

security. It is important to be agile and be able to fix bugs very

quickly. However, the problem with that approach is that it will

catch only known (tested) bugs, and will never be exhaustive:

this is more compliance testing than security tests. While it

can protect against most regressions, it tends to create a false

sense of security.

B. Reduce Damage

Hardening methods can be applied to restrict the software

to its intended behavior, or limit the consequences in case

of successful attacks. While these mechanisms significantly

improve the security of the software and the system, they

will not fix the initial problem: the restricted application

manipulating data is still vulnerable and affected by all the

parsing problems. Still, they are interesting, and applications

should consider using them as much as possible.

Compiler and OS offer hardening functions that can be used.

Some of them can be applied without modifying the software,

but the others require a modification or recompilation. We list

here only categories of system hardening features.

a) Compiler functions: The compiler can apply harden-

ing functions during the compilation: randomization of the

address space (ASLR), stack protector, marking sections and

the relocation table as read-only, etc. These functions are

activated by compilation flags, and will also trigger build errors

on some vulnerable code patterns.

2017 IEEE Symposium on Security and Privacy Workshops

© 2017, Pierre Chifflier. Under license to IEEE.

DOI 10.1109/SPW.2017.39

80

b) Kernel protections: The kernel of the operating sys-

tem can provide useful limitations: restricting what a process

can see, removing the ability to debug a process, killing the

process if anything suspicious is detected, etc. These functions

are not all provided by default by the operating system, so

adding a patch like grsecurity is necessary to get more features.

c) Behavior restrictions: To reduce the attack surface, a

process should be restricted to a minimum set of privileges

by dropping its privileges and capabilities. Some mechanisms

like Pledge, seccomp or SELinux provide a way to go further

and limit a process to only the system calls it should do.

d) Isolation: Applications can be isolated in sandboxes

or containers, to limit the interactions they can have with rest

of the system. This complicates the ability to compromise

other processes, and can also hide the hardware to processes

that should not have access to it.

e) : Combined together, these features can be used to

build a robust architecture to host applications. A detailed

architecture of a hardened network IDS appliance based on

these principles has been published in C&ESAR [5].

In addition to these mechanisms, we now propose a solution

to fix the software itself.

C. Moving security from the developer to the compiler

After years of code auditing, publishing and teaching good

practice and still finding the same problems, we must admit

that current methods do not work. To the authors, it mostly

points to the necessity of changing one key part of the design

of software: the programming language.

Using a safe programming language, the security moves

from the developer to the compiler. This ensures that no

security check will be forgotten, and that the compiler will be

able to use its knowledge of the code (like read-only variables,

non-aliased values, memory management etc.) to produce code

that is both faster and safer. It also allows to not only fix bugs,

but rather to fix bug classes.

Obviously, compiler bugs can still happen. However, when

fixed, all users and programs will benefit of the fix.

Usually, changing the language means the entire software

must be rewritten. This causes several problems: it is not

accepted well by the initial software community (changing

the language is both an important choice, and affects the

group of possible contributors), it would take a long time on

large projects, and the visible result would be to get the same

features. It also is often perceived as a very negative judgment

on the existing code quality, which is not a good way to start

contributing to a project.

For these reasons, it seems more reasonable and pragmatic

to try to change only a small part of the initial software,

without affecting the rest. For example, replacing a parser

(ideally, only one function in the initial code) by its safe

version, recoded in the new language. By focusing on the

critical parts, one can both get faster results, and propose a

better contribution.

A great advantage of this method is that using this method,

the safe parser is not only useful for one project, but it can

be used in other software as well, using the same embedding

method.

D. Choice of language

In this section, we describe the reasons for changing the

programming language. We assume that the original software

is written in C or C++, which is often the case, but the same

arguments are also valid to other languages.

A key point here is that the objective is not to rewrite entire

projects, but to focus on critical functions or components. This

is especially important to ease acceptance by the community

of the original software, but comes with a price: the project

becomes the sum of components written in different languages.

A study of the intrinsic security characteristics of program-

ming languages [6], [7] has shown that the programming

language is not only a tool, it can contribute to (or destroy)

the security of the resulting software.

Several languages were tested to implement parsers: OCaml,

Go, C Python, Haskell, etc. Only the strongly typed languages

were retained, because type safety is an essential quality for

security. Indeed, it spots many programming errors during

compilation, prevents whole classes of bugs like uncontrolled

signed/unsigned conversions. Strong typing forces the devel-

oper to explicitly declare all conversions, which is especially

important to avoid unwanted behaviors. It also allows to define

an API for functions that cannot be bypassed: by enforcing

strict rules, it restricts the developer to use functions and

arguments only in the expected way.

Languages with garbage collection have also been removed,

because they come with many problems: some of them need to

stop the entire program when collecting (killing performance),

most of them do not work properly with multi-threading

programs. Even when optimized, this leads to difficult balance

between high latency and reduced throughput plus unpre-

dictable heap growth [8]. Memory management can be a big

deal, especially for situations where the programs need to be

memory bound. For example, Dropbox rewrote the memory

critical components of the Magic Pocket application from Go

to Rust [9] to be able to control the memory footprint of the

application.

Often, the C language is chosen because it is fast, and has

a memory model close to the low-level hardware. It is very

important, when introducing components in a new language,

not to kill the performance. This has two consequences: the

produced code must be efficient, but this also implies that the

memory model of the two languages must be close (ideally,

it would be directly compatible, or zero-copy). Indeed, if the

memory models are different, every data exchange will require

a format change or a copy, which can become very slow.

None of the previous languages could fulfill all the re-

quirements. The differences and possibilities of all possible

languages will not be debated here, as this would lead to a

potentially infinite discussion.

We chose the Rust language, because of the following

properties:

81

• Managed memory: Rust has a concept of lifetimes and

ownership, which guarantees the safety of memory with-

out requiring a garbage collector or reference counting,

at compilation time. In particular, Rust prevents use after

free and double free flaws

• No garbage collector: controlled memory use and life of

objects

• Thread-safe: this is guaranteed by the compiler

• Strong typing: as described above, this property is very

important

• Efficient: the source is compiled to native code, and

produced code that tends to be quite fast (similar to C)

• Zero-copy: data buffers (called slices), objects and refer-

ences can point to the same locations, and the compiler

uses it to avoid copying data while ensuring the memory

safety

• Easy integration with C, as few data conversions as

possible

• Clear marking of the safe/unsafe parts of the code: all

the potentially dangerous instructions for memory safety

(including calls to C functions and syscalls) must be

enclosed in an unsafe block, and the rest is statically

verified to be safe

• Good/large community: it’s important to use a good

language, but it is better to have active and helpful users.

The properties listed here are not the exhaustive list of Rust

language properties, but only the most interesting to solve our

problem. Another language than Rust could have been used if

providing equivalent properties.

In addition to the language properties, it is interesting to

consider the security properties of the produced binary: does

the compiler add checks ? Does it use the security features of

the operating system, like randomization ? The generated code

(in LLVM form) has been analyzed to verify some of these

points (especially the memory safety and runtime security

features). The results are presented in the appendix.

Changing the language is important, but is not enough.

Another component is required to help fix logical bugs, and

make sure parsers are both easier to write and do not contain

errors.

III. PARSER COMBINATORS

A. Handwritten parsers VS parser libraries

Most of the low-level parsers found in the wild are written

entirely by hand. There are a few reasons for this: a lot

of parser libraries focus on textual languages and ignore

binary formats, and one can usually get better performance

by describing the state machine manually.

Unfortunately, writing a correct parser while managing data

streaming in the same code is error-prone, and often leads

to unmaintainable code, or at least needlessly complicated

code. The classical solution to write manually a state machine

[10] that advances depending on the current byte is usually

written once: any modification to the transitions can affect

many different parts of the parser, thereby introducing bugs.

There is a kind of parser library often employed when the

developer has taken a Compilers 101 course: parser generators

based on a textual grammar describing the format, like lex or

Ragel [11]. Those tend to produce parsers of good quality,

since most of the parsing bugs are already handled by the code

generator. The drawbacks lie in writing the grammar the right

way to avoid ambiguities and trying to fit context sensitive

formats in libraries that may not support them.

B. Parser combinators

Parser combinators propose a middle ground between hand-

written parsers and generated parsers. They are made of small

functions that handle basic parts of a format, like recognizing

a word in ASCII characters or a null byte. Those functions

are then composed in more useful building blocks like the

pair combinator that applies two parsers in sequence, or the

choice combinator that tries different parsers until one of them

succeeds. Those can be combined to make format specific

parsers to recognize meaningful elements like a file header

or a text line.

They provide an interesting alternative because the combi-

nators already handle safe data consumption between different

parsers, and since they are functions like one would write in

any programming language, it is easy to write our own low-

level building blocks and integrate them in larger parsers.

Parser combinators come from the functional programming

world, and as such, they get a crucial property: the functions

must be completely deterministic, and hold no mutable state. A

parser will take data and parameters as arguments, and return

the parsed value and remaining data if successful, or an error.

Calling a parser with the same input always gives the same

result, and it will never modify the input data.

They are traditionally better suited for garbage collected

languages, since passing data from one parser to the next can

involve a lot of shallow copies. Still, we will show in the next

section that there are solutions for lower level languages.

The approach based on small functions composed in larger

parsers also makes them easily testable in isolation, and

simpler to maintain. It is then possible to write tests or fuzzers

for specific parts of a parser without creating a parser state or

loading a complete file in memory.

They are still not enough to write a complete format

parser, as they will not manage data accumulation. But their

deterministic behavior simplifies writing the state machine:

it calls the parser on the currently available data, makes a

transition if the parser returned a value or an error, or stay

at the same state and accumulates more data in the parser

indicates that more data is needed.

Thanks to this approach, they are suited both for parsing

contiguous data that fits completely in memory, and streaming

protocols.

C. nom

nom [12] is a parser combinators library written in Rust. It

takes inspiration from Haskell’s Parsec and OCaml’s menhir

82

libraries. They are written mainly with Rust macros to generate

safe data consumption code.

The underlying idea of nom stems from Rust’s memory

handling. Since the compiler always knows which part of the

code owns which part of the memory, and Rust has a slice
type (a wrapper over a pointer and a size) that represents data

borrowed from somewhere else, it is possible to write a parser

that will never copy input data. It will instead only return

generated values or slices of its input data. This approach has

the potential to make efficient parsers.

Additionally, the parsers do not require ownership of the

data, which makes them suitable to work inside C applications.

They can work on non-contiguous data types like ropes [13].

Most of the parsers are written using macros abstracting

data consumption, but it is possible to write specific parts of

a parser manually, as long as the function follows this same

interface:

fn parser<Input, Output, Error>(input: Input) -> nom::
IResult<Input, Output, Error>;

// with IResult defined like this:
#[derive(Debug,PartialEq,Eq,Clone)]
pub enum IResult<I,O,E=u32> {

/// indicates a correct parsing, the first field
containing the rest of the unparsed data, the second
field contains the parsed data

Done(I,O),
/// contains a Err, an enum that can indicate an error

code, a position in the input, and a pointer to
another error, making a list of errors in the parsing
tree

Error(Err<I,E>),
/// Incomplete contains a Needed, an enum than can

represent a known quantity of input data, or unknown
Incomplete(Needed)

}

Listing 1. nom parsers interface

While it is not recommended, for security reasons, to write

whole sections manually, this function signature allows writing

context sensitive parts, or code that would not fit well in a

more theoretical framework. Like the unsafe keyword in Rust,

we can isolate a dangerous part of the code and integrate it in

safer code, as long as it follows a contract with the compiler

for Rust, or with the parser interface for nom.

The common combinators are supported: take! selects a

configurable amount of bytes or characters, pair! applies two

parsers in a row and returns a tuple, many1! applies a parser

one or more times and returns a vector of values, preceded!
applies two parsers and returns the result of the second one,

etc. Along with those combinators, nom provides facilities

to integrate regular expressions for regular subsets of the

format, automatically handles whitespace separated formats,

and supports bit level parsing for low-level formats.

Thanks to Rust’s close relationship with C, it is possible for

nom to parse data directly to C compatible structures, allowing

for easy integration in C and other languages.

Finally, it accepts as input byte slices, UTF-8 encoded

strings, can handle and can be extended to support more input

types, as long as they implement a set of traits that the parsers

use.

On the performance side, the design of the parsers makes for

very linear code, a long list of branches, and the parser state

is represented through stack frames between parser calls. This

result differs from the traditional switch-based state machine

approach, where the current byte indicates the next state

and where to jump in the code. While a carefully written

goto-based state machine can get nearly optimal performance,

the code generated by nom has various benefits out of the

box. The parsers work well on contiguous data, and the

corresponding code tends to be contiguous. At the CPU level,

that code is more cache friendly than a switch-based state

machine jumping everywhere in the code, and can make

branch prediction easier. In measurements, nom can get out of

the box a performance in the same range as carefully written

C parsers [14]. Further optimizations can then be applied as

needed, by writing custom functions.

Since the parsers are stateless and do not need ownership of

the input data, it is relatively easy to write the parser in nom,

add unit tests in Rust, then call into Rust from C. The C side

only needs to understand the three return states: yield a value

(and consume a part of the input), an error was encountered,

or we need more data. The wrapping code is then responsible

for any data read or buffer reallocation, and those will not be

affected by the parser.

As we will see in the next sections, integrating a Rust parser

in a C program is straightforward.

IV. INTEGRATING RUST PARSERS IN AN EXISTING

APPLICATION WITH MINIMAL IMPACT

As we try to replace parts of larger C or C++ applications

with Rust elements, it is crucial to make the integration

as painless as possible, to prevent objections from existing

developers. If the integration required rewriting a large part

of the orchestration code, we would probably end up adding

more bugs than the ones we solve.

Thankfully, the parsers are a good target for a rewrite. They

are rarely modified, as formats and protocols do not change

too often. Infrequent modifications of unfamiliar parts create

messy code that nobody wants to maintain. They are often well

contained in the IO handling code, do not modify directly the

application’s state, and hold a very small state themselves.

We shall note that replacing C parsers by a safer alternative

will not fix bugs in the rest of the code. Rust can only

guarantee memory safety up to the interface with the rest of

the application. While it is possible to rewrite the whole host

application, it is beyond the scope of this paper. We are trying

to rewrite the parsers, which are often the weakest part of a

program, without impacting too much the hosting code. We

will see that replacing C code with Rust is a matter of keeping

consistent interfaces and complying with build systems.

A. Interfaces

If it is possible to keep the exact same interface as the C

code, a successful approach consists in wrapping the C code

in a Rust project (it is possible with the cargo build tool) and

rewrite the functions one by one. We saw that was not the right

83

way for parsers, since they would be rewritten in a completely

different style. Still, a Rust project can expose C compatible

functions and even emulate the C style to communicate with

the host program.

We recommend that the parser be written and tested in

a separate Rust project, to facilitate testing and reuse in

other applications. The interface code is then tasked with

transforming unsafe C types like pointers to void, to richer

Rust types, and the reverse when returning values to C. This

approach also works when integrating with other languages

like Java with JNI or JNA.

The Rust code must appear as a set of deterministic,

reentrant functions from the C side to facilitate usage. In

some cases, we want to keep some state around. If needed,

we can wrap a Rust value in a Box that will be passed to the

C code as an opaque pointer, for which we provide accessor

functions. Since Rust can apply the repr(C) attribute to data

structures to make them accessible from C code, we could

avoid the opaque pointer, but it gives stronger guarantees

over referencing internal data that could be deallocated at any

moment by the Rust code.

On the allocations side, the Rust code can work with its

own allocator instead of the host application. In cases where

it is not wanted, one can build a custom allocator calling the

host one. In the end, this is not an important issue here, since

nom mainly uses the stack and returns slices to data allocated

by the host code.

To further reduce its impact, we can make sure that the

Rust part never owns the data to parse, by only working

on slices, and returning slices. That way, the only important

values moving back and forth are pointers and lengths. This

is especially interesting for media parsers where we parse a

small header, then return a slice to a part of the data we never

need to see.

B. Build systems

Integrating the Rust code in the build system is a large part

of the work needed. While it is not especially hard, it requires

fixing a lot of details, like passing the platform triplets between

compilers, setting up the right paths for intermediary or final

objects, ordering the build of components and linking them.

We found three ways to integrate Rust projects. The first

consists in making a static library and C headers that will

be used like any other library in the C code. This is by far

the easiest way, if the application can work that way. For

our examples in VLC media player and Suricata, making

a dynamic library that emulates the behavior of C dynamic

libraries makes a well-contained process, as long as we can

assemble everything in the right folders. In the case of VLC

media player, we ended up building the module as an object

file to let the build system take care of linking libraries.

V. EXAMPLE: A FLV DEMUXER FOR VLC MEDIA PLAYER

The goal of VLC media player [15] is to be able to play

every existing video format or protocol. As such, it embeds

parsers for a lot of different formats, and those parsers are

mainly written in C or C++. Multiple security vulnerabilities

were found in those parsers over the past few years [16].

The video container formats and the streaming protocols

tend to be complex and ambiguous. They evolved organically

from the needs of different companies and will usually trade

convenience for decoding performance.

VLC media player is then a good target for experimentation

of Rust parsers. The goal of the project is to integrate a FLV

parser as a VLC plugin.

A. Writing a FLV demuxer

The format [17] we chose is quite simple. It contains first

a file header, then a list of audio, video or metadata packets,

each being part of an audio or video stream.

It can contain 12 audio codecs and 9 video codecs, with

specific parameters, and time synchronization information.

A demuxer usually has two roles. First, it must decide if

it can parse the stream. Media players will usually test a few

demuxers on a file, then use the one that recognized the file.

Then, for each new data packet, it must obtain the following

information:

• to which stream this packet belongs to

• which codec is used

• when it should be presented to the user

• which parts of the data stream contains the encoded audio

or video

1) Writing a FLV parser with nom: The nom FLV file

parser, called flavors [18], declares separately each packet

header to parse (file header, audio packet, video packet, etc.).

This is done that way for two reasons:

• each header parser can be written and tested indepen-

dently

• the parser will typically only see the header’s part of the

input, and let the calling code handle the encoded data

The code follows a process where we first declare a structure

that will contain the parsed data, then we use the named!
nom macro to declare a parser returning that structure. In

the following example, the file header begins with the ”FLV”
characters, then a byte encoding the version number, then a

flag byte indicating if there is audio or video data, and a big

endian 32 bit unsigned integer for the offset at which the data

may begin.

We used the do parse! combinator to apply multiple parsers

in a row and aggregate the results. Partial data consumption is

done automatically: the first parser will consume the ”FLV”
characters, the next parser will take the next byte and store it

in version, and so on and so forth. If there was not enough

data, the parser would indicate how much more data it needs

to advance to the next step.

#[derive(Debug,PartialEq,Eq)]
pub struct Header {
pub version: u8,
pub audio: bool,
pub video: bool,
pub offset: u32,

}

84

named!(pub header<Header>,
do_parse!(

tag!("FLV") >>
version: be_u8 >>
flags: be_u8 >>
offset: be_u32 >>
(Header {

version: version,
audio: flags & 4 == 4,
video: flags & 1 == 1,
offset: offset

})
)

);

Listing 2. FLV file header parsing

Rust’s unit testing facilities and nom’s approach focused on

slices helps in writing tests for our parsers. In the following

example, we can use the include bytes! feature to include

directly into the executable a test file, and refer to it as a

byte slice. Of course, the file is only present in the unit tests,

and would not be included by the library in another project.

The file header parser can then be tested on a subslice of

the first nine bytes of the file. We can refer to other subslices

by index for other parsers as well.

#[cfg(test)]
mod tests {
use super::*;
use nom::IResult;

const zelda : &’static [u8] = include_bytes!("../assets/
zelda.flv");

#[test]
fn headers() {
assert_eq!(
header(&zelda[..9]),
IResult::Done(
// the parser consumed the whole slice
&b""[..],
Header { version: 1, audio: true, video: true,

offset: 9 }
)

);
}

}

Listing 3. FLV file header unit testing

B. VLC Media Player Architecture

To accommodate the long list of formats, codecs, and input

or output devices on multiple platforms, VLC media player

is built with a main library called libvlccore, that handles the

media pipeline, synchronization, loading modules. The codecs,

demuxers and other parts are built as plugins, dynamic libraries

that libvlccore loads depending on the media that should be

played, recorded or converted, as seen in figure 2.

Those modules just need to export some C functions that

will be called by libvlccore to determine the module’s type and

get useful metadata as C structures and function callbacks.

Since Rust can reproduce most of C’s calling conventions,

it is relatively easy to create a dynamic library that directly

emulates a VLC plugin’s behavior.

Figure 1. Plugin architecture for VLC media player

C. Integrating Rust code in a C application

1) Writing bindings: The first step in writing Rust code to

insert inside a C program is to make bindings to the required

functions. In the case of VLC, libvlccore provides a number

of helper functions to manipulate streams or metadata.

Rust is well suited to write those bindings manually, as seen

in the following listing, but due to the large API provided

by libvlccore, we used rust-bindgen [19] to generate those

bindings automatically from C headers.

// structure definitions
#[repr(C)]
pub struct vlc_object_t {
pub psz_object_type: *const c_char,
pub psz_header: *mut c_char,
pub i_flags: c_int,
pub b_force: bool,
pub p_libvlc: *mut libvlc_int_t,
pub p_parent: *mut vlc_object_t,

}

// function imports
#[link(name = "vlccore")]
extern {
pub fn stream_Peek(stream: *mut stream_t, buf: *mut *

const uint8_t, size: size_t) -> ssize_t;
pub fn stream_Read(stream: *mut stream_t, buf: *const

c_void, size: size_t) -> ssize_t;
pub fn stream_Tell(stream: *mut stream_t) -> uint64_t;

}

Listing 4. Manual declaration of structures and import of functions

2) Exporting C functions from Rust: Once the bindings are

generated, the Rust code can call into the C API, and we

now need the C code to call into Rust. A VLC module must

export a vlc entry <VERSION> function that libvlccore will

call. This function declares the module’s name and description,

85

its capabilities, and callbacks to create or close a module’s

context.
Rust can declare and export functions with the same inter-

face as C code. It was not necessary for this project, but it

is possible to generate C headers for Rust code automatically

with rusty-cheddar [20].
3) Parsing data: A VLC demuxer will call the stream Peek

or stream Read methods to access the beginning of the data

and try to parse it. An important pattern appears there: the

Rust code never owns the data, it is always passed by the C

code. Since nom can work on immutable slices, it parses the

data it is given, preferably in a stack allocated array, and has

no influence on the file or network I/O.
In the following example, we read one byte of the input

inside a stack allocated array and try to parse an audio

packet header. If the parser was successful, we initialize codec

structures from the parsed values (here, an audio frequency),

and requests from libvlccore a new block of data of the size

we just parsed. This Rust VLC plugin replaces the exiting FLV

demuxer, there is no need to reparse the data afterwards. The

data block is managed by libvlccore, and will go directly to

the decoder once the demuxer ends this parsing phase.

let mut a_header = [0u8; 1];
let sz = stream_Read(p_demux.s, &mut a_header);
if sz < 1 {
return -1;

}

if let nom::IResult::Done(_, audio_header) = flavors::
parser::audio_data_header(&a_header) {

if ! p_sys.audio_initialized {
es_format_Init(&mut p_sys.audio_es_format,

es_format_category_e::AUDIO_ES,
audio_codec_id_to_fourcc(audio_header.

sound_format));

p_sys.audio_es_format.audio.i_rate = match audio_header
.sound_rate {

flavors::parser::SoundRate::_5_5KHZ => 5500,
flavors::parser::SoundRate::_11KHZ => 11000,
flavors::parser::SoundRate::_22KHZ => 22050,
flavors::parser::SoundRate::_44KHZ => 44000,

};
p_sys.audio_initialized = true;

}

let p_block: *mut block_t = stream_Block(p_demux.s, (
header.data_size - 1) as size_t);

if p_block == 0 as *mut block_t {
vlc_Log!(p_demux, LogType::Info, PLUGIN_NAME, "could not

allocate block");
return -1;

}
}

Listing 5. Parsing an audio packet

Since the demuxer only relies on stack allocated arrays and

buffers managed by libvlccore, this minimizes the Rust code’s

footprint: only the header data moves between C and Rust.
4) Finalizing integration: In a large project like VLC media

player, one of the biggest challenges in including code from a

new language is the build system, based on autotools. We tried

various solutions, and in the end, we asked the Rust compiler

to generate object files that will be linked by libtool. While the

Rust compiler is able to generate complete dynamic libraries,

this way was the easiest to integrate with autotools.

To help further in developing VLC plugins, most of the FFI

code was extracted in a Rust library [21] that can, amongst

other features, automatically generate entry functions and

bindings to libvlccore’s API.

VI. EXAMPLE: A SAFE TLS PARSER FOR SURICATA

Suricata [22] is an open source network intrusion detection

system (IDS). It inspects the network traffic, decodes and

analyzes many protocols to apply detection rules.

A network IDS is obviously exposed to all kinds of traffic,

especially malicious one. As it implements many protocol

decoders in C, this creates a paradox: the IDS is an interesting

target for an attacker, because it is likely to have vulnerabili-

ties. Thus, it is a good candidate for adding safe parsers.

The objective is not to rewrite the project, but only to focus

on critical parts (the parsers) to rewrite them securely, and

integrate easily with the existing code.

The modifications are done in two steps: first, a parser for

the TLS protocol was written in pure Rust, independently of

Suricata. Then, another small library is added to integrate this

parser in Suricata. In this section, we describe the standalone

TLS parser.

A. A standalone TLS parser

TLS is a good example of a very important protocol, for

which the existing implementations all have problems [23].

Amongst the 51 vulnerabilities in 2014, 15 are directly related

to memory safety violations, and 3 to certificate parsing [24].

To cite only one of the well-known vulnerabilities, Heartbleed

[25] is a buffer overflow in an unimportant feature, with critical

consequences, that could have been prevented by using a

memory-safe language.

Even the recently added implementations like BearSSL had

the same kinds of issues [26], which clearly shows that even

carefully written projects will still lead to the same memory

problems.

Even when it’s not parsers, the state machine of TLS is also

often badly implemented [27].

a) Implementing the TLS parser: A parser for the TLS

protocol has been implemented. It covers all the record and

message types defined for TLS version 1.2 and the multiple

RFCs extending it (resuming session, elliptic curves, client and

server extensions, etc.). It also covers TLS 1.3, in the latest

draft available (draft 18).

By using a parser combinator, the parsing code is very

close to the description of the corresponding structure in the

specification. This reduces the risk of mistakes and makes

maintenance easier.

uint16 ProtocolVersion;
opaque Random[32];

uint8 CipherSuite[2]; /* Cryptographic suite selector */

struct {
ProtocolVersion version;
Random random;
CipherSuite cipher_suite;
Extension extensions<0..2ˆ16-1>;

86

} ServerHello;

Listing 6. ServerHello structure definition in TLS 1.3 IETF draft

Here is the corresponding code of the TLS 1.3 ServerHello

message parsing:

pub struct TlsServerHelloV13Contents<’a> {
pub version: u16,
pub random: &’a[u8],
pub cipher: u16,

pub ext: Option<&’a[u8]>,
}

pub fn parse_tls_server_hello_tlsv13draft18(i:&[u8])
-> IResult<&[u8],TlsMessageHandshake>

{
do_parse!(i,

hv: be_u16 >>
random: take!(32) >>
cipher: be_u16 >>
ext: opt!(length_bytes!(be_u16)) >>
(

TlsMessageHandshake::ServerHelloV13(
TlsServerHelloV13Contents::new(hv,random,

cipher,ext)
)

)
)

}

Listing 7. Our TLS 1.3 ServerHello message implementation

This code generates a parser reading some simple fields,

and an optional length-value field for the TLS extensions (not

parsed in that example), and returns a structure. All error cases

are properly handled, especially incomplete data.

Note that fields like version or cipher could be repre-

sented as enum values, which would make it even closer to the

specifications. However, this is a deliberate choice: malicious

data can be invalid, and so invalid values must be accepted by

the parser, but detected as invalid.

We solve this problem by adding accessor functions, that

returns an Option type, being either the enumerated value,

or an error. In case of error, the invalid value is still accessible.

#[repr(u16)]
pub enum TlsVersion {

Ssl30 = 0x0300,
Tls10 = 0x0301,
Tls11 = 0x0302,
Tls12 = 0x0303,
Tls13 = 0x0304,

Tls13Draft18 = 0x7f12,
}

impl<’a> TlsServerHelloV13Contents<’a> {
pub fn get_version(&self) -> Option<TlsVersion> {

TlsVersion::from_u16(self.version)
}

}

// [...]

let opt_vers = server_hello.get_version();

Listing 8. Example accessor function

One other characteristic of TLS is that the parsing of

messages is context-specific: the content of some messages

cannot be decoded without having information about the pre-

vious messages. For example, the type of the Diffie-Hellman

parameters, in the ServerKeyExchange message, depends on

the ciphersuite from the ServerHello message. Because of that,

some variables are extracted and stored in a parser context,

associated to every connection, and passed to higher-level

parser functions.

Finally, the combinator features of nom are especially useful

for protocols like TLS: TLS certificates are based on X.509,

which uses the DER encoding format. This makes writing

independent parser easier, for example as in the following

code:

use x509::parse_x509_certificate;

/// Read several certificates from the input buffer
/// and return them as a list.
pub fn parse_tls_certificate_list(i:&[u8])

-> IResult<&[u8],Vec<X509Certificate>>
{

many1!(i,parse_x509_certificate)
}

Listing 9. Combining TLS and X.509 parsers

b) Fragmentation: When writing a TLS parser, special

attention is required to deal properly with fragmentation. In-

deed, in addition to classical IP fragmentation and TCP chunks

fragmentation, TLS defines an application layer fragmentation,

combined with the concatenation of multiple messages.

In short, one or more TCP chunks can contain one or

more TLS records, each of them containing one or more TLS

messages. A message can be split across multiple records, and

a record can be split in multiple TCP chunks.

With a parser in C, that means a lot of pointers arithmetic,

and risks of errors. In the proposed TLS parser, parsing is split

in two steps: one to ensure we have enough data for a record,

and the second to parse a record knowing it is complete. The

code to handle fragmentation is both very simple, fast and

safe:

// Check if a record is being defragmented
let record_buffer = match self.buffer.len() {

0 => r.data,
_ => {

v = self.buffer.split_off(0);
v.extend_from_slice(r.data);
v.as_slice()

},
};
// [...]
match parse_tls_record_with_header(record_buffer,r.hdr) {

Listing 10. Record defragmentation

This code roughly means: if no previous data was buffered,

use the new data directly (zero-copy). If not, append new data

to previous (copy required, as it would in C). In all cases,

no additional memory management is required, and the parser

remains efficient, using zero-copy when possible.

While it is not written for performance, the parser is

efficient, thanks to the fact that data are not always copied.

It does not contain any unsafe code (i.e code where the

compiler cannot provide static guarantees about behavior, like

87

syscalls). Thanks to that, it should be immune to any kind of

memory-related problems.

The parser does not decrypt the session nor perform cryp-

tographic operations.

c) State machine: The state machine of TLS is known

to be complex, and very often wrongly implemented in both

client and servers [28]. Representing the state machine and

following it after each received message is interesting for

security, as it allows to detect violations caused by valid

messages, received in the wrong order.

One could argue that if the state machine is very hard to

implement, the same kinds of errors could happen in the TLS

parser. While it is true, the consequences are very light: it

would only result in a state detected as invalid, that is a false

positive.

Two different methods have been tested: storing the state

machine as a graph and make transitions depending on mes-

sage types, or list all transitions and return the new states

using pattern matching. The latter has been retained, because

pattern matching offers a very elegant solution to match the

message type and its content using the same syntax, and results

in a compact and readable implementation: the entire state

machine, including cases like not presenting a server certificate

or anonymous Diffie-Hellman negotiation, is less than 100

lines.

The implementation is a function taking the previous state

and the received message, and returning the new state, or an

error for an invalid transition, for all unknown cases.

fn tls_state_transition_handshake(state: TlsState, msg: &
TlsMessageHandshake) -> Result<TlsState,
StateChangeError> {
match (state,msg) {

(None, &ClientHello(ref msg)) => {
match msg.session_id {

Some(_) => Ok(AskResumeSession),
_ => Ok(ClientHello)

}
},
// Server certificate
(ClientHello, &ServerHello(_))

=> Ok(ServerHello),
(ServerHello, &Certificate(_))

=> Ok(Certificate),
// Server certificate, no client certificate

requested
(Certificate, &ServerKeyExchange(_))

=> Ok(ServerKeyExchange),
// [...]
// All other transitions are considered invalid
_ => Err(InvalidTransition),

Listing 11. TLS State Machine extract (simplified)

B. Rust and Suricata: Rusticata!

The parser described in the previous section is written in

pure Rust. As explained earlier, the objective is not to rewrite

Suricata, but to modify it to embed the safe parser. In this

section, we explain the design of the proposed integration,

and how C and Rust can be merged in a single software.

The Rusticata project is an implementation of fast and

secure parsers in Rust, along with a simple abstraction layer

to use them in Suricata. Rusticata has been published with an

open-source license 1.The project itself is divided in several

parts:

• Parsers written using Rust and nom

• Suricata, extended with an application layer

• A glue layer between both, to propose a generic and safe

API

To minimize the number of modifications required in Suri-

cata, the Rust code is compiled as a shared library exposing C

functions. This very simple design allows to write the C code

in exactly the same way as if the library contained C code.

The complete architecture, including components and function

calls, is depicted in figure 2.

app-layer-rust

Session state

detect-rust

helper
functions

update

C engine

RParser-TLS

TLS State

RParser-TLS

TLS State

Rusticata

call

tls-parsertls-parser

TLS Parser

call call

update

get
get

Suricata

C code Rust code

Figure 2. Function calls between C and Rust.

The main program (configuration, event loop, data acquisi-

tion and processing, etc.) remains the same.

Only one specific part is added: a fake application layer. In

Suricata, an application layer is a set of functions registered

to the engine to parse a specific application protocol. These

functions are called when a packet matching the protocol is

received, and maintain a state (a set of stored variables) for

each session.

The added application layer is a simple proxy, which

declares the parser for the TLS protocol, and forwards all

calls to the Rust library. This design is modular and allows

including more parsers when they are ready.

1) Exchanging data between Rust and C: In Rust, simple

functions (non-generic) can be exported to use the C ABI using

the extern specifier, coupled with the #[no_mangle]
attribute to prevent mangling function and variable names.

Using this attribute, the marked Rust functions are seen as

regular C functions and are called directly from the C engine,

as shown in figure 2.

While this allows a very easy way to call functions, this

leaves a problem for data: except some primitive types, the

memory model is not the same in the two languages.

Rust offers an attribute #[repr(C)] for structures, which

tells the compiler to use the same representation the C com-

piler would use for this object. This provides a very convenient

1https://github.com/rusticata

88

way to access Rust objects from the C code, without any

additional costs for data conversion or access.

However, this is not the implemented solution in Rusticata.

Indeed, it does not help having a clean design of the code,

because while inter-languages access are efficient, it brings

back the memory problems described in this article, for

example if one side accesses an object freed by the other.

So while the objects can be accessed directly, in the Rusti-

cata project Rust structures are stored in C as opaque pointers,

and accessors functions have been added. The additional cost

is balanced by the safety of the memory management, and the

fact that each language only cares for the objects allocated in

its own code.

2) Using the project main functions: A very important

point, when trying to propose a different language for inte-

gration, is to avoid recoding or duplicating other parts of the

code like support functions. For example, logging functions,

code to send alerts, signatures detection code, etc.

This brings the need to be able to use the C functions from

Rust, which is the opposite of the previous data exchange.

To do that, the Rust code must know which C functions

to call. For example, during the initialization of the Rust

library, it looks for the C functions and stores them into safe

wrappers, in a Rust API. This allows the Rust code to call the

logging functions using the standard log crate, but sending

log messages through the base program log functions.

Using this method, Rusticata uses all support functions like

the log and alert functions, and the signature engine from

Suricata.

3) Thread safety: Suricata uses a lot of threads to handle

multiple sessions concurrently, so the parser functions must

be thread-safe. It is also important to note that the threads are

created in the C side, so the Rust functions are not aware of

these threads.

The Rust ownership system that prevents memory errors

also helps preventing data races. Every data type knows

whether it can safely be sent between or accessed by multiple

threads, and Rust enforces this safe usage; there are no data

races, even for lock-free data structures [29]. The compiler

checks every variable and type: for example, mutable global

variables are forbidden (they must be wrapped in either a

locking or a guarded structure), and data types that cannot

introduce memory unsafety in threaded programs must imple-

ment the Send or Sync traits.

To preserve these properties when wrapping C code, this

means that all unsafe code must be treated carefully, but

the native Rust code is guaranteed to be thread-safe. To do

that, we limit the use of unsafe to the only operations of

reading and writing buffers from C (these buffers are allocated

per-thread by Suricata) and write all parsing code in native

Rust. The parsing functions do not store any context and are

all reentrant, to make easier to check for thread-safety.

C. Performance and Results

1) Functionalities: Before replacing the C parser, the new

one must provide at least the same functionalities. The Rust

TLS parser does in fact much more than the C version, because

it is able to deeply parse the structures, while the C version

only read a few fields, and for example is not able to decode

the TLS extensions. This allows to write more elaborate rules

for the IDS, like detecting the use of small Diffie-Hellman

parameters.

In order to check the functionalities, it is possible to write

tests based on the existing test vectors and expected results.

Suricata comes with many unit tests, which helps ensuring that

the features not only are similar, but also behave the same way

as in the previous code.

2) Benchmarks: A few benchmarks were realized for the

different parts of the TLS parser. It was not very relevant to

compare it with the current TLS parser written in C in Suricata,

as it has less features. In our tests, the speeds were still very

similar. The tests were realized on a machine running a single

Core i5 with 2 cores with hyperthreading. The tests measure

the average, minimum and maximum duration of the parsing

functions.

We can observe in the Rust parser a very consistent behav-

ior, and the ability to parse a complete handshake in a time in

the order of a millisecond.

bench_tls_rec_certificate ... bench: 247 ns/iter (+/- 54)
bench_tls_rec_clienthello ... bench: 579 ns/iter (+/- 102)
bench_tls_rec_serverdone ... bench: 146 ns/iter (+/- 18)
bench_tls_rec_serverhello ... bench: 193 ns/iter (+/- 10)
bench_tls_rec_serverkeye.. ... bench: 145 ns/iter (+/- 1)

The way the Rust compiler works gives a few benefits out of

the box. It tries to apply static dispatch as much as possible, so

some high level constructs like closures have little to no cost.

The assembly generated is very close to the one a C compiler

would write, as seen in the appendix. There’s a conscious

effort from the community to make memory handling easy

to vectorize, and to remove runtime bound checks and null

checks when the compiler can guarantee it is safe.

Additionally, nom uses almost no heap allocation and stores

as much as possible on the stack. This makes it easy to

bound the memory usage and avoid the unpredictable delays

of memory allocators. The code generated by nom is very

linear and easy to analyze for a compiler. It mainly contains

branches based on the result of a previously executed parser,

and no loop or jumps based on the currently observed byte.

That kind of code can be merged in linear blocks and makes

branch prediction easier.

3) Fuzzing: Fuzzing tools such as AFL [30] try to assess

the security of a program by sending random content, and

detect incorrect behavior. We have used AFL-rust [31] a

variant of AFL modified for Rust programs. This tool allows to

apply fuzzing for functions input, and not only the program

input. It also tracks the execution path inside functions, to

detect if a new path is discovered, or if all paths inside a

function are explored. This is particularly interesting to target,

for example, functions containing unsafe code, but since there

is no such function in the TLS parser, the most interesting

functions are the functions handling the record and message

fragmentation, and parsing the content in depth.

89

We selected the top-level parsing functions (TLS record

and messages) of the TLS parser, providing 4 different initial

vectors: ClientHello, ServerHello, Certificate,

and ServerKeyExchange. The fuzzing was realized using

5 parallel processes on a dual Xeon CPU, each having 6 cores

with hyperthreading, during 20 days, during which the tests

were executed 4054 million times. AFL-rust was stopped after

a long period where no new path was discovered. In our case,

no new path was discovered after the first 12 days.

There was no crash during that time, and very interestingly,

no hang (program not responding after a timeout, for example

because of an infinite loop). These results tend to confirm

the expected security properties of the parsers. However the

authors would like to insist on the fact that this is not a proof

of security. The results are however very interesting when

considering the fact that the parser was developed very quickly,

and did not require a long time for stabilization and debugging.

VII. CONCLUSION

In this paper, we propose a pragmatic solution to the

vulnerabilities of C programs manipulating untrusted data. The

solution is a two-step approach: first, using Rust (or a language

providing similar properties) to prevent memory-related bugs,

and using a parser combinator to improve the implementation

correctness and prevent missing tests or logical bugs. We

have experimented this solution on two large, widely used

programs, and tested the efficiency and robustness of the

results.

The development of the parsers was a good opportunity

to test our claims on the language. The main benefit is very

simple yet representative of using a memory safe language:

no debugger was used during the development. Similarly to a

classical claim for functional languages, the compiler checks

result in a slightly longer write-compile iterative process, but

regaining much more time thanks to the fact the debugger is

not needed. In particular, pattern matching plus strong typing

is a very powerful combination to enforce good coding rules,

and do not leave any possible execution branch untested. The

fact that the compiler enforces these checks is a key point

of the solution: it provides a systemic and global approach of

memory safety, and ensures no test is missing. It also provides

global thread safety, statically checked by the compiler.

In addition to the memory safety, one of the main benefits

is that the time required for development and testing was

greatly reduced. Several other parsers than TLS were added

afterwards. Once the language and the parser generator were

well understood, adding a parser for a new protocol is just a

matter of a few hours.

One very interesting property of the generated parsers is that

they tend to use only the stack, and not allocate any memory.

This is good to control memory pressure, but also makes it

possible to use very restrictive operating system mechanisms

like the strict mode of seccomp: this mode allows only 4

system calls and forbids memory allocations.

Are all the possible bugs solved ? No, some remains like

logic or algorithmic errors. But at least, the generated parsers

and the application using them will not crash. All possible

memory corruptions are also not prevented: they are only

prevented in the Rust code, under the hypothesis that it is

called properly from the C code. A possible solution is to

progressively extend the part of Rust code by rewriting other

components and eliminate the unsafe code. This is possible

thanks to the pragmatic, step-by-step approach, but advocates

for a nearly-full rewrite, which is a different task.

There are a few drawbacks. First, learning a new language is

not easy, and developers must be convinced that the benefits

overcome the cost to learn it. This is not always the case,

and should be well considered before starting a project [32],

or efforts will be wasted. A common comment on the Rust

language is that it suffers from a bad readability. This is

questionable, and in fact it is often the sign of the lack of habit

which quickly disappears. It also takes time to go further than

just using a new language and get used to its code patterns

and best coding practices.

Proposing a parser in a new language also means that

convincing the developer community will be a challenge.

Maintaining software written in two languages is an effort,

the decision to switch is very important. The community must

be convinced that the effort required is worthy, and that the

new parsers have the same functionalities. Using the unit tests

from the project (when they exist) is a good way to prove it.

Switching from C to Rust also cause problems with strong

typing: it is hard for some developers to come from a very

permissive language, and have to write a clean program with

respect to types and lifetimes of objects or return values. To the

authors, it is not a drawback, but a good point: it is harder at

the first time, but it really improves code quality and security.

Rust and nom allow writing parsers quickly while being

safe. After the initial learning phase, the time required to add

a new parser is quite small, and can become a convincing

argument.

Developing safe parsers should now be encouraged in a

larger community. We hope that providing good implementa-

tions in Rust can be used to write new thin abstraction layers

in other software, for example Wireshark, to improve their

security.

APPENDIX

VERIFICATIONS ON COMPILED CODE

This section describes how some of the properties of Rust

are translated in compiled code, to analyze whether some

patterns will be efficiently or securely implemented at runtime.

Rust is based on the LLVM toolchain, so the verifications were

done by compiling Rust code to LLVM intermediate runtime

language, and analyzing it.

a) Memory model: Rust uses compact structures as much

as possible, and adds very few overhead compared to C. For

example, the following code:

struct Foo<’a> {
a: u8,
b: u32,
c: &’a[u8],

}

90

is translated to the following LLVM declaration:

%Foo = type { i8, i32, { i8*, i64 } }

The resulting structure is the same as a C declaration would

use. We also note that a slice is implemented as a pointer with

a size.

b) Zero-copy: As parsers manipulate a lot of buffers and

slices, We want to verify if the parsing, and the exchange

of structures containing slices does not imply copying the

underlying data. Using the previous structure, we declare a

simple parser using nom:

named!(parse_foo<Foo>,
chain!(

a: be_u8 ˜
b: be_u32 ˜
c: take!(a),
|| { Foo{a:a,b:b,c:c}}

)
);

We then extract the LLVM code for this parser:

%25 = bitcast %"12.nom::IResult<&[u8], Foo, u32>"* %foo
to i8*

%26 = getelementptr inbounds %"12.nom::IResult<&[u8], Foo
, u32>", %"12.nom::IResult<&[u8], Foo, u32>"* %foo,
i64 0, i32 0

%27 = getelementptr inbounds %"12.nom::IResult<&[u8], Foo
, u32>", %"12.nom::IResult<&[u8], Foo, u32>"* %foo,
i64 0, i32 2, i64 0

%28 = getelementptr inbounds %"12.nom::IResult<&[u8], Foo
, u32>", %"12.nom::IResult<&[u8], Foo, u32>"* %foo,
i64 0, i32 2, i64 1

%29 = getelementptr inbounds %Foo, %Foo* %r, i64 0, i32 0

%318 = ptrtoint i8* %293 to i64
store i64 0, i64* %26, align 16, !alias.scope !113, !

noalias !114
store i64 %res.sroa.5.0.i, i64* %27, align 8, !alias.

scope !113, !noalias !114
store i64 %res.sroa.7.0.i, i64* %28, align 8, !alias.

scope !113, !noalias !114
store i8 %291, i8* %31, align 8, !alias.scope !113, !

noalias !114
store i32 %317, i32* %tmp70.sroa.4123.0..sroa_cast.i,

align 4, !alias.scope !113, !noalias !114
store i64 %318, i64* %tmp70.sroa.5.0..sroa_idx125.i,

align 8, !alias.scope !113, !noalias !114
store i64 %295, i64* %tmp70.sroa.6.0..sroa_idx127.i,

align 8, !alias.scope !113, !noalias !114

call void @llvm.lifetime.start(i64 24, i8* %29)
call void @llvm.memcpy.p0i8.p0i8.i64(i8* %29, i8* %31,

i64 24, i32 8, i1 false)

Here is an explanation of this code: the first instructions

store the pointers corresponding to every field of the structure.

The following instructions store the elements read from the

stream and stores them into the structure. During the copy,

we can check that a new slice is created, but only the address

and length of data is copied.

Finally, the last line seems surprising (a memcpy), but this

copy is used to copy the structure itself into the return value

of the functions, it is not deep-copied.

c) Accessing a slice: Every access to an array or a slice
is verified. For example, the following code:

let _ = foo.c[1295];

is compiled with guards added:

bb32: ; preds = %bb32.loopexit, %bb29
%329 = icmp ugt i64 %320, 1295
br i1 %329, label %bb34, label %panic, !prof !140

At runtime, the index is tested, and an invalid access results

in killing the program :

thread ’main’ panicked at ’index out of bounds: the len is
1 but the index is 1295’, src/main.rs:32

Obviously, stopping the program is not a very useful behav-

ior, even if that makes at least the program non-exploitable.

In practice, Rust encourages to use iterators instead of array

indices, preventing the problem.

d) Integer overflows/underflows: Rust uses two different

compilation modes: debug and release. In debug mode, arith-

metic on signed and unsigned primitive integers is checked

for overflow, and the program stops if it occurs. In release

mode, overflow is not checked, and programs are vulnerable

to integer overflows/underflows.

Even if they are a bit harder to exploit in Rust, since they

cannot result in a buffer overflow and memory corruption,

they can still have consequences since it can be used to

change to control flow to use a wrong branch of a test,

for example. However, the language offers a solution: using

the overflowing_<op> family of operations, the LLVM

instructions with proper verifications will be used. The only

drawback is that since it is not automatic, the developer can

miss some checks.

e) Non-executable memory: This feature, ensuring that

the sections of the compiled objects are strictly writeable or

executable, but not both, is active by default.

f) Randomization: ASLR is supported, and Rust code is

compiled with the -pie flag by default.

g) Stack Protector: Unfortunately, Rust code has no
protection activated for the stack. Admittedly, the generated

code is supposed not to contain any overflow thanks to the

compiler checks, but it is a bit sad that a well-established

function integrated to LLVM is not used, even if the integration

causes some difficulties (tracked in Rust issue #15179).

That also means that a Rust library loaded from a C

executable will provide ROP gadgets. Hopefully, the library

supports ASLR, but this is not satisfactory, and could be

improved in the future.

h) Immediate resolution (bindnow): The bindnow com-

piler flag allows to resolve all dynamic symbols at start-up,

instead of on-demand. It is not active by default, but the

option can be activated by adding the following to the file

.cargo/config:

[build]
rustflags = ["-C","link-args=-Wl,-z,relro,-z,now"]

91

REFERENCES

[1] “CVE details,” http://www.cvedetails.com, 2016.
[2] J. Drake, “Stagefright: Scary code in the heart of

android,” https://www.blackhat.com/docs/us-15/materials/
us-15-Drake-Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf,
2015, BlackHatUSA.

[3] N. Seriot, “Parsing JSON is a minefield,” http://seriot.ch/parsing json.
html, 2016.

[4] Cloudflare, “Incident report on memory leak caused
by cloudflare parser bug,” https://blog.cloudflare.com/
incident-report-on-memory-leak-caused-by-cloudflare-parser-bug/,
2017.

[5] P. Chifflier and A. Fontaine, “Architecture systme d’une sonde durcie,”
Conference C&ESAR, 2014.

[6] E. Jaeger, O. Levillain, and P. Chifflier, “Mind your language(s): A
discussion about languages and security (long version),” https://www.ssi.
gouv.fr/uploads/IMG/pdf/Mind Your Languages - version longue.pdf,
2014.

[7] E. Jaeger and O. Levillain, “Mind your language(s): A discussion about
languages and security,” 2014 IEEE Security and Privacy Workshops
(SPW), 2014.

[8] W. Sewell, “Golangs real-time GC in theory and practice,” https://blog.
pusher.com/golangs-real-time-gc-in-theory-and-practice/, 2016.

[9] J. Turner, “Dropboxs exodus from the amazon cloud,” https://news.
ycombinator.com/item?id=11283688, 2016.

[10] Joyent, “Joyent HTTP parser,” https://github.com/nodejs/http-parser/
blob/master/http parser.c, 2009.

[11] C. Networks, “Ragel state machine compiler,” http://www.colm.net/
open-source/ragel/.

[12] G. Couprie, “Nom, a byte oriented, streaming, zero copy, parser com-
binators library in rust,” 2015 IEEE Security and Privacy Workshops
(SPW), 2015.

[13] H.-J. Boehm, R. Atkinson, and M. Plass, “Ropes: an alternative
to strings,” http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.
9450&rep=rep1&type=pdf, 1995.

[14] G. Couprie, “nom benchmarks,” https://github.com/Geal/nom
benchmarks, 2016.

[15] VideoLAN, “VLC media player,” https://www.videolan.org/.
[16] VideoLAN, “VLC security advisories,” https://www.videolan.org/

security/.
[17] A. S. Incorporated, “Video file format specification version 10,”

https://www.adobe.com/content/dam/Adobe/en/devnet/flv/pdfs/video
file format spec v10.pdf, 2008.

[18] G. Couprie, “flavors: a rust FLV parser,” https://github.com/Geal/flavors.
[19] S. project, “rust-bindgen,” https://github.com/servo/rust-bindgen?files=1,

2015.
[20] S. Marshallsay, “rusty-cheddar,” https://github.com/Sean1708/

rusty-cheddar, 2015.
[21] G. Couprie, “vlc-module.rs,” https://github.com/Geal/vlc module.rs,

2016.
[22] Open Information Security Foundation, “Suricata: Open source IDS/IP-

S/NSM engine,” https://suricata-ids.org/.
[23] O. Levillain, “SSL/TLS, 3 ans plus tard.” SSTIC, 2015.
[24] D. Kaloper-Meršinjak, H. Mehnert, A. Madhavapeddy, and P. Sewell,

“Not-quite-so-broken TLS: Lessons in re-engineering a security protocol
specification and implementation,” in 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association, 2015,
pp. 223–238. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/kaloper-mersinjak

[25] “CVE-2014-0160.” Available from MITRE, CVE-ID CVE-2014-0160.,
Dec. 3 2013. [Online]. Available: http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-0160

[26] T. Pornin, “BearSSL: Fixed buffer overflow and NULL pointer
dereference,” https://bearssl.org/gitweb/?p=BearSSL;a=commit;h=
e8ccee8bcdae80cdf74c6d7327f1c7572589fae3, 2016.

[27] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud et al., “A messy
state of the union: taming the composite state machines of TLS,” in
IEEE Symposium on Security & Privacy 2015 (Oakland’15), 2015.

[28] J. de Ruiter and E. Poll, “Protocol state fuzzing of TLS
implementations,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, 2015,
pp. 193–206. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/de-ruiter

[29] A. Turon, “Fearless concurrency with Rust,” https://blog.rust-lang.org/
2015/04/10/Fearless-Concurrency.html, 2015.

[30] M. Zalewski, “American fuzzy lop,” http://lcamtuf.coredump.cx/afl/.
[31] C. Richardson, “afl.rs,” https://github.com/frewsxcv/afl.rs.
[32] J. Sharp, “Which projects should convert to Rust?” http://jamey.

thesharps.us/2017/01/which-projects-should-convert-to-rust.html, 2017.

92

