
 1

Zürich, 2. 2. 2005 / 15. 6. 2005

Good Ideas, Through the Looking Glass

Niklaus Wirth

Abstract
An entire potpourri of ideas is listed from the past decades of Computer Science and
Computer Technology. Widely acclaimed at their time, many have lost in splendor and
brilliance under today’s critical scrutiny. We try to find reasons. Some of the ideas are
almost forgotten. But we believe that they are worth recalling, not the least because one
must try to learn from the past, be it for the sake of progress, intellectual stimulation, or
fun.

Contents

1. Introduction
2. Hardware Technology
3. Computer Architecture

3.1. Representation of numbers
3.2. Data addressing
3.3. Expression Stacks
3.4. Variable length data
3.5. Storing return addresses in the code
3.6. Virtual Addressing
3.7. Memory protection and user classes
3.8. Complex Instruction Sets
3.9. Register windows

4. Programming Language Features
4.1. Notation and Syntax
4.2. The GO TO statement
4.3. Switches
4.4. Algol’s complicated for statement
4.5. Own variables
4.6. Algol’s name parameter
4.7. Incomplete parameter specifications
4.8. Loopholes

5. Miscellaneus techniques
5.1. Syntax analysis
5.2. Extensible languages
5.3. Nested procedures and Dijkstra’s display
5.4. Tree-structured symbol tables
5.5. Using wrong tools
5.6. Wizards

6. Programming paradigms
6.1. Functional programming
6.2. Logic programming

 2

6.3. Object-oriented programming
7. Concluding remarks

1. Introduction
The history of Computing has been driven by many good and original ideas. Not only a
few of them turned out to be less brilliant than they appeared at the beginning. In many
cases, and this is typical for technology, their importance was reduced by changes in the
technological environment. Often also commercial factors influenced the importance of a
good idea. And some ideas simply turned out to be less effective and less glorious, when
reviewed in retrospect, or seen after proper analysis. Other ideas turned out to be
reincarnations of ideas invented earlier and then forgotten, perhaps because they were
ahead of their time, perhaps because they had not flattered current fashions and trends.
And some ideas were reinvented, although they had already been bad in their first round.

This led me to the idea of collecting a number of such good ideas which turned out to be
less than brilliant in retrospect. The motivation to do so has been triggered by a recent
talk of Charles Thacker about Obsolete ideas – ideas deteriorating by aging. I also
rediscovered an article by Don Knuth titled The dangers of computer-science theory.
Thacker’s talk was delivered behind the Chinese Wall, Knuth’s in Romania in 1970
behind the Iron Curtain, both safe places against damaging “Western Critique”.
Particularly Knuth’s document with its tongue in cheek attitude encouraged me to write
down this collection of stories. No claim is made for its completeness.

The collection starts with a few unsuccessful concepts from the area of computer
technology, and then proceeds with questionable ideas in computer architecture. Some of
them can well be justified in the context of their time, but are obsolete in the present.
Then follows a collection of ideas from the realm of programming languages, particularly
from the early proponents. And finally, we mention miscellaneous topics from
programming paradigms to software (compiler) technology.

2. Hardware Technology
Speed has always been the prevalent and almost exclusive concern of computer
engineers. Refining existing techniques has been one alley to pursue this goal, looking for
alternative solutions the other. Some of these searches were unsuccessful, and here are a
few of them.

During the times when magnetic core memories were dominant, the idea of the magnetic
bubble memory appeared. As usual, great hopes were connected to it. It was planned to
replace all kinds of mechanically rotating devices, which were the primary sources of
troubles and unreliability. Although magnetic bubbles would still rotate in a magnetic
field within a ferrite material, there would be no mechanically moving part. Like disks,
they were a serial device. But they never achieved sufficient capacity, and the progress in
disk technology was such that not only capacity, but also the speed of the bubbles became
inferior. The idea was quietly buried after a few years of research.

A new technology that kept high hopes alive over decades was that of cryogenic devices,
particularly in the domain of supercomputers. Ultra high switching speeds were

 3

promised, but the effort to operate large computing equipment at temperature close to
absolute zero was prohibitive. The appearance of personal computers working on your
table let cryogenic dreams either evaporate or freeze.

Then there was the idea of using tunnel diodes in place of transistors as switching and
memory elements. The tunnel diode (so named because of its reliance on a quantum
effect of electrons passing over an energy barrier without having the necessary energy)
has a peculiar characteristic with a negative segment. This allows it to assume two stable
states. The tunnel diode is a germanium device and has no counterpart on the basis of
silicon. This made it work over a relatively narrow temperature range only. Silicon
transistors became faster and cheaper at a rate that let researchers forget the tunnel diode.

The same phenomenal progress in silicon transistor fabrication never let gallium-arsenide
transistors live up to the high expectations with which they were introduced. Silican bears
the inherent advantage that its own oxyde is an ideal insulator, thus simplifying
fabrication processes. Other materials such as gallium-arsenide – the 3-5 technology in
general - are now rarely used in computer technology, but have their application in the
niche of very high frequency communication.

It now even appears that the once dominant bipolar transistor is counting its days, as field
effect transistors become ever faster, smaller and cheaper, because it has become possible
to grow extremely thin oxyde layers (gates). However, this does not mean that the bipolar
transistor had been a bad idea.

3. Computer Architecture
3.1. Representation of Numbers

A rewarding area for finding “good” ideas is that of computer architecture. A
fundamental issue at the time was the choice of representation of numbers, in particular
integers. The key question was the choice of their base. Virtually all early computers,
with the exception of Konrad Zuse’s, featured base 10, that is, a representation by
decimal digits, just as everybody was used to and had learnt in school.

However, it is clear that a binary representation with binary digits is much more
economical. An integer n requires log10(n) decimal digits in decimal and log2(n) binary
digits (bits) in binary representation. Because a decimal digit requires 4 bits, decimal
representation requires about 20% more storage than binary, showing the clear advantage
of the binary form. Yet, the decimal representation was retained for a long time, and even
persists today in the form of library modules.

The reason is that people insisted in believing that all computations must be accurate.
However, errors occur through rounding, for example after division. The effects of
rounding may differ depending of the number representation, and a binary computer may
yield different results than a decimal computer. Because traditionally financial
transaction – and that is where accuracy matters! – were computed by hand with decimal
arthmetic, it was felt that computers should produce the same results in all cases, in other
words, commit the same errors.

Although the binary form will in general yield more accurate results, the decimal form
remained the preferred form in financial applications, as a decimal result can easily be

 4

hand-checked if required. Although perhaps understandable, this was clearly a
conservative idea. It is worth mentioning that until the advent of the IBM System 360 in
1964, which featured both, binary and decimal arithmetic, manufacturers of large
computers kept two lines of products, namely binary computers for their scientific
customers, and decimal computers for their commercial customers. A costly practice!

In early computers, integers were represented by their magnitude and a separate sign bit.
In machines which relied on sequential addition digit by digit, the sign was placed at the
low end in order to be read first. When bit parallel processing became possible, the sign
was placed at the high end, again in analogy to the notation commonly used on paper.
However, using a sign-magnitude representation was a bad idea, because addition
requires different circuits for positive and negative numbers. Representing negative
integers by their complement was evidently a far superior solution, because addition and
subtraction could now be handled by the same circuit. Some designers chose 1’s
complement, where –n was obtained from n by simply inverting all bits, some chose 2’s
complement, where –n is obtained by inverting all bits and then adding 1. The former has
the drawback of featuring two forms for zero (0…0 and 1…1). This is nasty, particularly
if available comparison instructions are inadequate. For example, in the CDC 6000
computers, there existed an instruction testing for zero, recognizing both forms correctly,
but an instruction testing the sign bit only, classifying 1…1 as a negative number, making
comparisons unnecessarily complicated. This was a case of inadequate design, revealing
1’s complement as a bad idea. Today, all computers use 2’s complement arithmetic.

decimal 2’s complement 1’s complement

2 010 010
1 001 001
0 000 000 or 111
-1 111 110
-2 110 101

Numbers with fractional parts can be represented by fixed or floating point forms. Today,
hardware usually features floating-point arithmetic, that is, a representation of a number x
by two integers, an exponent e and a mantissa m, such that x = Be×m. For some time,
there was discussion about which exponent base B should be chosen. The Burroughs
B5000 introduced B = 8, and the IBM 360 used B = 16, both in 1964, in contrast to the
conventional B = 2. The intention was to save space through a smaller exponent range,
and to accelerate normalization, because shifts occur in larger steps of 3 (or 4) bit
positions only. This, however, turned out to be a bad idea, as it aggravated the effects of
rounding. As a consequence, it was possible to find values x and y for the IBM 360, such
that, for some small, positive ε, (x+ ε)×(y+ ε) < (x × y). Multiplication had lost its
monotonicity! Such a multiplication is unreliable and potentially dangerous.

3.2. Data addressing
Instructions of the earliest computers consisted simply of an operation code and an
absolute address (or a literal value) as parameter. This made self-modification by the
program unavoidable. For example, if numbers stored in consecutive memory cells had to
be added in a loop, the address of the add instruction had to be modified in each step by
adding 1 to it. Although the possibility of program modification at run-time was heralded
as one of the great consequences of John von Neumann’s profound idea of storing

 5

program and data in the same memory, it quickly turned out to enable a dangerous
technique and to constitute an unlimited source of pitfalls. Program code must remain
untouched, if the search for errors was not to become a nightmere. Program’s self-
modification was recognized as an extremely bad idea.

The solution was to introduce another addressing mode which allowed one to treat an
address as a piece of variable data rather than (a part of) an instruction in the program,
which would better be left untouched. The solution was indirect addressing and
modifying the directly addressed address (a data word) only. Although this removed the
danger of program self-modification, and although it remained a common feature of most
computers until the mid 1970s, it should be considered in retrospect as a questionable
idea. After all, it required two memory accesses for each data access, and hence caused a
considerable slow-down of the computation.

The situation was made worse by the “clever” idea of multi-level indirection. The data
accessed would indicate with a bit, whether the referenced word was the desired data, or
whether it was another (possibly again indirect) address. Such machines (e.g. HP 2116)
were easily brought to a standstill by specifying a loop of indirect addresses.

The solution lay in the introduction of index registers. To the address constant in the
instruction would be added the value stored in an index register. This required the
addition of a few index registers (and an adder) to the accumulator of the arithmetic unit.
The IBM 360 merged them all into a single register bank, as is now customary.

A peculiar arrangement was used by the CDC 6000 computers: Instructions directly
referred to registers only, of which there were 3 banks: 60-bit data (X) registers, 18-bit
address (A) registers, and 18-bit index (B) registers. Memory access was implicitly
evoked by every reference to an A-register (whose value was modified by adding the
value of a B-register). The odd thing was that references to A0 – A5 implied the fetching
of the addressed memory location into the corresponding X0 – X5 register, whereas a
reference to A6 or A7 implied the storing of X6 or X7. Although this arrangement did not
cause any great problems, it is in retrospect fair to classify it as a mediocre idea, because
a register number determines the operation performed, i.e. the direction of data transfer.
Apart from this, the CDC 6000 featured several excellent ideas, primarily its simplicity. It
can truly be called the first RISC machine, although it was designed by S. Cray in 1962,
well before this term became coined around 1980.

A much more sophisticated addressing scheme was invented with the Borroughs B5000
machine. We refer to its descriptor scheme, primarily used to denote arrays. A so-called
data descriptor was essentially an indirect address, but in addition also contained index
bounds to be checked at access–time. Although automatic index checking was an
excellent and almost visionary facility, the descriptor scheme was a questionable idea,
because matrices (multi-dimensional arrays) required a descriptor of an array of
descriptors, one for each row (or column) of the matrix. Every n-dimensional matrix
access required an n-times indirection. The scheme evidently did not only slow down
access due to its indirection, but also required additional rows of descriptors.
Nevertheless, the poor idea was adopted by the designers of Java in 1995 and of C# in
2000.

3.3. Expression Stacks

 6

The language Algol 60 not only had a profound influence on the development of further
programming languages, but - to a much more limited extent – also on computer
architecture. This should not be surprising, as language, compiler and computer form an
inextricable complex.

The first topic to be mentioned in this connection is the evaluation of expressions which,
in Algol, could be of arbitrary complexity, with subexpressions being parenthesized and
operators having their individual binding strengths. Results of subexpressions have to be
stored temporarily. As an example, take the expression

(a/b) + ((c+d)*(c-d))

It would be evaluated in the following steps yielding temporary results t1 … t4:

t1 := a/b; t2 := c+d; t3 := c-d; t4 := t2*t3; x := t1 + t4

F. L. Bauer and E. W. Dijkstra independently proposed a scheme for the evaluation of
arbitrary expressions. They noticed that when evaluating from left to right, obeying
priority rules and parentheses, the last item stored is always the first to be needed. It
therefore could conveniently be placed in a push-down list (a stack):

t1 := a/b; t2 := c+d; t3 := c-d; t2 := t2*t3; x := t1 + t2

It was a straight forward idea to implement this simple strategy using a register bank,
with the addition of an implicit up/down counter holding the index of the top register.
Such a stack reduced the number of memory accesses and avoided the explicit
identification of individual registers in the instructions. In short, stack computers seemed
to be an excellent idea. The scheme was implemented by the English Electric KDF-9 and
the Borroughs B-5000 computers. It obviously added to their hardware complexity.

How deep should such a stack be? After all, registers were expensive resources. The B-
5000 chose to use 2 registers only, and an automatic pushdown into memory, if more
than two intermediate results had to be stored. This seemed reasonable. As Knuth had
pointed out in an analysis of many Fortran programs, the overwhelming majority of
expressions required only 1 or 2 registers. Still, the idea of an expression stack proved to
be rather questionable, particularly after the advent of architectures with register banks in
the mid 1960s. Now simplicity of compilation was sacrificed for any gain in execution
speed. The stack organization had restricted the use of a scarce resource to a fixed
strategy. But now sophisticated compilation algorithms proved to utilize registers in a
more economical way, given the flexibility of specifying individual registers in each
instruction.

3.4. Variable length data

Computers oriented towards the data processing market typically featured decimal
arithmetic, and also provisions for variable length data. Both texts (strings) and numbers
(decimal digits) are predominant in these applications. The IBM 1401 has been clearly
oriented towards string processing, and it was manufactured in very large quantities. It
featured not an 8-bit word length – the prevalent character size in those times was 6 bits!
- but a 9-bit byte (the word byte was not yet common either before 1964). One of the bits
in each word served to mark the end of the string or number, and it was called the stop-

 7

bit. Instructions for moving, adding, comparing and translating would process byte after
byte sequentially and terminate when encountering a stop-bit.

This solution of treating variable length data seems to be a fairly bad idea. After all, it
“wastes” 11% of storage for stop-bits, whether needed or not. Later computers let this
problem be solved by software without hardware support. Typically, either the end of a
string is marked by a zero byte, or the first byte indicates the length. Also here, the
information about length requires storage, but only for strings, and not for every byte in
the store.

3.5. Storing return addresses in the code

The subroutine jump instruction, invented by D. Wheeler, deposits the program counter
value in a place, from where it is restored upon termination of the subroutine. The
question is: “Where is that location to be?” In several computers, particularly
minicomputers, but also the CDC 6000 main frame, a jump instruction to location d
would deposit the return address at d, and then continue execution at location d+1:

mem[d] := PC+1; PC := d+1

This was definitely a bad idea for at least two reasons. First, it prevented a subroutine to
be called recursively. Recursion was introduced by Algol and caused much controversy,
because procedure calls, as subroutine calls were now called, could no longer be handled
in this simple way, because a recursive call would overwrite the return address of the
previous call. Hence, the return address had to be fetched from the fixed place dictated by
the hardware and redeposited in a place unique to the particular incarnation of the
recursive procedure. This “overhead” appeared to be unacceptable to many computer
designers as well as users, and hence they resorted to declare recursion as undesirable,
useless and forbidden. They did not want to notice that the difficulty arose because of
their inadequate call instruction.

The second reason why this solution was a bad idea is that it prevented multiprocessing.
Each concurrent process had to use its own copy of the code. This is a simple result from
the mistake of not keeping program code and data separated. We leave aside the question
of what would happen if an interrupt occurs after depositing PC and before reloading the
PC register.

Some later hardware designs, notably the RISC architectures of the 1990s,
accommodated recursive procedure calls by introducing specific registers dedicated to
stack addressing, and to deposit return addresses relative to their value. We shall return to
this topic later, but merely mention here that depositing the return address in one of the
general purpose registers (presuming the availability of a register bank) is probably the
best idea, because it leaves the freedom of choice to the compiler designer while keeping
the basic subroutine instruction as efficient as possible.

3.6. Virtual addressing
Just as compiler designers had asked hardware architects to provide features catering to
their needs, so did operating system designers put forward their favorite ideas. Such
wishes appeared with the advent of multi-processing and time-sharing, the concepts that
gave birth to operating systems in general. The guiding idea was to use the processor in

 8

an optimal way, switching it to another program as soon as the one under execution
would be blocked by, for example, an input or output operation. The various programs
were thereby executed in interleaved pieces, quasi concurrently. As a consequence,
requests for memory allocation (and release) occurred in an unpredictable, arbitrary
sequence. Yet, individual programs were compiled under the premise of a linear address
space, a contiguous memory block. Worse, physical memory would typically not be large
enough to accommodate sufficiently many processes to make multi-processing beneficial.

The clever solution out of this dilemma was found in indirect addressing, this time hidden
from the programmer. Memory would be subdivided into blocks or pages of fixed length
(a power of 2). A (virtual) address would be mapped into a physical address by using a
page table. As a consequence, individual pages could be placed anywhere in store and,
although spread out, would appear as a contiguous area. Even better, pages not finding
their slot in memory could be out placed in the backyard, on large disks. A bit in the
respective page table entry would indicate, whether the data were currently on disk or in
main memory.

This clever and complex scheme was useful in its time. But it displayed its difficulties
and problems. It practically required all modern hardware to feature page tables and
address mapping, and to hide the cost of indirect addressing – not to speak of disposing
and restoring pages on disk in unpredictable moments – from the unsuspecting user. Even
today, most processors use page mapping, and most operating systems work in the multi-
user mode. But today it has become a questionable idea, because semiconductor
memories have become so large, that the trick of mapping and outplacing is no longer
beneficial. Yet, the overhead of indirect addressing and the complex mechanism still
remain with us.

Ironically, the mechamism of virtual addressing keeps being used for a purpose for which
it had never been intended: Trapping references to non-existant objects, against use of
NIL pointers. NIL is represented by 0, and the page at address 0 is never allocated. this
dirty trick is a misuse of the heavy virtual addressing scheme, and it should have been
solved in a straight-forward way.

3.7. Memory protection and user classes
There is one concept which at first sight may still justify the mapping mechanism:
Protection. Every system allowing several concurrent users must provide a safeguard
against mutual interferences. Mutual protection of program and data of one user from the
other users must be guaranteed. Such a scheme inherently requires a distinction between
users with different rights, called privileges. In principle, two classes suffice, one for the
“regular” user programs subjected to access restrictions, and the other for a “supervisor”
program with unlimited access rights in order to be able to allocate and mark memory
blocks to new user programs and to recycle them after a program had terminated. If a
user program tried to access memory beyond its allocated part, presumably because of an
error, then it would be trapped and control returned to the supervisor program which,
supposedly, was free of errors. Access rights were easily registered in page tables.

On closer inspection one realizes that the need for protection and classes of programs
arises from the fact that programs are possibly erroneous in the sense of issuing requests

 9

for memory outside their allocated memory space, or accessing devices that should not be
directly manipulated. If all programs were written in a proper programming language,
this should not even be possible, because – if the language is correctly implemented – no
reference to resources not named in the program would be possible. Protection must be
implicit in compiled programs; it should be guaranteed by software.

Readers who doubt the sensibility of this postulate, must be reminded that modern
programming systems rely on automatic garbage collection for storage management. A
garbage collector requires exactly the same access safety as a multi-user system does.
Without this safety, a garbage collector may destroy “accidentally” any information even
in a single-user system at any moment. A truly safe system would have to require that all
code be produced by correct compilers, and that they and all generated code would be
immutable. We notice that this requirement almost completely renounces von Neumann’s
glorious idea of programs being accessible as data in their common store.

Hence, hardware protection appears as a crutch, covering only a small part of possible
transgressions, and dispensable if software were implemented safely. It appears now as
having been a good idea at its time that should have been superceded in the meantime.

3.8. Complex Instruction Sets
Early computers featured small sets of simple instructions, because they had to operate
with a minimal amount of expensive circuitry. With hardware getting cheaper, the
temptation rose to incorporate instructions of a more complicated nature, such as
conditional jumps with three targets, instructions that incremented, compared, and
conditionally branched all in one, or complex move and translate operations. With the
advent of high-level languages, the desire arose to accommodate certain language
constructs with correspondingly tailored instructions. A good example is Algol’s for
statement, or instructions for (recursive) procedure calls. Feature-tailored instructions
were a smart idea, because they contributed to code density, which was important at a
time when memory was a scarce resource, consisting of 64 KByte or less.

This trend had set in as early as 1963. The Burroughs B5000 machine not only
accommodated many complicated features of Algol – more about it later – but it
combined a scientific computer with a character string machine, it included two
computers with different instruction sets. Such an extravagance had become possible with
the technique of microprograms stored in fast read-only memories. This feature also
made the idea of a computer family feasible: The IBM Series 360 consisted of a set of
computers, all with the same instruction set and architecture, at least as far as it was
visible to a programmer. However, internally the individuals differed vastly. The low-end
machines were microprogrammed, the genuine hardware executing a short microprogram
interpreting the instruction code. The high-end machines, however, implemented all
instructions directly. This technology continued with single-chip microprocessors like
Intel’s 8086, Motorola’s 68000, and National’s 32000.

The NS processor is a fine example featuring a complex instructions set (CISC).
Congealing frequent instruction patterns into a single instruction improved code density
by a significant factor and reduced the number of memory accesses, increasing execution
speed.

 10

The NS processor accommodated, for example, the new concept of module and separate
compilation with an appropriate call instruction. Code segments were linked when
loaded, the compiler having provided tables with linking information. It is certainly a
good idea to minimize the number of linking operations, which replace references to the
link tables by adsolute addresses. The scheme, which simplifies the task of the linker,
leads to the following storage organization for every module.

Fig. 1. Module layout in store

A dedicated register MOD points to the descriptor of module M, which contains the
procedure P currently being under execution. Register PC is the regular program counter.
Register SB contain the address of M’s data segment, containing M’s static, global
variables. All these registers change their values, whenever an external procedure is
called. To speed up this process, the processor offers the CXP (call external proceure) in
addition to the regular BSR (branch subroutine). Of course, also a paor of corresponding
returns is available: RXP, RTS.

Assume now that a procedure P in a module M is to be activated. The CXP instruction’s
parameter d specifies the entry in the current link table. From this is obtained the address
of M’s descriptor, and also the offset of P within M’s code segment. from the descriptor,
then, the address of M’s data segment is obtained and loaded into SB. All this with a
single, short instruction! However, what had been gained in linking simplicity and in
code density, must be paid somewhere, namely by an increased number of indirect
references, and, incidentally, by additional hardware, the MOD and SB registers.

 11

A second, similar example was an instruction to check array bounds. It compared an
array index against the array’s lower and upper bounds, and it caused a trap, if the index
did not lie withing the bounds, thereby combining two comparsion and two branch
instructions in one.

Several years after our Oberon compiler had been built and released, new, faster versions
of the processor appeared. They went with the trend to implement frequent, simple
instructions directly by hardware, and to let the complex ones be interpreted by an
internal microcode. As a result, those language-oriented instructions became rather slow
compared to the simple operations. So I decided to program a new version of the
compiler which refrained from using the sophisticated instructions. The result was
astonishing! The new code was considerably faster than the old one. It seems that the
computer archictect and we as compiler designers had “optimized” in the wrong place.

Indeed, advanced microprocessors in the early 1980s started to compete with old main
frames, featuring very complex and irregular instruction sets. In fact, instruction sets had
become so complex that most programmers could use only a small fraction of them. Also
compilers selected only from a subset of the available instructions, a clear sign that
hardware architects had gone overboard. The reaction became manifest in the form of
the reduced instruction set computers (RISC), notably the Arm, Mips and Sparc
architectures around 1990. They featured a small set of simple instructions, all executing
in a single clock cycle, a single addressing mode, and a fairly large, single bank of
registers, in short: a highly regular structure. They debunked the CISCs as a bad idea!

3.9. Register windows
When a procedure is called, a block of storage for its local variables must be allocated.
When the procedure is terminated, this storage is to be released. A most convenient
scheme for this purpose is the stack, because release is for free and involves merely the
resetting of an address (stack pointer) in a register.

An often used technique for code optimization is to allocate the most frequently accessed
variables in registers. Ideally, all variables would reside in registers. However, if only a
few in each procedure block would remain in registers, a substantial gain in speed could
already be achieved. This led to the idea of register windows: Upon call of a procedure,
the current set of registers is pushed down, and a new set becomes available for the new
block. As it was foreseeable that memory would become faster, larger, and cheaper in the
future, more and more of these registers would be placed in real fast storage without the
programmer having to adapt his programs. This was the idea of scalability. It led to the
Sparc Processor with the built-in mechanism of register windows: Of the entire stack of
registers, only those on top – in the window – are accessible. Every procedure call opens
a new window, every termination pops it off the stack.

This seemed like a rather clever idea. But it turned out to be a questionable one, although
the Sparc architecture survived as one of the successful examples of RISCs, and it was
later copied by Intel’s Itanium processor. The reason why it must be considered as
questionable, is that at any moment only the top registers, those in the most recently
opened window, are under direct use and are therefore frequently accessed. The others

 12

are quasi dormant, yet consume a scare, expensive resource. Thus, register windows
imply a poor utilization of the most expensive resource.

4. Programming Language Features
A fertile ground for controvercial ideas is the subject of programming languages. Here,
some of the ideas were not only questionable, but known to be bad from the outset. We
try to avoid discussing the merits and atrocities of individual languages. We will rather
concentrate our attention to individual concepts and constructs that have possibly
appeared in several languages. We shall mostly base our discussion on features proposed
by Algol in 1960 and by some of its successors [1].

Before starting to list individual features, it seems necessary to explain on which basis to
assess them. Most people consider a programming language merely as a code with the
sole purpose of constructing software to be “run” by computers. We consider a language
as a model of computation and programs as formal texts amenable to mathematical
reasoning. The model must be defined in such a way that its semantics are defined
without reference to an underlying mechanism, be it physical or abstract. This evidently
lets a complex set of features and facilities explained in large volumes of manuals appear
as a patently bad idea. Actually, a language is not so much characterized by what it
allows to program, but more so by what it prevents from being expressed. Quoting the
late E. W. Dijkstra, the programmer’s most difficult, daily task is to not mess things up. It
seems to me that the first and noble duty of a language is to help in this eternal struggle.

4.1. Notation and Syntax

It has become fashionable to regard notation as a secondary issue depending purely on
personal taste. This may partly be true; yet the choice of notation should not be
considered an arbitrary matter. It has consequences, and it reveals the character of a
language.

A notorious example for a bad idea was the choice of the equal sign to denote
assignment. It goes back to Fortran in 1957 and has blindly been copied by armies of
language designers. Why is it a bad idea? Because it overthrows a century old tradition to
let “=” denote a comparison for equality, a predicate which is either true or false. But
Fortran made it to mean assignment, the enforcing of equality. In this case, the operands
are on unequal footing: The left operand (a variable) is to be made equal to the right
operand (an expression). x = y does not mean the same thing as y = x. Algol corrected
this mistake by the simple solution: Let assignment be denoted by “:=”.

Perhaps this may appear as nitpicking to programmers who got used to the equal sign
meaning assignment. But mixing up assignment and comparison is a truly bad idea,
because it requires that another symbol be used for what traditionally was expressed by
the equal sign. Comparison for equality became denoted by the two characters “==” (first
in C). This is a consequence of the ugly kind, and it gave rise to similar bad ideas using
“++”, “--“, “&&” etc.

Some of these operators exert side-effects (in C, C++, Java, and C#), a notorious source
of programming mistakes. It might be acceptable to let, for example, ++ denote
incrementation by 1, if it would not also denote the incremented value (or the value to be

 13

incremented?), thereby allowing expressions with side-effects. The heart of the trouble
lies in the elimination of the fundamental distinction between statement and expression.
The former is an instruction, and it is executed; the latter stands for a value to be
computed, and it is evaluated.

The ugliness of a construct usually appears in combination with other language features.
In C, we may write, for example, x+++++y, a riddle rather than an expression, and a
challenge for a sophisticated parser! Guess what? Is its value is equal to ++x+++y+1? Or
is the following correct?

x+++++y+1==++x+++y x+++y++==x+++++y+1

One is tempted to postulate a new algebra! It is indeed absolutely surprising with which
eqanimity this notational monster was accepted by the world-wide programmer’s
community.

A similar break with established convention was the postulation of operators being right-
associative in the language APL in 1962. x+y+z now suddenly stood for x+(y+z), and x-
y-z for x-y+z. What a treacherous pitfall!

A case of unfortunate syntax rather than merely poor choice of a symbol was Algol’s
conditional statement. It was offered in two forms, S0, S1 being statements:

if b then S0
if b then S0 else S1

This definition has given rise to an inherent ambiguity and became known as the
dangling else problem.. For example, the statement

if b0 then if b1 then S0 else S1

can be interpreted in two ways, namely

if b0 then (if b1 then S0 else S1)
if b0 then (if b1 then S0) else S1

possibly leading to quite different results. The next example appears even graver:

if b0 then for i := 1 step 1 until 100 do if b1 then S0 else S1

because it can be parsed in two ways, yielding quite different computations:

if b0 then [for i := 1 step 1 until 100 do if b1 then S0 else S1]
if b0 then [for i := 1 step 1 until 100 do if b1 then S0] else S1

The remedy, however, is quite simple: Use an explicit end symbol in every construct that
is recursive and begins with an explicit start symbol, like if, while, for, case:

if b then S0 end
if b then S0 else S1 end

4.2. The GO TO statement
Which other feature could serve better as a starting point for a list of bad ideas? The go to
statement has been the villain of many critics. It is the direct counterpart in languages to
the jump in instruction sets. It can be used to construct conditional as well as repeated

 14

statements. But it also allows to construct any maze or mess of program flow. It defies
any regular structure, and makes structured reasoning about such programs difficult if not
impossible.

Let us explain why the go to statement became the prototype of a bad idea in
programming languages. The primary tools in our struggle to comprehend and control
complex objects are structure and abstraction. An overly complex object is broken up into
parts. The specification of each part abstracts from aspects that are irrelevant for the
whole, whose relevance is local to the object itself. Hence, the design of the whole can
proceed with knowledge limited to the object’s specifications, to its interface.

As a corollary, a language must allow, encourage, or even enforce formulation of
programs as properly nested structures, in which properties of the whole can be derived
from properties of the parts. Consider, for example, the specification of a repetition R of a
statement S. It follows that S appears as a part of R. We show two possible forms:

R0: while b do S end
R1: repeat S until b

The key behind proper nesting is that known properties of S can be used to derive
properties of R. For example, given that a condition (assertion) P is left valid (invariant)
under execution of S, we conclude that P is also left invariant when execution of S is
repeated. This is formally expressed by Hoare’s rules

{P & b} S {P} implies {P} R0 {P & ¬b}
{P} S {P} implies {P} R1 {P & b}

If, however, S contains a go to statement, no such assertion is possible about S, and
therefore neither any deduction about the effect of R. This is a great loss. Practice has
indeed shown that large programs without go to are much easier to understand, and that it
is very much easier to give any guarantees about their properties.

Enough has been said and written about this non-feature to convince almost everyone that
it is a primary example of a bad idea. The designer of Pascal retained the goto statement
(as well as the if statement without closing end symbol). Apparently he lacked the
courage to break with convention and made wrong concessions to traditionalists. But that
was in 1968. By now, almost everybody has understood the problem, but apparently not
the designers of the latest commercial programming languages, such as C#.

4.3. Switches
If a feature is a bad idea, then features built on top of it are even worse ideas. This rule
can well be demonstrated by the switch concept. A switch is essentially an array of
labels. Assuming, for example, labels L1, … L5, a switch declaration in Algol may look
as follows:

switch S := L1, L2, if x < 5 then L3 else L4, L5

Now the apparently simple statement goto S[i] is equivalent to

if i = 1 then goto L1 else
if i = 2 then goto L2 else
if i = 3 then

 15

if x < 5 then goto L3 else goto L4 else
if i = 4 then goto L5

If the goto is suitable for programming a mess, the switch makes it impossible to avoid it.

A most suitable replacement of the switch was proposed by C.A.R.Hoare in 1965: The
case statement. This construct displays a proper structure with component statements to
be selected according to the value i:

case i of
 1: S1 | 2: S2 | ……….. | n: Sn
end

However, modern programming language designers chose to ignore this elegant solution
in favor of a formulation that is a bastard between the Algol switch and a structured case
statement:

switch (i) {
case 1: S1; break;
case 2: S2; break;
… ;
case n: Sn; break; }

Either the break symbol denotes a separation between consecutive statements Si, or it acts
as a goto to the end of the switch construct. In the first case, it is superfluous, in the
second a goto in disguise. A bad concept in a bad notation! The example stems from C.

4.4. Algol’s complicated for statement
Algol’s designers recognized that certain frequent cases of repetition would better be
expressed by a conciser form than in combination with goto statements. They introduced
the for statement, which is particularly convenient in use with arrays, as for example in

for i := 1 step 1 until n do a[i] := 0

If we forgive the rather unfortunate choice of the words step and until, this seems a
wonderful idea. Unfortunately, the good idea was infected with a bad idea, the idea of
imaginative generality. The sequence of values to be assumed by the control variable i
can be specified as a list:

for i := 2, 3, 5, 7, 11 do a[i] := 0

Furthermore, these elements could be general expressions:

for i := x, x+1, y-5, x*(y+z) do a[i] := 0

Not enough, also different forms of list elements were to be allowed:

for i := x-3, x step 1 until y, y+7, z while z < 20 do a[i] := 0

Naturally, clever minds would quickly concoct pathological cases, demonstrating the
absurdity of the concept:

for i := 1 step 1 until i do a[i] := 0
for i := 1 step i until i do i := - i

 16

The generality of Algol’s for statement should have been a warning signal to all future
designers to always keep the primary purpose of a construct in mind, and to be weary of
exaggerated generality and complexity, which may easily become counter-productive.

4.5. Own variables

Algol had introduced the concept of locality. Every procedure spans its own scope,
implying that identifiers declared in the procedure would be local and invisible outside
the procedure. This was probably the most significant innovation introduced by Algol.
Yet, it turned out to be not quite right in certain situations. Specifically, when entering a
procedure, all local variables are fresh variables. This implies that new storage must be
allocated upon entry and released upon exit of the procedure. So far, so good. However,
in some cases it might be desirable to have the value of a variable upon exit remembered
when the procedure is reentered the next time. Evidently, its storage could then not be
released. Algol provided for this option by simply letting the variable be declared as own.
A popular example for this case is a procedure for generating pseudo-random numbers:

 real procedure random; own real x; begin x := (x*a + b) mod c; random := x end

Already this simple example exhibits the crux buried in this concept: How is the initial
seed assigned to the variable x owned by random? Any solution turns out to be rather
cumbersome. A further unresolved question is the meaning of own in the case of
recursion. Evidently, the problem lay deeper. The simple introduction of the symbol own
had evidently created more problems than it had solved.

The problem lay in Algol’s clever notion of tying together the concepts of scopes of
identifiers with that of lifetime of objects. An identifier became visible when the
identified object came into existence (at block entry), and became invisible, when it
ceased to exist (at block exit). The close connection between visibility and existence had
to be broken up. This was done later (in Mesa, Modula, Ada) by introducing the concept
of module (or package). A module’s variables are global, but accessible only from
procedures declared within the module. Hence, when a procedure (local to and exported
from the module) is terminated, the module’s variables continue to exist, and when the
procedure is called again, the old values reappear. The module hides the variables
(information hiding), which are initialized either when the module is loaded or by an
explicit call of an initialization procedure.

This example displays the problems that appear when different concepts – here
information hiding and liveness – are represented by a single language construct. The
solution is to use separate constructs to express the separate concepts, the module for
information hiding, the procedure for liveness of data. A similar case of an unfortunate
marriage is given by some object-oriented languages, which tie together (1) objects with
pointers, and (2) modules with types, called classes.

4.6. Algol’s name parameter
Algol introduced procedures and parameters in a much greater generality than was known
in older languages (Fortran). In particular, parameters were seen as in traditional
mathematics of functions, where the actual parameter textually replaces the formal
parameter [3]. For example, given the declaration

 17

real procedure square(x); real x; square := x * x

the call square(a) is to be literally interpreted as a*a, and square(sin(a)*cos(b)) as
sin(a)*cos(b) * sin(a)*cos(b). This requires the evaluation of sine and cosine twice,
which in all likelihood was not the intention of the programmer. In order to prevent this
frequent, misleading case, a second kind of parameter was postulated in addition to the
above name parameter: the value parameter. It meant that a local variable (x’) is to be
allocated that is initialized with the value of the actual parameter (x). With

real procedure square(x); value x; real x; square := x * x

the above call was to be interpreted as

x’ := sin(a) * cos(b); square := x’ * x’

avoiding the wasteful double evaluation of the actual parameter. The name parameter is
indeed a most flexible device, as is demonstrated by the following examples.

Given the declaration

real procedure sum(k, x, n); integer k, n; real x;
begin real s; s := 0;
 for k := 1 step 1 until n do s := x + s;
 sum := s
end

Now the sum a1 + a2 + … + a100 is written simply as sum(i, a[i], 100), the inner product
of vectors a and b as sum(i, a[i]*b[i], 100) and the harmonic function as sum(i, 1/i, n).
But generality, as elegant and sophisticated as it may appear, has its price. A little
reflection reveals that every name parameter must be implemented as an anonymous,
parameterless procedure. Will the unsuspecting programmer gladly pay for the hidden
overhead? Of course, a cleverly designed compiler might “optimize” certain cases. The
smart designer will rejoyce about the challenge presented by such a wonderful feature!

The reader will perhaps ask at this point: “Why all this fuss?” Perhaps he will come
forward with the suggestion to simply drop the name parameter from the language.
However, this measure would be too drastic and therefore unacceptable. It would, for
example, preclude assignments to parameters in order to pass results back to the caller.
The suggestion, however, led to the replacement of the name parameter by the reference
parameter in later languages such as Algol W, Pascal, Ada, etc. For today, the message is
this: Be skeptical towards overly sophisticated features and facilities. At the very least,
their cost to the user must be known before a language is released, published, and
propagated. This cost must be commensurate with the advantages gained by the feature.

4.7. Incomplete parameter specifications
This issue is almost a continuation of the previous one, as it concerns parameters. It so
happened that the language failed to require complete type specifications for parameters.
It now almost appears as an oversight, but one with grave consequences. Algol permitted,
for example, the following declaration:

real procedure f(x, y); f := (x-y)/(x+y)

 18

Given variables

integer k; real u, v, w

the following calls are possible:

u := f(2.7, 3.14); v := f(f(u+v), 10); w := f(k, 2)

So far, so (more or less) good. More problematic is the following:

real procedure g; g := u*v + w;
u := f(g, g)

Apparently, one cannot deduce from the declaration of f, whether a variable, an
expression, or a function will be substituted for a given formal parameter, nor whether the
function’s parameters are of the correct number and types. When such a formal parameter
is accessed, a test at run-time must first determine, whether the corresponding actual
parameter is a variable, an expression, or a function. This is an overhead unacceptable in
most practical applications.

The story might end here, being of academic interest only, that is, without consequences.
But it does not. After all, the challenge was issued to fulfill the postulated language rules,
and quite obviously the question arose, whether hardware support might provide the
remedy. The Burroughs Corporation went farthest along this path with its B5000
computer. We have already mentioned the introduction of data descriptors to access
arrays, and now we follow with the program descriptor for procedures. Data and program
descriptors differed from data words by their tag field values. If a program descriptor was
accessed by a regular load instruction, not only a simple memory access was performed,
but a procedure call. In short, what cannot be decided by inspection of the program, i.e. at
compile-time, has to be done at run-time. Proper hardware support was the last resort. It
was found in an instruction that can either be a simple data fetch or a complex procedure
call, depending on a tag in the accessed word.

But was this a good or a bad idea? Rather the latter, not only because the mentioned
computer was complicated, expensive, and therefore less than successful in the market,
but because it is not wise to include very complex instructions, whose benefit is marginal.
After all, the language feature that led to these complications must be considered a
mistake, a design flaw, and competent programmers would provide complete parameter
specifications anyway in the interest of program clarity. The urge to obey the Algol
specification to its last letter was an idea of questionable wisdom.

In closing this topic, we present a short procedure declaration, simply to show how a
combination of features, apparently innocent in isolation, can turn into a puzzle.

procedure P(Boolean b; procedure q);
begin integer x;
 procedure Q; x := x+1;
 x := 0;
 if b then P(¬b, Q) else q;
 write(x)
end

Which values will be written by calling P(true, P)? Is it 0, 1, or 1, 0?

 19

4.8. Loopholes
One of the worst features ever is the loophole. This author makes this statement with a
certain amount of tongue in cheek and uneasiness, because he infected his languages
Pascal, Modula, and even Oberon with this deadly virus.

The loophole lets the programmer breach the type checking by the compiler. It is a way
to say: “Don’t interfere, as I am smarter than the rules”. Loopholes take many forms. The
most common are explicit type transfer function, such as

x := LOOPHOLE[i, REAL] Mesa
x := REAL(i) Modula
x := SYSTEM.VAL(REAL, i) Oberon

But they can also be disguised as absolute address specifications, or by variant records as
in Pascal. In the examples above, the internal representation of integer i is to be
interpreted as a floating-point (real) number. This can only be done with knowledge
about number representation, which should not be necessary when dealing with the
abstraction level provided by the language. In Pascal and Modula [4], loopholes were at
least honestly displayed, and in Oberon they are present only through a small number of
functions encapsulated in a pseudo-module System, which must be imported and is thus
explicitly visible in the heading of any module in which such low-level facilities are used.
This may sound like an excuse, but the loophole is nevertheless a bad idea.

Why, then, was it introduced? The reason was the desire to implement total systems in
one and the same (system programming) language. For example, a storage manager must
be able to look at storage as a flat array of locations without data types. It must be able to
allocate blocks and to recycle them, independent of any type constraints. Another
example where a loophole is required is the device driver. In earlier computers, devices
were accessed by special instructions. Later, devices were instead assigned specific
memory addresses. They were “memory-mapped”. Thus arose the idea to let absolute
addresses be specified for certain variables (Modula). But this is a facility that can be
abused in many clandestine and tricky ways.

Evidently, the “normal” user will never need to program a storage manager nor a device
driver, and hence has no need for those loopholes. However – and this is what really
makes the loophole a bad idea – also the “normal” programmer has the loophole at his
disposal. Experience showed that he will not shy away from using it, but rather
enthusiastically grab the loophole as a wonderful feature and use it wherever possible.
This is particularly so, if manuals caution against its use!

It remains to say, that the presence of a loophole facility usually points to a deficiency in
the language proper, it reveals that certain things could not be expressed that might be
important. An example of this kind is the type address in Modula, which had to be used
to program data structures with different types of elements. This was made impossible by
the strict, static typing strategy, which demanded that every pointer was statically
associated with a fixed type, and could only reference such objects. Knowing that
pointers were addresses, the loophole in the form of an innocent looking type transfer
function would make it possible to let pointer variables point to objects of any type. Of
course, the drawback was that no compiler could check the correctness of such

 20

assignments. The type checking system was overruled, and might as well not have
existed. Remember: A chain is only as strong as its weakest member.

The clean solution given in Oberon [6] is the concept of type extension, in object-oriented
languages called inheritance. Now it became possible to declare a pointer as referencing
a given type, and it would be able to point to any type which was an extension of the
given type. This made it possible to construct inhomogeneous data structures, and to use
them with the security of a reliable type checking system. An implementation must check
at run-time, if and only if it is not possible to check at compile-time,.

Programs expressed in languages of the 1960s were full of loopholes. They made these
programs utterly error-prone. But there was no alternative. The fact that a language like
Oberon lets you program entire systems from scratch without use of loopholes (except in
the storage manager and device drivers) marks the most significant progress in language
design over 40 years.

5. Miscellaneus techniques
The last section of bad ideas stems from the wide area of software practice, or rather from
the narrower area of the author’s experiences. Some of the latter were made 40 years ago,
but what can be learnt from them is still as valid today as it was then. Some reflect more
recent practices and trends, mostly supported by the abundant availability of hardware
power.

5.1. Syntax analysis
The 1960s were the decade of syntax analysis. The definition of Algol by a formal syntax
provided the necessary underpinnings to turn language definition and compiler
construction into a field of scientific merit. It established the concept of the syntax-driven
compiler, and it gave rise to many activities for automatic syntax analysis on a
mathematically rigorous basis. The notions of top-down and bottom-up principles, of the
recursive descent technique, of measures for symbol look-ahead and backtracking were
created. This was also accompanied with efforts to define language semantics more
rigorously by piggybacking semantic rules onto corresponding syntax rules.

As it happens with new fields of endeavor, research went rather beyond the needs of the
first hour. More and more powerful parser generators were developed, which managed to
handle ever and ever more general and complex grammars. Albeit this was an intellectual
achievement, the consequence was less positive. It led language designers to believe that
no matter what syntactic construct they postulated, automatic tools could surely detect
ambiguities, and some powerful parser would certainly cope with it. A misled idea! No
such tool would give any indication how that syntax could be improved. Not only had
designers ignored the issue of efficiency, but also the fact that a language serves the
human reader, and not only the automatic parser. If a language poses difficulties to
parsers, it surely does so for the human reader too. Many languages would be clearer and
cleaner, had their designers been forced to use a simple parsing method.

I can strongly support this statement by my own experiences. After having contributed in
the 1960s to the development of parsers for precedence grammars, and having used them
for the implementation of the languages Euler and Algol W, I decided to switch to the

 21

simplest parsing method for Pascal, the method of top-down, recursive descent. The
experience was most encouraging, and I stuck to it up to this day with great satisfaction.

The drawback, if one wants to call so this advantage, is that considerably more careful
thought has to go into the design of the syntax prior to publication and any effort of
implementation. This additional effort will be more than compensated in the later use of
both language and compiler.

5.2. Extensible languages
The phantasies of computer scientists in the 1960s knew no bounds. Spurned by the
success of automatic syntax analysis and parser generation, some proposed the idea of the
flexible, or at least extensible language. The notion was that a program would be
preceded by syntactic rules which would then guide the general parser while parsing the
subsequent program. A step further: The syntax rules would not only precede the
program, but they could be interspersed anywhere throughout the text. For example, if
someone wished to use a particularly fancy private form of for statement, he could do so
elegantly, even specifying different variants for the same concept in different sections of
the same program. The concept that languages serve to communicate between humans
had been completely blended out, as apparently everyone could now define his own
language on the fly. The high hopes, however, were soon damped by the difficulties
encountered when trying to specify, what these private constructions should mean. As a
consequence, the intreaguing idea of extensible languages faded away rather quickly.

5.3. Nested procedures and Dijkstra’s display
Local variables for every procedure! That was one of the greatest inventions of Algol.
The idea to declare other procedures along with variables local to procedures was only
natural and straight-forward. It was a natural consequence for any mathematically trained
mind. But sometimes even straight-forward concepts cause substantial complications for
their implementation. The nesting of procedures is such an example. The problem lies in
the addressing of variables (or objects more generally). To understand it, we need some
preliminaries.

Let us assume the following constellation of three nested procedures P, Q, and R:

procedure P;
begin integer i;
 procedure Q;
 begin integer j;
 procedure R;
 begin integer k; (*P, Q, R, i, j, k visible here*)
 end of R;
 (*P, Q, R, i, j visible here*)
 end of Q;
 (*P, Q, i visible here*)
end of P

How are i, j, and k addressed in the body of R? The possibility of recursion prevents
static addressing. Every procedure call establishes a frame for its own local variables.

 22

They are addressed relative to the frame’s base address, preferably located in a register.
Typically, these frames are placed in a stack (the procedure stack in contrast to the
expression stack), and the frames are linked. Therefore, every access is preceded by
descending along this link chain by a number of steps which is given by the difference in
nesting levels between the accessed variable and the accessing procedure. In the example
above, in the body of R the base of k is found by descending 0 steps, the base of j by
descending 1 step, and the base of i by descending 2 steps in the link.

This simple scheme is, unfortunately, wrong. In addition to the mentioned dynamic link
also a static link must be maintained. The static link always points to the block of the
static environment of a procedure. Even if this chain is usually quite short, variable
access is slowed down, if previously a linked chain has to be traversed. E. W. Dijkstra
therefore proposed to circumvent the traversal of a list by mapping the links into an array
of contiguous memory cells (or registers) called the display, and to use the block level as
index.

The crux of the scheme lies in the fact that the display has to be updated every time a
procedure is called and, unfortunately, sometimes also when it is terminated. Such
updates may well involve several registers, as the following pathological example shows:

procedure A(procedure X);

C

B

A(R)

Q

P

R

begin integer x;
 procedure B; dynamic link static link
 begin integer y;
 procedure C;
 begin integer z; X
 end of C;
 C
 end of B;
 B
end of A;

procedure P;
begin integer i;
 procedure Q;
 begin integer j;
 procedure R;
 begin integer k;
 end of R;
 A(R)
 end of Q;
 Q
end of P

Fig. 2. Procedure frame stack with links

A call of P will evoke the sequence of subsequent activations of P, Q, A, B, C, R. Within
R only the blocks of R, Q and P are accessible with respective variables k, j, i. Upon exit
from R visibility switches back to blocks C, B, A with respective variables z, y, x. It
turned out that the good idea had aggravated rather than solved the problem.

 23

It is indeed difficult to estimate in such complex situations, whether the introduction of a
display makes programs more efficient due to faster memory access (no chain traversals),
or whether it slows them down because of the overhead of display updates. This strongly
depends on the frequency of variable access versus procedure call. In 1970 we had
implemented Pascal for the CDC 6000 computer, and it occurred to the author that indeed
procedure calls became slower and code longer due to the presence of a display.
Therefore, we tried to do without display and found that the compiler itself had become
faster and shorter. The display was a disputable idea.

However, as so often with “optimizations”, the benefit varies among different programs.
Obviously, the display does not affect at all programs without nested procedures. Indeed,
we have here an optimization that seldom can be applied, as intermediate level variables
are relatively rare. The Burroughs Algol compiler did not cater for such variables. All
accesses had to be either global or strictly local. This was probably a good idea, also with
respect to programming clarity.

The main lesson here is that when implementing an optimization facility, one must first
find out whether it is worth while. Usually, it is worth while only for frequently used
constructs.

5.4. Tree-structured symbol tables

Compilers construct symbol tables. They are built up while processing declarations, and
they are searched during the processing of statements. In languages that allow nested
scopes, every scope is represented by its own table.

Traditionally these tables are binary trees in order to allow fast searching. Having also
quietly followed this long-standing tradition, the author dared to doubt the benefit of trees
when implementing the Oberon compiler. As soon as doubts occur, one is quickly
convinced that tree structures are not worth while for local scopes. In the majority of
cases, procedures contain a dozen or even fewer local variables. The use of a linked
linear list is then both simpler and more effective.

In programs 30 and 40 years ago, most variables were declared globally. So perhaps a
tree structure was justified for the global scope. In the meantime, however, skeptizism
against the value of global variables had been on the rise. Modern programs do not
feature many globals, and hence also in this place a tree structured table is hardly
recommendable.

Modern programming systems are compositions of many modules, each of which
probably contains some globals (mostly procedures), but not hundreds. The many globals
of early programs have become distributed over many modules and are referenced not by
a single identifier, but by a name combination M.x defining the initial search path.

The use of sophisticated data structures for symbol tables had evidently been a poor idea.
Once we had even considered balanced trees!

5.5. Using wrong tools

Using the wrong tools is obviously an intrinsically bad idea. The trouble is that often one
discovers a tool’s inadequacy only after having invested a substantial amount of effort to

 24

build and understand it, and the tool thus having become “valuable”. This happened to
the author and his team when implementing the first Pascal compiler in 1969.

The tools available for writing programs were an assembler, a Fortran and an Algol
compiler. The latter was so poorly implemented that we did not dare rely on it, and work
with assembler code was considered dishonorable. There remained only Fortran.

Hence our naïve plans were to construct a compiler for a substantial subset of Pascal
using Fortran, and when completed, to translate it into Pascal. Afterwards, the classical
bootstrapping technique would be employed to complete, refine, and improve the
compiler.

This plan, however, crashed in the face of reality. When step one was completed after
about one man-year’s labor, it turned out that translation of the Fortran code into Pascal
was quite impossible. That program was so much determined by Fortran’s features, or
rather its lack of any, that there was no other option than to write the compiler afresh.
Fortran did not feature pointers and records, and therefore symbol tables had to be
squeezed into the unnatural form of arrays. Fortran did not feature recursive subroutines.
Hence the complicated table-driven bottom-up parsing technique had to be used with
syntax represented by arrays and matrices. In short, the advantages of Pascal could only
be employed by a completely rewritten and restructured, new compiler.

This “incident” revealed, that the apparently easiest way is not always the right way, but
that difficulties also have their benefits: This new compiler, written in Pascal, could not
be tested during development, because no Pascal compiler was available yet. The whole
program for compiling at least a very substantial subset of Pascal, had to be written
without feedback from testing. This was an exercise that was extremely healthy, and it
would be even more so today, in the era of quick trial and interactive error correction.
After we believed that the compiler was “complete”, one member of the team was banned
to his home to translate the program into a syntax-sugared, low-level language, for which
a compiler was available. He returned after two weeks of intensive labor, and a few days
later the first test programs were compiled correctly by the compiler written in Pascal.
The exercise of conscientious programming proved to have been extremely valuable.
Never contain programs so few bugs, as when no debugging tools are available!

Thereafter, new versions, handling more and more of Pascal’s constructs, and producing
more and more refined code, could be obtained by bootstrapping. Immediately after the
first bootstrap, we discarded the translation written in the auxiliary language. Its character
had been much alike that of the ominous low-level language C, published a year later.
After this experience, it was hard to understand that the software engineering community
did not recognize the benefits of adopting a high-level, type-safe language instead of C.

5.6. Wizards
We have discussed the great leaps forward in parsing technology originating in the 1960s.
The results are ever-present since those years. Hardly anybody now constructs a parser by
hand. Instead, one buys a parser generator and feeds it the desired syntax.

This brings us to the topic of automatic tools, now being called wizards. The idea is that
they are to be considered as black boxes, and that the user would not have to understand
their innards, as they were optimally designed and laid out by experts. The idea is that

 25

they automate simple routine tasks, relieving computer users from bothering about them.
Wizards supposedly help you – and this is the key – without your asking, as a faithful,
devoted servant.

Although it would be unwise to launch a crusade against wonderful wizards, this author’s
experiences with wizards were largely unfortunate. He found it impossible to avoid
confronting them in text editors. Worst are those wizards that constantly interfere with
one’s writing, automatically indenting and numbering lines when not desired, capitalizing
certain letters and words at specific places, combining sequences of characters into some
special symbol, ☺, automatically converting a sequence of minus signs into a solid line,
etc. If at least they could easily be deactivated, but typically they are obstinate and
immortal like devils. So much for clever software for dummies: a bad idea!

6. Programming paradigms

6.1. Functional programming

Functional languages had their origin in Lisp [2]. They have undergone a significant
amount of development and change, and they have been used to implement small and
large software systems. This author has always maintained a critical attitude towards such
efforts. Why?

What is, or what characterizes a functional language? It has always appeared that it was
their form, the fact that the entire program consists of function evaluations, nested,
recursive, parametric, etc. Hence the term functional. However, the core of the idea is
that functions inherently have no state. This implies that there are no variables and no
assignments. The place of variables is taken by immutable function parameters, variables
in the sense of mathematics. As a consequence, freshly computed values cannot be
reassigned to the same variable, overwriting its old value. This is why repetion must be
expressed with recursion. A data structure can at best be extended, but no change is
possible in its old part. This yields an extremely high degree of storage recycling; a
garbage collector is the necessary ingredient. An implementation without automatic
garbage collection is unthinkable.

To postulate a state-less model of computation on top of a machinery whose most
eminent characteristic is state, seems to be an odd idea, to say the least. The gap between
model and machinery is wide, and therefore costly to bridge. No hardware support
feature can wash this fact aside: It remains a bad idea for practice. This has in due time
also been recognized by the protagonists of functional languages. They have introduced
state (and variables) in various tricky ways. The purely functional character has thereby
been compromised and sacrificed. The old terminology has become deceiving.

Looking back at the subject of functional programming, it appears that its truly relevant
contribution was certainly not its lack of state, but rather its enforcement of clearly nested
structures, and of the use of strictly local objects. This discipline can, of course, also be
practiced using conventional, imperative languages, which have subscribed to the notions
of nested structures, functions and recursion long ago. Of course, functional
programming implies much more than avoiding goto statements. It also implies
restriction to local variables, perhaps with the exception of very few global state
variables. It probably also considers the nesting of procedures as undesirable. The B5000

 26

computer apparently has been right, after all, in restricting access to strictly local and
strictly global variables.

Are functional languages thus a category of their own merely due to terminology? Are
their functions functions by form only, but not by substance? Or is the substance of the
functional paradigm expressed by simply saying: “No side-effects”?

Many years ago, and with increasing frequency, it is claimed that functional languages
are the best vehicle to introduce parallelism. It would be more to the point to say: To
facilitate compilers to detect opportunities for parallelizing a program. After all, it is
relatively easy to determine which parts of an expression may be evaluated concurrently.
More important is that parameters of a called function may be evaluated concurrently,
provided, of course, that side-effects are banned (which cannot occur in a truly functional
language). As this may be true and perhaps of marginal benefit, this writer believes that a
more effective way to let a system make good use of parallelism is provided by object-
orientation, each object representing its own behaviour in the form of a “private” process.

6.2. Logic programming
Another instance of programming paradigm that has received wide attention is that of
logic programming. Actually, there is only a single well-known language representing
this paradigm: Prolog. Its principal idea is that the specification of actions, such as
assignment to variables, is replaced by the specification of predicates on states. If one or
several of a predicate’s parameters are left unspecified, the system searches for all
possible argument values satisfying the predicate. This implies the existence of a search
engine looking for solutions of logic statements. This mechanism is complicated, often
time-consuming, and sometimes inherently unable to proceed without intervention. This,
however, requires that the user must support the system by providing hints (cuts), and
therefore must understand what is going on, must understand the process of logic
inference, the very thing that he had been promised to be able to ignore.

One must suspect that an interesting intellectual exercise was sold to the public by raising
great expectations. The community was in desperate need for ways to produce better,
more reliable software, and was glad to hear of a possible panacea. But the promises
never materialized. We sadly recall the exaggerated hopes that fueled the project of the
Japanese Fifth Generation Computer, Prolog’s inference machines. Large amounts of
resources were sunk into it. That was an unwise and now forgotten idea.

6.3. Object-oriented programming
In contrast to functional and logic programming, object-oriented programming (OOP)
rests on the same priciples as conventional, procedural programming. Its character is
imperative. A process is described as a sequence of transformations of a state. The
novelty is the partitioning of a global state into individual objects, and the association of
the state transformers (called methods) with the object itself. The objects are seen as the
actors, causing other objects to alter their state by sending messages to them. The
description of an object template is called a class definition.

This paradigm closely reflects the structure of systems “in the real world”, and it is
therefore well suited to model complex systems with complex behaviour. Not

 27

surprisingly, oop has its origins in the field of system simulation (Simula, Dahl and
Nygaard, 1966). Its success in the field of software system design speaks for itself. Its
career started with the language Smalltalk [5] and continued with Object-Pascal, C++,
Eiffel, Oberon, Java, C#. The original Smalltalk implementation provided a convincing
example of its suitability. It was the first to feature windows, menues, buttons and icons,
perfect examples of (visible) objects in the sense outlined above. These examples were
the carriers to success and wide acceptance. The direct modelling of actors diminished
the importance of proving program correctness analytically, because the original
specification is one of behaviour, rather than a static input-output relationship.

Nevertheless, the careful observer may wonder, where the core of the new paradigm
would hide, what was the essential difference to the traditional view of programming.
After all, the old cornerstones of procedural programming reappear, albeit embedded in a
new terminology: Objects are records, classes are types, methods are procedures, and
sending a method is equivalent to calling a procedure. True, records now consist of data
fields and, in addition, methods; and true, the feature called inheritance allows the
construction of heterogeneous data structures, useful also without object-orientation. Was
this change of terminology expressing an essential paradigm shift, or was it a vehicle for
gaining attention, a “sales trick”?

7. Concluding remarks
A collection of ideas has been presented, stemming from a wide spectrum of computing
science, and having been widely acclaimed at their time. For various reasons a closer
inspection reveals certain weaknesses. Some of the ideas are hardly relevant now, due to
changes and advances in the underlying technology, some others have been clever ideas
solving a local problem no longer important, and some have received attention and
success for various non-technical reasons.

We believe that we can learn not only from bad ideas and past mistakes, but even more
from good ideas, analysing them from the distance of time. This collection of topics may
appear as accidental, and it is certainly incomplete. Also, it is written from an
individual’s perspective, with the feeling that Computing Science would benefit from
more frequent analysis, critique, particularly self-critique. After all, thorough self-critique
is the hallmark of any subject claiming to be a science.

References
1. P. Naur (Ed). Report on the Algorithmic Language ALGOL 60. Comm. ACM 3 (May

1960), 299-314.
2. J. McCarthy. Recursive Functions of symbolic Expressions and their Computation by

Machine. Comm. ACM 5, (1962)
3. D. E. Knuth. The Remaining Trouble Spots in ALGOL 60. Comm. ACM 10 (Oct.

1967), 611-618.
4. N. Wirth. Programming in Modula-2. Springer-Verlag, 1982.
5. A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.

Addison-Wesley, 1983.

 28

6. N. Wirth. The Programming Language Oberon. Software – Practice and Experience,
18, (July 1988), 671-691.

Author’s address:
Niklaus Wirth, Langacherstr. 4, CH-8127 Forch Switzerland wirth@inf.ethz.ch

mailto:wirth@inf.ethz.ch

