
leslie
Typewritten Text
Sample Chapter

leslie
Typewritten Text

grokking
algorithms

An illustrated guide for
programmers and other curious people

Aditya Y. Bhargava

M A N N I N G
Shelter ISland

Grokking Algorithms
by Aditya Y. Bhargava

Chapter 2

 Copyright 2016 Manning Publications

vii

contents
preface xiii

acknowledgments xiv

about this book xv

1 Introduction to algorithms 1

Introduction 1

What you’ll learn about performance 2

What you’ll learn about solving problems 2

Binary search 3

A better way to search 5

Running time 10

Big O notation 10

Algorithm running times grow at different rates 11

Visualizing different Big O run times 13

Big O establishes a worst-case run time 15

Some common Big O run times 15

The traveling salesperson 17

Recap 19

2 Selection sort 21

How memory works 22

Arrays and linked lists 24

Linked lists 25

Arrays 26

Terminology 27

Inserting into the middle of a list 29

Deletions 30

viii contents

Selection sort 32

Recap 36

3 Recursion 37

Recursion 38

Base case and recursive case 40

The stack 42

The call stack 43

The call stack with recursion 45

Recap 50

4 Quicksort 51

Divide & conquer 52

Quicksort 60

Big O notation revisited 66

Merge sort vs. quicksort 67

Average case vs. worst case 68

Recap 72

5 Hash tables 73

Hash functions 76

Use cases 79

Using hash tables for lookups 79

Preventing duplicate entries 81

Using hash tables as a cache 83

Recap 86

Collisions 86

Performance 88

Load factor 90

A good hash function 92

Recap 93

6 Breadth-first search 95

Introduction to graphs 96

What is a graph? 98

Breadth-first search 99

Finding the shortest path 102

ixcontents

Queues 103

Implementing the graph 105

Implementing the algorithm 107

Running time 111

Recap 114

7 Dijkstra’s algorithm 115

Working with Dijkstra’s algorithm 116

Terminology 120

Trading for a piano 122

Negative-weight edges 128

Implementation 131

Recap 140

8 Greedy algorithms 141

The classroom scheduling problem 142

The knapsack problem 144

The set-covering problem 146

Approximation algorithms 147

NP-complete problems 152

Traveling salesperson, step by step 153

How do you tell if a problem is NP-complete? 158

Recap 160

9 Dynamic programming 161

The knapsack problem 161

The simple solution 162

Dynamic programming 163

Knapsack problem FAQ 171

What happens if you add an item? 171

What happens if you change the order of the rows? 174

Can you fill in the grid column-wise instead

of row-wise? 174

What happens if you add a smaller item? 174

Can you steal fractions of an item? 175

Optimizing your travel itinerary 175

Handling items that depend on each other 177

x contents

Is it possible that the solution will require

 more than two sub-knapsacks? 177

Is it possible that the best solution doesn’t fill

 the knapsack completely? 178

Longest common substring 178

Making the grid 179

Filling in the grid 180

The solution 182

Longest common subsequence 183

Longest common subsequence—solution 184

Recap 186

10 K-nearest neighbors 187

Classifying oranges vs. grapefruit 187

Building a recommendations system 189

Feature extraction 191

Regression 195

Picking good features 198

Introduction to machine learning 199

OCR 199

Building a spam filter 200

Predicting the stock market 201

Recap 201

11 Where to go next 203

Trees 203

Inverted indexes 206

The Fourier transform 207

Parallel algorithms 208

MapReduce 209

Why are distributed algorithms useful? 209

The map function 209

The reduce function 210

Bloom filters and HyperLogLog 211

Bloom filters 212

xi

HyperLogLog 213

The SHA algorithms 213

Comparing files 214

Checking passwords 215

Locality-sensitive hashing 216

Diffie-Hellman key exchange 217

Linear programming 218

Epilogue 219

answers to exercises 221

index 235

contents

2

In this chapter

• You learn about arrays and linked lists—two of the
most basic data structures. They’re used absolutely
everywhere. You already used arrays in chapter 1,
and you’ll use them in almost every chapter in this
book. Arrays are a crucial topic, so pay attention!
But sometimes it’s better to use a linked list instead
of an array. This chapter explains the pros and cons
of both so you can decide which one is right for
your algorithm.

• You learn your first sorting algorithm. A lot of algo-
rithms only work if your data is sorted. Remember
binary search? You can run binary search only
on a sorted list of elements. This chapter teaches
you selection sort. Most languages have a sorting
algorithm built in, so you’ll rarely need to write
your own version from scratch. But selection sort is
a stepping stone to quicksort, which I’ll cover in the
next chapter. Quicksort is an important algorithm,
and it will be easier to understand if you know one
sorting algorithm already.

selection
sort

21

22 Chapter 2 I Selection sort

How memory works
Imagine you go to a show and need to check your things. A chest of
drawers is available.

Each drawer can hold one element. You want to store two things, so you
ask for two drawers.

What you need to know
To understand the performance analysis bits in this chapter, you need to
know Big O notation and logarithms. If you don’t know those, I suggest
you go back and read chapter 1. Big O notation will be used throughout
the rest of the book.

23How memory works

You store your two things here.

And you’re ready for the show! This is basically how your computer’s
memory works. Your computer looks like a giant set of drawers, and
each drawer has an address.

fe /0ffeeb is the address of a slot in memory.
Each time you want to store an item in memory, you ask the computer
for some space, and it gives you an address where you can store your
item. If you want to store multiple items, there are two basic ways to
do so: arrays and lists. I’ll talk about arrays and lists next, as well as the
pros and cons of each. There isn’t one right way to store items for every
use case, so it’s important to know the differences.

24

Arrays and linked lists
Sometimes you need to store a list of elements in memory. Suppose
you’re writing an app to manage your todos. You’ll want to store the
todos as a list in memory.
Should you use an array, or a linked list? Let’s store the todos in an
array first, because it’s easier to grasp. Using an array means all your
tasks are stored contiguously (right next to each other) in memory.

Now suppose you want to add a fourth task. But the next drawer is
taken up by someone else’s stuff!

It’s like going to a movie with your friends and finding a place to sit—
but another friend joins you, and there’s no place for them. You have to
move to a new spot where you all fit. In this case, you need to ask your
computer for a different chunk of memory that can fit four tasks. Then
you need to move all your tasks there.

Chapter 2 I Selection sort

25Arrays and linked lists

If another friend comes by, you’re out of room again—and you all have
to move a second time! What a pain. Similarly, adding new items to
an array can be a big pain. If you’re out of space and need to move to a
new spot in memory every time, adding a new item will be really slow.
One easy fix is to “hold seats”: even if you have only 3 items in your task
list, you can ask the computer for 10 slots, just in case. Then you can
add 10 items to your task list without having to move. This is a good
workaround, but you should be aware of a couple of downsides:

• You may not need the extra slots that you asked for, and then that
memory will be wasted. You aren’t using it, but no one else can use
it either.

• You may add more than 10 items to your task list and have to
move anyway.

So it’s a good workaround, but it’s not a perfect solution. Linked lists
solve this problem of adding items.

Linked lists
With linked lists, your items can be anywhere in memory.

Each item stores the address of the next item in the list. A bunch of
random memory addresses are linked together.

26

It’s like a treasure hunt. You go to the first address, and it says, “The next
item can be found at address 123.” So you go to address 123, and it says,
“The next item can be found at address 847,” and so on. Adding an item
to a linked list is easy: you stick it anywhere in memory and store the
address with the previous item.
With linked lists, you never have to move your items. You also avoid
another problem. Let’s say you go to a popular movie with five of your
friends. The six of you are trying to find a place to sit, but the theater
is packed. There aren’t six seats together. Well, sometimes this happens
with arrays. Let’s say you’re trying to find 10,000 slots for an array. Your
memory has 10,000 slots, but it doesn’t have 10,000 slots together. You
can’t get space for your array! A linked list is like saying, “Let’s split up
and watch the movie.” If there’s space in memory, you have space for
your linked list.
If linked lists are so much better at inserts, what are arrays good for?

Arrays
Websites with top-10 lists use a scummy tactic to get more page views.
Instead of showing you the list on one page, they put one item on each
page and make you click Next to get to the next item in the list. For
example, Top 10 Best TV Villains won’t show you the entire list on one
page. Instead, you start at #10 (Newman), and you have to click Next on
each page to reach #1 (Gustavo Fring). This technique gives the websites
10 whole pages on which to show you ads, but it’s boring to click Next 9
times to get to #1. It would be much better if the whole list was on one
page and you could click each person’s name for more info.
Linked lists have a similar problem. Suppose you want to read the last
item in a linked list. You can’t just read it, because you don’t know what
address it’s at. Instead, you have to go to item #1 to get the address for

Chapter 2 I Selection sort

Linked memory
addresses

27Arrays and linked lists

item #2. Then you have to go to item #2 to get the address for item #3.
And so on, until you get to the last item. Linked lists are great if you’re
going to read all the items one at a time: you can read one item, follow
the address to the next item, and so on. But if you’re going to keep
jumping around, linked lists are terrible.
Arrays are different. You know the address for every item in your array.
For example, suppose your array contains five items, and you know it
starts at address 00. What is the address of item #5?

Simple math tells you: it’s 04. Arrays are great if you want to read
random elements, because you can look up any element in your array
instantly. With a linked list, the elements aren’t next to each other,
so you can’t instantly calculate the position of the fifth element in
memory—you have to go to the first element to get the address to the
second element, then go to the second element to get the address of
the third element, and so on until you get to the fifth element.

Terminology
The elements in an array are numbered. This numbering starts from 0,
not 1. For example, in this array, 20 is at position 1.

And 10 is at position 0. This usually throws new programmers for a
spin. Starting at 0 makes all kinds of array-based code easier to write,
so programmers have stuck with it. Almost every programming
language you use will number array elements starting at 0. You’ll
soon get used to it.

28

The position of an element is called its index. So instead of saying, “20 is
at position 1,” the correct terminology is, “20 is at index 1.” I’ll use index
to mean position throughout this book.
Here are the run times for common operations on arrays and lists.

Question: Why does it take O(n) time to insert an element into an
array? Suppose you wanted to insert an element at the beginning of an
array. How would you do it? How long would it take? Find the answers
to these questions in the next section!

EXERCISE
2.1 Suppose you’re building an app to keep track of your finances.

Every day, you write down everything you spent money on. At the
end of the month, you review your expenses and sum up how much
you spent. So, you have lots of inserts and a few reads. Should you
use an array or a list?

Chapter 2 I Selection sort

29Arrays and linked lists

Inserting into the middle of a list
Suppose you want your todo list to work more like a calendar. Earlier,
you were adding things to the end of the list.
Now you want to add them in the order in which they should
be done.

What’s better if you want to insert elements in the middle: arrays or
lists? With lists, it’s as easy as changing what the previous element
points to.

But for arrays, you have to shift all the rest of the elements down.

And if there’s no space, you might have to copy everything to a new
location! Lists are better if you want to insert elements into the middle.

Unordered Ordered

30 Chapter 2 I Selection sort

Deletions
What if you want to delete an element? Again, lists are better, because
you just need to change what the previous element points to. With
arrays, everything needs to be moved up when you delete an element.
Unlike insertions, deletions will always work. Insertions can fail
sometimes when there’s no space left in memory. But you can always
delete an element.
Here are the run times for common operations on arrays and
linked lists.

It’s worth mentioning that insertions and deletions are O(1) time only
if you can instantly access the element to be deleted. It’s a common
practice to keep track of the first and last items in a linked list, so it
would take only O(1) time to delete those.
Which are used more: arrays or lists? Obviously, it depends on the use
case. But arrays see a lot of use because they allow random access. There
are two different types of access: random access and sequential access.
Sequential access means reading the elements one by one, starting
at the first element. Linked lists can only do sequential access. If you
want to read the 10th element of a linked list, you have to read the first
9 elements and follow the links to the 10th element. Random access
means you can jump directly to the 10th element. You’ll frequently
hear me say that arrays are faster at reads. This is because they provide
random access. A lot of use cases require random access, so arrays are
used a lot. Arrays and lists are used to implement other data structures,
too (coming up later in the book).

31Arrays and linked lists

EXERCISES
2.2 Suppose you’re building an app for restaurants to take customer

orders. Your app needs to store a list of orders. Servers keep adding
orders to this list, and chefs take orders off the list and make them.
It’s an order queue: servers add orders to the back of the queue, and
the chef takes the first order off the queue and cooks it.

 Would you use an array or a linked list to implement this queue?
(Hint: Linked lists are good for inserts/deletes, and arrays are good
for random access. Which one are you going to be doing here?)

2.3 Let’s run a thought experiment. Suppose Facebook keeps a list of
usernames. When someone tries to log in to Facebook, a search is
done for their username. If their name is in the list of usernames,
they can log in. People log in to Facebook pretty often, so there are
a lot of searches through this list of usernames. Suppose Facebook
uses binary search to search the list. Binary search needs random
access—you need to be able to get to the middle of the list of
usernames instantly. Knowing this, would you implement the list
as an array or a linked list?

2.4 People sign up for Facebook pretty often, too. Suppose you decided
to use an array to store the list of users. What are the downsides
of an array for inserts? In particular, suppose you’re using binary
search to search for logins. What happens when you add new users
to an array?

2.5 In reality, Facebook uses neither an array nor a linked list to store
user information. Let’s consider a hybrid data structure: an array
of linked lists. You have an array with 26 slots. Each slot points to a
linked list. For example, the first slot in the array points to a linked
list containing all the usernames starting with a. The second slot
points to a linked list containing all the usernames starting with b,
and so on.

32 Chapter 2 I Selection sort

 Suppose Adit B signs up for Facebook, and you want to add them
to the list. You go to slot 1 in the array, go to the linked list for slot
1, and add Adit B at the end. Now, suppose you want to search for
Zakhir H. You go to slot 26, which points to a linked list of all the
Z names. Then you search through that list to find Zakhir H.

 Compare this hybrid data structure to arrays and linked lists. Is it
slower or faster than each for searching and inserting? You don’t
have to give Big O run times, just whether the new data structure
would be faster or slower.

Selection sort
Let’s put it all together to learn your second algorithm:
selection sort. To follow this section, you need to
understand arrays and lists, as well as Big O notation.
Suppose you have a bunch of music on your computer.
For each artist, you have a play count.

You want to sort this list from most to least played, so that you can rank
your favorite artists. How can you do it?

33Selection sort

One way is to go through the list and find the most-played artist. Add
that artist to a new list.

Do it again to find the next-most-played artist.

Keep doing this, and you’ll end up with a sorted list.

34 Chapter 2 I Selection sort

Let’s put on our computer science hats and see how long this will take to
run. Remember that O(n) time means you touch every element in a list
once. For example, running simple search over the list of artists means
looking at each artist once.

To find the artist with the highest play count, you have to check each
item in the list. This takes O(n) time, as you just saw. So you have an
operation that takes O(n) time, and you have to do that n times:

This takes O(n × n) time or O(n2) time.
Sorting algorithms are very useful. Now you can sort

• Names in a phone book

• Travel dates

• Emails (newest to oldest)

35

Selection sort is a neat algorithm, but it’s not very fast. Quicksort is a
faster sorting algorithm that only takes O(n log n) time. It’s coming up
in the next chapter!

EXAMPLE CODE LISTING
We didn’t show you the code to sort the music list, but following is
some code that will do something very similar: sort an array from
smallest to largest. Let’s write a function to find the smallest element
in an array:

def findSmallest(arr):
 smallest = arr[0] Stores the smallest value
 smallest_index = 0 Stores the index of the smallest value
 for i in range(1, len(arr)):
 if arr[i] < smallest:
 smallest = arr[i]
 smallest_index = i
 return smallest_index

Now you can use this function to write selection sort:

def selectionSort(arr): Sorts an array
 newArr = []
 for i in range(len(arr)):
 smallest = findSmallest(arr)
 newArr.append(arr.pop(smallest))
 return newArr

print selectionSort([5, 3, 6, 2, 10])

Selection sort

Checking fewer elements each time
Maybe you’re wondering: as you go through the operations, the number
of elements you have to check keeps decreasing. Eventually, you’re down
to having to check just one element. So how can the run time still be
O(n2)? That’s a good question, and the answer has to do with constants
in Big O notation. I’ll get into this more in chapter 4, but here’s the gist.

You’re right that you don’t have to check a list of n elements each time.
You check n elements, then n – 1, n - 2 … 2, 1. On average, you check a
list that has 1/2 × n elements. The runtime is O(n × 1/2 × n). But constants
like 1/2 are ignored in Big O notation (again, see chapter 4 for the full
discussion), so you just write O(n × n) or O(n2).

Finds the smallest element in the
array, and adds it to the new array

36

Recap

• Your computer’s memory is like a giant set of drawers.

• When you want to store multiple elements, use an array or a list.

• With an array, all your elements are stored right next to each other.

• With a list, elements are strewn all over, and one element stores
the address of the next one.

• Arrays allow fast reads.

• Linked lists allow fast inserts and deletes.

• All elements in the array should be the same type (all ints,
all doubles, and so on).

Chapter 2 I Selection sort

	Cover
	contents
	Chapter 2 Selection Sort
	How memory works
	Arrays and linked lists
	Arrays
	Terminology
	Inserting into the middle of a list
	Deletions
	Selection sort
	Recap

