
Inheritance Is Not Subtyping

William R. Cook Walter L. Hill Peter S. Canning
Hewlett -Packard Laboratories

P.O. Box 10490 Palo Alto CA 94303-0969

Abstract

In typed object-oriented languages the subtype relation
is typically based on the inheritance hierarchy. This ap-
proach, however, leads either to insecure type-systems
or to restrictions on inheritance that make it less flexible
than untyped Smalltalk inheritance. We present a new
typed model of inheritance that allows more of the flex-
ibility of Smalltalk inheritance within a statically-typed
system. Significant features of our analysis are the intro
duction of polymorphism into the typing of inheritance
and the uniform application of inheritance to objects,
classes and types. The resulting notion of type inher-
itance allows us to show that the type of an inherited
object is an inherited type but not always a subtype.

1 Introduction

In strongly-typed object-oriented languages like Simula
[I], C++ [28], Trellis [25], Eiffel [19], and Modula-3 [9],
the inheritance hierarchy determines the conformance
(subtype) relation. In most such languages, inheritance
is restricted to satisfy the requirements of subtyping.
Eiffel, on the other hand, has a more expressive type
system that allows more of the flexibility of Smalltalk
inheritance [14], but suffers from type insecurities be-
cause its inheritance construct is not a sound baais for
a subtype relation [12].

In this paper we present a new typed model of inher-
itance that supports more of the flexibility of Smalltalk
inheritance while allowing static type-checking. The
typing is based on an extended polymorphic lambda-
calculus and a denotational model of inheritance. The
model contradicts the conventional wisdom that inher-
itance must always make subtypes. In other words,
we show that incremental change, by implementation
inheritance, can produce objects that are not subtype
compatible with the original objects. We introduce the
notion of type inheritance and show that an inherited

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-3434/90/0001/0125 $1 SO 125

object has an inherited type. Type inheritance is the ba-
sis for a new form of polymorphism for object-oriented
programming.

Much of the work presented here is connected with the
use of self-reference, or recursion, in object-oriented lan-
guag- 13, 4, 51. 0 ur model of inheritance is intimately
tied to recursion in that it is a mechanism for incre-
mental extension of recursive structures [lI, 13, 221. In
object-oriented languages, recursion is used at three lev-
els: objects, classes, and types. We apply inheritance
uniformly to each of these forms of recursion while en-
suring that each form interacts properly with the others.
Since our terminology is based on this uniform develop-
ment, it is sometimes at odds with the numerous tech-
nical terms used in the object-oriented paradigm. Our
notion of object inheritance subsumes both delegation
and the traditional notion of class inheritance, while our
notion of class inheritance is related to Smalltalk meta-
classes.

Object inheritance is used to construct objects incre-
mentally. We show that when a recursive object defini-
tion is inherited to define a new object, a correspond-
ing change is often required in the type of the object.
To achieve this effect, polymorphism is introduced into
recursive object definitions by abstracting the type of
self. Inheritance is defined to specialize the inherited
definition to match the type of the new object being
defined. A form of polymorphism developed for this
purpose, called F-bounded polymorphism [3], is used to
characterize the extended types that may be created by
inheritors.

Class inheritance supports the incremental definition
of classes, which are parameterized object definitions.
A class is recursive if its instances use the class to cre-
ate new instances. When a class is inherited to define a
new class, the inherited creation operations are updated
to create instances of the new,class. Since class recur-
sion is also related to recursion in the object types, the
polymorphic typing of inheritance is extended to cover
class recursion. We also introduce a generalization of
class inheritance that allows modification of instantia-
tion parameters.

A final application of inheritance is to the definition
of recursive types. Type inheritance extends a recursive

record type to make a new type with similar recursive
structure but more fields. Because of an interaction be-
tween function subtyping and recursion, an inherited
type is not necessarily a subtype of the type from which
it was derived. This is a second sense in which inher-
itance is not subtyping. Type inheritance is useful for
constructing the types of objects produced by object
inheritance. In addition, F-bounded polymorphic func-
tions can be applied to the types of objects that in-
herit from a given object definition and then to objects
of that type; objects with different inherited types are
prevented from being mixed together.

The typed model of inheritance is directly relevant
to the analysis and design of programming languages.
It indicates how object-oriented languages could be ex-
tended to support more flexible forms of inheritance
while retaining static typing. Several other theories of
typed inheritance have also been proposed [15, 20, 301.
A preliminary comparison reveals a similarity of ap-
proach. However, the models are based on a wide range
of theoretical foundations, and more research is required
to resolve the differences.

The next section surveys terminology and background
on objects, types, and inheritance for our model of
object-oriented programming. The following three sec-
tions are organized to address the use of inheritance
for the three kinds of recursion found in object-oriented
programs. Section 3 examines the relationship between
object recursion and type recursion, and introduces a
polymorphic typing of inheritance to allow more flexi-
bility in the presence of recursive types. Section 4 in-
troduces recursive classes with instantiation parameters
and extends inheritance to allow modification of param-
eters by subclasses. Section 5 defines a notion of inher-
itance for types and demonstrates its connection to ob-
ject inheritance. Section 6 illustrates these features with
a practical programming example. Section 7 applies the
model to the analysis of object-oriented languages and
compares it to other models of typed inheritance.

2 Background

2.1 A Typed Record Calculus

A typed polymorphic lambda-calculus with records is
used to describe the typing of inheritance. The language
is functional and explicitly typed; no provision is made
for imperative constructs or type inference. Imperative
constructs, which support mutable object state, are not
included because they do not affect the analysis of in-
heritance. An untyped version of the calculus is used to
introduce new constructs before giving a typed presen-
tation.

2.2 Records

A record is a finite mapping of labels to values. A
record with fields 51, . . . , z,, and associated values
w, “a, un iswritten (z~=v~,...,z,,=v~}. Ifthe
values have type ul, . . . , a,, then the record has type
(Xl : Ul, xn : un) . Selecting the a component of a
record r is given by r.a.

Cardelli [6, 81 d t fi d i en i e record subtyping as an im-
portant form of polymorphism in object-oriented pro-
gramming. The main idea is that if a record r has fields
Xl : Ul,...,Xk : uk and also xk+l : uh+l,. . . ,ZL : UL,
then a record r’ with fields x1 : ~1,. . . , TV : uk can be
constructed from r by omitting fields. Therefore, any
record with type (zr : ~1,. . , , ok : Q,. . . ,tf : 01) can
be coerced into a record of type (21 : ur , . . . , Xk : uk}.
The general form of this coercion allows the field values
to be coerced as well:

{xl :61,..., xk :uk ,..., x~:u~}

< (21 : /-‘l, . *. , zk : Pk}

In our model, record types indicate exactly what fields
a record contains. This differs from Cardelli, who uses a
subsumption model in which a record type represents all
records that have at least the specified fields. We do not
use subsumption because it complicates the problem of
record combination.

2.3 Record Combination

The language supports a simple record combination op-
erator, with, that joins two records. The typing of with
is defined by a typed introduction rule.

el : (Xl :Ul, .e., Xj :Uj,Xj+l :Tl, aa., Xk :rk-j}

fZ2 : {Xj+l : Uj+l, . m ., X* : Un } (k 5 4

If there are common fields, zj:i+l, . . . , xk, they may have
different types in the two records. The conflict is re-
solved by taking the value from e2. An analogous oper-
ator, +, is defined on record types. The evaluation rule
performs the corresponding operation on record values,
The operator with is well-behaved because our types
are exact specifications of the fields in a record. If sub-
sumption were allowed, the actual value of e2 could have
more fields than mentioned in its type. According to the
evaluation rule, these fields would take precedence over
the fields in el resulting in a unsound typing.

Our record combination operator is simpler than the
ones proposed by R,Gmy [23] and Wand [29, 301. The
simply typed version of with is sufficient for the analysis
in this paper.

126

2.4 Recursive Types

The notation for a recursive type defined by T = F[Tj
is p t.F[t] . A recursive type is equal to its infinite ex-
pansion. One step in this expansion is given by the
unrolling rule:

p t.F[t] = F[lrt.F[t]]

One recursive subtype is a subtype of another if their
infinite expansions are in a subtype relation. An induc-
tion rule is used to specify the subtype relation [7].

I?, 8 It I- u[s] sT[t]
r I- /LS. u[s]<pt. T[t]

.m

To illustrate, the types Tl and Ts are subtypes of T.
These subtypes do not have the same pattern of recur-
sion as T. T3 is not a subtype of T, even though it has
the same recursive structure, because of the contravari-
ante [6] of the function type in the b field.

T=pt.{a:int,c:t,b:t+t}
Tl= {a:int,c:T,b:T+T,d:bool}
T~=pt.{a:int,c:t,b:T-+t,d:bool}
T3=pt.{a:int,c:t,b:t+t,d:bool}

While our language does not support mutable object
state, lexically bound variables can be used to param-
eterize objects (see Section 4.1). If mutable variables
were supported, any pattern of shared state among dif-
ferent objects could be defined, including those char-
acteristic of delegation systems [lS]. To simplify the
presentation, some methods are simple values instead
of functions; if state were introduced then lambda-
abstractions would be required on all methods to delay
evaluation.

2.5 Polymorphism 2.7 Inheritance

Subtype-bounded polymorphism [lo] allows functions
to be written that operate uniformly over all sub-
types of a given type. A bounded polymorphic func-
tion is defined by the expression A t 5 U. e. If assum-
ing t 5 (T gives e type T, then the polymorphic func-
tion has type Vt < 6.7. For recursive types, however,
there are forms of structural similarity not captured
by subtyping, as illustrated above. The types that
have the recursive structure of T = ,ut.F[t] are those
that satisfy the constraint t < F[t]. In the example
above, F[t] = { a:int,c:t,b:t+t}. Of types Tl,Tz
and T,, only T3 satisfies the constraint T3 5 F[TS]. F-
bounded polymorphism [3], written V t 5 F[t].a, supports
parametric quantification over the recursive types that
share the recursive structure specified by F. Exam-
ples demonstrating the use of F-bounded polymorphism
in typing functions involving recursive types are given
in [3].

An untyped, compositional model of inheritance based
on the fixed-point function, Y, was developed indepen-
dently by Cook [ll, 131 and Reddy 1221. Given a defi-
nition, P, of a parent recursive value Y(P) and a self-
referential modifier M, one may construct a child value
Y(X(s). M(s)(P(s))). This example illustrates inheri-
tance aa an operation on recursive definitions.

Inheritance allows a new object definition to be de-
rived from an existing one where self-reference in the
inherited object definition is unified with self-reference
in new methods.

C = A(seli). P(self) with
(m: = ei, . . . , rni = e; }

The use of the pseudovariable super to refer directly to
parent methods is also supported in the model. This
generalization is illustrated in Section 6.

2.6 Objects

As in [5, 11, 22, 311, we represent objects as records
whose fields contain methods. The methods of an object
may refer to each other, so objects are naturally viewed
as mutually recursive definitions. The traditional inter-
pretation of mutual recursion from denotational seman-
tics is as a fixed point of a function on environments of
identifiers. For example, an object handling messages

A simple typing of inheritance is easily derived by
adding type-constraints to the basic inheritance model
Ill]. If P has type u -w for some CT, then the object
Y(P) has type u. If the modifier has type 746-r to
produce an object of type T from one of type u, then
X(s). M(s)(P(s)) has type T-+T and its fixed point is an
object of type r. The significant constraint introduced
by inheritance is that r must be a subtype of u for the
application P(s) to be type-correct.

ml, . . . , mj by methods el, . . . , ej is a fixed point of
the function P.

P = A(seIf). {ml = el, . . . , mj = Cj } .

The expressions el, . . . , ej may contain references to
self; for example, to call the m method with argument 3
one would write selfm(3). The function P is a definition
of the object Y(P). The type of an object is a record
type, and is often a recursive record type [2, 3, 4,5, 241.
Recursion in object types is associated, for example,
with a method that simply returns the pseudovariable
self.

(2)

127

3 Object Inheritance

3.1 Problems in the Simple Typing of
Inheritance

In this section we illustrate some problems in using the
simple typing of inheritance to define objects with re-
cursive types. One problem arises because the simple
typing of inheritance does not always provide the most
precise type possible. Consider a simple object defini-
tion with a method i returning the value 5 and a method
id that returns the object itself.

P=A(seJf). {i=5,id=seJf}

The object Y(P) has type o = pt.{i: i&id : t} , thus
the simple typing of inheritance gives P the type b+u.
A child C is defined by inheriting P and adding a single
boolean field b.

C = X(seJf). P(seJfl with {b = true}

In the simple typing of inheritance, Y(C) has type
u + {b : bool}, or rl = {i : int,id : u,b : bool).
Note that rl is not directly recursive in the type of the
id method.

Expanding C to eliminate P(seJf) and combine
records gives an equivalent expression.

Cl = A(selt>. (i = 5, id = self, b = true}

Y(Cl) has type 72 = pt. {i : int,id : t, b : bool} . Since
rz < 71 the simple typing has resulted in less precise
type for the inherited object than is possible.

A more serious problem occurs when attempting to
use contravariant [6] recursive types. Consider a new
object definition with an equality method instead of an
identity method.

P’ = A(seJf). (i = 5, eq = X(o). (o.i = seJf.i) }

Although several typings for Y(P) are possible, the one
that expresses eq as a binary method is recursive in the
type of the eq method.

u’ = pt. {i : int, eq : t--*bool}

Now C’ can be defined, by inheriting P’ while adding a
b field and redefining eq.

C’ = X(seJf). P’(seJf) with
{ b = true,

eq = A(o). (o.i = seJf.i and
o. b = self. b)

1

Before examining possible typings for C, consider the
object it defines. The object Y(C’) has a recursive type,
r;.

4 = pt. {i : int, b : bool, eq : t-+booJ}

The simple typing of C’ fails because ri $ u’. Simp!e
types cannot be assigned to the definition of C’ because
P’ of type U’-XT’ cannot be applied to self which has
type ~4 as required by the inheritance. It is important
to note that in an untyped framework this use of inher-
itance is meaningful, but the type system is simply not
expressive enough to describe the relevant constraints.
The simple typing of inheritance, with its subtype as-
sumption, cannot give a typing for this example.

3.2 Polymorphism and Inheritance

To overcome these problems we introduce polymor-
phism directly into the mechanism of inheritance. This
is motivated by observing the type-dependency within
a recursive definition: the type of object created de-
pends on the type of self We provide a more flexi-
ble typing by abstracting the type of self and replac-
ing type recursion by type-dependency. The type re-
cursion is reintroduced when the object is constructed.
Let F[t] = {ml : =1, mj : oj } be a type function
defining a recursive type c = pt.F[t]. An object with
methods ei of type ui is defined by an expression in
which the type of self is polymorphic.

P : v t 5 F[t].t+F[t]

P = A t 5 F[t] . X(seZf: t). (3)
{ml =el, mj = ej }

The F-bounded constraint t 5 F[t] is central to the
model. It provides information about the methods
defined by the object denoted by self. For example,
if F[t] = {m : t-4, n : t 1, the n method could return
seJf.m(seJr). Of course, the exact type t is unknown -
it is supplied by inheritors to indicate the type of the
complete object into which the methods in P are being
incorporated.

Object instantiation must now include the type of
the object being created, as in Y(P[a]). The simple
typing is recovered by forming P[a] : u+F[cr], which,
by unrolling, is equal to u-+g.

For inheritance, it is necessary to define a type
7 = p s.G[s] such that G[t] 5 F[t]. Any type satisfy-
ing i < G[t] also satisfies t < F[t].

The typing of inheritance involves defining a new
polymorphic function that specializes its parent to the
appropriate type before modifying its methods.

C : Vt 5 G[t].t+G[t]

C = A t 5 G[t] . A(self: t).
P[t](seJif) with {mi = e/,, . . . , rn; = ea }

(4)

The fields rni must be assigned values as specified in
G[t]. The use of P[t] is type-correct because G[t] 5 F[t].
The simple record combination operator, with, is suffi-
cient because it is applied to values whose types are con-
stant. Although it might seem reasonable to abstract

128

over P to produce an abstwct subclass, or wrapper [21],
the resulting function cannot be assigned a useful type
without a more expressive record combination operator.

To illustrate the polymorphic typing of inheritance,
the examples from Section 3.1 are combined into a single
construct.

P = At 5 F[t] . A(self: t).
{ i=5,

id = self,
eq = X(0 : t). (0.i = seEI)

The type function F[t] = {i : int,id : t, eq : t-+bool}
specifies the recursive type of the objects, and P has.
type V t 5 F[t].t--*F[t].

The inheriting definition adds a method & and rede-
fines the equality method.

C = A t 5 G[t] . X(self: t).
P[t](self) with

{ b = true,
eq = A(o: t). (o.i = selfi and

o. b = self. b)

The new object has type 7 = /.~t.G[t].

G[t] = {i : int, id : t, b : boo], eq : t-+bool}

The polymorphic application P[t] is valid because
t<G[t] and G[t]<F[t] imply t 2 F[t]. Despite this re-
lationship between G and F, their fixed points are not
in a subtype relation.

4 Class Inheritance

4.1 Classes

A class is a parameterized object definition. In the pre-
vious section we used simple classes that were just de-
scriptions of a single object. A more sophisticated nc+
tion of class includes instantiation parameters so that
multiple objects, called the insiances of the class, may
be created. In this interpretation classes are functions
that create object specifications. Classes may be inher-
ited to define other classes.

A class is recursive if its instances use the class to
make new instances. When a method using class recur-
sion is inherited, the recursive use of the class is mod-
ified so that the method constructs subclass instances
instead. Smalltalk is a good illustration of class recur-
sion and inheritance: an object can determine the class
that created it with the expression self class. To create
a new instance like itself an object sends its class a new
message: self class new. In Smalltalk, new messages are
handled by metaclasses, which support specialization of
object creation by inheritance.

A recursive class is defined using fixed points, just as
objects are fixed points of mutually recursive method
specifications. For objects, the functional argument
represented self, to which recursive messages are sent.
For classes, the argument represents the class to use
in constructing new instances. This argument is called
mycta~. The general untyped form of a recursive class
definition has two levels of recursion, myclass and self.

P = X(mychss). X(z). X(self).
{YIll=el,...,mj=ej}

The argument 2 represents the instantiation parame-
ter. The class recursion variable, mycta.ss, is used in the
expressions et to construct new instances of the class.
Let P = Y(P) be the class associated with the class
definition P. An object is instantiated with parame-
ter a by applying the class to a and then taking the
fixed point: Y(P(u)). The complete equation for mak-
ing an instance from a recursive class definition involves
a double fixed point: Y(Y(‘P)(a)). Two applications of
the fixed-point function are used because class recursion
and object recursion are independent.

In the child class definition, P is passed a new value
for myclass so that the inherited methods mi create in-
stances of C, not instances of P.

C = X(myclass). X(z). A(self).
P(mycla.ss)(z)(self) with

{m; = ei, . . . , rn; = e;)

4.2 Typed Class Inheritance

The typing of class recursion uses the same technique
of polymorphism introduced in Section 3.2. Although
the scope of class-level recursion contains the scope of
object recursion, the polymorphism associated with the
type of self must be moved outside of the class recursion
variable.

P : Vt 5 GEt].(a~(l~t))~(a-r(t-rF[t]))

P = A 15 F(t). X(mycks : a+t-+t)).

A(y : a). X(self: t).
(5)

{ml = el, rnb = eb}

Note that myclass produces values of type t+t rather
than t+F[t] as in the final result-type of P. This allows
the fixed point of myclass to be used without complete
knowledge of the final binding oft. The objects created
by this class definition have type u = pt.F[t]. Instan-
tiation of a class definition with polymorphic typing,
P = Y(P[u]), involves binding the type argument the
instance type and then taking the fixed point. The class
P has type a---t(~-+u).

129

The typing of an inheriting class definition is straight-
forward.

C : Vt 5 G[t].(c~-c(t-t))-(a-(t-G[t]))

C = A 1 5 G(t). A(mycJass : a+(t+t)).
A(2 : a). A(seJf: t).

‘P[t](mycJass)(z)(seJq
with {nz\ =ei, ,.., rnk =el,}

4.3 Changing Instantiation Parame-
ters

Class inheritance is complicated by the common need
to change the form of the instantiation parameters of
the subclass to be of some type p. The problem is that
the inherited definition expects a value of myclass with
type cr+(tdt), but the subclass definition of myclass
has type p-(t-t). Unless cy<p, the types will not
match. This condition is too restrictive: it is common
for the subclass to require more information, not less.

The difference between the initialization parameters
is bridged by two translation functions. The first tr,ms-
lation, Q : &+(Y, converts child parameters to the
form required by the parent class. The second trans-
lation, T : CL-+, converts parent parameters to the
form required by the child so that uses of myclass in
parent methods will construct child instances. With
these translation functions, the inheritance construct
supports modification of instantiation parameters.

C : Vt _< G[t].(~--+(t-+t))~(~~(t-G[t]))

C = A t 5 F(t) . X(mycJass : +(t-+t)).
X(y : /I). A(seJf: t).

Wl(wcJ= 0 T)(Q(yWJO
(7)

with {ml,=ei,...,m;=e;}

T and Q are defined in a context in which y and self
are bound. The context is particularly relevant in the
case of T, since the additional information required for
subclass instantiation is often computed from self.

5 Type Inheritance

As an operation on recursive definitions, inheritance can
also be applied to recursively defined record types. Let
lqt] = (I1 : (71, “., zn : en } be a type function defin-
ing a recursive record type Q = F[a]. Type inheritance
allows the definition F to be modified to define a new
type. A definition that inherits F has the form

G[t] = lqt] + (2; : u;, . . .) z:, : a:, }

G defines the type r = G[r], a child of cr. Note that
G[t] need not be a subtype of F[t] because the field
types may be changed. The replacement of field types

during type inheritance is analogous to the replacement
of field values (methods) during object inheritance.

There is a close connection between type inheritance
and class/object inheritance. In the polymorphic typing
defined in Section 3.2, the type function G which spec-
ifies the type of the inheriting object may be expressed
by inheriting F. The types of methods rni, . . . , rn6 that
are changed can be identified in a type-function R for
which G[t] = F[t] + R[t] Thus the type of an inherited
object is an inherited type.

The properties of types of inherited objects are anal-
ogous to those of subtypes. The constraint imposed
by object inheritance, G[t] 5 F[t], ensures that inher-
ited objects can be used as arguments to F-bounded
polymorphic functions just as values of subtypes can
be used as arguments to subtype-bounded polymorphic
functions. Thus F-bounded polymorphism is useful in
object-oriented programming for writing functions that
work uniformly over the subclasses of a class.

6 Example

The following example illustrates the recursive structure
of objects, classes and types, and the typing of inher-
itance given in Sections 3 and 4. The class definition
exhibits both object and class recursion, and gives an
example of typed class inheritance. The type of the ob-
jects created from the inherited class is defined using the
type inheritance operation described in Section 5. For
a more complete discussion of a version of this example
and the informal object-oriented notation used below,
see [4].

A type Point specifies the interface of movable planar
points. When a point is moved it returns a new point
at the new location.

interface Point
x : Real
y : Real
move(ReaJ, Real) : Point
equd(Point) : Boolean

More formally, Point is the fixed point of a type function
derived from the interface definition.

F[t] = { x : Real,
y : Real,
move : ReaJx ReaJ-+t,
equal : t+BooJean }

Qpe inheritance can be used to extend the recursive
type Point.

interface ColorPoint inherits Point
color : Color

130

Type inheritance is explained as extension of type func-
tions in Section 5. ColorPoint is the fixed point of G.

G[t] = F[t] + {color : Color }

ColorPoint $ Point because the equality method is
contravariant. Intuitively, a ColorPoint can’t be used
where a Point is expected because it does not make
sense to compare Points and ColorPoints for equality.
The problem is that Points do not have color. The sys-
tem could also have been designed to allow the compari-
son, but then the ColorPoint equality method could not
determine the color of its argument.

On the other hand, ColorPoint does have the same r*
cursive structure as Point: ColorPoint 5 F[ColorPoint]
and for all t, G[1] < F[t]. These are exactly the con-
straints required by inheritance.

The class cart-point implements objects of type Point.
It has two initialization parameters, x and y, that spec-
ify the location of the point in Cartesian coordinates.

class cart-point (x:Real, y:Real)
implements Point

method x : Real
return x

method y : Real
return y

method move(dx:ReaJ, dyrReal) : Point
return new myclass(se1f.x + dx, selfy -I- dy)

method equaJ(p:Point) : Boolean
return (se1f.x = p.x) and (seKy = p.y)

Instances of cart-point are recursive because they send
messages to self. The class cart-point is also recursive
because the move method uses myclass to create a new
point at a given distance from itself. Both the equal
method and the move method involve the type Point
in association with object recursion, so there is an op-
portunity to encode these types so that they may be
specialized. The definition above is easily translated
into the format of Equation 5.

P = A t 5 F[t] . X(myclass : (RealxReal)+(t+)).
X(x : Real, z : Real). A(self: t).

{ x= 2,

Y= Y,

move = X(dx : Real, dy : Real).
Y (myclass(seXx + dx, se1f.y + dy)),

equal = A(0 : t).
(selfx = 0.x) and (se1f.y = o.y)

1

Instances of cart-point have type Point. The clans asso-
ciated with this definition is

cart-point = Y(P[Point])

To illustrate, consider the point at location (2,5). Of
course, the object has an infinite expansion, so it can
only be written using fixed points.

p = Y(carLpoint(2,5))

= Y(Y(P[Point])(2,5))

= {x=2,
Y= 5,
move = X(dx : Real, dy : Real).

Y(cakpoint(2 + dx,5 + dy)),
equal = X(0 : t).

(2 = 0.x) and (5 = o.y) }

Using inheritance, a new class color-point is defined.
Instances of color-point have an additional method color
that is defined using an additional instantiation param-
eter for the class. The equality method is redefined so
that two points are equal only if their colors match.

class color-point (x:ReaJ, y:Reai, c:Color)
implements CoJorPoin t

inherit cart-poin t(x,y)
translating new mycla.ss(x’, y’)

to new myclass(~, 4/, self color)

method color : Color
return c

method equai(p:ColorPoint) : Boolean
return superSequal and

(self. color = p.color)

The class color-point inherits cart-point and indicates
the two translations. The first translation is given by
carLpoint(x,y); it indicates how to instantiate the in-
herited point class. The second translation is more ex-
plicit; it indicates how recursive calls within cart-point
are to be translated to construct color-point objects. In
this example the moved point simply retains its color.
It is also possible to define an arbitrary computation
of the new color from the point’s position and previous
color. The modified equal method uses super to invoke
the original notion of equality and add a new constraint.
The treatment of super simply involves an additional let
variable.

C=ht<G[t].
X(mycZass : (RealxRealxColor)-+(t+t)).

X(x : Real, y : Real, c : Color).
A(seZf : t).

let super = P[t](A(z’, y’). mychss(z’, y’,c))

in super with {zc’cZ~!elf) =c

equal = A(0: t).
super.equal(o) and
(self.color = o.coJor)

1

131

Most of the work occurs in the value bound to super.
First, the parent class definition is applied to t, a poly-
morphic type variable constrained by t 5 G[t]. This
polymorphic application is legal because P accepts any
type t < F[t] and we know that G[t] 5 F[t]. The result is
applied to a translated form of the class recursion vari-
able myclass. Recursive class instantiation in cart-point

are translated to construct colored points. Finally, the
parent component is initialized by z and y, and self is
bound to interpret method recursion properly.

Instances of color-point and cart-point cannot be in-
termixed in a program because their types are not sub-
type compatible (they cannot be compared for equality).
However, it is possible to write F-bounded polymorphic
functions that operate uniformly over either Points or
ColorPoints.

7 Related Type Systems for In-
heritance

7.1 EiRel

Eiffel is based on an identification of classes with types
and of inheritance with subtyping. Within this con-
text, however, Eiffel is able to express many of the con-
structs described in this paper. The correspondence is
not complete, because the identification of inheritance
and subtyping makes Eiffel’s type system insecure [12].

In Eiffel, the pseudovariable Current is used instead
of self to indicate object recursion. Class recursion and
a form of type inheritance are expressed by the type ex-
pression Like Current, which refers to the current class.
That is, it denotes the class in which it appears or into
which it is inherited. Like Current acts somewhat like
the type variable t in the polymorphic typing of inher-
itance. The following code illustrates its use to imple-
ment the example from Section 3.2.

class P feature
i : Integer is 5;
id : Like Current is Current
eq(other : Like Current) : Boolean is

begin

end P

Result := (0ther.i = Current.i)
end

class C inherit P redefine eq feature
b : Integer is 5;
eq(other : Like Current) : Boolean is

begin

end P

Result := (0ther.i = Current.i)
and (0ther.b = Current.b)

end

This code illustrates the problem of assuming that
subclasses are subtypes. With this assumption, one can
assign an instance c of class C to a variable v:P, v:=c.
It is then legal to send the eq message to v with pa-
rameter p of class P. However, v-eq(p) cannot execute
properly because p does not have a b attribute. A mod-
ified conformance rule that eliminates this problem was
proposed in [12].

Like Current also allows Eiffel to express class recur-
sion. For example, the following clone method always
creates an instance of the same class a.9 the receiver of
the message because it uses Like Current for the class.
Unfortunately, Eiffel has no way to translate instantia-
tion parameters uniformly.

class Copier feature
clone : Like Current is

local
temp : Like Current;

begin
temp.Create;
Result := temp;

end
end

The typed model of inheritance presented in this pai
per provides a formal model in which Eiffel may be ex-
plained. It also indicates why EZel’s type-system is
insecure and how the language may be corrected and
extended.

7.2 Other Languages

Like Eiffel, most other strongly-typed object-oriented
languages, including Modula-3, C++, Trellis and Sim-
ula, are based on the identification of classes and types.
Their subtype relations are based on their inheritance
hierarchies. Unlike Eiffel, these languages are type-safe
because they restrict inheritance to satisfy subtyping.
In Modula-3, C++ and Simula, the types of methods
may not be changed. Trellis allows the types to be
changed according to the rules for function subtypes.

None of the languages provide support for class inher-
itance, as we define it. It can be simulated manually by
defining a method in a root class P called mynew which
simply executes new P. If mynew is redefined manually
in each subclass C to return new C, then class inher-
itance can be achieved by always using mynew instead
of new. Except in Trellis, the typing does not work
correctly because mynew must have result-type P in all
classes.

Simula and C++ are interesting because they pre
vide mechanisms for translating the subclass instantia-
tion parameters into a form appropriate for instantia-
tion of the parent. This mechanism is explained by the
Q translation introduced in Section 4.3.

132

7.3 Mitchell

Mitchell [20] has developed a typed object model based
on extensible records and self-application. Object types
are defined by a special class notation.

T=classt {m~:a~,...,m~:o~}

Objects of type T are similar to records of functions
representing methods, except that record component se-
lection is replaced by a message send operation. The
methods are polymorphic functions with an additional
hidden argument. The polymorphism, over a domain
of type functions, is used to specialize method types,
while the extra argument represents self. They are both
bound by the message sending operator, -+ which binds
the polymorphic argument to an empty type function,
and binds the argument self to the object itself. Thus
recursion in objects is implemented by se&application.

o+m = o.m[X(i :: TYPE). {)1(o)

A new object may be created by replacing methods or
adding new methods in an existing object. Recursion
in the types of existing methods are adjusted during
extension.

There is a close relationship between Mitchell’s work
and the model presented in this paper. Although ex-
pressed in a different framework, the polymorphic typ-
ing of methods achieves the same effect. One advantage
of Mitchell’s framework is that the type of the self argu-
ment of each method can be different, giving a more pre-
cise typing of methods. Our system has the advantage
of simplicity: it does not require special class types,
extensible records, quantification of type functions, etc.

The systems also differ in their basic object models.
Mitchell uses extensible objects, self-application, and a
form of delegation [18, 271, while we use records, fixed
points, inheritance, and recursive classes. In the mod-
els this difference manifests itself in the relative order
of record construction and self abstraction. In our sys-
tem, polymorphism (F-bounded) and self occur outside
the record of methods, requiring type application and
a fixed-point function to create an object, which is a
simple record. Mitchell places the polymorphism (over
type functions) and self within each method of an object
and binds them during message passing.

Since record formation and seJf abstraction are inde-
pendent, it appears that the two systems are isomorphic
at the value level. Even so, there are tradeoffs. One
advantage of the delegation system is that classes and
objects are unified. However, class recursion does not
seem to be supported, since all object creation is done
by extending existing objects. This makes it difficult
to construct objects with hidden state, as is possible
with recursive classes. Our system has the advantage of
a uniform treatment of inheritance on objects, classes

and types. A formal investigation of relationship be-
tween the models may provide useful insights into im-
plementation techniques and possible extensions.

7.4 Wand

Wand [29, 311 and &my [23] have developed a type-
inference scheme for dealing with records and record
extension, Wand’s system also allows recursive types.
Ftecord types are total functions from labels to a union
of pwsent and absent fields. The system uses ML-style
parametric polymorphism instead of record subtype
polymorphism: a record type has the form II[Zi : fii]p,
where li are the explicitly defined fields and fi is either
present(r) or absent. The record eztension variable p
represents any additional fields the record may have. In
these systems there is no notion of subtyping; there is
only parametric polymorphism. In a recent manuscript,
Wand [30] proposes a type-inference rule in the style of
ML for object inheritance with recursive types. With
first-order extension variables and recursive types, his
system can express F-bounded polymorphism. Thus his
system can type the examples given in this paper.

A practical drawback to using first-order polymor-
phism to implement record subtype polymorphism is
that records and record functions cannot be passed as
arguments and then used with subtype polymorphism;
the first-order constraint requires that the types be
bound when the record is passed. A more serious prob-
lem arises in the presence of recursive types. In a tra-
ditional type-system with record subtypes, a subtype of
a recursive type may have different fields at each leve1
of unrolling in its infinite expansion. If restricted to
first-order quantification, the extension variables in a
recursive type cannot be instantiated at each level of
unrolling. To achieve the effect of record subtyping,
quantifiers would have to be included in the scope of
recursion.

These problems could be solved by introducing ex-
plicit quantification, at the cost of making type-
inference much more complex. A detailed comparison of
Wand’s type-inference approach based on record exten-
sion and our explicitly-typed approach with F-bounded
polymorphism is an important topic for future research.

7.5 TS

The TS project [15, 16, 171 has recognized that in-
heritance does not necessarily produce subtypes. TO
type-check existing Smalltalk programs, which may con-
tain ad-hoc combinations of code, their system copies
the text of methods from parent to child before type-
checking. These inherited method expressions are type-
checked in their new context and may have very different
types than they did in the parent class. As a result, a

133

particular expression may be type-checked many times,
depending on the depth of the inheritance hierarchy.
They also perform type inference, using ML-style unifi-
cation and first-order polymorphism.

The polymorphic typing of inheritance presented here
supports a somewhat more abstract notion of typed in-
heritance, since a single (polymorphic) type must be as-
signed to a class. Our polymorphic typing of inheritance
uses only the type of the parent, not its method expres-
sions; the type of an inherited method may change but
only according to its polymorphic typing. The poly-
morphic typing provides a degree of encapsulation not
found in TS, but TS can type-check some programs that
do not have polymorphic typings.

8 Conclusion

We present a typed model of inheritance that preserves
more of the flexibility of inheritance in untyped object-
oriented languages. Our typing applies to both object
and class inheritance. In addition, a notion of inheri-
tance for types is introduced. Type inheritance is anal-
ogous to subtyping, but is useful for object-oriented
programming because inherited objects have inherited
types, not subtypes.

Previously, typed languages allow either modification
of instantiation parameters (Simula and C++) or pro-
vide class inheritance (Eiffel), but not both. Smalltalk
provides both but is untyped. Our model provides a ex-
plicit higher-order formalism in which class inheritance,
inheritance over recursive types, and modification of in-
stantiation parameters are all supported.

Acknowledgement

We would like to thank Luca Cardelli, David Chase,
Jim Donahue, John Mitchell and Benjamin Pierce for
the discussions on this work. We would also like to
thank Alan Snyder for his support and inspiration [26].

References

[l] G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and
K. Nygaard. SIMULA Begin. Auerbach, 1973.

[2] A. H. Borning and D. H. Ingalls. A type declara-
tion and inference system for Smalltalk. In Proc.
of Conf. on Principles of Progmmming Languages,
pages 133-141, 1982.

[3] P. Canning, W. Cook, W. Hill, J. Mitchell, and
W. Olthoff. F-bounded polymorphism for object-
oriented programming. In Proc. of Conf. on Func-
tional Programming Languages and Computer Ar-
chitecture, pages 273-280, 1989.

PI

PI

P-Y

PI

PI

PI

[lOI

WI

WI

P31

PI

P51

WI

WI

P. Canning, W. Cook, W. Hill, and W. Olthoff.
Interfaces for strongly-typed object-oriented pr+
gramming. In Proc. ACM Conf. on Object-Oriented
Pmgmmming: Systems, Languages and Applica-
tions, pages 457-467, 1989.

P. Canning, W. Hill, and W. Olthoff. A kernel lan-
guage for object-oriented programming. Technical
Report STL-88-21, Hewlett-Packard Labs, 1988.

L. Cardelli. A semantics of multiple inheritance. In
Semantics of Data Types, LNCS 17.9, pages 51-68.
Springer-Verlag, 1984.

L. Cardelli. Amber. In Combinators and Functional
Programming Languages, LNCS $42, pages 21-47,
1986.

L. Cardelli. Structural subtyping and the notion of
power type. In Conf Rec. ACM Symp. on Princi-
ples of Progmmming Languages, pages 70-79, 1988.

L. Cardelli, J. Donahue, M. Jordan, Il. Kaslow,
and G. Nelson. The Modula-3 type system. In
Conf Rec. ACM Symp. on Principles of Progmm-
ming Languages, pages 202-212, 1989.

L. Cardelli and P. Wegner. On understanding
types, data abstraction, and polymorphism. Com-
puting Surveys, 17(4):471-522, 1985.

W. Cook. A Denotational Semantics of Inheri-
tance. PhD thesis, Brown University, 1989.

W. Cook. A proposal for making Eiffel type-
safe. In Proc. European Conf on Object-Oriented
Programming, pages 57-70. BCS Workshop Series,
1989. Also in The Computer Journal, 32(4):305-
311, 1989.

W. Cook and J. Palsberg. A denotational semantics
of inheritance and its correctness. In Proc. ACM
Conf. on Object-Oriented Programming: Systems,
Languages and Applications, pages 433444, 1989.

A. Goldberg and D. Robson. Smallialk-$0: the
Language and Its Implementation. Addison-
Wesley, 1983.

J. Graver. Type-Checking and Type-Inference for
Object-Oriented Programming Languages. PhD
thesis, University of Illinois, 1989.

R. Johnson and J. Graver. A user’s guide to Typed
Smalltalk. Technical Report UIUCDCS-R-88-1457,
University of Illinois, 1988.

R. Johnson, J. Graver, and L. Zurawski. TS: An
optimizing compiler for Smalltalk. In Proc. ACM
Conf. on Object-Oriented Programming: Systems,
Languages and Applications, 1988.

134

[18] H. Lieberman. Using prototypical objects to imple-
ment shared behavior in object-oriented systems.
In Proc. ACM Conf. on Object-Oriented Program-
ming: Systems, Languages and Applications, pages
214-223, 1986.

[31] M. Wand. Type inference+ for record concatenation
and multiple inheritance. In Proc. IEEE Sympo-
sium on Logic in Computer Science, pages 92-97,
1989.

[19] B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, 1988.

[20] J. C. Mitchell. Towards a typed foundation for
method specialization and inheritance. In Proc.
of Conf. on Principles of Programming Languages,
1989.

[21] D. Moon. Object-oriented programming with Fla-
vors. In Proc. ACM Conf. on Object-Oriented Pro-
gramming: Systems, Languages and Applications,
pages l-9, 1986.

[22] U. S. Heddy. Objects as closures: Abstract seman-
tics of object-oriented languages. In Proc. ACM
Conf. on Lisp and Functional Pmgnrinming, pages
289-297, 1988.

[23] D. H&my. Typechecking records and variants in
a natural extension of ML. In Conf. Rec. ACM
Symp. on Principles of Prognxmming Languages,
pages 77-88, 1989.

[24] J. Reynolds. User-defined data types and procedu-
ral data structures as complimentary approaches to
data abstraction. In New Advances in Algorithmic
Languages. INHIA, 1975.

[25] C. Schaffert, T. Cooper, B. Bulhs, M. Kihan, and
C. Wilpolt. An introduction to Trellis/Owl. In
Proc. ACM Conf. on Object-Oriented Program-
ming: Systems, Languages and Applications, pages
9-16, 1986.

[26] A. Snyder. Inheritance and the development of en-
capsulated software components. In B. Shriver and
P. Wegner, editors, Research Directions in Object-
Oriented Progmmming, pages 165-188. MIT Press,
1987.

[27] L. A. Stein. Delegation is inheritance. In Proc.
ACM Conf. on Object-Oriented Programming: Sys-
tems, Languages and Applications, pages 138-146,
1987.

[28] B. Stroustrup. C++. Addison-Wesley, 1987.

[29] M. Wand. Complete type inference for simple ob-
jects. In Proc. IEEE Symposium on Logic in Com-
puter Science, pages 37-44, 1987.

[30] M. Wand. Type inference for objects with instance
variables and inheritance, 1989. manuscript.

135

