PROCEEDINGS OF THE SYMPOSIUM ON
LANGUAGE DESIGN AND PROGRAMMING METHODOLOGY
SYDNEY, 10-11 SEPTEMBER, 1979

PASCAL VERSUS C : A SUBJECTIVE COMPARISON
Prabhaker Mateti

Department of Computer Science
University of Melbourne

ABSTRACT

The two programming languages Pascal and C are subjectively
compared . While the two languages have comparable data and
control structures, the program structure of C appears
superior. However, C has many potentially dangerous
features, and requires great caution from its programmers.
Other psychological effects that the various structures in
these languages have on the process of programming are also
conjectured.

"At first sight, the idea of any rules or
principles being superimposed on the creative
mind seems more likely to hinder than to
help, but this is really quite untrue in
practice. Disciplined thinking focusses
inspiration rather than blinkers it."

- G. L. Glegg,
The Design of Design.

1 Introduction

Pascal has become one of the most widely accepted languages
for the teaching of programming. It is also one of the most
thoroughly studied languages. Several large programs have been
written in Pascal and its derivatives. The programming language
C has gained much prominence in recent years. The successful
Unix operating system and most of its associated software are
written in C.

This paper confines itself to a subjective comparison of the
two languages, and conjectures about the effect various
structures of the languages have on the way one programs. While
we do occasionally refer to the various extensions and compilers
of the languages, the comparison is between the languages as they

are now, and in the context of general programming. The official

38

documents for this purpose are Jensen and Wirth(1974) and the C-
book [Kernighan and Ritchie 1978]. The reader who expects to
find verdiets as to which language should be used in what kind of
project will be disappointed and will instead find many
statements supported only by personal experience and bias; when I
felt it necessary to emphasise this, the first person singular is
used.

1.7 T'Methodology' of Comparison

We do not believe that objective (all-aspect) comparisons of
programming languages are possible. Even a basis for such
comparison is, often, not clear,. (However, see Shaw et al.
1978 .) We can attempt to use such factors as power, efficiency,
elegance, clarity, safety, notation, and verbosity of the
languages. But elevating these factors from the intuitive to the
scientific level by tight definitions renders them useless for
the purpose of comparison. For example, all real-life
programming languages are as powerful as Turing machines, and
hence equally powerful. It is difficult to discuss efficiency of
a language without dragging in a compiler and a machine,
Furthermore, many of the other notions listed above are based
heavily on human psychology, as are the wuseful insights gained
under the banners of structured programming, programming
methodology and software engineering. Thus, universal agreement
as to the level these notions are supported in a given language
will be difficult to reach.

One of the most important factors in choosing a language for
a project should be the estimated debugging and maintenance
costs, A language can, by being very cautious and redundant,
eliminate a lot of trivial errors that occur during the
development phase. But because it is cautious, it may increase
marginally the cost of producing the first (possibly bugged)
version, It is well-known that a programming language affects
programming only if the problem 1is non-trivial and 1is of
substantial size. Also, it seems a language has little effect on
the logical errors that remain in a software system after the
so-called debugging stage. This 1s clearly highly correlated
with the competence of the programmer(s) involved.

This suggests a method of comparison based on estimating the
total <cost to design, develop, test, debug and prove a given
program in the languages being compared. However, controlling
the experiment, and adjusting the results to take care of the
well-known effect that the second time it is easier to write (a
better version of) the same program (in the same or different
language) than to write it from scratch, may prove to be
infeasible. Also, very large-scale experiments with a large

39

piece of software are likely to be so expensive and the results
so inconclusive that it 1is unlikely to be worthwhile. In any
case, I do not have the resources to undertake such an
experiment.

This comparison is, therefore, necessarily subjective. And
this, as can be expected, depends to a large extent on one's own
biases, and faith in the recent programming methodology. When
the growing evidence supporting this methodology is sufficiently
convincing, we can replace the word "faith" by "xxxx".

In the following, we shall

1. compare how "convenient" the 1languages are to code our
favourite solution to a programming problem,

2. play the devil's advocate, and try to list all possible things
that can go wrong in a program expressed in a language.

Some of wus, including myself, have reservations about the
validity of the second technique for comparison, the most
persuasive argument being that even though some of the features
are potentially dangerous, people rarely use them in those
contexts. There is certainly some truth in this, but until we
have experimentally collected data convincingly demonstrating
this, it is wiser to disbelieve it. Take note of the observed
fact of increased difficulty in formally proving the properties
of programs that use these potentially hazardous features in a
safe way. This is one of the reasons behind the increased
redundancy (and restrictions) of the newer languages like
Alphard [Wulf et al. 1976], CLU [Liskov et al. 1977], Euclid
[Lampson et al. 19771, Mesa [Geschke et al. 19771, and others.

1.2 Hypotheses

It should be clear that neither language is perfect, nor
should there be any doubt about the truth of the following :

Axiom [Flon 1975]
There does not now, nor will there ever, exist a programming

language in which it 1is the least bit hard to write bad
programs.

Since this is a subjective comparison, it is necessary to

40

identify as many of the underlying assumptions as possible.

1. We believe: (i) That programs should be designed (i.e.
conceiving the abstract data structures, and the operations
on them, detailing, but not overspecifying, the algorithms
for these operations, and grouping all these)} in a suitably
abstract language, which may not be a formal language. (ii)
That the coding (i.e. the translation into a formal
programming language) of the abstract program is strongly
influenced by the programming language. This paper offers
several conjectures about these influences; the word
"programming” 1is used instead of coding, in several places,
to emphasise the unfortunate fact that many of us design our
programs straight into the programming language.

2. We make a lot of trivial mistakes. Examples : uninitialised
or wrongly initialised variables, overlooked typing errors,
array indices out of range, variable parameter instead of
value, or vice versa, ...

3. The effort spent in physically writing and typing during the
development of a large program is negligible compared to the
rest of effort,

4, Simple things that could be done mechanically, without
spending much thought, should be done by a program.

5. Permissive type checking should be outlawed.
6. It is dangerous to use our knowledge of the internal
representation, as chosen by a compiler, of a data type

[Geschke et al. 1977].

7. The overall efficiency of a large program depends on small
portions of the program [Knuth 1971, Wichmann 19781,

1.3 General Comments

One may wonder: Why compare two languages whose projected
images are so different? For example, Sammet's Roster of
Programming Languages (1978) lists the application area of Pascal
as multi-purpose and that of C as systems implementation.

That Pascal was designhed only with two objectives -- viz., a
language for teaching programming as a systematic discipline and
as a language which can be implemented efficiently -~ 1is quoted
often, ignoring four other aims that Wirth(1971) lists. The
hidden implication of this attitude is that since Pascal is

41

suitable for beginners learning to program, it is ipso facto
unsuited for adult programming. In fact, an increasing number of
complex programs of wide variety from an operating system for the
Cray-1 to interpreters on the Intel 8080 are (being) written in
Pascal and its dialects.

C 1is being promoted as a convenient general purpose
language. In reviewing the C-book, Plauger{1979) pays his
tributes to its authors and claims "C is one of the important
contributions of the decade to the practice of computer
programming..."

Neither language includes any constructs for concurrent
programming. The flexibility of C makes it possible to access
nearly all aspects of the machine architecture; low-level
programs such as device drivers can thus be written in C. One
contention of this paper is that it achieves this flexibility at
a great sacrifice of security. Such compromises can be added to
Pascal by any implementor, but most have left it relatively pure
and unchanged from that described in the revised report [Jensen
and Wirth 1974]. Extensions of Pascal to inelude concurrent
programming constructs have resulted in new languages in their
own right (Concurrent Pascal [Brinch Hansen 19771, Modula [Wirth
1977al, and Pascal Plus [Welsh and Bustard 19791).

Thus I believe the domain of application of both languages
to be nearly the same,

A great deal of criticism of Pascal has appeared in the open
literature ([Conradi 19761, [Habermann 19731, [Lecarme and
Desjardins 1975], [Tanenbaum 19781, [Welsh et. al. 19771, [Wirth
1974, 1975, 1977b] and in nearly every news letter of the Pascal
User Group [Pascal News]). The little published criticism of C
that exists is by people associated with its design and
implementation and hence is benevolent. Thus, this paper devotes
a greater portion to criticism of C, and repeats some of the
criticism of Pascal only when necessary in the comparison.

2. Data Types

One of the greatest assets of both languages is the ability
to define new data types. The languages provide a certain number
of standard (i.e. predefined) simple types from which other types
are constructed. The well-known arrays are composite types
whose components are homogeneous. Records of Pascal, structs of
C are composite types that (usually) contain heterogeneous
components. Other composite types of Pascal that contain
homogeneous elements are sets and files, Types are not allowed
to be defined recursively, except when they involve a pointer

42

type. Note that both languages consider a type to be a set of
values [Morris 1973].

2.1 Simple Types

Integers, reals, characters, and Booleans are standard types
in Pascal. All other types are user defined.

type
zeroto1s = 0..,15;
minus7to7 = -T..7;
aritherror = (overflow, underflow, divideby0);
kindofchar = {letters, digits, specials);

Whereas C has integers, reals, and characters, it does not have
Booleans {(which is sad), nor does it have a mechanism for
defining enumerated types (like the above kindofchar), or
subranges {zeroto15). Instead, in some implementations of C, by
declaring a variable as short, or char, one obtains smaller sized
variables; note the following statement from the C Reference
Manual (p182):

Other quantities may be stored into character variables, but
the implementation is machine dependent.

In contrast, the Pascal declarations do not guarantee that
smaller units of storage will be used; they simply inform the
compiler that it may choose to do so. More importantly, they
provide useful documentation; compiling with range checks on, one
can have any violations of these caught at run time. 1In C, this
is not possible. The conscious programmer may document the range
of some integer variable in a comment, but the compiler cannot
help enforce it.

The useful abstraction that Pascal offers in its enumerated
types 1is of considerable value. That this is no more than a
mapping of these identifiers into 0..?7 does not decrease its
value. What we, the humans, have to do in other languages, is
now done by the compiler, and much more reliably, (It is now
rumoured that C will have enumerated types in a future version.)

2.2 Arrays

In Pascal, the index type of arrays 1is any subrange of
scalars {(which include enumerated types), whereas in C, arrays
always have indices ranging from 0 to the specified positive
integer. For example, int al[10] declares an array of ten
integers with indices from 0 to 9. Sometimes this leads to

43

rather unnatural constructs. Consider the following example.

linel-11 = '¥'; /* any char other than blank,\t, \n ¥/
while ((n = getline(line, MAXLINE)) > 0) {
while (lineln] == ' ' || line[n] =="\t' |} line[n] =='\n')
n--;

lineln+1] = "\0';
printf("%s\n", &linel01);
}

(In C, = denotes the assignment, == the equality test, and || the
McCarthy's OR.)

I find this program clearer, more elegant, and more efficient
than the one on p6é1 of the C-book. However, since arrays cannot
have negative indices (as in line[-11), we are forced to write
differently and use a break to exit from the inner loop.

Many people do not appreciate the use of sentinels. Often
the argument against them is that you don't have the freedom to
so design your data structure. I have not found this to be true
in real life situations. This does happen in cooked up classroom
situations. It rarely, if ever, is the case that you cannot
modify the data structure slightly. The reason for this appears
to be a misunderstanding of a fundamental principle of algorithm
design :

Strive to reduce the number of distinct cases whose
differences are minor.

The use of sentinels is one such technique. In the above example

it guarantees that a non-blank, non-tab, non-new-line character
does appear in the array.

The usefulness of negative indices, in these and other
situations, should be obvious even to the Pascal-illiterates.

One aspect of Pascal arrays that has come under strong
attack is the fact that the array bounds must always be
determinable at compile time. This rules out writing generic
library routines. There are several suggested extensions to
overcome this problem; the signs are that one of these will be
incorporated into the language soon.

44

2.3 Records / Structures

The records and variant records of Pascal are similar to
structs and unions of C. However, one important difference must
not be forgotten. Pascal does not guarantee any relationships
among the addresses of fields. C explicitly guarantees that
"within a structure, the objects declared have addresses which
increase as their declarations are read left-to-right" (see p196,
C~-bock):; otherwise some pointer arithmetic would not be
meaningful. Some of the efficiency of pointer arithmetic is
provided, in Pascal, by a much safer with statement.

2.4 Pointers

Pointers in Pascal can only point to objects in the heap
(i.e., those created dynamically by the standard procedure new),
whereas C pointers can point to static objects as well. It 1is
well-known that the latter scheme has the problem of "dangling
pointers", and several authors (notably Hoare(1975)) have argued
for the abolition of pointers to static objects. The only
argument supporting their existence appears to be that they
provide an efficient access. It is not known how much this gain
in efficiency is in real programs.

On the other hand, unless great caution 1s exercised,
program clarity and correctness are often sacrificed in the
process. "A very essential feature of high-level languages 1is
that they permit a conceptual dissection of the store into
disjoint parts by declaring distinct variables, The programmer
may then rely on the assertion that every assignment affects only
that variable which explicitly appears to the 1left of the
assignment operator in his program. He may then focus his
attention to the change of that single variable, whereas in
machine coding he always has, in principle, to consider the
entire store as the state of the computation. The necessary
prerequisite for being able to think in terms of safely
independent variables is of course the condition that no part of
the store may assume more than a single name" [Wirth 19747,

Pascal pointers satisfy the following

1. Every pointer varisble is allowed to point to objects of
only one type, or is nil., That is, a pointer is bound to

that type: the compiler can still do full type checking.

2. Pointers may only refer to variables that have no explicit

45

name declared in the program, that is, they point
exclusively to anonymous variables allocated by the new
procedure when needed during execution.

C pointers, on the other hand, can point to virtually any
object =-- local, global, dynamically acquired variables, even
functions -- and one can do arithmetic on these pointers. The
pointers are loosely bound to the type of object they are
expected to point; in the pointer arithmetic, each 1 stands for
the gize of this type. Most C compilers do not check to see that
the pointers do indeed point to the right things. Furthermore,
the C 1language definition 1is such that genuine type confusion
occurs. The C-book claims that "its integration of pointers,
arrays and address arithmetic is one of the major strengths of
the language"; I tend to agree, as their current unsafe setting
can be made very secure [Mateti 1979al.

2.5 Type Checking

It is true that one of the basic aims behind the development
of strongly typed languages such as Pascal, Euclid, Mesa,
Alphard, CLU, etec. is to make it difficult to write bad programs.
In realising this goal, all programs become slightly more
difficult to write. But this increase in difficulty is of a
mechanical kind, as we now expect the programmer to provide a lot
of redundant information.

Type checking is strongly enforced in Pascal, and this is as
it should be. Errors caused by incompatible types are often
difficult to pinpoint [Geschke et al. 1977]. Strong type
checking does increase the time to produce the first version of a
syntactically correct program, but this is worthwhile, It is
true that Pascal has not satisfactorily defined when two types
{(with different names) are equivalent [Welsh et al. 1977] but
the problems are easily avoided by appropriate declarations. Any
required type conversion occurs only through predefined functions
for the purpose, or through user-defined variant records. (The
latter are unsafe; see Section 8.)

In sharp contrast, all kinds of type conversions are either
blessed in C, or ignored by its compilers. For example, our
Interdata 8/32 C compiler detected only one error in the program
of Figure 1. 1In fact, it is rare that you see a C program that
does not convert the types of its wvariables, the most common
conversion being that between characters and integers, More
recently, however, C designers have provided a special program
called lint that does type checking., 4 few points should be

46

main()
{
/* See Section 2.5 */
int /* integer */
i,
XX,
alloy,
£0), /* f is a function returning integer */
(*pf) (); /* pointer to a function returning int */
printf(" exponent part of 123.456e7 is %d \n",
expo (123.456e7)) ;
i=a; /* 1 now points to al0] */
alll = £; /* all]l points to the function */
2fal = £(); /* 2[a] is equivalent to a[2] */
al3] = £(0); /* f called with 1 argument */
pf = &xx; /* pf now points to xx */
i = (*pf)(); /* now call the "function" pointed to by pf
*/
a=1i; /* This is the only illegal statement */
/* in this program caught by C compiler */
/* because a is not a left-value. */
}
f(a,b) /* £ in fact has 2 formal parameters */
char a, b;
{
if (a) return (b}:
}
expo{r) /* see Section 9.2 */
float r;
{
static struct s {
char cl4]; /* uses 4 bytes */
float €;
} cAf;
static char *p = &{c4f.c{31)+1;
/* points to first byte of f */
c4f.f = ry
return{*p);
}

Figure 1

47

remembered in this context:

1. Type compatibility is not described in the C Reference
Manual. Presumably this is similar to that of Pascal,
and Algol 68. It is not clear exactly what it is that
lint is checking.

2. The need for type checking is much greater during
program development than afterwards. In fact, a good
argument can be made that the primary goal of a
compiler is this kind of error checking and code
generation its secondary goal; the function of type
checking should be an integral part of a compiler. To
separate it from the compiler into a special program
whose wuse is optional is a mistake, unless it is a
temporary step.

3. Type checking is not something that you can add on as
an afterthought. It must be an integral part of the
design of the language.

It is fair to say that type conversion is difficult in Pascal but

frequent need for this ' is a sign of bad program design. The
occasional real need is then performed by explicit conversions.

2.6 Control of Storage Allocation

It is possible to specify in Pascal that certain variables
be packed thereby saving storage. The semantics of such
variables is the same as if they were regular variables. There
are standard procedures to unpack. It should be noted that
specifying packing simply gives permission to the compiler to
pack; however, the compiler may decide otherwise.

C does not have a corresponding facility. But C structures
can have "fields" consisting of a specified number of bits.
These fields are packed into machine words automatically. It is
also possible to suggest that a variable be allocated a register.

3. Statements and Expressions

C is an expression language, a la Algol 68, in a 1limited
way; only assignments, function calls, special conditional
expressions have values. Thus , for example, a funection that
does return a value can be called like an ordinary procedure in
C, which would be illegal in Pascal, as Pascal is strietly a
statement language. Below, we take a more detailed look at these

48

aspects.

3.7 Boolean Expressions

C does not have genuine Boolean expressions. Where one
normally expects to find these (e.g., in if and while
statements), an ordinary expression is used instead, and a non-
zero value is considered "true", a zero being "false", Relations
yield 1 if true, 0 if false. The operators & and | are bitwise
AND and OR operators, && and || are similar to McCarthy's
"logical™ AND and COR operators : x && y 1is equivalent to the
conditional expression if x # O theny # 0 else 0 fi and x
il v is equivalent to if x = 0 then y #0 else 1 fi. For
example,

b &6 is i 4 && 6 is 1

4 %8 is 0 4 && 8 is 1

416 is 6 411 x is 1

418 is 12 0 il x is (x £ 0)
0 && x is 0

where x is any expression, including the undefined one. The
operators &, | are commutative, but &%, !| are not. The left-
to-right evaluation of the "logical™ operators && and || of C
does save, occasionally, a few micro~seconds. The traditional AND
and OR operators have a nice property that they are commutative,
in conformity with their use in mathematics. As a consequence,
any reasoning we do using them is more readily understandable.
One specific outcome of the use of the unorthodox operators is
that the many cases where both the operands are indeed evaluated
have to be discovered by involved inferences. A better
solution iz to have logical operators of the traditional kind,
reserving the McCarthy's operators for use when really needed.
To my mind, even when these McCarthy's operators are really
required , to spell them out as in

if B1 then
if B2 then

o m oo e

is much more readily understandable. I suspect this to be the
main reason behind the warning " Tests which require a mixture
of &&, !|, !, or parentheses should generally be avoided." of the
C-book(p61).

49

3.2 Assignments

The symbol denoting the assignment operator is = in C; it is
rumored that this was a conscious choice as it means one less
character to type. Pascal uses the conventional 1left arrow,
written as :=. C allows assignments to simple (i.e., non-struct,
non-array) variables only, at the moment; structure-to-structure
and array-to-array assignments are among its promised extensions.
The assignment statement has the same value as that assigned to
the left hand side variable; thus, we can write conveniently,

i=7j=0;

Pascal allows assignments to whole arrays as well as records.
However, the assignment is not an expression, and the above has
to be expanded as:

e
o O
Y

3.3 Operator Precedence

C has over thirty "operators" (including (), [], ., the
dereferencing operator *), and fifteen precedence Ilevels,
compared to Pascal's six arithmetic operators, four relational
operators and four precedence levels. Because of the many
levels, and also because some of them are inappropriately
assigned, one learns to survive either by constantly referring to
the C manual and eventually getting them by rote, or by over-
parenthesising; for example,

x & 07 == 0O is equivalent to x & (07 == 0)
*1rargv[0] is equivalent to *pa(argvi0])

The basic problem is that the operators like &, or && take any
integers as operands, and a missing pair of parentheses will
result in a meaningful but unexpected expression.

It is neccessary to parenthesise in Paseal also, but here
the reason is different : there are too few levels, as arithmetic
operators and boolean operators got merged in their priority, For
example,

flag and a<b

would result in type incompatibility, which should be written as

50

flag and (a < b)
or as, {(a < b) and flag

using commutativity of Pascal and.

3.4 The Semicolon

Pascal uses the semicolon as a statement separator, whereas
C uses it as a statement terminator. It is well-known that
statement separators are the cause of many syntax errors in
beginner's programs [Nutt 19781. But it rarely is a problem for
the experienced; most of us have learned to use it as a
terminator (with & null statement following).

4, Control Structures

Control structure is merely one simple issue, compared
to questions of abstract data structure.

- D. E. Knuth (1974%)

For the last ten years or so, the literature concentrated on
control structures, and we have learned enough to cope with their
abstraction. Some significant rules of thumb have emerged; e.g.
use procedures extensively, keep them short, avoid gotos, never
jump out of a procedure. A4s a result, control structures play =a
rather local role; they are important, but their effect can be
localised to these short procedures. Data structure abstraction
is not well-understood, in sharp contrast to their design and
choice., Many of the remaining errors in large software systems,
after an initial period of development, can be attributed to
"interface problems" which can be roughly described as
inconsistent assumptions about data structures in different
places. With this perspective, we move on to the control
structures of the two languages.

4.1 Looping

In C, loops are constructed using while, do-while, and for.
To exit prematurely from a2 loop, a break is used; to terminate
the current iteration but continue from the next, continue is
used. Similar loop structures in Pascal are, respectively,

51

while, repeat-until, and for; premature termination can bDe
accomplished only by gotos. But there is a world of difference
between the for statements of the two languages.

The C for statement duplicates what can be done by other
structures with equal clarity;

for (exprl; expr2; expr3) statement
is an abbreviation of

exprit;

while (expr2) {
statement
expr3;

}

Note that the three general expressions can be arbitrarily
complex, A missing expr2 is equivalent to specifying the constant
1 as expr2.

The Pascal for statement is an abstraction of an often occurring
structure ;

for i := first to last do statement

loops exactly last - first + 1 times, if first <= last, or not at
all. The control variable i starts with a value of first, takes
successive values up to last, The values 1last, first, and
variable 1 are all of a scalar type. A downward for is
constructed by using downto instead of to. There have been
suggestions in the 1literature [Hoare 1972] that the variable i
should be a read-only variable local to the body of the loop;
Pascal compromisingly insists [Addyman et al. 1979) that the
variable be local to the procedure/function/program block in
which the for loop occurs.

4,2 Selection

The if statements of the two languages are very similar

except that C uses general expressions, as in while-statements,
instead of Boolean expressions, and the word then is omitted.

52

case expression of

cll ¢ 81;

el2 @ 82;

cli 1 Si;
end;

The above case statement of Pascal transfers control to one
{(say Si) of several statements whose constant case label cli
equals the value of the scalar expression. When the execution of
51 terminates, control 1is transferred to T. If the expression
value does not match any case label, the effect of case statement
is undefined in standard Pascal. A default label cannot be given
either; several implementors have felt the need for this, and it
is now allowed on most implementations. However, it should be
emphasised that in most well-written programs the expression
value belongs to an enumerated type which is exhaustively listed
by the case labels cli.

The switch statement of C is primarily used to create a
similar effect, However, control passes f{rom Si to the next
Si+1, unless this flow is explicitly broken by a break :

switeh (exp) |
case L1 : S1
case L2 : 32
break;

case Li s 3i
case Li+1 : Si+1

default : Sn
}

T

The VYusual arithmetic conversion” 1s performed on exp, if
necessary, to yield an integer value. The labels Li must be
manifest integer expressions. If exp matches no Li, it matches
the default and if the optional default label is absent, then
none of the statements in the switch 1s executed. Whereas a

default label is wanted in Pascal, it is needed in C as it cannot
be hoped that the case lzbels Li will exhaust the values that exp

can take.

Note also that C needs a break because the only way to group
cases 1is by falling through cases. For example, to combine more

53

than one case, say 2 and 4, you write

case 2 :
case U4

.
.

break;

and in such situations Pascal does not need a break, as 1labels
can be grouped. The C~book wisely cautions {(p56), "...falling
through cases is a mixed blessing....Falling through from one
case to another is not robust, being prone to disintegration when
the program is modified. With the exception of multiple 1labels
for a single computation, fall-throughs should be used
sparingly.”

4,3 The Power of Control Structures

Loops with break/continue belong to the class DRECT, in the
genealogy of control structures [Ledgard and Marcotty 1975].
Theorems by Kosaraju(1974) show that a DREC?1 structure cannot be
simulated by D-structures (D for Dijkstra), which are formed by
any number of ifs, whiles, and concatenation wusing original
variables, actions and predicates. In fact, some DRECi
structures (which contain BLISS-like [Wulf et al. 1971] multi-
level exit (i), exiting 1 enveloping loops, and cycle(i),
continuing the next iteration of the i~th enveloping loop) are
more powerful than any DRECi-1 structures,

With this background we make the following observations :

1. This does not mean that a given problem, for which we have a
solution with break/continues, cannot be solved using D-
structures only but with a different choice of data
structures. In fact, most breaks used in the programs of C-
book can be so avoided; some of them occur only because the
array index cannot be negative.

2. Why stop at break and continue, which are equivalent ¢to
exit(1) and cyele(1) ? Certainly, for i > 1, exit{(i) and
cycle(i) add flexibilty and power. The primary function of
control structures is to provide clarity by operational
abstraction. Loops containing exits, and cyecles are more
difficult to understand. It 1is surprising how rarely one
really needs exit(1) or higher exits. The need for control
structures at higher levels than D-structures is still
unproven.

3. But, if one feels a break is needed in a certain situation,

54

why not use a goto? Knuth(1974) argues that such use of goto
is not "unstructured", while a lot of others (like Ledgard and
Marcotty(1975)) would rather introduce a boolean variable, or

expand the range of values of an already existing variable, to
eliminate the break.

Both languages have the goto statement. In Pascal, the

labels need to be declared, and are always unsigned integers. ¢
allows arbitrary identifiers as labels, which are not declared.

5. Program Structure

Pascal and C both have a simpler program structure than
Algol 60. Pascal achieves simplicity by identifying blocks with
routines (procedures/ functions) and C does it by not allowing
nested routines. In spite of this, C program structure,
particularly the scope of variables, is more comprehensive than
that of Pascal., Successors to Pascal, such as Concurrent Pascal,
Modula, Pascal-Plus, have successfully blended into Pascal the
notion of Simula-classes, which structures programs far more
effectively.

5.1 Procedures and Functions

In Pascal, these are two distinct entities. 4 function
returns a scalar, real, or pointer value, but has no side-effects
when well-written. When a procedure is called, we expect the
environment to change; when a function appears in an expression,
we can evaluate it without at the same time worrying about side-
effects. This is how it should be 1in a statement-oriented
language.

¢ functions, on the other hand, may or may not return
values, In the latter case, they are equivalent to Pascal
procedures. But, C goes one step further, and permits a variable
number of parameters and the use of value-returning functions as
procedures. Certainly, it is more natural for some routines to
have a variable-number of parameters (e.g., Pascal's read and
write). But this should be the exception allowed only upon
explicit request.

Another surprise in C is all the parameters are passed by
value only. To achieve Pascal's var parameter, the address is

passed as a value parameter, and the function changes the content
of the cell pointed. Thus C depends too heavily on pointers,

providing a classic case of type confusion as in

55

char *s ;

(Is s a pointer to a character, or a pointer to an array of
characters?)

5.2 Block Structure and Scope

C does not allow nested functions but the body of any
compound statement is a block and can contain declarations (of
struct, typedef, and variables). This feature, however, is
rarely used in practice, except in the outermost block of a
routine, or when register variables are needed. Such block
structure can be simulated in Pascal by calls to nested routines,
but this incurs the overhead of a call.

The names of functions in C are always global (unless
declared static) and available to routines in other source files.
Variables and new type names can be declared in between routines,
or before the very first one, and are visible to routines below
them in that file. To access variables declared in other files,
explicit extern declarations are required. Variables can be
declared, within a routine, to belong to the static storage class
(similar to own variables in other languages); such variables
retain their values between successive calls of that function and
are visible only within that routine. These features and the
ease of separate compilation make it possible to structure C
programs with as much clarity (but not security) as can be
achieved with the module concept. In contrast, such structuring
cannot be done elegantly in Pascal.

6. Language Support

It is clear to anyone involved in the production of
software that often the support given to a language plays a more
major role than the language itself. Supporting tools include
source language debugging packages, execution profilers, cross-
reference generators, macro (pre)processors, pretty printers, and
a host of other library programs. To be sure, none of these is
part of a language, but most users cannot distinguish them as
being separate entities because of their careful integration into
host languages.

C is a good example of this process, It wuses a standard
preprocessor for handling constant definitions and file
inclusions. Many of these tools for C are written in C, and
hence available Jjust as widely as the language itself. In

56

contrast, Pascal tools and separate compilation facilities
[Kieburtz et al. 1978] are only now being developed by interested
users. Some of these are written in non-standard Pascal and
often integrate poorly with operating systems.

6.1 Preprocessors

Pascal programmers often get annoyed by the lack of some
simple conveniences. Examples:

1. Expressions involving symbols defined at compile time cannot
be used on the right hand side of a constant definition :

const n = 10; ntl = 11;

If we change n to, say, 20, then we should also change
manually nl1 to 21. The following 1is simpler and more
informative :

censt n = 107 nl =n + 1;
but this is illegal.

2. Body substitutions for calls to (very short) functions and
procedures cannot be specified. The grouping of short
sequences of tests and other operations into functions and
procedures is thereby discouraged.

Both situations are quite common in programming, and to argue
that they can be done easily by hand, and that execution profiles
often prove that body substitutions do not yield space/time gains
is simply unrealistic.

C handles the above situations, as well as inclusion of text
from other files, excellently through its standard macro
preprocessor. Such a processor is easy to write tor Pascal too,
but as there is no standard syntax for it, too many different
preprocessors are bound to mushroom [Comer 1979, Mateti 1979bl.

57

7. Efficiency

"Don't diddle code to make it faster -- find a better
algorithm."

- Kernighan and Plauger (1974)

We can distinguish between two kinds of efficiency
improvements: of the algorithm, of the coding. The efficiency
that complexity theorists discuss often deals with the asymptotic
behaviour of the execution time of algorithms. When input data
are of sufficiently large size n, an 0(n) algorithm would in
fact be faster than an O(n¥*2) algorithm. This may, however,
not always be the case on small amount of input data. If you
have only a five element array to sort, bubble sort may run
faster on your machine than O(n log n) quick sort.

Also, the following appears to be the case, unless the algorithm
in question is a well-studied one :

The lower the level of the language, the more afraid you are
to use a more complex but significantly more efficient
algorithm.

However, the practising programmer often appears overly concerned
with improving efficiency only at the statement-level of coding.
This penny-wise saving of micro-seconds has an apparently
incurable side-effect that the resulting programs are harder to
understand and often incorrect. Not uncommonly, more significant
global improvements are not realized because of the unmastered
complexity introduced at this statement-level. This is the direct
result of incomplete analysis of the program written.

The benefits of a theoretical complexity analysis are very
often substantial. But leaving this aside, one can further
distinguish two kinds of efficiency improvements at the coding
level :

1. measurable improvements
2. demonstrable improvements

For example, let us take a millisecond as the unit of
measurement. Then, these are not always the same -- 1, implies
2., but not vice versa; for, you may be able to demonstrate that
program A is faster than B by executing them a thousand times and
comparing the total execution times, even though A 1is not

58

measurably faster than B.

We should not ignore another observed phenomenon that
programs spend most of their time in very small portions of the
code. If this is true of the program in question, try to improve
the efficiency of only these small segments of the code.

Correctness-preserving efficiency improvements, of whatever
kind, should certainly be followed provided the required effort
is not too great and the resulting code is equally easy to
understand, maintain, enhance and modify. When this proviso is
not satisfied a careful analysis of the benefits of efficiency
improvements 18 necessary. For example, 1is it worthwhile to
{demonstrably) improve a program that runs only a few times a
day? Is not a millisecond too small a unit for distinguishing
the two kinds of improvements for cost benefits?

By providing such things as register wvariables, and
decrement and increment operations, ¢ gives the impression of
being an efficient language. We have, as yet no solid evidence
that this is so, or if so, by what factor, in the domain of
systems programming. For example, the absence of negative
indices for arrays and the lack of sets induces more computation
than is actually necessary. While it is true that i++ can be
compiled straightforwardly into demonstrably faster code than i
:= i + 1, it i3 not clear if such things make programs measurably
faster. On the other hand, there is the real danger of a slight
slip turning such a statement into a major disaster (see Sections
9 and 10.1).

"Tt is very easy to exaggerate the need for efficiency and
require a performance competitive with optimal hand coding."

- B, A. Wichmann(1978)

8. Portability

Perhaps the too restrictive nature of Pascal and the -ease
with which its compilers can be modified are the two factors that
prompt many of its implementors to 'extend' the language and make
it unportable. (Is giving rise to a host of suggested extensions
a charactersitic of a superior language?) But programs in
standard Pascal enjoy a considerable degree of portability { apart
from problems caused in any language by the underlying character

59

codes, ASCII or EBCDIC, or whatever).

This cannot be said of C. Even though most of the existing
compilers are built by a rather close-knit group at Bell Labs
and MIT, there are enough differences. One reason for this may
be that the semantics of the language is often confused with what
code the compilers produce in its Reference Manual.

Certainly, C programs have been and can be ported [Johnson
and Ritchie 1978]. But this does not mean that they are portable
as the word is generally understood. There is no clearly defined
subset of it that would guarantee portability. A few example
problems that the C Reference Manual cautions about are :

1. A pointer can be assigned any integer value, or a
pointer value of another type. This can cause address
exceptions when moved to another machine.

2., Integers can be assigned to chars and vice-versa.

To these we can add the problems caused by assumptions made in C
programs about the addresses of variables (that they are a fixed
distance apart ...). The unions of € and variant records of
Pascal can both cause portability problems when misused.

9. Insecurities

"For the purpose of this discussion, an insecurity is a
feature that cannot be implemented without either (1) a risk that
violations of the language rules will go undetected, or (2) run-
time <checking that is comparable in cost to the operation being
performed" [Welsh et al. 1977]. It may sound paradoxical but few
or no insecurities need not always be a good thing. For, we
observe that assembly languages have no insecurities whatsoever,
according to the above definition, for the simple reason that it
does not attempt to provide any security. It is only when a
language purports to provide security, either explicitly or
implicitly, and then fails that we should be upset by it. Thus,
we modify (1) to read 'a'risk that violations of the language
rules and intentions will go undetected’'. It is unlikely that a
useful language without any insecurities can ever be designed.
We can attempt to reduce their number, and explicitly identify

them so that we are not 1lulled into believing that programs
written in the language are safe.

60

9.1 Unsafe Features

An unsafe feature is an insecurity that generally causes
havoe and is frequently the cause of evasive bugs.

The 1ist of unsafe features of C is rather long : pointers
to static as well as dynamic variables, address arithmetic,
passing addresses as value parameters, treating an object pointed
to as an array, all belong to this list. But what is more
important is that they constitute the most heavily used features.
Some of these exist in the language purely for the sake of
statement-level efficiency. The use of pointers in accessing
array elements is not only efficient, but has a certain elegance
of its own. However, its setting is extremely unsafe, and
provides much fuel to the "pointers considered harmful" debate
(e.g. [Hoare 19751). It 1is possible to control the use of
pointers without any loss in efficiency [Mateti 197%9al. As they
are now, they can be greatly misused, worse, an accidental slip
can turn it into a very frustrating and harmful gremlin.

Not only is the list of unsafe Pascal features short --
variant records without tag fields, functions and procedures as
parameters, dangling pointers to dynamic variables -~ their
relative frequency of occurrence is far lower.

9.2 Dirty Tricks

A dirty trick is an exploitation of an insecurity. The adjective
"dirty" 1is used only to remind that such tricks often spring up
as a nasty surprise to any one but their originators. Contrary
to popular belief, dirty tricks can serve clean and legitimate
purposes. This happens when the language is put to use in a way
its designer has not foreseen or wished to forbid but could not.
More often, however, they provide short-cuts. Two such examples
follow.

1. Suppose we wish to access the exponent part e of the
representation of a positive real number x. On the Interdata
8/32, this happens to be in bits 1 to 7. Thus, the function
expo of Figure 1 would do the job in C.

2. Suppose we wish to produce the 32-bit concatenation of four
8-bit quantities, or vice versa., On some machines, characters
are represented as 8-bit bytes and integers as 32-bit words.
Thus, declare the 8~bit quantities as characters, and

61

var dummy :
T record case boolean of
true : (bits32 : integer);
false : (bits8 :
packed array [1..4] of char);
end;

with dummy do begin
bits8 [1] := first 8-bit quantity;
bits8 [2] := second 8-bit quantity;
bits8 [3] := third 8-bit quantity;
bits8 [4] := fourth 8-bit quantity;
end;

then dummy.bits32 is the required concatenation. Code similar
to this appears in some Pascal compilers. Pascal chose
deliberately to provide this flexibility at the expense of
security [Wirth 1975].

10. Psychological Effects

We are all psychologists.

- from a book on psychology

It is with some trepidation that I write on these effects,
for I am a computer scientist., However, to shy away from this
"non-subject" would be to ignore the recognised importance
[Weinberg 1971] of the effects caused by our mental images of the
languages and by our human limitations. If you are sceptical of
what 1is said here, you are justified., But, I urge you to test
these hypotheses out and see how true/false they are.

10,1 Error Proofing

That the ratio of all "meaningful" constructs to all

syntactically legal constructs in any programming
language is almost zero

is a well-known fact. This is not because the said programming
language 1s defined 1in a context-free grammar rather than in a
more precise one such as vW grammar [Tanenbaum 19781. (It is

62

possible, by technical trickery, to define a '"programming
language" where this ratio is unity; such a language would,
however, have extremely limited '"expressive power".) Let us
recall the assumptions of Section 1.3. In addition, the
following appear to be true, but are not well-tested:

The number of errors in programs 1is proportional to the
amount of detail that the writer had to handle in his
program.

The cost of debugging is a rapidly increasing function of
the number of errors(bugs), which includes the extremely
trivial ones.

It is therefore important to decrease the possibilities for
(unintentional) misuse. Thus 1t 1is desirable to inform the
compiler of our intentions.
How can we expect a 1language to aid in avoiding
mistakes, if it is even incapable of assisting in their
detection.

~ N. Wirth (197%)

10.2 Understandability and Compaciness

Programming is the art of writing essays in crystal-
clear prose and making them executable.

~ P. Brinch Hansen (1977)

It c¢can justifiably be argued that the code is not a complete
source of information about a program and that a programmer
understands a program by successively refining guesses about how
the program operates [Brooks 19781. However, we confine
ourselves here to the understanding gained through reading the
code only.

Programs in expression languages are (to me) more difficult
to understand than those in statement languages. In the latter,
only the statements are active in modifying the values of
variables, It is for this reason that we often discourage
functions with side-effects. In understanding expression
language programs we have to handle more details at different
levels all at the same time. We need to remember not only what
the expression value 1is so far, but also what variables have
which new values. It is also true that expression language

63

programs are more compact. Thus, we remark that

Readability is inversely proportional to compactness.

This is not to say anything verbose 1is readable. The word
compactness, as it is used here, needs explanation. Electronic
circuits can be made more compact by using integration. But this
does not make them 1less complex than their discrete component
counterparts., Compactness achieved in expression languages is of
this kind. Unlike in mathematics, where compact notation hides
detail irrelevant to a given 1level of discussion, expression
language programs while being compact still contain all the gory
details. The algorithm does not become simpler, nor is there any
reduction in the number of abstract operations except that in the
code generation some redundant load/store machine instructions
may be avoided.

In C, a programmer can certainly choose not to be compact but
the natural tendency of most programmers to write the
"best possible™ code in a given language works against
writing readily understandable code.

Do give some thought to the qualification in the following quote.

C is easy to write and (when well-written) easy to
read.

McIlroy et al. (1978)

However, although we are all psychologists at
heart, not all of us are scientists.

~ from the same book on psychology

11. Coneclusion

The images that Pascal and C evoke are vivid. The strength
of C emanates from its identification of several practices used
in assembly programming that lead to very well-written, modular,

64

and efficient programs. In addition, C provides a modern syntax
for them adding the conventional wisdom of high-level languages,
notably automatic allocation of storage for variables and
recursion. Its fundamental flaw is that it failed to curb the
misuse of the very same features. While "misuse" is relative to
one's programming "morals", the failure to provide enough
redundancy to catch the accidental slip is unrealistic and can be
expensive,

Pascal, on the other hand, gives the impression that it may have
been designed by first synthesising all that has been put forward
in its time about "Ygood and wholesome" programming, and
eliminating features that cannot be implemented efficiently
enough. Its promotion and exposition may have been, from a
psychological point of view, offensive : restrictions are often
resented, and rarely understood. It 1is true of nearly every
human endeavour that it takes far greater courage, training,
education and understanding to be disciplined, and computer
programming is no exception.

Optimism has not, apparently, worked in the past programming
projects. "Its [software] products have typically contained
other than what was expected (usually less, rather than more),
been delivered much later than scheduled, cost more than
anticipated, been poorly documented, and been poorly designed”
[Bersoff et al. 19791]. One should learn this lesson, and be
extremely careful at every step. Languages with convenient
features whose erroneous use cannot be detected by its compilers
should be avoided.

That excellent (as well as extremely ugly) programs can be
written in either language 1is clear. However, I am concerned
that it is all toc easy to write incomprehensible programs in C.
Even more offending are the "features" such as unbridled
pointers, variable number of parameters in function calls,
absence of type checking and lack of Boolean variables... ; these
are a lot more troublesome than they are worth.

Finally, let me conclude by quoting Welsh et. al.(1977):

"Pgscal is at the present time the best language in the
public domain for purposes of systems programming and
software implementation.

The discovery that the advantages of a high-level
language could be combined in such a simple and elegant
manner as in Pascal was a revelation that deserves the
title of breakthrough. Because of the very success of
Pascal, which greatly exceeded the expectations of its

65

author, the standards by which we judge such languages
have also risen. It is grossly unfair to judge an
engineering project by standards which have been proved
attainable only by the success of the project itself,
but 1in the interests of progress, such criticism must
be made.”

Acknowledgements

Many discussions with Paul Dunn, Robert Elz, Ken McDonnel, and
Peter Poole prompted me to think about this topic and write this
paper. However, they may not share my views as expressed here.
I am grateful to the many authors who have influenced me and
whose quotations I have so heavily used to make it c¢lear that
this paper is little more than a collage of their ideas.

12. References

[Addyman et al. 1979]
A. M. Addyman, et al., "A Draft Description of Pascal,"

Software - Practice and Experience, Vol. 9, No. 5, 381 -
Loy,

[Bersoff et al. 1979]
Edward H. Bersoff, Vilas D. Henderson and Stan G. Siegel,
"Software Configuration Management : A Tutorial,”
IEEE Computer Magazine, Vol. 12, No. 1, 6 - 13.

[Brinch Hansen 1977 1
Per Brinch Hansen, The Architecture of Concurrent Programs,
Prentice-Hall.

[Brooks 1978]
Ruven Brooks, "Using a Behavioral Theory of Program
Comprehension in Software Engineering," Proceedings of the
Third International Conference on Software Engineering,
IEEE, 196 - 201.

66

Comer 1979 1
Douglas Comer, "MAP ; A Pascal Macro Preprocessor for Large
Program Development,” Software-Practice and Experience, Vol.
99 203 - 209.

Conradi 1976]
R. Conradi, "Further Critical Comments on the Programming
Language Pascal, Particularly as a System Programming
Language," SIGPLAN Notices, Vol. 11, 8 - 25.

Flon 1975 1
Lawrence Flon, "On Research into Structured Programming,”
ACM SIGPLAN Notices, Vol.10, No. 10, 16-17.

Geschke et al. 1977]
Charles M, Geschke, James H. Morris Jr., and Edwin H.
Satterthwaite, P"Early Experience with Mesa," Communications
of the ACM, Vol. 20, No. 8, 540-553,

Habermann 1973]
A. N. Habermann, "Critical Comments on the Programming
Language Pascal," Acta Informatica, Vol 3, 47 - 58.

Hoare 1972 J
C. A. R. Hoare, "A Note on the for Statement," BIT, Vol. 12,
334341,

Hoare 1975]
C. A. R. Hoare, "Data Reliability," ACM SIGPLAN Notices,
Vol. 10, No. 6, 528-533.

Jensen and Wirth 1974]
Kathleen Jensen and Niklaus Wirth, Pascal : User Manual and
Report, 2nd ed., 4th printing, Springer-Verlag, pp 167.

Johnson and Ritchie 1978]
3. C. Johnson and D. M. Ritchie, "Portability of C Programs
and the UNIX System,"” The Bell System Technical Journal,
Vol. 57, 2021 - 2048,

Kernighan and Flauger 1974]
Brian Kernighan and P. J. Plauger, The Elements of
Programming Style, McGraw-Hill.

Kernighan and Ritchie 1978 1]
Brian Kernighan and Dennis M, Ritchie, The C Programming

Language, Prentice Hall Software Series, pp viii + 228.

67

Kieburtz et al. 1978]
R. B, Kieburtz, W. Barbash and C. R. Hill, "A Type-checking
Program Linkage System for Pascal," Proceedings of the Third
International Conference on Software Englneerlng, IEEE, 23 -
28.

Knuth 1971 1
Donald E. Knuth, "An Empirical Study of FORTRAN Programs,"
Software~-Practice and Experience , Vol. 1, 105-133,

Knuth 1974]
Donald E. Knuth, "Structured Programming with goto
Statements,” Computing Surveys, Vol. 6, No. 4, 261 - 301.

Kosaraju 1974]
Rao Kosaraju, "Analysis of Structured Programs,"
J. Computer and System Sciences, Vol. 9, No. 3, 232 - 255,

Lampson et al. 1977 1]
B. W. Lampson, J. J. Horning, R. L. London, J.G. Mitchell,
and G. L. Popek, "Report on the Programming Language
Euclid," ACM SIGPLAN Notices, Vol. 12, No. 2, pp ii + 79.

Lecarme and Desjardins 1975]
0. Lecarme and P, Desjardins, "More Comments on the
Programming Language Pascal," Acta Informatica, Vol. 4, 231
- 243,

Ledgard and Marcotty 1975]
Henry F. Ledgard and Michael Marcotty, "A Genealogy of

Control Structures," Communications of the ACM, Vol. 18, No.
11, 629 - 639,

Liskov et al. 1977]
Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig
Schaffert, "Abstraction Mechanisms in CLU," Communications
of ACM, Vol. 20, No. 8, 564-576,

Mateti 1979%a]
Prabhaker Mateti, "Enumerated Types and Efficient Access of
Array Elements,”" in preparation.

Mateti 1979b]
Prabhaker Mateti, "Specifications of a Macro Preprocessor
for Pascal : A CS340 Project," University of Melbourne.

68

McIlroy et al. 1978 1
M. D. MeIlroy, E. N. Pinson and B, A. Tague, "Foreword (to
the special issue)", The Bell System Technical Journal, Vol.
57, No. 6, 1899 - 1904,

Morris 1973 1
Jd. H. Morris, "Types are not Sets," Conference Record ACM
Symposium on Principles of Programming Languages, Boston,
Mass., 120 — 124,

Nutt 1978 1
Gary J. Nutt, "A Comparison of Pascal and FORTRAN as
Introductory Programming Languages," ACM SIGPLAN Notices,
Vol. 13, No. 2, 57-62. T

Pascal News 197x 1
Pascal News, News letters of the Pascal Users Group, Andy
Mickel (ed.), University of Minnesota.

Plauger 1979]
P. J. Plauger, A Review of Kernighan and Ritchie 1978 ,
Computing Reviews, Vol. 2, 2 - 4,

Sammet 1978 1
Jean E. Sammet, "Roster of Programming Languages for 1976~
1977," ACM SIGPLAN Notices, Vol. 13, No. 11, 56-85.

Shaw et al. 1978]
Mary Shaw, Guy T. Almes, Joseph M. Newcomer, Brian K. Reid
and Wm. A. Wulf, "A Comparison of Programming Languages for
Software Engineering," Report C(MU~-CS-78-119, Carnegie-Mellon
University.

Tanenbaum 1978]
A, S. Tanenbaum, "A Comparison of Pascal and Algol 68,"
The Computer Journal, Vol. 21, 31€ - 323.

Weinberg 1971 1
Gerald Weinberg, The Psychology of Computer Programming, Van
Nostrand Reinhold.

Welsh and Bustard 1979]
J. Welsh and D. W. Bustard, "Pascal-Plus - Another Language
for Modular Multiprogramming," Australian Computer Science
Communications, Vol. 1, No. 1, 49 - 62,

69

Welsh et al. 1977 1
J. Welsh, W. J. Sneeringer and C. A. R. Hoare, "“Ambiguities
and Insecurities in Pascal," Software -~ Practice and
Experience, Vol. 7, 685 - 696.

Wichmann 1978 1
B. A. Wichmann, "Some Performance Aspects of System
Implementation Languages," Constructing Quality Software, P.
G. Hibbard/S. A. Schuman (eds.), IFIP, North-Holland, U6 -
62.

Wirth 1971]
Niklaus Wirth, "The Design of a Pascal Compiler," Software
—— Practice and Experience, Vol. 1, 309-333.

Wirth 1974]
Niklaus Wirth, "On the Design of Programming Languages,"
(in) Information Processing 1974, J. L. Rosenfeld (ed.),
North-Holland, 386-393.

Wirth 1975 1
Niklaus Wirth, "An Assessment of the Programming Language
Pascal," Proceedings of 1975 International Conference on
Reliable Software, ACM SIGPLAN Notices, Vol. 10, No. 6, 23-
30.

Wirth 1977a 1
Niklaus Wirth, "Modula : A Language for Modular
Multiprogramming," Software - Practice and Experience, Vol,
7, 3-35.

Wirth 1977b 1
Niklaus Wirth, "Programming Languages : What to Demand and
How to Assess Them," (in the book) Software Engineering,
edited by R. H., Perrott, Academic Press, 155 - 173.

Wulf et al. 1971 1]
W. A. Wulf, D. E. Russell, and A. N, Habermann, “BLISS : A

Language for Systems Programming," Communications of the
ACM, Vol. 14, No. 12. _“

Wulf et al. 1976]
W. A. Wulf, R. L. London, and M. Shaw, "An Introduction to
the Construction and Verification of Alphard Programs," IEEE
Transactions on Software Engineering, Vol. 2, 253-265.

